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Abstract

We consider the problem of embedding finite metrics with

1 Introduction

Over the past decade, the field of metric embeddings has

slack we seek to produce embeddings with small dimensiongained much importance in algorithm design. The central

and distortion while allowing a (small) constant fractiof o
all distances to be arbitrarily distorted. This definitios i

genre of problem in this area is the mapping of a given
metric space into a “simpler” one, in such a way that the

motivated by recent research in the networking community, distances between points do not change too much. More
which achieved striking empirical success at embedding In-formally, anembeddingf a finite metric spacgV, d) into
ternet latencies with low distortion into low-dimensional atargetmetric spacéV’,d’)isamapy : V — V'. Recent
Euclidean space, provided that some small slack is allowed.work on embeddings has usditortionas the fundamen-
Answering an open question of Kleinberg, Slivkins, and tal measure of quality; the distortion of an embedding is

Wexler [29], we show that provable guarantees of this type the worst multiplicative factor by which _distanges are in-
can in fact be achieved in general: any finite metric can creased by the embeddigThe popularity of distortion

be embedded, with constant slack and constant distortion,nas been driven by its applicability to approximation algo-
into constant-dimensional Euclidean space. We then show/ithms: if the embedding : V' — V" has a distortion of

that there exist stronger embeddings idftowhich exhibit
gracefully degradinglistortion: these is a single embed-
ding into ¢; that achieves distortion at most(log %) on
all but at most are fraction of distancessimultaneously
for all ¢ > 0. We extend this with distortio®(log 1)'/?

to maps into general,,, p > 1 for several classes of met-

rics, including those with bounded doubling dimension and
those arising from the shortest-path metric of a graph with
an excluded minor. Finally, we show that many of our con-
structions are tight, and give a general technique to obtain
lower bounds foe-slack embeddings from lower bounds for

low-distortion embeddings.
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D, then the cost of solutions to some optimization prob-
lems on(V, d) and on(¢(V'),d’) can only differ by some
function of D; this idea has led to numerous approximation
algorithms [25].

In parallel with theoretical work on embeddings, there
has been a surge of interest in the networking community on
network embeddingroblems closely related to the frame-
work above (see e.g. [15, 36, 41]). This work is motivated
by different applications: one takes the point-to-poiteta
cies among nodes in a network such as the Internet, treats
this as a distance matriand embeds the nodes into a low-
dimensional space so as to approximately preserve the dis-
tances. In this way, each node is assigned a short sequence
of virtual “coordinates,” and distances between nodes can
be approximated simply by looking up their coordinates and
computing the distance, rather than having to interact with
the relevant nodes themselves. As location-aware applica-
tions in networks become increasingly prevalent — for ex-

1Formally, for an embedding : V — V”, the distortion is the
smallestD so that3a, 8 > 1 with o - 3 < D such thaté d(z,y) <
d' (p(z), p(y)) < Bd(z,y) for all pairsz,y € V x V. Note that this
definition of distortion is slightly non-standard—sinee8 > 1, it is no
longer invariant under arbitrary scaling; however, thisnisrely for nota-
tional convenience, and all our results can be cast in thal wifinitions
of distortion.

2While the triangle inequality can be violated by networlefaties, em-
pirical evidence suggests that these violations are smdlba infrequent
enough to make metric methods a useful approach.



ample, finding the nearest server in a distributed appticati  (2) Rather than have the embedding depend on the given
with replicated services, or finding the nearest copy of a file slack parameter, a much more flexible and powerful

or resource in a peer-to-peer system — having such distance  alternative would be to havesingleembedding of the
information in a compact and easily usable form is an issue metric with the property that, for some (slowly grow-

of growing importance (see e.g. the discussion in [15]). ing) function D(-), it achieved distortiorD(¢) on all

In the context of these networking applications, how- but ane fraction of distance pairs, for atl > 0. We
ever, distortion as defined above has turned out to be too  call such an embeddirgracefully degrading29], and
demanding an objective function — many metrics cannot ask whether such an embedding (with a polylogarith-
be embedded into Euclidean space with constant distortion; ~ mic functionD(-)) could exist for all metrics.

many of those that can be so embedded require a very large | this paper, we resolve the first of these questions in
number of dimensions; and the algorithms to achieve thesee affirmative, showing constant distortion with constant
guarantees require a type of centralized coordination (andsjack for all metrics. Moreover, the embedding we design
extensive measurement of distances) that is generally noty gchieve this guarantee beacon-basedrequiring only
feasible in Internet settings. Instead, the recent netingrk  the measurement of distances involving a small set of dis-
work has providecempirical guarantees of the following  tinguished “beacon nodes”; see Section 2. Approaches that
form: if we allow a small fraction of all distances to be- measure only a small number of distances are crucial in net-
bitrarily distorted, we can embed the remainder with (ap- working applications, where the full set of distances can be
parently) constant distortion in constant-dimensional Eu engormous: see, e.g., [23, 20, 30, 36, 37, 42] for beacon-
clidean space. Such guarantees are natural for the underlynased approaches and further discussions. We then resolve
ing networking applications; essentially, a very smaltfra  the second question in the affirmative for metrics that ad-
tion of the location-based lookups may yield poor perfor- mit an O(1)-padded decomposition (a notion from previ-
mance (due to the arbitrary distortion), but for the rest the g5 work on embeddings that we specify precisely in Sec-
quality of the embedding will be very good. tion 1.1); this includes several well-studied classes of me
These types of results form a suggestive contrast withrics including those with bounded doubling dimension and
the theoretical work on embeddings. In particular, are the those arising from the shortest-path metric of a graph with
strong empirical guarantees for Internet latencies thelres  an excluded minor. We further show that gracefully degrad-
of fortuitous artifacts of this particular set of distancesis ing distortion can be achieved in thenorm for all metrics.
something more general going on? To address this, Klein-The second question has been subsequently solved in full
berg, Slivkins, and Wexler [29] defined the notion of em- in [1] (see also the bibliographic notes in the sequel), pro-
beddings withslack in addition to the metric¢V, d) and viding an embeddings with gracefully degrading distortion
(V',d’) in the initial formulation above, we are also given for all metrics in¢,, for everyp > 1. Finally, we show that
aslack parameter, and we want to find a map whose  many of our constructions are tight, and give a general tech-
distortion is bounded by some quantify(¢) on all but an  nique to obtain lower bounds ferslack embeddings from
e fraction of the pairs of points i x V. (Note that we lower bounds for low-distortion embeddings.
allow the distortion on the remaining? pairs of points to
be arbitrarily large.) This question can be viewed as a nat-
ural variant of metric Ramsey theory [10]. Roughly, Klein-
berg et. al. [29] showed that any metric of bounded dou-
bling dimension — in which every ball can be covered by
a constant number of balls of half the radius — can be em-

bedded with constant distortion into constant-dimendiona o .
. ) the exposition cleaner and does not change the results in any
Euclidean space, allowing a constant slackSuch met- S p )
significant way. Foramap : V' — V' let us define the no-

rics, which have been extensively studied in their own nght tion of thedistortion of a sefS of edgesinder embedding
have also been proposed on several occasions as candidates

> "
for tractable abstractions of the set of Internet laten@es ?{S;?]Z zwzgeﬁu]% ?gnvtg?g\?é some positive constant
e.g. [19, 27, 36, 38)). gesu,

There were two main open questions posed in [29]. d(u,v) < d'(p(u), p(v))/K < D -d(u,v).
Note that the distortion ap (as given in Footnote 1) is the
(1) There was no evidence that the main embedding resulisagme as the distortion of the set of all edges.
of [29] needed to be restricted to metrics of bounded
doubling dimension. Could it be the case thatdeery Definition 1.1 (e-slack distortion) Givene, an embedding
finite metric, and every > 0, there is an embeddingof ¢ : V — V' hasdistortion D with e-slackif a set of all but
the metric with distortiory (¢) into Euclidean space? an e-fraction of edges has distortion at mdstundery.

Basic Definitions Before we formally present our results,
let us present some of the notions that will be used through-
out the paper. We will assume that the metfitd) is also
represented as a graph on the notesvith the length of
edgeuv beingd(u,v) = d,,. We imagine this graph as
havingn? edges, one for each pairv € V x V; this makes



We will also consider a stronger notion of slack, for which case there is an inevitable increasexfog n) factor in the
we need the following definition. Let,(¢) be the radius of  dimension. The following corollary gives some main exam-
the smallest ball around that contains at least: nodes. ples:

Call an edgeuwv e-longif d,, > min(p,(¢€), p,(€)). Then

there are at leagtl — ¢) n* edges that arelong. Forany  Corollary 1.5 1. Any finite metric space has aslack

such edge:v, at least one endpointis at least as far from embedding intd,, with distortionO(log ) and dimen-
the other endpoint as the(en)-th closest neighbor af. sionO(log 1).

Definition 1.2 (e-uniform slack distortion) Given ¢, an 2. Any finite metric space has aslack embedding
embeddingy : V' — V' hasdistortion D with e-uniform into ¢, with distortionO([(log ) /p]) and dimension
slackif the set of alle-long edges has distortion at mast €O log %

While the above notions of embeddings with slack allow the 3 Any decomposable metribas ae-slack embedding
map to depend on the slack the following notion asks into ¢, with distortion O((log £)!/?) and dimension
for a single map that igood for alle simultaneously O(log? 1) ‘

Definition 1.3 (gracefully degrading distortion) An em- 4. Any negative type metric (in particuld; metrics)
beddingy : V' — V' has agracefully degrading distor- has a e-slack embedding into/; with distortion

tion D(e) if for eache > 0, the distortion of the set of all
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c-long edges is at modd(c). 0] ( log < loglog ;) and dimensior® (log” ¢).

