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CONSTRAINED DIRICHLET BOUNDARY CONTROL IN L2

FOR A CLASS OF EVOLUTION EQUATIONS

K. KUNISCH† AND B. VEXLER‡

Abstract. Optimal Dirichlet boundary control based on the very weak solution of a parabolic
state equation is analysed. This approach allows to consider the boundary controls in L2 which
has advantages over approaches which consider control in Sobolev involving (fractional) derivatives.
Point-wise constraints on the boundary are incorporated by the primal-dual active set strategy. Its
global and local super-linear convergence are shown. A discretization based on space-time finite
elements is proposed and numerical examples are included.
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1. Introduction. In this work we focus on the Dirichlet boundary optimal con-
trol problem with point-wise constraints on the boundary, formally given by



min J(y, u)

subject to

∂ty − κ∆y + b · ∇y = f in Q

y = u, u ≤ ψ on Σ

y(0) = y0 in Ω,

(1.1)

whereQ = (0, T ]×Ω, Σ = (0, T ]×∂Ω and κ, b, f, y0, ψ and T > 0 are fixed. We propose
and analyze a function space formulation which is amenable for efficient numerical
realizations. To incorporate the constraints numerically the primal-dual active set
strategy is used and its convergence is investigated. We also propose a space-time
Galerkin approximation and provide numerical examples.

The specific difficulties involved in Dirichlet control problems result from the fact
that they are not of variational type. In the literature several treatments of Dirichlet
boundary control problems can be found, where the function space for the controls
is Hs with s ≥ 1

2 . As a consequence, the numerical realization by finite elements or
finite differences is more involved than if the control space was L2. Our approach will
be based on the concept of very weak solutions to the state equation. This allows the
use of L2 as control space.

Let us briefly describe possible approaches to treat Dirichlet boundary optimal
control problems. While in our work we shall treat the time dependent case, it will be
convenient for the present purpose to restrict our attention to a tracking type optimal
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control problem with the most simple stationary elliptic equation as constraint:

min 1
2 |y − z|2L2(Ω) + β

2 |u|
2
L2(∂Ω)

over (y, u) ∈ L2(Ω)× L2(∂Ω)

subject to

−(y,∆v)L2(Ω) = −(u, ∂∂nv)L2(∂Ω) for all v ∈ H2(Ω) ∩H1
0 (Ω)

and u ≤ ψ on ∂Ω,

(1.2)

where z ∈ L2(Ω) and ∂Ω denotes the boundary of the domain Ω. The variational
equation in (1.2) is the very weak form of{

−∆y = 0 in Ω

y = u on ∂Ω,

see [31]. In our work we shall use the analogue of (1.2). If the state variable y is
considered in H1(Ω) then a proper formulation is given by

min 1
2 |y − z|2L2(Ω) + β

2 |u|
2

H
1
2 (∂Ω)

over (y, u) ∈ H1(Ω)×H
1
2 (∂Ω)

subject to

(∇y,∇v)L2(Ω) = 0 for all v ∈ H1
0 (Ω), and y = u on ∂Ω

and u ≤ ψ on ∂Ω.

(1.3)

For both formulations (1.2) and (1.3) it is classical to argue existence of a unique
solution, see e.g. [31]. Numerically the H1/2-norm in (1.3) is more involved to realize
than the L2-norm in (1.2). To avoid difficulties with implementing the H1/2-norm it
was replaced in several publications by the H1-norm. As a consequence the Laplace
Beltrami operator appears in the optimality condition. This formulation, properly
modified for the specific application and without control constraints, was used in the
context of optimal boundary control of the Navier Stokes equations and the Boussi-
nesq equations, for example, see, e.g. [22] and [30]. For a numerical wavelet based
realization of Hs-norms in the context of Dirichlet control of elliptic equations we
refer to [28].

A third alternative is given by

min 1
2 |y − z|2H1(Ω) + β

2 |u|
2
L2(∂Ω)

over (y, u) ∈ H1(Ω)×H1/2(∂Ω)

subject to

(∇y,∇v)(Ω) = 0 for all v ∈ H1
0 (Ω) and y = u on ∂Ω

and u ≤ ψ on ∂Ω.

(1.4)

Again existence can be argued by standard arguments, but for (1.4), differently from
(1.2) and (1.3), the essential term for obtaining coercivity is the H1-norm of the
tracking functional. Just like (1.2) this formulation also avoids having to deal with
fractional order Sobolev spaces. It was used in the context of boundary control of
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the stationary Navier Stokes equations in [14], for example. In the adjoint equation,
however, a Laplacian now appears in the source term acting on the defect y − z.

Besides the difficulties already mentioned with (1.3) and (1.4) there is yet an-
other, possibly more essential reason, to favor the formulation in (1.2). For (1.2) the
Lagrange multiplier associated to the constraint u ≤ ψ is an L2-function, whereas
it is only a measure for the formulations in (1.3) and (1.4). As a consequence the
complementarity conditions related to the inequality constraint can be expressed in a
pointwise a.e. manner by the common point-wise complementarity functions like the
max or the Fischer-Burmeister functions only for formulation (1.2). Such a pointwise
formulation is a basis for efficient optimization algorithms as primal dual active set
strategy or semi-smooth Newton method.

Let us also recall the possibility of approximating Dirichlet boundary control
problems by regularization based on Robin boundary controls of the form δ ∂y∂n +y = u
for δ → 0+. This results in the variational formulation:

min 1
2 |y − z|2L2(Ω) + β

2 |u|
2
L2(∂Ω)

over (y, u) ∈ H1(Ω)× L2(∂Ω)

subject to

(∇y,∇v)L2(Ω) = 1
δ (y − u, v)L2(∂Ω) for all v ∈ H1(Ω)

and u ≤ ψ on ∂Ω.

(1.5)

The choice of δ remains a delicate matter. This approach was used for stationary
and instationary problems in [6] and [2] respectively. In [3] a numerical approach to
Dirichlet boundary control based on a discretization using the Nitsche method was
proposed.

We next point at some additional features of this paper. As already mentioned,
the pointwise inequality constraint u ≤ ψ will be treated by the primal-dual active set
algorithm. Its global, as well as local super-linear convergence will be analysed. Here
it is essential that the Lagrange multiplier is an L2 function and that the resulting
complementarity condition involving the max-operation is Newton differentiable. This
is the case for (1.2), whereas this is not true for the other two formulations. Newton
differentiability will be shown for (1.2) for time dependent problems in the present
paper. For stationary problems it easily follows as well.

Discretization of the infinite dimensional problems will be carried out by a space-
time finite element method. This approach guarantees that the algorithm is invariant
with respect the ordering of discretization of the problem and gradient computations.

In spite of the fact that we use the very week solution concept as our functional
analytic setting for Dirichlet boundary control, the numerical discretization is based
on standard space-time Galerkin finite dimensional spaces. This will be justified by
the fact that the solution of the optimal control problems are more regular than
required by (1.2).

In our numerical implementation we use piecewise (bi-) linear elements for spatial
discretization of the primal and adjoint states as well as for the controls. This may
appear to be incompatible at first, since the optimality condition involves ∂p

∂n and u in
an additive manner, where p denotes the adjoint state. However, we replace ∂p

∂n by a
variational expression in such a way that the resulting discretization is well balanced.

In Section 2 we gather well-posedness results and a-priori estimates for a class of
evolution equations with Dirichlet boundary conditions in L2. We include a convection
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term, due to future interest of considering similar problems for the Boussinesq systems,
with specific nonconvex cost functionals, motivated by fluid mechanics considerations.
In this case the convection coefficient is the velocity field of the fluid. Section 3
is devoted to the statements and analysis of the optimal control problems under
consideration. In particular, we describe regularity properties of the optimal solutions.
These are not only of interest in their own right, but are essential for super-linear
convergence of the primal-dual active set strategy, as explained in Section 4. Section
5 contains a description of the finite element discretization and the final Section 6 is
devoted to selected numerical examples.

2. On the state equation. In this section we provide the necessary existence
and a-priori estimates for very weak solutions to

∂ty − κ∆y + b · ∇y = f in Q

y = u on Σ

y(0) = y0 in Ω

(2.1)

where Q = (0, T ]×Ω , Σ = (0, T ]×∂Ω and Ω a bounded domain in Rn, n ≥ 2 with
C2 boundary ∂Ω. This boundary regularity of Ω guarantees that the Laplacian with
homogenous Dirichlet boundary conditions, denoted by ∆0, is an isomorphism form
H2(Ω)∩H1

0 (Ω) to L2(Ω) . We shall denote the adjoint of ∆0 , mapping from L2(Ω)
to H−2(Ω) = (H2(Ω) ∩H1

0 (Ω))∗ by ∆0 as well. Further κ > 0, y0 ∈ H−1(Ω), f ∈
L2(H−2(Ω)), u ∈ L2(Σ) and b ∈ L∞(Q), div b ∈ L∞(Ln̂(Ω)) where n̂ = max(n, 3),
and L∞(Q) =

⊗n
i=1 L

∞(Q) . At times we shall simply write Lp(Q) for Lp(Q) .
For any Banach space Y , we use the abbreviations L2(Y ) = L2(0, T ;Y ),Hs(Y ) =
Hs(0, T ;Y ), s ∈ [0,∞), and C(Y ) = C([0, T ];Y ).

The very weak form of (2.1) that we shall utilize, is given by
〈∂ty(t), v〉 − κ(y(t),∆v)− (y(t),div (b(t)) v)− (y(t), b(t)∇v)

= 〈f(t), v〉 − κ(u(t), ∂∂nv)∂Ω for all v ∈ H2(Ω) ∩H1
0 (Ω)

and a.e. t ∈ (0, T ),

y(0) = y0,

(2.2)

where 〈·, ·〉 = 〈·, ·〉H−2(Ω),H2(Ω)∩H1
0 (Ω) denotes the canonical duality pairing, (·, ·) and

(·, ·)∂Ω stand for the inner products in L2(Ω) and L2(∂Ω) respectively.

Theorem 2.1. For every κ > 0, b ∈ L∞(Q), with div b ∈ L∞(Ln̂(Ω)),
y0 ∈ H−1(Ω), f ∈ L2(H−2(Ω)) and u ∈ L2(Σ), there exists a unique very weak
solution y ∈ L2(Q) ∩H1(H−2(Ω)) ∩ C(H−1(Ω)) satisfying

|y|L2(Q)∩H1(H−2(Ω))∩C(H−1(Ω)) ≤ C(|y0|H−1(Ω) + |f |L2(H−2(Ω)) + |u|L2(Σ)), (2.3)

where C depends continuously on κ > 0, |b|L∞(Q) and |div b|L∞(Ln̂(Ω)), and is inde-
pendent of f ∈ L2(H−2(Ω)), u ∈ L2(Σ) and y0 ∈ H−1(Ω).

Proof. Let us first assume existence of y with the claimed regularity and verify
the a-priori estimate (2.3). Throughout k will denote a generic embedding constant.
Let us introduce the transformed state-variable ŷ(t) = y(t)e−ct, c ≥ 0 and note that
if y is a very weak solution of (2.1), then ŷ ∈ L2(Q) ∩ H1(H−2(Ω)) is a very weak
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solution of 
∂tŷ + cŷ − κ∆ŷ + b · ∇ŷ = f̂ in Q

ŷ = û on Σ

ŷ(0) = y0 in Ω,

where f̂ = fe−ct, û = ue−ct. The constant c will be fixed below. We further introduce
ω = (−∆0)−1 ŷ ∈ L2(H2(Ω) ∩ H1

0 (Ω)) ∩ H1(L2(Ω)), and note that ω satisfies for
all v ∈ H2(Ω) ∩ H1

0 (Ω)

〈(−∆0) ∂tω(t), v〉+ κ(∆0 ω(t), ∆v) + c(−∆0 ω(t), v)

+ (∆0 ω(t), div b(t) v) + (∆0 ω(t), b(t)∇v) = 〈f̂(t), v〉 − κ(û(t),
∂

∂n
v)∂Ω ,

for all t ∈ (0, T ). Setting v = ω(t) and integrating over (0, t) we find

1
2
|∇ω(t)|2 − 1

2
|∇ω(0)|2 + κ

t∫
0

|∆0 ω(s)|2 ds+ c

t∫
0

|∇ω(s)|2 ds

+

t∫
0

(∆0 ω(s), div b(s)ω(s)) ds+

t∫
0

(∆0 ω(s), b(s)∇ω(s)) ds

=

t∫
0

〈f̂(s), ω(s)〉 ds− κ

t∫
0

(û(s),
∂

∂n
w(s))∂Ω ,

and consequently

1
2
|∇ω(t)|2 ds+ κ

t∫
0

|∆0 ω(s)|2ds+ c

t∫
0

|∇ω(s)|2 ds

≤ 1
2
|∇ω(0)|2 +

κ

8

t∫
0

|∆0 ω(s)|2 ds+
2k
κ
|div b|2L∞(Ln̂(Ω)

t∫
0

|∇ω(s)|2 ds

+
κ

8

t∫
0

|∆0 ω(s)|2 +
2|b|2L∞(Q)

κ

t∫
0

|∇ω(s)|2 ds+
2k2

κ

t∫
0

|f̂(s)|2H−2 +
κ

8

t∫
0

|∆0 ω|2 ds

+ 2κ2

t∫
0

|û(s)|2L2(∂Ω) ds+
κ

8

t∫
0

|∆0 ω(s)|2 ds

≤ 1
2
|∇ω(0)|2+4κ

8

t∫
0

|∆0 ω(s)|2 ds+(
2k
κ
|div b|2L∞(Ln̂(Ω))+

2|b|2L∞(Q)

κ
)

t∫
0

|∇ω(s)|2 ds

+
2k2

κ

t∫
0

|f̂(s)|2H−2(Ω) ds+ 2k2

t∫
0

|û(s)|2L2(∂Ω) ds .
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If we choose c such that

2k
κ
|div b|2L∞(Ln̂(Ω)) +

2 |b|2L∞(Q)

κ
≤ c

2
, (2.4)

then

1
2
|∇ω(t)|2 +

k

2

t∫
0

|∆0 ω(s)|2 ds+
c

2

t∫
0

|∇ω(s)|2 ds

≤ 1
2
|∇ω(0)|2 +

2k2

κ

t∫
0

|f̂(s)|2H−2(Ω) ds+ 2k2

t∫
0

|û(s)|2L2(∂Ω) ds . (2.5)

From (2.5) we deduce the existence of a constant C with the specified properties
such that for all t ∈ [0, T ]

|ŷ(t)|H−1(Ω) +

t∫
0

|ŷ(s)|2L2(Ω) ds ≤ C(|y0|H−1(Ω) + |f |L2(H−2(Ω)) + |u|L2(Σ)) ,

and, since ŷ(t) = y(t)e−ct we find for a possibly modified C,

|y(t)|H−1(Ω) +

t∫
0

|y(s)|2L2(Ω)ds ≤ C(|y0|H−1(Ω) + |f |L2(H−2(Ω)) + |u|L2(Σ)) . (2.6)

Finally using (2.2) we obtain

T∫
0

|∂ty(t)|2H−2(Ω) dt =

T∫
0

sup
v∈H2(Ω)∩H1

0 (Ω),

|∆0v|≤1

〈∂ty(t), v〉2 dt

≤ κ2

T∫
0

|y(t)|2 dt+

T∫
0

(y(t),div b v)2L2(Ω) dt

+ |b|2L∞(Q)

T∫
0

|y(t)|2 dt+ |f |2L2(H−2(Ω)) + k |u|2L2(Σ) .

For the second term on the right hand side we estimate for n > 4

T∫
0

(y(t),div b v)2L2(Ω) dt ≤
T∫

0

|y(t)|2L2(Ω) |div b|2L2p (Ω) |v|
2
L2q (Ω) dt

≤ k

T∫
0

|y(t)|2L2(Ω) |div b|2Ln̂(Ω) dt ,

where q = n
n−4 , p = n

4 , and we used that H2(Ω) ↪→ L
2n
n−4 (Ω) and n̂ > 2p = n

2 . The
same estimate for dimensions n = 2, 3, 4 follow quite easily.
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We obtain

T∫
0

|∂ty|2H−2(Ω) dt ≤ (κ2+k |div b|L∞(Ln̂(Ω))+|b|L∞(Q))

T∫
0

|y(t)|2 dt+|f |2L2(H−2(Ω))+k |u|
2
L2(Σ) .

Together with (2.6) this gives the desired estimate (2.3), which, in particular also
implies the uniqueness of the very weak solution to (2.1). Existence follows, for
example, by combining this a-priori estimate with a Galerkin procedure, see e.g. [13],
Chapter 18. Alternatively analytic semigroup-theory as in [29] can be used, noting
that −κ∆− b · ∇+ cI generates an analytic semigroup in L2(Ω).

From the proof it follows that the solution y to (2.2) also satisfies the variational
equation in Q given by

T∫
0

(
〈∂ty(t), v(t)〉 − κ(y(t),∆v(t))− (y(t),div(b(t))v(t) )− (y(t), b(t)∇v(t))

)
dt

=

T∫
0

〈f(t), v(t)〉dt− κ

T∫
0

(u(t),
∂

∂n
v(t))L2(Ω) dt, for all v ∈ L2(H2(Ω) ∩H1

0 (Ω)).

(2.7)

The following result will allow to consider cost-functionals with pointwise in time
evaluation of the trajectory.