5. Any tree metric has aslack embedding inté, with

Our Results. We now make precise the main results de- ) ) . . . .
scribed above, and also describe some further results in the ~ distortionO (\/ loglog E) and dimensior©(log < ).

paper. Our first result shows that if we are allowed con-

stant slack, we can indeed embauly metric into constant Where the improved dimension in the first two results
dimensions with constant distortion. follows from a recent improvement of the dimension in

Bourgain’s theorem due to [8].
Theorem 1.4 For any source metri€¢V, d), any target met-

fic £,, p > 1 and any parameter > 0, we give the follow- We then studyembeddings into treesWe extend the

ing two O(log 1 )-distortion embeddings: known results of probabilistic embedding into trees [5, 6,
¢ 17, 7] to obtain embeddings with slack. In particular, we

(a) with e-slack intoO (log? %) dimensions, and use the technique of Fakcharoenphol et al. [17] to obtain

) . ) . . the following two results:
(b) with e-uniform slack intaO(log n log <) dimensions.

Both embeddings can be computed with high probability by Theorem 1.6 For any input metriqV, d) and any parame-
randomized beacon-based algorithms. ter e > 0 there exists an embedding into a tree metric with

_ _ e-uniform slack and distortio® (1 log 1).
These results extend Bourgain’s theorem on embedding ar-

bitrary metrics intcZ,,, p > 1 with distortionO(log n) [11], In fact, the tree metric in Theorem 1.6 is induced by a

and are proved in a similar manner. Hierarchically Separated Tre@HST) [5], which is a rooted
Note that the bounds on both the distortion as well as thetree with edge-weights. such thatv, < w.,/2 whenever

dimension in Theorem 1.4(a) are independent of the num-edgee’ is on the path from the root to edge

ber of nodes:, which suggests that they could be extended

to infinite metrics; this is further discussed in Sectioni2. I Theorem 1.7 For any input metric(V, d), the randomized
part (b), the dimension is proportional teg ; we show  empedding of [17] into tree metrics has expected gracefully
that, for arbitrary metrics, this dependenceds indeedin-  gegrading distortionD(¢) = O(log ). * Since tree metrics
evitable. As an aside, let us mention that metrics of boundedare isometrically embeddable inﬂ;l, this immediately im-
doubling dimension do not need such a dependence:on  plies that we can embed any metric irftg with gracefully

in Slivkins [42], these metrics are embedded into dpy  degrading distortionD(e) = O(log 1).

p > 1 with e-uniform slack, distortiorO(log £ loglog 1) ‘
and dimensiomlog %)O(log %)_ 3A metric is calleddecomposablé it admits a3-padded decomposi-

In section 3 we generalize these results by a theorem thaf'©",/or some constant, see Section 1.1 for details.
More formally, we show that if an edgev is e-long, thend,,, <

converts pract.ically any classical embeddi.ng if};pinto € Er[dr(u,v)] < O(log 1) duw, Wheredy is the tree metric generated by
slack embedding aruniform slack embedding, in the latter  the randomized algorithm in [17].




However, the dimension of the above embedding into The notion of embedding with slack can be viewed as a
may be prohibitively large. To overcome this hurdle, and to natural variant of metric Ramsey theory. The first work on
extend this embedding 1, p > 1, we explore a different  metric Ramsey-type problems was by Bourgain, Figiel and
approach: Milman [13] and a comprehensive study was more recently
developed by Bartal et. al. [9, 10]. In the original met-
ric Ramsey problem we seek a large subset of the points in
the metric space which admit a low distortion embedding,
whereas an embedding with slack provides low distortion
for a subset of the pairs of points.

Theorem 1.8 Consider a metric(V, d) which admitss-
padded decompositions. Then it can be embedded jnto
p > 1 with O(log2 n) dimensions and gracefully degrading
distortion.D(e) = O()(log )'/7.
Bibliographic note. The results in this paper have been ob-

For the reader unfamiliar with padded decompositions, let tained independently by two groups: by I. Abraham, Y. Bar-
us mention thapp < O(dimy ), the doubling dimension tal and O. Neiman (whom we will refer to as G1 below),
of the metric, which in turn is always bounded above by and by T-H.H. Chan, K. Dhamdhere, A. Gupta, J. Klein-
O(logn). Moreover, doubling metrics, and metrics induced berg and A. Slivkins (referred to as G2). The present paper
by planar graphs havé = O(1); hence Theorem 1.8 im- combines the original write-ups of these two groups into a
plies that such metrics admit embeddings idfpp > 1 single presentation; as part of this, we briefly discuss the
with gracefully degrading distortiof(log %)1/1’. Note that relation between the work of the two groups.
for p > 1 this result can be seen as a strengthening of The-  For embeddings with slack, Theorem 1.4 is due to (G2),
orem 1.4(b) on embeddings withuniform slack. and Theorem 3.1 is due to (G1). The results on lower

The proof of Theorem 1.8 is technically the most in- bounds (Theorem 6.3) and embedding into distributions of
volved part of the paper; at a high level, we develop a settrees (Theorem 1.7) were proved independently and simi-
of scale-based embeddings which are then combined todarly by both groups; the presentation in this paper of the
gether (as in most previous embeddings)—however, sinceproof of Theorem 4.1 follows that of (G2) while the presen-
the existing ways to perform this do not seem to guaranteetation of the proof of Theorem 6.3 is a combination of the
gracefully degrading distortion, we construct new ways of approaches of the two groups. The presentation in Section 5
defining distance scales. and the result presented here on embedding into a single tree

Finally, we provelower boundson embeddings with ~ metric (Theorem 4.2) are due to (G2).
slack: we give a very general theorem that allows us to con- Abraham, Bartal, and Neiman (G1) independently
vert lower bounds on the distortion and dimension of em- proved several important extensions which will be pub-
beddings that depend only en= |V| into lower bounds lished as a separate paper [1]. In particular, they resolve
in terms of the slack parameter This result works under  the second of the main open questions discussed above,
very mild conditions, and allows us to prove matching or i.e., showing a gracefully degrading embedding of any met-
nearly matching lower bounds for all of our results on  ric space intof,, with O(log %) distortion and dimension
slack embeddings. These lower bounds are summarized ir0D(logn). This result is based on a new type of metric de-
Corollary 6.5 of Section 6. compositions developedin [8, 1]. They also observe that the

result implies a constamtverage distortiorfor embedding

Related Work. This work is closely related to the large any metric into/,. In their paper they study more general
body of work on metric embeddings in theoretical computer notions of average distortion and in particular show this no
science; see the surveys [25, 26] for a general overview oftion is applicable - and under certain conditions they show
the area. Our results build on much of the previous work on that Theorem 4.1 combined with their techniques yields
embeddings intd,, including [11, 33, 40, 34, 21, 31, 32], improved approximation algorithms for problems such as
and on embeddings of metrics into distributions of trees [2, sparsest cut, minimum linear arrangement, uncapacitated
5, 6, 22,17, 7]. Among the special classes of metrics we quadratic assignment etc. Among other results, they show a
consider areloubling metricg4, 21, 43, 35]; the book by tight result ofO( ;) distortion fore-slack embedding into
Heitn_onen [24] gives more background on the analysis of 3 tree metric, and improve the distortion in Theorem 1.8 to
metric spaces. ol d 13t 1

All of these papers consider low-distortion embeddings © (mm{ﬁ »(log <) log ;})'
without slack Note that an embedding witle = 1/2n?)- ] o
slack or(e = 1/2n)-uniform-slack is the same as an em- 1.1 Notation and Preliminaries
bedding with no slack; for many of our results, plugging in
these values aof gives us the best known slackless results—  Throughout the pap€l, d) is the metric to be embed-
hence our results can be viewed as extensions of these preded, andi,, = d(u, v) is the distance between nodes €
vious results. V. Define the closed baB,(r) = {v € V | du, < r}.




The distance between a nodeand setS C V is denoted  auxiliary embedding such that for any edgethe embed-
d(u,S) = min,egs dy,, and hencel(u, V \ By (r)) > r. deduv-distance i99(p, + p,). The combined embedding
We will assume that the smallest distance in the metricis has dimensior®(log* 1) and achieves distortio@(log 1)

and the largest distance (or the diameter) is on a set of all but aa-fraction of edges.

A coordinate mapf is a function fromV” to R; for an There are several ways in which this result can be re-
edgeuv define f(uv) = |f(u) — f(v)|. Call such ma- fined. Firstly, we can ask for low-uniform-slackdistor-
Lipschitzif for every edgef (uv) < d,,. Fork € N define tion, and require distortio®(log <) on the set of alt-long
[k] asthe sef0,1,...,k —1}. edges; we can indeed get this, but have to boost the number
Doubling. A metric (V, d) is s-doublingif every setS C V of dimensions ta0(log n log %). As Theorem 2.2 shows,
of diameterA can be covered by sets of diameteA /2; this increase is indeed required. We note that this logarith
thedoubling dimensiownf such a metric iglog s] [24, 21]. mic increase in the number of dimensions is not the case

A doubling metric is one whose doubling dimension is for doubling metrics: Slivkins [42] shows how these met-
bounded. Ameasureis s-doublingif the measure of any  rics are embedded into ay, p > 1 with e-uniform slack,
ball B,(r) is at mosts times larger than the measure of distortionO(log % log log %) and dimensiottlog %)O(log%)

Bu(r/2). Itis known that for anys-doubling metric there Secondly, this embedding can be computed in a dis-
exists ans-doubling measure; moreover, such measure canyriputedbeacon-baseétamework. Here a small number of
be efficiently computed [24, 35]. nodes are selected independently and uniformly at random,

Padded DeCOI’T\pOSitiOﬂS. Let us recall the definition of and designated dseacons Then the coordinates of each
a padded decompositiofsee e.g. [21, 31]). Given a fi- node are computed as a (possibly randomized) function of

nite metric spacéV, d), a positive parameteh > 0 and its distances to the beacons.

gV — R, aA-boundeds-padded decompositiois a Thirdly, note that for the-slack result, the target dimen-
distributionII over partitions ofl” such that the following  sjon is independent of, which suggests that this result can
conditions hold. be extended to infinite metrics. To state such extension, let

us modify the notion of slack accordingly. Following [42],

let us assume that an infinite metric is equipped with a prob-

ability measure:. on nodes. This measure inducgzaduct

(b) If P is sampled fronl, then each balB,( A ) is measureu x p on edges. We say that a given embedding
partitioned byP with probability at most. ¢ hasdistortion D with (e, 11)-slackif some set of edges of

product measure at leabt— ¢ incurs distortion at mosb

For simplicity, say that a metr@dmitss-padded decompo-  under¢. Note that in the finite case;slack coincides with

sitions(whereg is a number) if for evenA > 0 it admits a (e, u)-slack wheny is the counting measure, i.e. when all

A-boundeds-padded decomposition. It is known that any nodes are weighted equally.

finite metric space admit®(log n)-padded decomposition In the embedding algorithm, instead of selecting beacons

[5]. Moreover, metrics of doubling dimensiatimy ad-  uniformly at random (i.e. with respect to the counting mea-

mit O(dimy )-padded decompositions [21]; furthermore, if sure) we select them with respect to meagur@he proof

a graphG excludes ak,-minor (e.g., if it has treewidth  carries over without much modification; we omit it from

< r), then its shortest-path metric admiér?)-padded de-  this version of the paper.

compositions [28, 40, 18].

(a) For each partitio® in the support ofI, the diameter
of every cluster inP is at mostA.

Theorem 2.1 For any source metri¢V, d), any target met-
2 Embeddings with slack into/, ric £,, p > 1 and any parameter > 0, we give the follow-
ing twoO(log %)—distortion embeddings:

In this section we show that for army> 0 any metric can
be embedded inté, for p > 1 with e-slack and distortion
O(log %), thus resolving one of the two main questions left
open by [29].

Let us fixe > 0 and writep, = p.(c). Recallthatan  These embeddings can be computed with high probability
edgeuw is e-longif d,, > min(py, p,); call it e-goodif by randomized beacon-based algorithms that use, respec-

duy > 4min(py, py). We partition all the-long edges into  jyely, onlyO(L log 1) andO(1 log n) beacons.
two groups, namely those which argood and those which

are not, and use a separate embedding (i.e. a separate blo¢kroof: Letd > 0 be the desired total failure probability.
of coordinates) to handle each of the groups. Specifically, The embedding algorithm is essentially the same for both
we handles-good edges using a Bourgain-style embedding parts, with one difference: we lét= O(log % + log %) for
from [29], and for the rest of the-long edges we use an part (a), andc = O(log % +logn) for part (b). We describe

(a) with e-slack intoO (log? %) dimensions, and

(b) with e-uniform slack intaO(log n log %) dimensions.



a centralized algorithm first, and prove that it indeed con-

B.(pu) C By(pu + d), the cardinality of the latter ball is at

structs the desired embedding. Then we show how to makdeasten. It follows thatp, < p,, +d, SOg(uv) < py, +py <

this algorithm beacon-based.
We use two blocks of coordinates, of sizeandk, re-
spectively, where = [log 2]. The first block comes from

3d. Sincef(uv) < d, the embeddedu-distance iD(d).
To lower-bound the embedded-distance, note that
with failure probability at most/22(*) the following hap-

a Bourgain-style embedding without the smaller distance pens: if edgeuv is e-good then this distance §3(d/t) due

scales. For eache [t] choosek independent random sub-
sets ofV of size2’ each, call then®;;, j € [k]. The first-
block coordinates of a given nodeare

fii(u) = (kt)"YP d(u, i), wherei € [t], j € [k]. (1)

For every node: and everyj € [k], choose a numbet,,; €
{—1,1} independently and uniformly at random. The
second-block coordinates efareg;(u) = k=P p, Buj
wherej € [k]. This completes the embedding.

For an edgeuw, let f(uv) and g(uv) denote thel,,-
distance between andv in the first and the second block
of coordinates, respectively. By constructigiuv) < d,.,
andg(uv) < p., + p». Moreover,

for everye-good edgeww, f(uv) > Q(dyy /1)
with failure probability at most/2(*), 2)

Indeed, fix are-good edgeuv and letd = d,,. Leta; be
the minimum of the following three quantities, (27%),
pp(27%) and d/2. The numbersy; are non-increasing;
ag = d/2. Moreover, sincew is e-good we havey, <
min(py,, pv,d/2) < d/4. By a standard Bourgain-style ar-
gument it follows that for eachthe event

Z |d(u, Sij) — d(v, Sij)| = Q(k) (e — ciy1)

happens with failure probability at most22(*). (We omit
the details from this version of the paper.) Therefore, with
failure probability at most/29*)| this event happens for
all i € [t] simultaneously, in which case

> ld(u, Sij) = d(v, Si3)l = > k) (e — @ira)
j i€(t]
= Q(k) (g — ) > Q(kd),

so f(uv) > Q(d/t) for the case = 1. Itis easy to extend
this top > 1 using standard inequalities. This proves the
claim (2).

Furthermore, we claim that for each edge g(uv) =
Q(py + pv) with failure probability at most /22%), In-

deed, letN; be the indicator random variable for the event °

Buj # Bvj. SinceN;'s are independent and their sul
has expectatioik /2, by Chernoff Bounds (Lemma A.la)
N > k/4 with the desired failure probability. This com-
pletes the proof of the claim.

Now fix ane-long edgeuv and letd = d,,. Without
loss of generality assums, < p,; note thatp,, < d. Since

to f(uv); else it isQ)(d) due tog(uv). For part (a) we use
Markov inequality to show that with failure probability at
mostd this happens for all but arifraction ofe-long edges.
For part (b) we take a Union Bound to show that with fail-
ure probability at mosd this happens foall e-long edges.
This completes the proof of correctness for the centralized
embedding.

It remains to provide the beacon-based version of the al-
gorithm. LetS be the union of all setS§,;. The Bourgain-
style part of the algorithm depends only on distances to the
O(k/€) nodes inS, so it can be seen as beacon-based, with
all nodes inS acting as beacons. To define the second block
of coordinates we need to know tpg’s, which we do not.
However, we will estimate them using the same Setf
beacons.

Fix a nodeu. Let B be the open ball aroundof radius
pu, i.€. the set of all nodessuch thatl,,, < p,. Let B’ be
the smallest ball around that contains at leadin nodes.
Note thatS is a set ofck/e beacons chosen independently
and uniformly at random, for some constant

In expectation at mostk beacons land inB, and
at least4ck beacons land inB’. By Chernoff Bounds
(Lemma A.1ab) with failure probability at most2*(*) the
following eventE,, happens: at mofck beacons land in
B, and at leas2ck beacons land iB’. Rank the beacons
according to its distance from, and letw be the(2ck)-th
closest beacon. Define our estimateppfasp!, = duy-
Note that if event?,, happens, thep!, lies betweermnp,, and
pu(4€).

Consider ate-good edgeuv such that both¥,, and E,
happen. Then (as in the non-beacon-based proof) we can
upper-bound the embedded-distance byO(d,,), and
lower-bound it byQ)(d.,,, /t) with high probability. For part
(a) we use Markov inequality to show that with failure prob-
ability at mosto eventE,, happens for all but asfraction
of nodes. For part (b) we take a Union Bound to show that
with failure probability at mosb this event happens for all
nodes. a

The following theorem lower-bounds the target dimen-
sion required fok-uniform slack, essentially showing that
in part (b) of the above theorem the dependenclgm is
indeed necessary.

Theorem 2.2 For anye < 3 there is a metriqV, d) such

that anye-uniform slack embedding inth, p > 1 with
distortion D requiresQ(log, n) dimensions.



Proof: Take a cliqgue oren red and(1 — ¢)n blue nodes,

assign length two to each of the blue-blue edges, and assign

unit lengths to all the remaining edges. Consider the metric
generated by this graph. Now all the blue-blue edges-are
long, and thus any distortioh* e-uniform-slack embedding

must maintain all the distances between the blue vertices,

But this is just a uniform metric ofll — €)n nodes, and the
lower bound follows by a simple volume argument. O

3 Embeddings with slack: a general theorem

In this section, we generalize the results of the previ-

ous section. We formulate and prove a general theoremy; . ansion in Bourgain's theorem @

which takes a result on classic (distortion-minimizing}em
beddings of finite metrics inté,, and converts it into re-
sults on embeddings witkslack and embeddings with
uniform slack.

For embeddings witke-slack, the idea is to choose a
small set of nodesbeacon}¥ uniformly at random, embed

(a) an embedding into¢, with e-slack, distortion
a(£log 1) and dimensiom(£ log 1) + Clog L.

(b) an embedding inté, with e-uniform slack, distortion
a(C/e) and dimensior log(n) B(C/e).

In part (b) we need to assume that for &lle X" the origi-
nal embeddingy is strongly non-expansive.