Corollary 2.2. If, in addition to the assumptions of Theorem 2.1, y0 ∈
L2(Ω), f ∈ L2(Q) and u ∈ L∞(L2(∂Ω)), then the very weak solution satisfies y ∈
L∞(L2(Ω)) and y(t̄) is a well defined element in L2(Ω) for every fixed t̄ ∈ (0, T ].
Moreover, there exists a constant C independent of y0, f and u, such that for the
corresponding solution y = y(u) we have

|y(t̄)|L2(Ω) ≤ C(|y0|L2(Ω) + |f |L2(Q) + |u|L∞(L2(∂Ω))). (2.8)

Proof. Fix κ > 0 and b ∈ L∞(Q) with div b ∈ L∞(Ln̂(Ω)). Without loss of
generality we can assume that A = −κ∆ − b · ∇ is uniformly elliptic. If not, we
add a multiple c of the identity operator and accordingly multiply the constant C by
the factor ecT . Then A generates an analytic semigroup in L2(Ω). For the equation
with u = 0 estimate (2.8) follows by standard semigroup arguments. Using the
superposition principle for (2.1) it therefore suffices to consider the case y0 = 0, f = 0,
and u ∈ L∞(L2(∂Ω)). From [29], see also [2], we have the existence of C > 0 such
that

|y|L∞(L2(Ω)) ≤ C|u|L∞(L2(∂Ω)) . (2.9)

From Theorem 2.1 we deduce y ∈ C(H−1(Ω)) and therefore

y(t̄) = lim
ε→0

1
ε

0∫
−ε

y(t̄+ τ)dτ, (2.10)
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where the integral and the equality are interpreted in H−1(Ω). By (2.9) the right
hand side of (2.10) is also welldefined in L2(Ω) and

|y(t̄)|L2(Ω) = | lim
ε→0

1
ε

0∫
−ε

y(t̄+ τ)dτ |L2(Ω) ≤ C|u|L∞(L2(∂Ω)) .

The desired conclusion follows.

3. The optimal control problems and regularity of optimal controls.
We consider the following two optimal control problems:

(P1)


min J(y, u) = G(y) + β

2 |u|
2
L2(Σ)

over (y, u) ∈ L2(Q)× L2(Σ)

subject to (2.1) and u ≤ ψ on Σ,

where β > 0, ψ ∈ L2(Σ) and G : L2(Q) → R is bounded below, C1 and weakly lower
semicontinuous. The second problem under consideration is

(P2)


min J(y, u) = G (y(T )) + β

2 |u|
2
L2(Σ)

over (y, u) ∈ L2(Q)× L2
T1

(Σ)

subject to (2.1) , ϕ ≤ u ≤ ψ on Σ,

where β > 0, ϕ,ψ ∈ L∞(Σ), ϕ(x) < ψ(x) a.e. on Σ, and G : L2(Ω) → R is bounded
below, weakly lower semicontinuous and C1. Here

L2
T1

(Σ) = {u ∈ L2(Σ) : u(t, x) = 0, for t ∈ (T1, T )},

with T1 ∈ [0, T ]. For (P2) we require that ϕ ≤ 0 ≤ ψ a.e. on (T1, T ). In Section 3.2
we shall require that T1 < T . The practical interpretation of setting u = 0 in a neigh-
borhood of T is that the controller and the observer are not acting simultaneously.
We refer to (y, u) as a solution of (2.1) if that equation is satisfied in the very weak
sense (2.2). Throughout this section the regularity assumptions of Theorem 2.1 for b
are supposed to hold, and

f ∈ L2(Q), y0 ∈ L2(Ω).

Then we have the following result.
Proposition 3.1. There exist solutions (y∗, u∗) = (y(u∗), u∗) to (P1) as well as

(P2), which are unique if G is convex.
This follows from weak sequential limit arguments, see e.g. [31], utilizing Theorem

2.1, respectively Corollary 2.2. – For (P1) a lower bound ϕ ≤ u can be added and
treated as we do for (P2). In (P2) the simultaneous use of upper and lower bound for
the control is essential to guarantee the L∞(L2(∂Ω)) bound for the controls which is
required by Corollary 2.2.

3.1. Problem (P1). To argue the existence of Lagrange multipliers for the
inequalities in (2.1), we introduce

e = (e1, e2) : (L2(Q) ∩H1(H−2))× L2(Σ) → L2(H−2(Ω))×H−1(Ω) ,

g : L2(Σ) → L2(Σ) ,
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by

〈e1(y, u), v〉 =

T∫
0

( 〈∂ty − f, v〉 − (y div b, v)− κ(y,∆v)− (y, b · ∇v) + κ(u,
∂

∂n
v)∂Ω ) dt ,

e2(y, u) = y(0)− y0 ,

g(u) = u− ψ,

for arbitrary v ∈ L2(H2(Ω) ∩H1
0 (Ω)). Recall that L2(Q) ∩H1(H−2) ⊂ C(H−1(Ω)),

so that e2 is well defined. The linearizations e′ of e and g′ of g are obtained from e and
g by deleting the affine terms y0, f and ψ respectively. We introduce the Lagrangian

L(y, u, p, p0, λ) = G(y) +
β

2
|u|2L2(Σ) + 〈(p, p0), e(y, u)〉+ (λ, g(u)).

From Theorem 2.1 it follows that (e′, g′) is surjective and hence there exists a La-
grange multiplier (p, p0, λ) ∈ L2(H2(Ω) ∩ H1

0 (Ω)) × H1
0 (Ω) × L2(Σ) associated to

the constraints (e, g), see e.g. [34]. It follows that the optimality system satisfied
by an optimal pair (y∗, u∗) is obtained by setting ∇y,u,p,p0L(y, u, p, p0, λ) = 0, and
λ ≥ 0, g(u) ≤ 0, λ g(u) = 0. Consequently the optimality system for (P1) is given by

∂ty − κ∆y + b · ∇y = f in Q,
y = u on Σ, y(0) = y0 in Ω,

−∂tp− κ∆p− div b p− b · ∇p = −G′(y) in Q,

p = 0 on Σ , p(T ) = 0 in Ω,

κ ∂p∂n + βu+ λ = 0 on Σ,

λ = max(0, λ+ c(u− ψ)) on Σ,

(3.1)

for any c > 0. Moreover, p(0) = p0. Note that the last equation in (3.1) is equivalent
to λ ≥ 0, u ≤ ψ and λ(u − ψ) = 0. The equations in the last two lines of (3.1) are
equivalent to

u = min(ψ,−κ
β

∂p

∂n
).

The equations in the first two lines of (3.1) are understood in the sense of very weak
solutions. The time-derivative in ∂tp must first be interpreted in variational form, but
from the third equation in (3.1) it immediately follows that p ∈ L2(H2(Ω)∩H1

0 (Ω))∩
H1(L2(Ω)). This is consistent with the regularity results for parabolic equations, since
G′(y) ∈ L2(Q), see e.g. [36], pg. 342. If G is convex, then (3.1) is a necessary and
sufficient optimal condition for (P1).

We now turn to regularity properties of the optimal solution on Σ. This result
is essential for superlinear convergence of the primal dual active set method, see
Section 4. Henceforth let (y, u, p, λ) denote a solution to (3.1). The active and inactive
sets at a solution are denoted by

A = { x ∈ Σ : u(x) = ψ } , I = { x ∈ Σ : u(x) < ψ } .
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Theorem 3.2. On the inactive set I we have for the optimal solution u|I ∈
Lqn(I) with

qn =

{
2(n+1)
n , if n ≥ 3 ,

3− ε, if n = 2 .
(3.2)

On the active set the regularity of u is determined by ψ. Moreover,

∂p

∂n
∈ Lqn(Σ) and

∥∥∥∥ ∂p∂n
∥∥∥∥
Lqn (Σ)

≤ C ‖p‖L2(H2(Ω))∩H1(L2(Ω))

with an embedding constant C.
Proof. As already noted, p ∈ L2(H2(Ω)) ∩H1(L2(Ω)). This implies that

∂p

∂n
∈ L2(H

1
2 (∂Ω)) ∩H 1

4 (L2(∂Ω)),

see [20], or [36], chapter II and page 342. Since H
1
4 (L2(∂Ω)) ↪→ L4(L2(∂Ω)), see [1],

we find

∂p

∂n
∈ L2(H

1
2 (∂Ω)) ∩ L4(L2(∂Ω)), (3.3)

and hence interpolation [40], chapter 1, implies that

∂p

∂n
∈ Lps([H 1

2 (∂Ω), L2(∂Ω)]s),where
1
ps

=
1− s

2
+
s

4
.

For n ≥ 3 we use the fact that for H
1
2 (∂Ω) ↪→ L

2n−2
n−2 (∂Ω), and obtain

[H
1
2 (∂Ω), L2(∂Ω)]s ↪→ Lqs(∂Ω), where

1
qs

=
(1− s)(n− 2)

2n− 2
+
s

2
.

Next we choose s such that ps = qs, i.e.

ps =
8

4− 2s
=

2n− 2
n+ s− 2

= qs.

This implies that s = 2
n+1 and hence qs = 2(n+1)

n . Consequently for n ≥ 3 we obtain
∂p
∂n ∈ L

2(n+1)
n (Σ).

For n = 2 we have that H
1
2 (∂Ω) ↪→ Lr(∂Ω) for all r < ∞. Using similar

arguments as before, we deduce that ∂p
∂n ∈ L

3− 1
r−1 (Σ).