The most notable application of the above theorem is
for of arbitrary metrics intof,, p > 1. Using Bour-
gain’s embedding [11] of distortio®(logn) and dimen-
sion O(log® n), we obtain another proof of Theorem 2.1.
Using a recent result of Bartal [8] which improves of the
(log n) we obtain an
improved dimension in Thorem 2.1. Corollary 1.5 states
several additional applications of Theorem 3.1. The proof
follows from known upper bounds{(1) from [11], (2)
from [34], where the improved dimension(df), (2) follow
from [8], (3) from [31], (4) from [3], (5) from [12].

Both embeddings in Theorem 3.1 can be cast in a dis-

the beacons using the result on classic embeddings, theRyih ted beacon-based framework which is similar to that in

embed all the other points according to the nearest beaconggction 2. Specifically

we have two phases. In the first

and add some auxiliary coordinates. To obtain embeddingsphase, beacons measure distances to each other and com-

with e-uniform slack, for each non-beacon node instead of
choosing the nearest beacon we choose the “best” béacon
each coordinateln both cases, we apply the result on clas-
sic embeddings to subsebf the original metric. Therefore
our results are only about families of metrics that are stabse
closed: a familyt’ of metrics issubset-closed any metric

in X restricted to any subset of nodes is alsotn The
auxiliary coordinates are similar to those in Section 2.

For thee-uniform slack result we will need a technical re-
striction that the original classic embeddingisongly non-
expansive An embeddingf from (V, d) into £’; is strongly
non-expansivé it is a contraction and of the form

f: (nlflv "'7nkfk) and 25:177:5: )

where for any two nodes, v € V' and any coordinatewe
have|f;(u) — fi(v)| < d(u,v).
Note that the above requirement is not so restricting,

since almost every known embedding can be converted to

a strongly non-expansive one. In particular, it is easy to
check that any generalized Fréchet embedding (i.e., an em
bedding where each coordinates associated with a sét
such thatf;(u) = d(S;,u)) is strongly non-expansive.

Theorem 3.1 Consider a fixed spacg, p > 1. Let X be
a subset-closed family of finite metric spaces such that for
anyn > 1 and anyn-point metric spaceX € X there
exists an embeddingx : X — ¢, with distortiona(n)
and dimensio(n).

Then there exists a universal constant> 0 such that
for any metric spac&X € X and anye > 0 we have

pute an embedding for the set of beacons. In the second
phase, each node computes its coordinates as a (possibly
randomized) function of and its distances to beacons. We
needO(1log 1) andO(Llogn) beacons for parts (a) and
(b), respectively. The necessary modifications are sirtolar
those in Section 2; we defer the details to the full version.
We prove part (a) here and defer part (b) to Appendix B.
Proof of Theorem 3.1(a): We will choose a constant set
of beacons, embed them, then embed all the other points
according to the nearest beacon, and add some auxiliary co-
ordinates.
Formally, consider some metri = (V,d) € X, where
V is a set ofn nodes. Givere > 0 let é = ¢/20, and
t = 100log (%). Let B be a uniformly distributed random
set ofé points inV (the beacons). Lej be a contracting
embedding fronB into ¢,, with distortionc(%) and dimen-
sion3(%). Let

{oj(u) [ueV,1<j<t}

be i.i.d symmetric{0,1}-valued Bernoulli random vari-
ables. Define the following functions:

hi(w) = oj(u) pu(e) t=Y/?
forallu € V andj such thatt < j <¢.
f(u) = g(b) forallueV,wherebe B

is the beacon that is closestio

The embedding will beo = f @ h, whereh is thet-vector
with j-th coordinate equal th;(u). Let E be the set of all



unordered node pairs, and 8t = E \ (D, U D5), where

Dy {(u,v) [ d(u,v) < max{pu(€), pu(€)}}
D2 {(uv 1)) | d(uv B) 2 pu(é) \ d(va B) Z pv(é)}'

Observe thatD, | < én?. For anyu € V we have
Prd(u, B) > pu(é)] < (1 —t/(né))™ <e™' <é

so by Markov inequalityD»| < 2én? w.p. at least /2. We
begin with an upper bound anfor all (u,v) € G':

llo(u) — @)l
1 () = F)II} + 325y 1 () = i ()
(3d(u, )" + 35—, [¢71/P max{pu(é), pu (&)} — 0|
(37 +1) (d(u,v))"”
We now partitionG’ into two sets:
G1 = {(u,v) € G': max{py,(€), py(6)} > d(u,v)/4}

andG, = G\ G1.

Consider an edgéu,v) € G;. Without loss of gener-
ality assumep,,(€) > p,(€). Let&;(u,v) be the event that
hi(v) = 0 andh;(u) = p,(€)t~1/P. This event happens
with probability . Let A(u,v) = 37 1g (40). Then
E[A(u,v)] = t/4, so using Chernoff’s bound we can bound
the probability thatd (u, v) is smaller than half it's expecta-
tion:

<
<

Pr[A(u,v) <t/8] < e t/0 < e
Let D3 = {(u,v) € Gy | A(u,v) < t/8} so by Markov
inequality with probability at least/2, | D3| < 2én?.
Therefore, for anyu, v) € Gy \ D3 we lower bound the
contribution.

>

> 3y [hy(u) = hy ()]
& (pu(®) - t717)" > g - (1d(u, )P
For any(u,v) € Gs letb,, b, be the beacons such that
f(u) = g(by), f(v) = g(by,). Due to the definition oD
andG» and from the triangle inequality it follows that
d(by,by) > d(u,v) —d(u,by) —d(v,by)
> d(u,v) —d(u,v)/2 = d(u,v)/2.
Therefore, we lower bound the contribution(ef v) € Gs.

l(w) = @B > [|f(w) = fF)I5 = llg(bu) — g(bu)l5
1 d(u,v)
> . >
~ alt/eé) d(bu, bu) 2 20c(t/€)
Finally note thatD,, D3 are independentar@ = F\ (DU
D>, U D3) is the set of edges suffering the desired distortion.
So with probability at least/4 we have

|Gl = (5) = 5én? > (3) —en?/4 > (1—¢)(3)

llp(u) = p(v) |5

Y

as required.

4 Embeddings into Trees

Probabilistic embedding of finite metric space into trees
was introduced in [5]. Fakcharoenphol et al. [17] proved
that finite metric space embeds into a distribution of dom-
inating trees with distortiorD(logn) (slightly improving
the result of[6], other proofs can be found in [7]). In this
section we exploit the technique of [17] to obtain embed-
dings with slack. First we show that it gives a probabilistic
embedding of arbitrary metrics into tree metrics witk-
pectedgracefully degrading distortio®(¢) = O(log 1/¢).

For technical convenience, we will treatpoint metrics as
functions from[n] x [n] to reals. Note that all metricér
generated by the algorithm in [17] ademinating i.e. for
any edgew we haved(u,v) < dr(u,v).

Theorem 4.1 For any input metric(V, d), let dr be the
dominating HST metric ol constructed by the random-
ized algorithm in Fakcharoenphol et al. [17]. Then the em-
bedding from(V, d) to (V, dr) hasexpectedyracefully de-
grading distortionD(e) = O(log 1/¢). Specifically, for any
parametere > 0 and anye-long edgeuv we have

3)

Since tree metrics are isometrically embeddable ibtoit
follows that we can embed any metric inte with grace-
fully degrading distortionD(¢) = O(log 1).

duv < Eg[dr(u,v)] < O(log1/€) dyy.

Proof: For simplicity let us assume that all distances in
(V,d) are distinct; otherwise we can perturb them a little
bit and make them distinct, without violating the triangle
inequality; see the full version of this paper for details. |
what follows we will assume a working knowledge of the
decomposition scheme in [17].

Let us fix the parameter> 0 and are-long edge:v, and
letd = d(u,v). Let us assume without loss of generality
thatp,, () < py(e). Thenp,(e) < d, s0|B,(d)| < en.

Run the randomized algorithm of [17] to build a tree
T and the associated tree metdg. The decomposi-
tion scheme will separate andv at some distance scale
2! > d/2. Let A be the maximum distance in the input met-
ric. Under the distribution over tree metridg that is in-
duced by the algorithm, the expected distaftié, (u, v)]
between: andv in treeT is equal to the sum

log A
Zizlog d—1

Look at the sum foi such thatd/2 < 2¢ < 4d: this is at
most48d. By the analysis of [17], the rest of the sum, i.e.
the sum fori > log 4d, is at most

42" x Pr|(u,v) first separated at level].

421 x Mlog Be2)]

ZlogA
i>log 4d B,,2t—2)|



Since the above sum telescopes, it is at most 5.1 Distance Scales and Scale Bundles
8d-2log (n/|Bu(d)]) < O(dlog 1/e), Our algorithm, just like the algorithms in [11, 33, 40,

which proves the second inequality in (3). The firstinequal- 21, 29, 31, 32], operates on distance scales that start@roun
ity in (3) holds trivially because all metriek- generated by  the diameter of the metric, and go all the way down to the
the algorithm in [17] are dominating. O smallest distance in the metric. Informally, the embedding
 has block of coordinates for each distance scale, such that
: L9 T A if the trueuv-distance for some edge is within this scale,

by sampling from the distribution and embedding each sam-y e, they,.,-distance in these coordinates gfis roughly

pled tree into/; using a fresh set of coordinates; however, o a1 the true distance. These blocks of coordinates are

the number of trees now needed t‘? give a small d'Sto_rt'onthen combined into an embedding that works for all scales
may be as large &8(nlogn). We will see how to obtain simultaneously

gracefully degrading distortion with a smaller number of di Different embeddings use very different notions of dis-

mensions in the r.u.axt sec'uon_. ) o tance scales; in cases like the Rao-style embeddings, there
_ Aslightly modified analysis yields an embeddinginto a e cjear coordinates for each distance that is a power of
single tre¢ we omit the details from this version. 2—but in Bourgain-style embeddings, this is not the case.
To be able to give a unified picture, let us formally define
adistance scalg to be a coordinate map: V. — R. A
scale bundle{ f;;} is then a collection of coordinate maps
fij, such that for every fixed indexand node:, the values
. . . fij(u) aredecreasingith i.
S LQW-dlmenS|onaI Emb?dd'”gs ) JWe can now cast and interpret previous embeddings in
with Gracefully Degrading Distortion this language: in the Bourgain-style embeddings [11, 33],
fij(w) is the radius of the smallest ball aroundontaining
In this section we prove our result on embeddings into 2"~ nodes, and hence the cardinality®f ( f;;(u)) halves

The above embedding intq can be made algorithmic

Theorem 4.2 For any source metri¢V, d) and any param-
etere > 0 there exists an embedding into a dominating HST
metric withe-uniform slack and distortio® (% log 1).

¢, p > 1 with gracefully degrading distortion: as we increase In the Rao-style embeddings [40, 21], the
. . . _ scales ar¢g;; (u) = diamete(V') /2?, and hence the distance
Theorem 5.1 Consider a metric(V, d) which admitsf-  scales halve as we increasd@he measured descent embed-

padded decompositions. Then it can be embedded’jnto  ding in [31] essentially ensures a judicious mixture of the
p > 1 with O(log® n) dimensions and gracefully degrad-  above two properties: as we increasthe ballB., (f;;(u))

ing distortionO(3)(log )'/7. The embedding procedureis gither halves in radius, or halves in cardinality, whicheve
given as a randomized algorithm which succeeds with high comes first.

probability. For our embedding, we nedbth the radius and the
cardinality of B, (f;;(«)) to halve—and hence have to de-

bedding algorithms of Bourgain [11] and Linial et al. [33], fine the scale-bundles accordingly. This would be easy to

and combines ideas given in [40, 21, 29, 42, 31] with some achieve by itself; however, to give good upper bounds on
novel ones. To the best of our understanding, the embed-the embedded distance, we also need each distance scale to
dings given in the previous papers do not directly give us be sufficiently smooth, by which we mean that all the dis-

gracefully degrading distortion, and hence the additional tance scaleg;; must themselves be 1-Lipschitz. In other
machinery indeed seems to be required. words, we want thatf;; (u) — fij(v)| < d(u, v). The con-

Letus fixk = O(log ), where the constant will be spec- struction of the scalg bundigf;; } with both.halving. a_md
ified later. We will construct an embedding: V — £, smopthness_propertu_as turns out to be a_b|t non-trivial, the
with 7k2 dimensions; the coordinates pfwill be indexed ~ d€tails of which are given in the next section.
by triples(i, 5,1) € [k] x [k] x [7]. ) ]

We will show how to construct the mapin rest of this 9.2 The Embedding Algorithm
section, which has the following conceptual steps. We first
define a concrete notion of “distance scales” in Section 5.1, Let us construct the embedding for Theorem 5.1. We
in terms of which we can cast many previous embeddings,have not attempted to optimize the multiplicative constant
and specify the desired properties for the distance saales i for distortion, having chosen the constants for ease of-expo
our embedding. We then show how to construct the distancesition whilst ensuring that the proofs work.
scales as well as the claimed embeddinm Section 5.2, First we will construct escale bundld f;; : i,j € [k]}.
and show that it has gracefully degrading distortion in Sec- For a fixedj, the mapsf;; are constructed by an indepen-
tion 5.3. dent random process, inductively fram= 0toi = k£ — 1.

The proof of this theorem builds on the well-known em-



We start withf ;) (-) equal to the diameteb, of the met-  «, an interval[a, b] is u-broadif a or b is equal tod,,, for

ric. Given f;;, we constructf(;; ;) as follows. LetU;; somev, a < b/4 and|B,(a)| < 35[By(b)].
be a random set such that each nedg included indepen- Let us state two lemmas that capture the useful properties
dently with probabilityl /[B.,(4f;;(u))|. Claim 5.8.) De-  of the mapsf;; andg(;, ;, 0y, respectively: note that these
fine f(i+1,5)(u) as the minimum ofi(u, U;;) and f;;(u)/2. properties are independent of the doubling dimension. The
This completes the construction of the scale bundle. proofs are deferred to Section 5.5.)

To proceed, let us state a lemma that captures, for our
purposes, the structure of the metric. Lemma 5.4 With high probability it is the case that:

: . . . f 1-Lipschit /. < fiy and -l
Lemma 5.2 Consider a source metrigy/, d) which admits @ (;r any IP?C "z Saop l;il N fjl and anyeong
(#-padded decompositions. Then for any 1-Lipschitz coor- edgeuv )_;; fij (uv) < Ofkduy log ).
dinate mapf there is a randomized embeddipgnto /,,, (b) for each node:, eachu-broad interval contains values
p > 1 with ¢ = 6 dimensions so that fi; for Q(k) differenty’s.

@) each coordinate gf is 1-Lipschitz and upper-bounded Lemma 5.5 Fix edgeuv and indicesj; let R = f,;(u) and
abdhahs d = d,,. Given thatR > 4d and [B,(d/4)| = c[B.(R)|,

(b) if f(u)/duv € [3;4] for some edgew then, with prob- the eventy; ; o)(uv) > Q(d) happens with conditional
ability (1), [lg(u) — g(v)ll, = dus 1'/7/5). probability (c).

Section 5.4 and Appendix C contain two different proofs Proof of Theorem 5.1: Fix an e-long edgeuv and let
of this lemma; the first one uses padded decomposmond = d,,. Sincegg ;. < f;; for eachl, by Lemma 5.4a

techn_lquesfrom [21, 3_1], and thg other uses some Bourg_aln—the embeddedy-distance is upper-bounded B(dlog 1)
style ideas [11, 33] which we believe are novel and possibly . . €

: . for p = 1; the same argument gives an upper bound of
of independent interest. 1\1/

) U O(d)(log =)/ for p > 1.
Fix a pairi,j € [k]. Apply Lemma 5.2 to the map € .
. . ) T It remains to lower-bound the embedded distance by
fi; and obtain a 6-dimensional embedding; denote these . :
: Q(d/pB), where s is the parameter in Theorem 5.1 and
6 coordinates ag(; ;,;), 1 < | < 6. LetW;; be a ran- .
' T . Lemma 5.2. Denote by;;(uv) the total/,-distance be-
dom set such that each nodeis included independently duin th di N b
with probability 1/[Bu(f;;(u)/2)|. Define g, ; o (u) as tweenu andwv in the coordinateg; ;. l),_l > 1. Denote by
- ulJij : 2,7, 0) &;; the eventthag; ; o)(uv) or g;;(uv) is at leasQ)(d/B).
the minimum of f;;(v) and d(u, W;;). Finally, we set . (DO -

IS YA It suffices to prove that with high probability evedls hap-
¥4 9. 3.1 pen for at leasf)(k) (i, )-pairs. We consider two cases,
depending on whether, (e/32) > d/4.

Case (a). If p,(e/32) > d/4 then the intervall =
Proof:  Indeed, f(o ;) is 1-Lipschitz by definition, and  [d/4;d] isu-broad, so by Lemma 5.4b there &¢k) differ-
the inductive step follows since thein of two 1-Lipschitz entj’s such thatf;;(u) € I for some:. By Lemma 5.2 and
maps is 1-Lipschitz. For the same reason, the ngaps ) Chernoff bounds (Lemma A.1a) fét(k) of theseij pairs
are 1-Lipschitz as well, and therefore so are the mapswe havey;;(uv) > Q(d/3), case (a) complete.

(i, 4,0)- O Case (b).Assumep, (¢/32) < d/4; consider the interval

] o ] I = [d; max[4d, p,(32¢)]]. We claim that
Sincek = O(logn), it immediately follows that the em-

bedded distance is at mastlog n) times the true distance. Pr(&i; | fij(u) € I) > Q(1), foreach(s, j)-pair.  (4)
In the next section, we will prove a sharper upper bound
of O(duy)(log 2)!/? for any e-long edgeuv, and a lower
boundQ2(d,./B) for any edge.

Lemma 5.3 The maps;;, g;; andy;, ;1) are 1-Lipschitz.

Indeed, fixij and suppos¢ = f;;(u) € I. There are
two casesf € [d; 4d] and f € (4d; p.(32¢)]. In the first
case by Lemma 5.2;;(uv) > Q(d/8) with conditional

53 Analysis probability at leasf2(1). In the second case

IB.(d/4)] > en/32 > 2719 (32en) > 2710 |B,(f)],
In this section, we complete the proof of Theorem 5.1 by ) -
giving bounds on the stretch and contraction of the embed-S° by Lemma 5.5; j,0)(uv) > €(d) with conditional
ding . The following definition will be useful: for a node Probability Q(1). This proves (4). Since the intervalis
u-broad, by Lemma 5.4b there a¢¥k) different;j’s such
_5More prec_isely,‘the se_cond propf is for the importan_t spae when thatfij (u) c I for somei. Since for differenjj’s the events
(3 is the doubling dimension. In this proof the target dimendiecomes in (4) are independent, case (b) follows by Chernoff bounds

t = O(Blog B), which results in target dimensiad(log? n)(8 log 3) in
Theorem 5.1. (Lemma A.1a). O




5.4 Analysis: proof of Lemma 5.2

Proof: Consider the random process that determine the
coordinatey,. We like to show that the union of the follow-

In this section we use padded decomposition techniquesnd two disjoint events happens with constant probability,
from [21, 31] to prove Lemma 5.2. Let us recall the defini- Which implies our goal. There are two cases:

tions of apadded decompositicand adecomposition bun-
dle[21, 31].