From (3.1) we have that ∂p
∂n = −βu on I and the asserted regularity of u follows.

The desired estimate for
∥∥∥ ∂p∂n∥∥∥

Lqn (Σ)
holds due to the continuity of all embeddings

involved.
Our next objective is to show that for the optimal solution u the corresponding

very weak solution y to the state equation is in fact a variational solution in the sense
that y ∈ L2(H1(Ω)) ∩H1(H−1(Ω)), y = u a.e. on Σ, and∫

Q

∂ty v dxdt =
∫
Q

(−κ∇y∇v − b · ∇y v + fv)dxdt
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for all v ∈ L2(H2(Ω)∩H1
0 (Ω)). This is important for numerical realizations which are

conveniently based on this formulation. We shall require the following lemma, which
uses the notion of uniform 1-smooth regularity property of the boundary, for which
we refer to [1].

Lemma 3.3. Let D be a domain in Rn, having the uniform 1-smooth regularity
property and a bounded boundary, and s ∈ [0, 1].

(a) If v ∈ Hs(D), then max(0, v) ∈ Hs(D) and

|max(0, v)|Hs(D) ≤ |v|Hs(D) ,

(b) If v ∈ Hs(0, T ;L2(D)), then max(0, v) ∈ Hs(0, T ;L2(D)) and

|max(0, v)|Hs(0,T ;L2(D)) ≤ |v|Hs(0,T ;L2(D)) .

Proof. (a) For s = 0 the claim is trivial and for s = 1 it is well known, see [40].
Thus let us consider the case 0 < s < 1. Under the stated regularity properties for
∂D, the interpolation norm on Hs(D) is equivalent to the intrinsic Hs(D)−norm on
D given by

|v|2L2(D) +
∫
D

∫
D

|v(x)− v(y)|2

|x− y|n+2s
dxdy, (3.4)

see [1]. Let Si ⊂ D ×D be given by

S1 = {(x, y) : v(x) ≥ 0, v(y) ≥ 0}, S2 = {(x, y) : v(x) ≥ 0, v(y) < 0}

S3 = {(x, y) : v(x) < 0, v(y) ≥ 0}, S4 = {(x, y) : v(x) < 0, v(y) < 0}.

Then with v+ = max(0, v)∫
D

∫
D

|v+(x)− v+(y)|2

|x− y|n+2s
dxdy ≤

∫
s1∪s2∪s3

∫
s1∪s2∪s3

|v(x)− v(y)|2

|x− y|n+2s
dxdy

≤
∫
D

∫
D

|v(x)− v(y)|2

|x− y|n+2s
dxdy,

and (a) follows. Turning to (b), from [27] Theorem 1.7 it is known that for s ∈ (0, 1)
up to equivalence of norms we have

|v|2Hs(L2(D)) = |v|2L2(L2(D)) + 2

T∫
0

T−t∫
0

t−1−2s |v(τ)− v(t+ τ)|2L2(D)dτdt.

Setting t+ τ = r the last term can equivalently be expressed as

T∫
0

T∫
τ

|s− τ |−1−2s |v(τ)− v(r)|2 drdτ,

and using the symmetry of this expression with respect to s and τ we find

|v|2Hs(L2(D)) = |v|2L2(L2(D)) +

T∫
0

T∫
0

|v(τ)− v(r)|2L2(D)

|τ − r|1+2s
drdτ,
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which is analogous to (3.4). The integral term can be expressed as

T∫
0

T∫
0

∫
Ω

|v(τ, x)− v(r, x)|2

|τ − r|1+2s
dx dr dτ,

and hence the proof can be completed as in (a).
Theorem 3.4. Let (y, u) denote a solution to (P1) and assume that ψ ∈

L2(H
1
2 (∂Ω)) ∩ H 1

4 (L2(∂Ω)). Then y is a variational solution of the state equation
with

u ∈ L2(H
1
2 (∂Ω)) ∩H 1

4 (L2(∂Ω)) and y ∈ L2(H1(Ω)) ∩H 1
2 (L2(Ω)) ∩H1(H−1(Ω)).

If, moreover, G′(y) ∈ L2(H1(Ω)) ∩H 1
2 (L2(Ω)) and ψ ∈ L2(H1(∂Ω)) ∩H 1

2 (L2(∂Ω)),
then

u ∈ L2(H1(∂Ω)) ∩H 1
2 (L2(∂Ω)) and y ∈ L2(H

3
2−ε(Ω)) ∩H

3−2ε
4 (L2(Ω)),

for every ε > 0. In addition u = 0 on I ∩ ({T} × ∂Ω).
Proof. From the proof of Theorem 3.2 we have that

∂p

∂n
∈ L2(H

1
2 (∂Ω)) ∩H 1

4 (L2(∂Ω)).

From (3.1) with β = c we deduce that u = min(0,− 1
β
∂p
∂n−ψ)+ψ and hence Lemma 3.3

implies that u ∈ L2(H
1
2 (∂Ω)) ∩ H

1
4 (L2(∂Ω)). By regularity results for parabolic

equations based on interpolation theory, see [32], Vol II, pg. 78 (with s = − 1
2 ) we

obtain that y ∈ L2(H1(Ω)) ∩H 1
2 (L2(Ω)). Therefore∫

Q

∂ty v dxdt =
∫
Q

(−κ∇y∇v − b · ∇y v + fv)dxdt

for all v ∈ L2(H2(Ω) ∩H1
0 (Ω)). Since the right hand side can uniquely be extended

to a continuous functional on L2(H1
0 (Ω)), it follows that ∂ty ∈ L2(H−1(Ω)) . From

(2.7) moreover y = u in L2(H
1
2 (∂Ω)). We conclude that y is a variational solution to

(2.2).
If G′(y) ∈ L2(H1(Ω)) ∩H 1

2 (L2(Ω)), then p ∈ L2(H3(Ω)) ∩H 3
2 (L2(Ω)), see [32],

Vol II, pg. 32, (with k = 1). It follows that ∂p
∂n ∈ L2(H

3
2 (∂Ω)) ∩ H 3

4 (L2(∂Ω)), see
e.g. [19], pg. 9. Due to the regularity assumption on ψ and Lemma 3.3 we find that
u ∈ L2(H1(∂Ω))∩H 1

2 (L2(∂Ω)). This implies that y ∈ L2(H
3
2−ε(Ω))∩H 3

4−
ε
2 (L2(Ω)),

for every ε > 0, see [32], Vol II, pg. 78, (with s = − 1
4 −

ε
2 ). Regularity of p implies

that p(T ) ∈ H2−ε(Ω) and hence ∂p
∂n (T ) ∈ H

1
2−ε(∂Ω). Since p(T ) = 0 on Ω we find

that ∂p
∂n (T ) = 0 on ∂Ω. Hence from the fifth equation in (3.1) we deduce that u = 0

on I ∩ ({T} × ∂Ω).
Remark 3.1. For G(y) = 1

2 |y − yd|2 the condition G′(y) ∈ L2(H1(Ω)) ∩
H

1
2 (L2(Ω)) is satisfied if yd ∈ L2(H1(Ω)) ∩ H

1
2 (L2(Ω)) and ψ ∈ L2(H

1
2 (∂Ω)) ∩

H
1
4 (L2(∂Ω)).

Corollary 3.5. (extra Lp regularity). By interpolation one can show that if
u ∈ L2(H1(∂Ω)) ∩ H 1

2 (L2(∂Ω)) then u ∈ Lqε(Σ), where qε = 2(n+1)
n−1 − ε, for every

ε > 0.
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3.2. Problem (P2). We first derive the optimality system for (P2). This re-
quires more care than for (P1) since G in this case is not defined on the space of
trajectories L2(Q).

Let (y, u) denote an optimal solution to (P2). We shall require that G′(y(T )) ∈
H1

0 (Ω). This will guarantee the required regularity of the adjoint state. In case
G(y(T )) = 1

2 |y(T )−z|2, this is the case if y(T )−z ∈ H1
0 (Ω), i.e. we require regularity

of y(T ) (and z) beyond that which is guaranteed by Corollary 2.2 as well as boundary
conditions for y(T )−z. The required regularity of y at T can be achieved by restricting
u to be a function of t only, in a neighborhood of T . To take into consideration the
additional boundary condition, we require that u = 0 in a neighborhood of T = 0.
Then by semi-group theory y(T ) ∈ H1

0 (Ω) ∩ H2(Ω) and, if z ∈ H1
0 (Ω), we have

y(T )−z ∈ H1
0 (Ω). Thus for tracking type functionals the requirement that G′(y(T )) ∈

H1
0 (Ω) holds if u ∈ L2

T1
(Σ) and z ∈ H1

0 (Ω). This motivates the use of L2
T1

(Σ) in (P2).

Theorem 3.6. Let (y, u) denote a solution to (P2) with T1 < T and assume
that G′(y(T )) ∈ H1

0 (Ω). Then there exist p ∈ L2(H2(Ω) ∩H1
0 (Ω)) ∩H1(L2(Ω)) and

λ ∈ L2(ΣT1) such that for all c > 0



∂ty − κ∆y + b · ∇y = f in Q,

y = u on Σ, y = y0 in Ω,

−∂tp− κ∆p− div b p− b · ∇p = 0 in Q,

p = 0 on Σ, p(T ) = −G′(y(T )) in Ω,

κ ∂p∂n + βu+ λ = 0 on ΣT1 ,

λ = max(0, λ+ c(u− ψ)) + min(0, λ+ c(u− ϕ)) on ΣT1

(3.5)

holds, where ΣT1 = (0, T1)× ∂Ω.

Proof. From Theorem 2.1 the affine mapping u→ y(u) is continuous from L2(Σ)
to L2(Q) ∩H1(H−2(Ω)). The linearization ẏ at u in direction h satisfies

〈∂tẏ(t), v〉 − κ(ẏ(t), ∆v)− (ẏ(t), div(b(t))v)− (ẏ(t), b(t)∇v)

= κ(h(t),
∂

∂n
v)∂Ω for all v ∈ H2(Ω) ∩H1

0 (Ω) and a.e. t ∈ (0, T ). (3.6)

Moreover, by Corollary 2.2, the affine mapping u→ y(T ;u) is continuous from L∞(Σ)
to L2(Ω), and hence it is differentiable at u in directions h ∈ L∞(Σ). By assump-
tion G′(y(T )) ∈ H1

0 (Ω)) and hence the solution to the adjoint equation satisfies
p ∈ L2(H2(Ω) ∩ H1

0 (Ω)) ∩ H1(L2(Ω)), [36]. Let j(u) = J(y(u), u) denote the re-
duced cost functional corresponding to (P2). For the derivative at u ∈ L∞(Σ) in
direction h ∈ L2(Σ) we obtain by (3.6)

(j′(u), h)L2(Σ) = (G′(y(T )), ẏ(T ))L2(Ω) + β(u, h)L2(Σ)

= −(p(T ), ẏ(T ))L2(Ω) + β(u, h)L2(Σ) = −
T∫

0

d

dt
(p(t), ẏ(t))L2(Ω)dt+ β(u, h)L2(Σ)

= (κ
∂p

∂n
+ βu, h)L2(Σ).
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At the solution we therefore have

(j′(u), h− u) ≥ 0 for all h ∈ L2
T1

(Σ), with ϕ ≤ h ≤ ψ. (3.7)

Note that the directions h in (3.7) are in L∞T1
(Σ) as well. Define

Aϕ = {(t, x) ∈ ΣT1 : u = ϕ}, Aψ = {(t, x) ∈ ΣT1 : u = ψ}, I = ΣT1 \ (Aϕ ∪ Aψ),

where Σ1 = (0, T1)×∂Ω. Set S = {(t, x) ∈ I : j′(u) ≥ 0} and define h̄ = ϕχS+uχΣ\ S ,
which satisfies ϕ ≤ h̄ ≤ ψ on ΣT1 . By (3.7)

0 ≤ (j′(u), h̄− u)L2(ΣT1 ) = (j′(u), ϕ− u)L2(S) ≤ 0,

and hence j′(u) = 0 on S, since ϕ < u < ψ on S. Analogously one shows that
j′(u) = 0 on {(t, x) ∈ I : j′(u) ≤ 0} and hence j′(u) = 0 on I. Next set Sψ =
{(t, x) ∈ Aψ : j′(u) ≥ 0}, and define h̄ = ϕχSψ + uχΣ \ Sψ . Then by (3.7)

0 ≤ (j′(u), h̄− u)L2(ΣT1 ) = (j′(u), ϕ− ψ)L2(ΣT1 ) ≤ 0.

Since ϕ < ψ a.e. on ΣT1 this implies that j′(u) = 0 on Sψ and hence j′(u) ≤ 0 on
Aψ. Analogously one shows that j′(u) ≥ 0 on Aϕ.
Setting

λ =

{
−κ ∂p∂n − βu on ΣT1 \ I
0 on I

the last two equations of (3.5) follow and the optimality system is verified.
Corollary 3.7. Under the assumptions of Theorem 3.4 we have ∂p

∂n ∈ Lqn(Σ)
and u|I ∈ Lqn(I) with qn defined in (3.2).

This is a direct consequence of Theorem 3.6, which asserts that p ∈ L2(H2(Ω))∩
H1(L2(Ω)), and the proof of Theorem 3.2.

Corollary 3.8. Under the assumptions of Theorem 3.6 and if ϕ,ψ ∈ L2(H
1
2 (∂Ω))∩

H
1
4 (L2(∂Ω)), then y is a variational solution of the state equation with

u ∈ L2(H
1
2 (∂Ω)) ∩H 1

4 (L2(∂Ω)) and y ∈ L2(H1(Ω)) ∩H 1
2 (L2(Ω)) ∩H1(H−1(Ω)).

If moreover G′(y(T )) ∈ H2(Ω) ∩H1
0 (Ω) and ϕ,ψ ∈ L2(H1(∂Ω)) ∩H 1

2 (L2(∂Ω)),
then

u ∈ L2(H1(∂Ω)) ∩H
1−ε
2 (L2(∂Ω)) and y ∈ L2(H

3
2−ε(Ω)) ∩H

3−2ε
4 (L2(Ω)),

for every ε > 0.
Proof. The proof of the first part is similar to that of Theorem 3.4. By the last

two equations of (3.5) we find

u = max(ϕ,min(ψ,−κ
β

∂p

∂n
)) a.e. on ΣT1 , (3.8)

which is equivalent to u = max(0,min(0,−κ
β
∂p
∂n − ψ) + ψ − ϕ) + ϕ. Since ∂p

∂n ∈
L2(H

1
2 (∂Ω)) ∩H 1

4 (L2(∂Ω)) this implies by Lemma 3.3 that

u|(0, T1) ∈ L2(0, T1;H
1
2 (∂Ω)) ∩H 1

4 (0, T1;L2(∂Ω))
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and by concatenation of functions in H
1
4 this implies that

u ∈ L2(0, T ;H
1
2 (∂Ω)) ∩H 1

4 (0, T ;L2(∂Ω)),

see [27], Proposition 1.13, and hence y ∈ L2(H1(Ω)) ∩ H 1
2 (L2(Ω)). Turning to the

second part of the proof we assume that G′(y(T )) ∈ H2(Ω) ∩ H1
0 (Ω). Then p ∈

L2(H3(Ω))∩H 3
2 (L2(Ω)), see [32], Vol. II, pg. 32, and ∂p

∂n ∈ L
2(H

3
2 (∂Ω))∩H 3

4 (L2(∂Ω)).
By (3.8) and concatenation ofHs-functions with s ∈ [0, 1

2 ) we find that u ∈ L2(H1(∂Ω))∩
H

1−ε
2 (L2(∂Ω)), for every ε ∈ (0, 1). This implies that y ∈ L2(H

3
2−ε(Ω))∩H 3−2ε

4 (L2(Ω)).

4. The primal-dual active set strategy and its convergence properties.
The primal-dual active set strategy has proved to be very efficient for solving con-
strained optimal control problems [8]. We describe it here for (P1) and defer the
necessary modifications for (P2) to Remark 4.2.

In addition to the assumptions on G : L2(Q) → R made in Section 3 we assume
that G is convex so that all auxiliary optimal control problems that arise in this
section have unique solutions.

The primal-dual active set strategy is an iterative algorithm which, based on the
current iterate (uk, λk), defines the active set

Ak = { x ∈ Ω : λk(x) + c(uk − ψ)(x) > 0 } ,

and the inactive set

Ik = Ω \ Ak.

The subsequent step consists in solving the optimal control problem with equality
constraints only:

(Pk)


min J(y, u) = G (y) + β

2 |u|
2
L2(Σ)

over (y, u) ∈ L2(Q)× L2(Σ)

subject to (2.1) and u = ψ on Ak.

This leads to the following iterative algorithm, in which step (iii) is the necessary and
sufficient optimality condition for (Pk).

Primal dual active set algorithm

(i) Choose (u1, λ1) ∈ L2(Σ)× L2(Σ), c > 0.
(ii) Define Ak = { x ∈ Ω : λk(x) + c(uk − ψ)(x) > 0 } , Ik = Ω \ Ak.
(iii) Solve for (yk+1, uk+1, pk+1) ∈ L2(Q) ∩ H1(H−2(Ω)) ∩ C(H−1(Ω)) × L2(Σ) ×

L2(H2(Ω) ∩H1
0 (Ω)):

∂ty − κ∆y + b · ∇y = f in Q,

y = u on Σ, y(0) = y0 in Ω,

−∂tp− κ∆p− divb p− b · ∇p = −G′(y) in Q,

p = 0 on Σ, p(T ) = 0 in Ω,

u = ψ on Ak, κ ∂p∂n + βu = 0 on Ik.