Definition 5.6 Given a finite metric spadd’, d), a positive
parameterA > 0 andf : V — R, a A-bounded3-padded
decompositioris a distributionII over partitions ofi” such
that the following conditions hold.

(a) For each partitionP in the support ofI, the diameter
of every cluster inP is at mostA.

(b) If P is sampled fronil, then each balB, (-2
partitioned byP with probability at most%.

Given a functions : V x Z — R, a g-padded decom-
position bundleon V' is a set of padded decompositions
{n(i) : i € Z} such that eachy(i) is a2¢-boundeds(-, i)-
padded decomposition &f.

If a metric admits ag-padded decomposition bundle
such thats is constant, we simply say that this metad-
mits G-padded decompositions

The randomized construction. Letn be as-padded de-
composition bundle. For eache Z, let the decomposition
P, be chosen according to the distributigf:). We denote
P,(z) to be the unique cluster iR, containingz.

Moreover, foru € Z, let {o,(C) : C C V} be i.id.
unbiased{0, 1}-random variables. Let' = {0,1,...,5}.
Let u(z) := [log, f(x)]. For eacht € T, we define a
(random) subset

Wt = {SC ev: Gu(m)—t(Pu(m)—t(x)) = 0}7 (5)

from which we obtairy,(-) = min{d(-, W?), f(-)}.

Bounding the contraction of the embedding. We fix
verticesz,y € V and letd = d(x, y). Consider the embed-

ded distance between them. The aim is to show that under

some condition, there existsuch thatg,(z) — g (y)| > pd
happens with constant probability, wherelepends on the
(-padded decomposition bundle.

Lemma 5.7 Supposef(z) € [4,4d] andt € T is the inte-
ger such thati := u(x) — t satisfie® € [d/8,d/4). Let
J:={-1,0,1}andp := min{m cu € u+J}. Then
the eventg:(z) — ¢:(y)| > pd happens with probability at
least 1/64.

Case 1 The seti?! containsz but is disjoint withB, (pd).

Case 2 The sefi¥? contains no points fronB,. (2pd) but at
least one point fronB,, (pd).

Let us define the following auxiliary events.

e Event&; occurs wher is contained idV?.
e Eventé&, occurs wheriV* is disjoint with B, (pd).

e Event&; occurs when for alk € B, (2pd) andu €
@+ J, z andz are in the same cluster if{u).

e Event&, occursifforallu € 4+ J, 0, (Py(z)) = 1.

Observe that the evefitNE, implies the eventin Case 1.
Note that given a decompositiof{), the pointz lies in
a cluster different from those intersectifity (pd), because
2t < % < (1 — p)d. Hence the event§; and¢&, are condi-
tionally independent, given(x); this in turn implies that

Pri&iné&n(@)] = Prl&|n@)] Prl&|n(d)]
= SPrigln).

Since this fact holds for all decomposition@:), it follows
thatPr[El n 52] = %PT[(C/‘Q]

Observe that the evefit N £, N & implies the event in
Case 2. This follows from the fact that(z) — u(z)| € J.
Sincef(z) > 4, fis 1-Lipschitz andi(z, z) < 2pd < &, it
follows f(z) and f(z) are within a multiplicative factor of
2 from each other. Henc#(z) andu(z) differ by at most
one. Again, given the decomposition@:), v € & + J, the
events, is independent of the eveéit N &,. Hence,

P’I’[ggﬂgzlﬂg_Q} = PT[54] PT[(‘:gﬂg_Q]
= lprl&ng).

Finally, it follows that the union of the events in cases 1
and 2 happens with probability at least

%PT[(C/‘Q] + %PT[(‘:g n 5_2]
> %PT‘[(SB N 52] + %PT‘[(SB 05_2] = %PT‘[(EB]
In order to show thaf; happens with constant probability,

we make use of the properties gfpadded decomposition
bundle. Since for all: € 4 + J we have

2pd < 2/326(x,u) - d < 2%/B(z,u),

it follows that &5 happens with probability at least 1/8.
Therefore, it follows the desired event happens with proba-
bility at least 1/64. ]



5.5 Analysis: mapsf;; and g, ;. o)

We'll use (6) to prove the following crucial claim:

Here we prove Lemma 5.4 and Lemma 5.5. First we Claim 5.10 Fix ¢ > 0; for each let T; be the smallest
prove part (a) of Lemma 5.4, which is essentially the upper such thatf;;(u) < pu(€), or k if no such: exists. Then

bound on the embedded distance for the gase 1. We
start with a local smoothness property of the £&is

Claim 5.8 Fix i, j € [k] and an edgew. Condition on the
mapf;;, i.e. pause our embedding algorithm right afiy
is constructed; let = f;;(u). If dy, < r/4then

Prlv € U;;] < 1/|By(r)| < Pr v € Uyss ] -

Proof: Let B = B,(r).
" = flits,5) (v) we have

41" < fii(v)/2 < (r + duw)/2 < 177/32,

For the RHS inequality, letting

S0 dy, + 4" < r. It follows thatB,(r') C B, sov €
U(it3,5) With probability1 /B, (4r')| > |B].
For the LHS inequality, letting’ = f;;(v) we have

47’/ 2 4(T - du’u) 2 r+ du’Ua
so B C B,(4r"). Thereforev € U;; with probability
1/|By(4r")| < 1/|B|. O

Fix a nodeu; for simplicity assume: = 4kq + 1. Let
Bi; = B,(fi;) and letX;; be the indicator random variable
for the event thatB4; 14, jy| < |Ba, j)|/2. Note that for
a fixed j, the random variableX;; are not independent.

However, we can show that given all previous history, the

i7-th event happens with at least a constant probability.

Claim 5.9 For eachi € [k, j € [k]andg=1—e"1/2we
havePr(X;; = 1| fi;,1 <i] > q.

Proof:  Indeed, fixij, let f = fu;;(u) and f =
faita,j)(w), and letB = B, (r) be the smallest ball around
u that contains at leas$B 4;, ;)|/2 nodes. ClearlyX;; = 1

if and only if f/ < . By definition of f;;’s we have
f' < f/16, so we are done if > f/16. Else by Claim 5.8
any nodev € B included into the sel/(4; 3 ;) with proba-
bility at leastl /2| B|, so the probability of including at least
one node inB into this set (in which casg¢’ < r) is at least
1-(1-1/2|B)Bl >q. m

For a random variabl& define thedistribution function
Fx(t) = Pr[X < t]. Fortwo random variableX and
Y, sayY stochastically dominateX (written asY = X,
or X < Y)if Fy(t) < Fx(t) forall t € R. Note that
if X > Y thenX > Y. Consider a sequence of i.i.d.
Bernoulli random variable§Y;} with success probability
g. By Claim 5.9 and Lemma A.3 (proved in Section A) we
have the following:

t t

ZXU = ZY“ foranyt € [ko] and eacly € [k]. (6)

i=0 i=0

>2; Tj = O(klog 1) with high probability.

Proof: Leta = [logl]. LetL; be the smallest such

thatz‘l;o Xij > «, or kg if sucht does not exist; note that
T; < 4L;. For the sequencf;}, let Z, be the number of
trials between thér — 1)-th success and theth success.

jo ko
LetA; =302 1041 Zr@ndZ = 3772, Z,. By (6) for
any integett € [ko]
PrlL; >1 = Pr|yt_, X< a} <Pr [zﬁzoyi < a}
= Pr[>_,Z, >t]=Pr[A > {] (7)

Since{A,} arei.i.d., by (7) and Lemma A.2 it follows that
> Lj = >2; Aj = Z. Therefore by Lemma A.4

IN

Pr {Z T, > Ska/q} Pr {Z L; > Qka/q}

Pr[Z > 2ka/q] < (0.782)F,

N

which is at mostl/n? whenk = O(logn) with large
enough constant. ]

Now we have all tools to prove Lemma 5.4a.

Proof of Lemma 5.4a: UseT; = T)(u) from Claim 5.10.

Fix somee-long edgeuv and letd = d,,. Lett; =

max(7};(u), T;j(v)). Then since by the 1-Lipschitz property
+;(uv) < dforallij; moreover, for anyj such that > ¢;

both f;;(u) and f;;(v) are at mostl/2'~*. Then f/;(uv)

is at most twice that much (singg; < f;;), so taking the

sum of the geometric series we see that

Z filj(uv) < Z_j (dtj + Ziztj d/2i7t]‘)
ij
< >;0(dt;) =0 (kdlog ),
where the last inequality follows by Claim 5.10. m]

To prove part (b) Lemma 5.4, let us recall the definition
of a u-broad interval: for a node, an intervalfa, b] is u-
broadif « or b is equal tod,,, for somev, a < b/4 and
Bu(a)] < 55/Bu(®)]-

Proof of Lemma 5.4b: It suffices to consider the-broad
intervals[a, b] such that one of the endpoints is equado
for somew, and the other is the largelsor the smallest,
respectively, such that the intervalisbroad. Call these
intervalsu-interesting note that there are at mast such
intervals for eachu.



Fix nodeu and au-broad intervall = [a, b], fix j and the probability space induced by the forthcoming random
letr; = fi;(u). It suffices to show that with constant prob- choices. LetX,, = f;;(w). First we claim that
ability somer; lands in/. Indeed, then we can use Cher-
noff bounds (Lemma A.1a), and then we can take the Union Pr (g, j.0)(w) < 7|1 < X/8] > Q(B,), 9)

Bound over all nodes and allu-interesting intervals. wheres, = [Bu(r)|/|B.(X)|. Indeed, suppose < X/,

Denote by¢&; the event that; > b andr;;1 < a; note - : ]
that these events are disjoint. Since saméands in[ if let B = B.,(r) and consider any € B. Then by (12):

and only if none of the;’s happen, we need to bound the Priw e Wi;] = 1/By(Xw/2)|
probability of UE; away from 1. !