(4.1)
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(iv) Set

λk+1 =

{
0 on Ik,
−κ∂pk+1

∂n − βψ on Ak.

(v) Stop or return to (ii).

For practical features of this algorithm we refer to [8] and [33], for example. Suffice
is to say here that for k ≥ 2 the iterates of the algorithm are independent of the choice
of c, and that the algorithm finds two successive active sets, for which Ak = Ak+1,
then (y(uk), uk) is the solution of the problem.

Remark 4.1. The equality-constrained optimization problem (Pk) is solved using
the Newton method for the reduced cost functional j(u) = G(y(u)) + β

2 |u|
2
L2(Σ). The

required first and second derivatives of j are computed using solutions of the adjoint
problems, see e.g. [4]. In Section 5 we describe the computation of these derivatives
on the discrete level.

For the following result it will be convenient to choose a specific initialization for
λ, given by 

Choose u1 ∈ L2(Σ),

set λ1 = −κ∂p(u1)
∂n − βu1,

and set c = β for the first iteration.

(4.2)

Theorem 4.1. If the primal-dual active set algorithm is initialized by (4.2), if
further ψ ∈ L

2(n+1)
n (Σ), G′ : L2(Q) → L2(Q) is locally Lipschitz, and |u1−u∗|L2(Σ) is

sufficiently small, then the iterates (yk, uk, pk, λk) converge super-linearly in L2(Q) ∩
H1(H−2(Ω))∩C(H−1(Ω))×L2(Σ)×L2(H2(Ω)∩H1

0 (Ω))×L2(Σ) to (y∗, u∗, p∗, λ∗).
Proof. Let us consider λ in the last equation of (3.1) as a function of u. Then

(3.1) can equivalently be expressed as

F (u) = λ(u)−max(0, λ(u) + β(u− ψ)) = 0, where F : L2(Σ) → L2(Σ). (4.3)

Note that (4.3) is equivalent to

F (u) = βu− βψ + max(0, κ
∂p

∂n
+ βψ) = 0, (4.4)

due to the fifth equation in (3.1). By Theorem 3.1 and the assumption that ψ ∈
L

2(n+1)
n (Σ) we have that κ ∂p∂n +βψ ∈ Lqn(Σ) with qn defined in (3.2). Due to the fact

that qn > 2 we obtain that

u→ F (u)

is Newton differentiable as introduced in Definition 1 of [23], see Proposition 4.1.
of [23], with generalized derivate of F at u in direction h ∈ L2(Σ) given by

GF (u)h = βh+Gmax(κ
∂p

∂n
+ βψ)

∂p(h)
∂n

,

where

Gmax(u)(x) =

{
1, if u(x) > 0,
0, if u(x) ≤ 0.
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It was proved in general terms in [23], Theorem 4.1, that GF (u) has a bounded
inverse from L2(Σ) to itself for every u ∈ L2(Σ). Hence it follows that the semi-
smooth Newton algorithm applied to F (u) = 0 is locally super-linearly convergent.
The semi-smooth Newton iteration consists of the iteration{

GF (uκ)δu = −F (uκ)

uk+1 = uk + δu.
(4.5)

In the following arguments we show that the semi-smooth Newton iteration and the
primal-dual active set strategy coincide. In principle this argument can be extracted
from [23] , but we believe that it is instructive to carry it out for the present case. A
short consideration shows that a semi-smooth Newton step (4.5) is equivalent to

∂tyk+1 − κ∆yk+1 + b · ∇yk+1 = f in Q

yk+1 = uk+1 on Σ, y(0) = y0 in Ω

−∂tpk+1 − κ∆pk+1 − divb pk+1 − b · ∇pk+1 = −G′(yk+1) in Q

pk+1 = 0 on Σ, pk+1(T ) = 0 in Ω

uk+1 = ψ on ASNk , κ∂pk+1
∂n + βuk+1 = 0 on ISNk ,

(4.6)

where

ASNk = {x : (−κ∂pk
∂n

− βψ)(x) > 0}, ISNk = Ω \ ASNk .

We further set

λk+1 =

{
0, on ISNk ,

−κ∂pk+1
∂n − βψ, on ASNk ,

(4.7)

and observe that

λk + β(uk − ψ) = −κ∂pk+1

∂n
− βψ, for k = 2, 3, . . . . (4.8)

Note that

λk(uk − ψ) = 0 for k = 2, 3, . . . . (4.9)

Hence λk + β(uk −ψ) > 0 if and only if λk + c(uk −ψ) > 0 for any c > 0. From (4.8)
we have that

Ak = ASNk and Ik = ISNk , for k = 2, 3, . . . .

Therefore the primal-dual active set strategy and the semi-smooth Newton iteration
coincide, provided that their initialization phases coincide. For that it suffices to check
that A1 = ASN1 . This is the case since for λ1 as in (4.2) we have

λ1 + β(u1 − ψ) = −κ∂p(u1)
∂n

− βψ1.

Super-linear convergence of yk to y∗ in L2(Q)∩H1(H−2(Ω))∩C(H−1(Ω)) follows from
Theorem 2.1. Moreover, super-linear convergence of (pk, λk) to (p∗, λ∗) in L2(H2(Ω)∩
H1

0 (Ω))× L2(Σ) is a consequence of (3.1) and (4.1),

λ∗ − λk = −β(u∗ − uk)− κ(
∂p∗

∂n
− ∂pk

∂n
),
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and Theorem 3.1.
In Theorem 4.1 we addressed local convergence of the primal-dual active set al-

gorithm. We now turn to global convergence, i.e. to convergence from arbitrary
initializations (u1, λ1) ∈ L2(Σ)× L2(Σ).

Theorem 4.2. If β is sufficiently large then the iterates (yk, uk, pk, λk) →
(y∗, u∗, p∗, λ∗) in L2(Q)∩H1(H−2(Ω))∩C(H−1(Ω))×L2(Σ)×L2(H2(Ω)∩H1

0 (Ω))×
L2(Σ).

Proof. Convergence of (uk, λk) → (u∗, λ∗) in L2(Σ)×L2(Σ) follows from a general
result in [25], Theorem 4.1. It requires that β > ‖T‖L(L2(Σ),L2(Q)) where Tu =
y(u). Convergence of (yk, uk) in the specified norms is a consequence of the governing
equations for yk and pk.

Remark 4.2. For (P2), under the assumptions of Theorem 3.6, identical asser-
tions to Theorem 4.1 and Theorem 4.2 hold. (P2) differs from (P1) in that it involves
a terminal observation and bilateral constraints. Provided by Corollary 3.7 we again
have the necessary additional regularity ∂p

∂n ∈ Lqn(Σ). Global convergence and local
superlinear convergence for bilaterally constrained problems was treated in [25], The-
orem 4.1 and Theorem 6.1. The assumption that |u0−u∗| is sufficiently small and that
the initialization phases of the primal-dual active set algorithm and the semi-smooth
Newton methods coincide, if λ1 is chosen as in (4.2).

5. Finite element discretization. In this section we discuss the space-time
finite element discretization of the optimization problem under consideration. The
space discretization of the state equation is based on the usual H1-conforming finite
elements, whereas the time discretization is done by a discontinuous Galerkin method
as proposed in [15, 17]. We refer to [4, 35] for a detailed description of the space-time
finite element methods for parabolic optimization problems including adaptivity. We
emphasize, that space-time Galerkin discretizations of optimal control problems allow
a natural translation of the optimality system and the optimization algorithms from
the continuous to the discrete level: in fact, the approaches “discretize-then-optimize”
and “optimize-then-discretize” coincide. We return to this aspect in Remark 6.2
below.

Since the state equation (2.2) is considered in the very weak sense, it may appear
at first that its approximation by finite elements based on the standard variational
formulation may be not appropriate. However, such an approach is justified since
the optimal state and control which need to be approximated, possess the common
regularity of a variational solution, see Theorem 3.4. – For an interesting discussion of
finite element discretizations of equations with rough boundary data we refer to [7] in
the elliptic and to [18] in the parabolic case. Finite element approximation of Dirichlet
optimal control problems governed by elliptic equations are discussed in [10, 41].

For this section it is convenient to introduce the following notation: V = H1(Ω),
V0 = H1

0 (Ω), H = L2(Ω) and X = L2(0, T ;V )∩H1(0, T ;V ∗). We introduce a bilinear
form a : X×X → R corresponding to the standard variational formulation of the state
equation:

a(y, v) =

T∫
0

{(∂ty, v) + κ(∇y,∇v) + (b · ∇y, v)} dt .

To define the discretization in time, let us partition the time interval Ī = [0, T ]
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as

Ī = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM

with subintervals Im = (tm−1, tm] of size km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T.

We define the discretization parameter k as a piecewise constant function by setting
k
∣∣
Im

= km for m = 1, . . . ,M .
By means of the subintervals Im, we define for r ∈ N0 a semi-discrete space Xr

k

consisting of discontinuous in time piecewise polynomial functions:

Xr
k =

{
vk ∈ L2(I, V0) : vk

∣∣
Im

∈ Pr(Im, V0) and vk(0) ∈ H
}
.