For each integelr > 0 define the interval z 1/|Bu(X.)| > 6, B|
Prgu, jo(w) <r] = Pr[W,; hits B]
I = [pu (e2'), pu (€2')), whereen = [B,(b)|. > 1-(1-pB)"
> 1-e P >0(3,),

For eacha € {0,1,2,3} let N ) be the number of’s

such thaty; ., € ;. We claim thatF[N(; )] < 1/¢. proving (9). Now letB = B,(X,/8); then by (12) any

Consider the case = 0; other cases are similar. Let ., ¢ gigincluded into the seit’;; with probability at most
Ni = N,y and supposéV; > 1. Letig be the smallest 1/B, so

such thatry; < I;. ThenN; > ¢ implies X;; = 0 for each
i € [ig; i0 + t — 2]. Recall that the construction of the maps Pr [g(i.j. o(v) > XU/S] = Pr[W;; missesB|
fi; starts withf(o ;). Given the specific mag = f, ;). o

_ |B]
the construction of the map4;, i > 4o is equivalent to a = (1 =1/[B)™ = 1/4. (10)
similarly defined construction that starts wiffy, ;) = f. Finally, let's combine (9) and (10) to prove the claim. Let
Therefore, by (6) (applied to this modified construction) we . _ d/4 and suppos& > 4d. SinceX, > X — dy, > 3d
have by (10) eventy; ; 0)(v) > 3d/8 happens with probability
t9 B at leastl/4. This event and the one in (9) are indepen-
Pr[Ni >t] < Pr {Zﬁzo X(io+8,) = 0} dent since they depend only on what happens in the balls
< t=2 v o] 1 _ oyl B.(d/4) and B,(3d/8), respectively, which are disjoint.
s Pbr {25:0 Ys O} (1=a)"% Therefore with probability at lea$t(3,.) both events hap-
E[N] = Y2, Pr[N>t]<Y 2, (1—qt = %, pen, in which case; ; 0y (uv) > d/8. ]

claim proved. For simplicity assunte= 4k + 1; it follows 6 Lower Bounds on Embeddings with Slack
that

k—1 . o 3 ko—1 ‘ In this section, we describe a general technique to derive
2o Prlr € 41] = Zg:o Lizo Prlrsica € 1 lower bounds fore-slack embeddings from lower bounds
= YuzoE[Nuw] <4/ (8)  forordinary embeddings. The bounds obtained by this tech-
) ] ] » nigue are given in Corollary 6.5, the most notable of which
By Claim 5.8 ifr; € [, thenr;; < a with conditional g the |ower bound of? (log(%)/p) for embedding any met-
probability at mos{B,(a)|/|B.(r.)| < 27'/32. There-  |icinto 0. ‘

fore, Pr[€; | r; € I)] < 27'/32. By (8) it follows that We make use of the following definitions from [10]

k1 kel <moo Definition 6.1 Let H be a metric space, assume we have a
Priugi] = Yo Prl&] =320 22 Prlri € hand&]  coiection of disjoint metric spaces, associated with the
Zf;ol Yoo Prlri € )] x 271 /32 elements of H, andletC = {C, },c . Theg-composition
0 o— - of H andC, for 3 > 1, denotedd = Cs[H], is a metric
= B2 XI5 Prfri € I 5 2 g, der - ColH), |
space on the disjoint unidp), C,,. Distances irC are de-

IN

B ) Il e &
S DY ERE fined as follows: let:,y € H andu € C,,v € Cy, then:
so some; lands in with at least a constant probability] v e, (u,v) =1y
dgy(u,v) = oA -
a(t:v) { Bdu(z,y) x#y

It remains to prove Lemma 5.5 about the maps;, o).

_ maxgen diam(Cy)
wherey = ming yex du (z,y)’

Proof of Lemma 5.5: Let's pause our embedding al- metric space.
gorithm right after the mayy;; is chosen, and consider

guarantees thaff is indeed a



Definition 6.2 Given a familyH of metric spaces, consider
compg(H), its closure undep’-composition ford’ > 3.

‘H is called nearly closed under compositiginfor every
d > 0 there exists som@ > 1/2, such that for everw/ €
comps(H) there isM € H and an embedding ¥/ into
M with distortion at most + 4.

Remark Among the families nearly closed under com-
position we can find the following [10]: Trees, planar

For eachw € H, the setC, contains} = 3./en points
and hence there exists some poinfim C,,, which we call
Ve

Letz,y € H. Sincev, andv, are inT, each of them
has at most/en neighbors. Observing that,| = 3\/en,
it follows that there exists a poirte C,, such that neither
{vs, t} nor{v,,t} is contained inE. We can assume that
for {u, v} & E, dy (u,v) < ||p(u) — ¢(v)|| < Rdg(u,v).

Hence, it follows that

graphs, minor-excluded graphs, normed spaces. In the spe-

cial case that each of the composed mettfigsis of equal
size, also doubling metrics are closed under composition.

Theorem 6.3 Let X be a family of target metric spaces.
Supposé is a family of metrics nearly closed under com-
position such that for each, Hi € H hask points and any
embedding off;, into X’ has distortion at leasD (k). Then
for arbitrarily small ¢ > 0, there exists’ € H such that
the embedding off’ into X’ hase-slack distortion at least
QD(54)).

Remark We can takeX to be a family of metrics in
¢, with limited dimension, thus obtaining-slack lower
bounds on the dimension in termseds well.

Note that this result can be used to translate, e.g., the
Brinkman and Charikar [14] lower bound for dimension-

ality reduction in/; into the realm ok-slack as well.

Let us now prove Theorem 6.3, first we show how to con-
struct a family of metric spaces with the desired properties

Supposé! € 'H is a metric such thgt| = k. Moreover,
H embeds intot’ with distortion at leasD. For anyn that
is a multiple of3%, we can define a metrifl with n points
in the following way.

LetC = {C.,}.cn Where eaclU, € Hisin sizef, and
let H = Cg[H] be its3-composition forg > D satisfying
that /f can be embedded inf with distortion 2.

We now proceed to the proof; indeed, the following

lemma implies Theorem 6.3.

Lemma 6.4 Le}I?I be the metric defined as above. ket
1/9k%. Then,H embeds intoX’ with e-slack distortion at
leastD/4.

Remark. If we wanted to obtain lower bounds far
uniform slackembeddings instead of just fesslack embed-
dings, we would set = 1/3k, since the number of ignored
edges incident on any node is at masty the very defini-
tion; the rest of the proof remains essentially unchanged.
Proof: Suppose, on the contrary,is an embedding off
into X with e-slack distortionk < D/4 that ignores the set
E of edges. Then consider a sub%et_ H containing all
v € H such thaw intersects at mosy/en edges inkE, by a
simple counting argumeii’| > (1 — \/e)n.

llo(ve) = @)l <llp(ve) — @@ + lle(t) — @(vy)]]
SR(d/If](UIv t) + dﬁ[(tv UU))

—R (ﬁdH(x,y) n %“’v))

<t (Bdu(o) + i, dn(u) )
<L2RpBdg(x,y) = 2Rd g (ve,vy)

dcy (t,vy)

sincef < miny yem di(u, v). Similarly,

lo(ve) = o)l Zllp(ve) — @@ = lle(t) — @vy)]]
>d g (v, t) — Rdg (t,vy)
dcy(t,vy)
v

> () ~ 7 min di(u,0)
o

1
ZEdH(xa y) = Edﬁ (vzv Uy)

usingR < D/4 < /4. Notice that the metric induced on
the set{v, }.cq is isomorphic (up to scaling) té/, there-
fore ¢ embedsH into X with distortion at mosttk < D,
and we obtain the desired contradiction. |

To finish the proof of Theorem 6.3 it remains to notice
that H 2-embeds into som#’ € H, thereforeH’ embeds

into X with e-slack distortion at leasb /8 = Q(D( 3\1/2))'

Contracting Embeddings with Slack. Let us mention that
allowing arbitraryexpansionss crucial to our results: if we
insisted thahone of the pairwise distances should increase
the lower bound of)(1 logn) distortion [34] for embed-
dings into/, holds even withe-slack; the simple details are
deferred to the full version of this paper.

Corollary 6.5 Foranyl/n <e <1
1. Q (@) distortion fore-slack embedding int6,.

2. Anye-slack embedding with distortioa into ¢, re-
quires dimensiof2(log,, 2).

3. Q(ﬁ) distortion fore-slack embedding into trees.



L

.

. Q(2) distortion for uniforme-slack embedding into

trees.

. © (log (1)) distortion in randomized-slack embed-

ding into distribution of trees.

. Q(4/log(1/¢€)) distortion for e-slack embedding of

doubling metrics intds,.

log(1/¢)) distortion for e-slack embedding df
into {5.

loglog(1/e¢)) distortion fore-slack embedding of
trees intol,.

[9] Y. Bartal, B. Bollobas, and M. Mendel. Ramsey-type theo
rems for metric spaces with applications to online problems
2002. To appear in Special issue of Journal of Computer and
System Science.

Y. Bartal, N. Linial, M. Mendel, and A. Naor. On metric
ramsey-type phenomenAnnals Math 2003. To appear.

J. Bourgain. On Lipschitz embeddings of finite metric
spaces in Hilbert spacdsrael J. of Mathematics52(1-2),
1985.

J. Bourgain. The metrical interpretation of superpafligy

in Banach spacedsrael J. Math, 56(2):222—-230, 1986.