Here, Pr(Im, V0) denotes the space of polynomials up to order r defined on Im with
values in V0. For the definition of the discontinuous Galerkin method we introduce
the following notation for a function vk ∈ Xr

k :

v+
k,m := lim

t→0+
vk(tm + t), v−k,m := lim

t→0+
vk(tm − t) = vk(tm), [vk]m := v+

k,m − v−k,m .

Using this notation we define a discretized version of the bilinear form a:

ak(yk, vk) =
M∑
m=1

∫
Im

{(∂tyk, vk) + κ(∇yk,∇vk) + (b · ∇yk, vk)} dt

+
M−1∑
m=0

([yk]m−1, v
+
k,m−1) + (y−k,0, v

−
k,0) .

For the space discretization, we consider two or three dimensional shape-regular
meshes, see e.g. [11]. A mesh consists of quadrilateral or hexahedral cells K, which
constitute a non-overlapping cover of the computational domain Ω. The corresponding
mesh is denoted by Th = {K}, where we define the discretization parameter h as a
cellwise constant function by setting h

∣∣
K

= hK with the diameter hK of the cell K.
On the mesh Th we construct a conforming finite element space Vh ⊂ V in a

standard way:

V sh =
{
v ∈ V : v

∣∣
K
∈ Qs(K) for K ∈ Th

}
.

Here, Qs(K) consists of shape functions obtained via bi- or tri-linear transformations
of polynomials in Q̂s(K̂) defined on the reference cell K̂ = (0, 1)n, where

Q̂s(K̂) = span


n∏
j=1

x
kj
j : kj ∈ N0, kj ≤ s

 .

Remark 5.1. The definition of V sh can be extended to the case of triangular
meshes in the obvious way.

The discrete space with homogeneous Dirichlet boundary conditions is denoted
by V sh,0 = V sh ∩H1

0 (Ω). Moreover, we introduce the space of traces of function in V sh :

W s
h =

{
wh ∈ H1/2(∂Ω) : wh = γ(vh), vh ∈ V sh

}
,
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where γ : H1(Ω) → H1/2(∂Ω) is the trace operator.
With these preliminaries, we define the discrete spaces for the control and state

variable:

Xr,s
k,h =

{
vkh ∈ L2(I, V sh,0) : vkh

∣∣
Im

∈ Pr(Im, V sh,0) and vkh(0) ∈ V sh
}
⊂ Xr

k ,

Ur,sk,h =
{
ukh ∈ L2(I,W s

h) : ukh
∣∣
Im

∈ Pr(Im,W s
h)

}
.

Remark 5.2. In the above definition of the discrete spaces Xr,s
k,h and Ur,sk,h, we

assumed that the spatial discretization is fixed for all time intervals. However, in
many situations the use of different meshes T mh for each of the subintervals Im is
required for efficient adaptive discretizations. The consideration of such dynamically
changing meshes can be included in the above definitions in a natural way, [39].

For a function ukh ∈ Ur,sk,h we define an extension ûkh ∈ Xr,s
k,h such that

γ(ûkh(t, ·)) = ukh(t, ·) and ûkh(t, xi) = 0 on all interior nodes xi of Th. (5.1)

The optimization problem on the discrete level is then formulated as follows:

min J(ykh, ukh), ukh ∈ Ur,sk,h ∩ Uad (5.2)

subject to

ykh ∈ ûkh +Xr,s
k,h, ak(ykh, vkh) =

T∫
0

(f, vkh) dt+ (y0, v−kh,0) for all vkh ∈ Xr,s
k,h.

(5.3)
The discrete state equation (5.3) defines a discrete solution operator Skh which

maps a given discrete control ukh to the (unique) solution of (5.3). As on the contin-
uous level we introduce a discrete reduced cost functional

jkh(ukh) = J(Skh(ukh), ukh). (5.4)

The discrete optimization problem (5.2)–(5.3) is solved by the primal dual active
set strategy described in the previous section. In each step an equality constrained
optimization problem is solved by the Newton method for the discrete reduced cost
functional jkh, see Remark 4.1. For the realization of the Newton method, we need
representations of the first and second directional derivatives of jkh.

Proposition 5.1. Let the discrete reduced cost functional jkh be defined as
in (5.4), then there holds:
(a) The first directional derivative in direction δukh ∈ Ur,sk,h can be expressed as fol-
lows:

j′kh(ukh)(δukh) = J ′y(ykh, ukh)(δ̂ukh)− ak(δ̂ukh, pkh) + J ′u(ykh, ukh)(δukh), (5.5)

where ykh = Skh(ukh), the extension δ̂ukh is defined in (5.1), and pkh ∈ Xr,s
k,h is the

solution of discrete adjoint equation:

ak(vkh, pkh) = J ′y(ykh, ukh)(vkh) for all vkh ∈ Xr,s
k,h. (5.6)
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(b) The second derivatives of jkh in directions δukh, τukh ∈ Ur,sk,h can be expressed as
follows:

j′′kh(ukh)(δukh, τukh) = J ′′yy(ykh, ukh)(δykh, τ̂ukh)− ak(τ̂ukh, δpkh)

+ J ′′uu(ykh, ukh)(δukh, τukh), (5.7)

where δykh is the solution of the discrete tangent equation:

δykh ∈ δ̂ukh +Xr,s
k,h : ak(δykh, vkh) = 0 for all vkh ∈ Xr,s

k,h , (5.8)

δpkh ∈ Xr,s
k,h is given by:

ak(vkh, δpkh) = J ′′yy(ykh, ukh)(δykh, vkh) for all vkh ∈ Xr,s
k,h , (5.9)

and δ̂ukh, τ̂ukh are the extensions of δukh, τukh defined as in (5.1).
Proof. Using the solution δykh = S′kh(ukh)(δukh) of the discretized tangent equa-

tion (5.8) we obtain:

j′kh(ukh)(δukh) = J ′y(ykh, ukh)(δykh) + J ′u(ykh, ukh)(δukh).

We rewrite the first term using (5.8) and (5.6):

J ′y(ykh, ukh)(δykh) = J ′y(ykh, ukh)(δykh − δ̂ukh) + J ′y(ykh, ukh)(δ̂ukh)

= ak(δykh− δ̂ukh, pkh)+J ′y(ykh, ukh)(δ̂ukh) = −ak(δ̂ukh, pkh)+J ′y(ykh, ukh)(δ̂ukh).

This gives the desired representation (5.5). The representation of the second deriva-
tives is obtained in a similar way.

Remark 5.3. On the continuous level, similar representations of the derivatives
hold. They can be equivalently expressed using the normal derivatives of the adjoint
state on the boundary, see (3.1). A direct discretization of the representation involving
normal fluxes is in general not equivalent to (5.5) and would not lead to the exact
representation of the derivatives of jkh due to the lack of the appropriate formulas for
integration by parts of the discretized solutions.

Remark 5.4. In the convection dominated case, i.e. if |b| � κ, the finite
element discretization may lead to strongly oscillatory solutions. Several stabilization
methods are known to improve the approximation properties of the pure Galerkin
discretization and to reduce the oscillatory behavior, see e.g. [9, 21, 26, 37, 38]. For
the stabilized finite elements in the context of stationary optimal control problems we
refer to [12, 5].

6. Numerical examples. In this section we discuss numerical examples illus-
trating our results and give some details on the numerical realization.

Due to the fact that the trial and the test space in the formulation of the discrete
state equation (5.3) are discontinuous in time, this formulation results in a time
stepping scheme. In our numerical realization we use bilinear finite elements for
the space discretization and piecewise constant functions in time resulting in spaces
X0,1
k,h and U0,1

k,h. In the following we describe the state equation (5.3), the adjoint
equation (5.6), equations (5.8) and (5.9), and the evaluation of the derivatives of the
discrete reduced cost functional for this choice of discretization. We define

Um = ukh
∣∣
Im
, Ym = ykh

∣∣
Im
, Pm = pkh

∣∣
Im
, i = 1, . . .M,
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Y0 = y−kh,0, P0 = p−kh,0 .

The discrete state equation reads for Y0 ∈ Vh and Ym ∈ Um + Vh,0:

(Y0, φ) = (y0, φ) for all φ ∈ Vh ,

(Ym, φ) + km (∇Ym,∇φ) + km (
∫
Im

b(s) ds · ∇Ym, φ) = (Ym−1, φ)+

km (
∫
Im

f(s) ds, φ) for all φ ∈ Vh,0 ,m = 1, . . .M .

Remark 6.1. If the time integrals are approximated by the box rule, then
the resulting scheme is equivalent to the implicit Euler method. However, a better
approximation of these time integrals leads to a scheme which allows for better error
estimates with respect to the required smoothness of the solution and to long time
integration (T � 1), see e.g. [16]. For the numerical examples which follow the
trapezoidal rule is used, which guarantees this improved convergence behavior.

In order to cover both problem (P1) with a time distributed cost functional, and
the problem (P2) with a terminal time functional, we write the cost functional in the
form:

J(y, u) =

T∫
0

I(y(s)) ds+K(y(T )) +
β

2
|u|2L2(Σ) .

The discrete adjoint equation reads for P0 ∈ Vh and Pm ∈ Vh,0:

(φ, PM ) + kM (∇φ,∇PM ) + kM (
∫
IM

b(s) ds · ∇φ, PM ) = K ′(YM )(φ)

+kM I ′(YM )(φ) for all φ ∈ Vh,0 ,

(φ, Pm) + km (∇φ,∇Pm) + km (
∫
Im

b(s) ds · ∇φ, Pm) = (φ, Pm+1)

+km I ′(Ym)(φ) for all φ ∈ Vh,0 ,m = M − 1, . . . 1 ,

(φ, P0) = (φ, P1) for all φ ∈ Vh .

Remark 6.2. The are two possibilities to obtain the above equations for Pm,
m = 0 . . .M :

• discretization of the continuous adjoint equation with dG(0) in time and with
H1-conforming finite elements in space (optimize-then-discretize approach)

• application of the Lagrange formalism on the discrete level for the optimiza-
tion problem with the state equation discretized by dG(0) in time and H1-
conforming finite elements in space (discretize-then-optimize approach)
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The resulting schemes for Pm coincide independent of the temporal grid. This fact
relies on the space-time Galerkin discretization.

For a standard formulation of the implicit Euler scheme, i.e.

1
km

(Ym − Ym−1, φ) + (∇Ym,∇φ) + (b(tm)∇Ym, φ) = (f(tm), φ) for all φ ∈ Vh,0,

the optimize-then-discretize approach leads to the following discrete adjoint:

1
km

(φ, Pm − Pm+1) + (∇φ,∇Pm) + (b(tm)∇φ, Pm) = (I ′(Ym), φ) for all φ ∈ Vh,0,

whereas the discretize-then-optimize approach produces:

1
km

(φ, Pm)− 1
km+1

(φ, Pm+1)+(∇φ,∇Pm)+(b(tm)∇φ, Pm) = (I ′(Ym), φ) for all φ ∈ Vh,0.

These schemes are different for non-constant time steps km.
For the optimization algorithm we need the evaluation of the derivatives of jkh

for basis functions in U0,1
k,h. We consider the following basis of U0,1

k,h:

wi,m(t, x) =

{
φi(x), t ∈ Im
0, otherwise,

(6.1)

where φi = γ(φ̂i) and φ̂i ∈ Vh is a finite element nodal basis function for a boundary
node i. We obtain the following corollary from Proposition 5.1:

Corollary 6.1. The following representation holds:

j′kh(ukh)(wi,M ) = β(UM , φi)∂Ω +K ′(YM )(φ̂i) + kM I ′(YM )(φ̂i)

−(φ̂i, PM )− kM (∇φ̂i,∇PM )− kM (
∫
IM

b(s) ds · ∇φ̂i, PM )

j′kh(ukh)(wi,m) = β(Um, φi)∂Ω + km I
′(Ym)(φ̂i) + (φ̂i, Pm+1)

−(φ̂i, Pm)− km (∇φ̂i,∇Pm)− km (
∫
Im

b(s) ds · ∇φ̂i, Pm),

m = M − 1, . . . 1 .

Remark 6.3. Due to the fact that φ̂i has local support, the spatial integration
in the representations above is done only over cells adjacent to the boundary.

Next, we describe the equations (5.8) and (5.9), and evaluation of the second
derivatives. We define

δUm = δukh
∣∣
Im
, δYm = δykh

∣∣
Im
, δPm = δpkh

∣∣
Im
, i = 1, . . .M,

δY0 = δy−kh,0, δP0 = δp−kh,0 .

The discrete tangent equation reads for δY0 ∈ Vh and δYm ∈ δUm + Vh,0:

δY0 = 0 ,
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(δYm, φ) + km (∇δYm,∇φ) + km (
∫
Im

b(s) ds · ∇δYm, φ) = (δYm−1, φ)

for all φ ∈ Vh ,m = 1, . . .M .

The discrete equation (5.9) reads for δP0 ∈ Vh and δPm ∈ Vh,0:

(φ, δPM ) + kM (∇φ,∇δPM ) + kM (
∫
IM

b(s) ds · ∇φ, δPM ) = K ′′(YM )(δYM , φ)

+kM I ′′(YM )(δYM , φ) for all φ ∈ Vh ,

(φ, δPm) + km (∇φ,∇δPm) + km (
∫
Im

b(s) ds · ∇φ, δPm) = (φ, δPm+1)

+km I ′′(Ym)(δYm, φ) for all φ ∈ Vh ,m = M − 1, . . . 1 ,

(φ, δP0) = (φ, δP1) for all φ ∈ Vh .

Using the basis (6.1) we obtain the following representation of j′′kh(ukh)(δukh, wi,m)
as corollary from Proposition 5.1.

Corollary 6.2. The following representation holds:

j′′kh(ukh)(δukh, wi,M ) = β(δUM , φi)∂Ω +K ′′(YM )(δYM , φ̂i) + kM I ′′(YM )(δYM , φ̂i)

−(φ̂i, δPM )− kM (∇φ̂i,∇δPM )− kM (
∫
IM

b(s) ds · ∇φ̂i, δPM )

j′′kh(ukh)(δukh, wi,m) = β(δUm, φi)∂Ω + km I
′′(Ym)(δYM , φ̂i) + (φ̂i, δPm+1)

−(φ̂i, δPm)− km (∇φ̂i,∇δPm)− km (
∫
Im

b(s) ds · ∇φ̂i, δPm),

m = M − 1, . . . 1 .

We close the paper with two numerical model problems corresponding to (P1) and
(P2).

6.1. Example 1: Time distributed functional. We consider the following
Dirichlet optimal control problem on Ω× (0, T ) with Ω = (0, 1)2 ⊂ R2 and T = 1:

min J(u, y) =
1
2
‖y − yd‖2

L2(Q) +
β

2
‖u‖2

L2(Σ) ,

subject to

yt − κ∆y + b · ∇u = f in Ω× (0, T ),
y = u on ∂Ω× (0, T ),

y(0) = y0 in Ω ,
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and control constraints

u ≥ φ .

The data are given as follows:

f = 0, κ = 1, b(t, x) = 15 (sin(2πt), cos(2πt)), y0 = 0, β = 10−4 ,

yd(t, x) = x1x2(cos(πt)− x1)(sin(πt)− x2), φ = −0.25 .

This optimal control problem is discretized by space-time finite elements as described
above. The resulting finite dimensional problem is solved by the primal dual active
set (PDAS) method. In Table 6.1 the number of iterations of the method is shown
for a sequence of uniformly refined discretizations. Here, M denotes the number of
time-steps and N is the number of nodes in the space discretization.

We present the results for two choices of the initial guess for the control variable:
the same choice for all discretization levels, and an interpolated solution from the
previous discretization level (nested iteration). It comes at no surprise that in the
case where the conditions of local superlinear convergence of the primal dual active set
strategy are satisfied (due to sufficient smoothness of the adjoint variable) the results
for the nested iteration approach are not significantly different from those without
it. This is different, for example, in the case of state constraints, see e.g. [24]. As
stopping criterion we check the agreement of active sets for two subsequent iterations.
When this is achieved the exact solution of the discrete problem is found [8].

Table 6.1
PDAS method on sequence of uniformly refined discretizations

N M dimXh = M ·N dimUh PDAS Iterations PDAS-Nested Iterations

25 2 50 32 2 2
81 4 324 128 3 3
289 8 2312 512 4 3
1089 16 17424 2048 4 3
4225 32 135200 8192 5 4
16641 64 1065024 32768 6 4

6.2. Example 2: Terminal functional. In this example we consider a Dirich-
let optimal control problem with a terminal cost functional:

min J(u, y) =
1
2
‖y(T )− yTd ‖2

L2(Ω) +
β

2
‖u‖2

L2(Σ) ,

subject to

yt − κ∆y + b · ∇u = f in Ω× (0, T ),
y = u on ∂Ω× (0, T ),

y(0) = y0 in Ω ,

and control constraints

φ ≤ u ≤ ψ, u = 0 on ∂Ω× (T1, T ).
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The data are given as follows:

f = 0, κ = 1, b(t, x) = 15 (sin(2πt), cos(2πt)), y0 = 0, β = 10−4, T1 = 0.75 ,

yTd (x) = 3
(
x1x2 + sin(12πx2

1(1− x1)2
)

sin(12πx2
2(1− x2)2)), φ = −0.1, ψ = 2.5 .

In Table 6.2 we present the corresponding results:

Table 6.2
PDAS method on sequence of uniformly refined discretizations

N M dimXh = M ·N dimUh PDAS Iterations PDAS-Nested Iterations

25 2 50 32 3 3
81 4 324 128 3 3
289 8 2312 512 4 4
1089 16 17424 2048 5 4
4225 32 135200 8192 5 5
16641 64 1065024 32768 6 5
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