J. Bourgain, T. Figiel, and V. Milman. On Hilbertian seis

of finite metric spacedsrael J. Math, 55(2):147-152, 1986.
B. Brinkman and M. S. Charikar. On the impossibility of
dimension reduction in |1. 144th FOC$2003.

[10]

[11]

[12]
[13]

[14]

This follows from known lower bounds1) from [34], (2)
from equilateral dimension consideratio(), and(4) from
[39], (5) from [5], (6) from [21], (7) from [16] and(8) from
[12].

[15]

[16]

F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi:
A decentralized network coordinate system. AGM SIG-
COMM, 2004.

P. Enflo. On the nonexistence of uniform homeomorphisms
betweenL,-spacesArk. Mat, 8:103-105 (1969), 1969.

7 Extensions and Further Directions

The main question left open by this work is whether

every metric admits a low-dimensional embedding into

¢y, p > 1 with gracefully degrading distortiorD(e).

This has been answered affirmatively in Abraham, Bartal
and Neiman [1], withD(e) =
O(logn), using a new type of more advanced metric de- [20]

O(log 1) and dimension

compositions.

For specific families of metrics it is still interesting to
provide embeddings int, with gracefully degrading dis-
tortion D(e) = o(log1); recall that Theorem 5.1 gives

such embedding for decomposable metrics. In particular,
we would like to ask this question for embedding arbitrary [22]

subsets of; into /5.
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A Tools from Probability Theory

Here we state some tools from Probability Theory that

Lemma A.3 Consider two sequences of Bernoulli random
variables,{ X;} and{Y;}, such that variablegY;} are in-
dependentan®r[X; =1 | X;,j < i] > Pr[Y; = 1] for
eachi. Then}_!_, X, = ¥ Y, for eachk.

Lemma A.4 Consider a sequence of i.i.d. Bernoulli ran-
dom variables{Y;} with success probability. LetZ, be
the number of trials between tlie — 1)-th success and the

r-th success. Thelr [ZT 1 Zr > 2k/q} (0.782)*.

B Proofs from Section 3

Proof of Theorem 3.1(b): The idea of the proof is to

choose a constant set of beacons and embed them, then for

all the other points, choose the “best” beadomach coor-
dinate and then add some auxiliary coordinates. Formally,
letT = [100logn] anddenotd” = {t e N |1 <t < 7}.
Letm = [1]. For eacht € T, let B, be a uniformly dis-
tributed random set of: points inX.

For eacht € T let g = (n{"g{" . . ,ng()m)gﬁ ) be
a strongly non-expansive embedding frd#pinto ¢, with
distortiona(m) and dimensior3(m). Let]l = {i € N |
1 < i < B(m)}. When clear from the context we omit
the §(*) superscript and simply writg. Again, let{o;(u) |
u € X,t € T} be i.i.d symmetric{0, 1}-valued Bernoulli
random variables. Define the following functions:

hi(u) = oe(u)pu(e)
for allue Xandt € T.
) = n” min{d(u.b) + 6" (0)}
forallu ceX,iel,teT.
Let f' = (flyeoo fhm)s £ = (f1oo f7), andh =
( .,h7), the final embedding willbe = f @ h. Let

{ u; ) | d(u v) < min{py(€), p

=(5)\D

»(€)}} and by defini-

we used in Section 5. We prove some of these results in the We begin by an upper bound for dl,v) € G. Fix

full version.

Lemma A.1 (Chernoff Bounds) Consider the sunX ofn
independent random variables {fh A].

(a) foranyu < E(X)and anye € (0,1) we have
Pr[X < (1 —e)u] < exp(—€e2u/2A).

(b) foranyu > E(X) and anyS > 1 we have
Pr[X > Bu] < [L(e/8)"]"".

Lemma A.2 Consider two sequences of independent ran-

dom variables{ X;} and{Y;}, such that allX; andY; have
finite domains and\; < Y; for each:. Then for eactk we
haverzl Xi = Zf:l Y.

t € T,i € I, and w.l.o.g. assumg¢!(u) > fi(v) and
let b} € B, be the beacon that minimize%(v). Hence,
| minpe g, {d(u, b) + gi(b) } — minpe g, {d(v,b) + gi(b) }| <
d(u, bf) + gi(b;?) — d(v, bf) - gi(b;?) < d(u,v).

Also notice thatmax{p,(€), p»(€)} < 2dx(u,v) since
B(u, py(€) + dx(u,v)) contains at leastr points.

lo(w) = @)y = I1f(w) = fF@)I} + [|h(w) = h(v)]}
< EteTZzej|f( u) — ( )P +EteTm3X{pu( €),
< Yter 2ier |77i (mlnbeBt{d(u7b) + 9i(b)}

— min{d(v,b) + gi(O)})IP + 7(2d(u, v))?

< Dier Dier |nft)d(u7v)|p + 7(2d(u,v))?

pu(€)}”



< 37d(u,v)P.

(Recallthaty”, ., n? = 1)

We now partitionG into two setsG; = {(u,v) € G |

d(u,v)

w(€)} >

max {pu (6 16c(m)

}andGs =

G\ G;. For any

(u,v) € G1,t € T', assume w.l.0.g that:(u) > p¢(v), and

let & (u, v) be the event
Et(u,v) =

ThenPr [€(u, v)] = 1. LetA(u, v)

tion:

{1'(u) = pule) A b (v) = 0}

=2 ier Le,(u), then
E[A(u,v)] = 7/4, using Chernoff's bound we can bound
the probability thatd (u, v) is smaller than half it's expecta-

Pr[A(u,v) < 7/8] < e /%0 <1/n?

Therefore with probability great

(u,v) € Gy, A(u,v) > 7/8. In such a case we can lower

er thaih/2, for any

bound the contribution for anfu, v) € G :
le(w) = eIl > Xper [P (u) = h* (0)[°
. T d(u,v) p
> (r/8) (pew))” > 7 (e )",

For any(u,v) € Go,t € T letb,,b, € B; the nearest

beacons ta:, v respectively. Let

Fi(u,v) = {bu € B(u, pu(€)) Aby € B(v, pys(€))}

ThenPr [Fi(u,v)] > 1 —2/e > 1/4, since for any
u € X, Pr[d(u, By) > pu(e)] = (1 —

h(u,v) = ZteT ]'J:t(uﬂf)' thenIE[h
Chernoff’s bound we can bound th

&)t/e < el Let
(u,v)] > 7/4, using
e probability thét, v)

is smaller than half its expectation:

Pr[h(u,v) < 7/8] < e /%0 < 1/n?

Therefore with probability greater t
Ga, h(u,v) > 7/8.

han2 for any (u,v) €

For anyt € T such thatF,;(u, v) happened we have

max {d(u, bu)a d(”’ bv)}

d(u,v)
< 160 (m)

In such a case lét; € B; be the beacon minimizing/ (u);

since for every € I, g;(b.) — ¢:(b;)

fi(u) = d(u, bi) + gi(bs)

> d(u, bi) + gi(bu) —
—d(u, by);

maoreover
fzt(v) < d(v,by) + gi(by)

ClamB.1 LetJ = {i € T | |gi(bu)
ThenZz‘eJ nﬂgi(bu) ( )|p > [

< d(b, b;) we get

d(by, b;)

Proof: Assume by contradiction that it is not the case, then
1G(bu) = g(bo)l[} > ieq M 19i(bu) — gi(bo)[?

+ 2 i s M 19i(bu) — gi(by) [P

(S D)7 + Tigs il g

2[d(u,v)]1’ < [d(b w,bo )}p

4a(m) a(m)

IN

The last inequality follows sincd(b,,b,) > d(u,v) —

1‘16(;(’2) > Zd(u,v). This contradicts the fact thathas
distortiona(m) on By. m|

Finally, we can now bound the distortion of the mgp

1F* () = Fr )b = X mf 1 (w) = fi ()P
> Zzej ; |QZ( w) — d(u,by) — d(v,by) — gi(by)|P
> e |19i(ba) = gi(bo)]
—Qmax{d(mbu),d(v,bv)}’p
> e lgi(bu) — gi(bo)| — 23] 9i(bu) — gi(by) ||
> (53)’

SinceF; (u,v) happened for at leasy/8 indexes fronil” we
have the lower bound

lew) —e@IF = Xier 1 (w) —
7_/8(d(uv§)

FrIR

Y

C Bourgain-style proof of Lemma 5.2
for the special case of doubling metrics.

In this section we use the ideas of [11, 33] to derive an
alternative proof of Lemma 5.2 for the important special
case wherg is the doubling dimensio.Let us note that
in the well-known embedding algorithms of Bourgain [11]
and Linial et al. [33] any two nodes are sampled with the
same probability, i.e. with respect to the counting measure
Here use a non-trivial extension of the Bourgain’s techaiqu
where we sample with respect to a doubling measure trans-
formed with respect to a given 1-Lipschitz map.

We state our result as follows:

Lemma C.1 Consider a finite metri¢V, d) equipped with
a non-degenerate measureand a 1-Lipschitz coordinate
map f; write f, = f(u). For every node: let

Bu(w) =2pu[Bu(fu)] / n[Bu(fu/16)].

Then for anyk,t € N there is a randomized embedding
into £, p > 1 with dimensiork¢ so that:

8In this proof the target dimension becomes= O(8log ), which
results in target dimensio@ (log? n) (8 log 3) in Theorem 5.1.



(a) each coordinate map qf is 1-Lipschitz and upper-
bounded byf; and

(b) [lg(u) — g()|lp > Q(duy/t)(kt)/P with failure prob-
ability at mostt/22(*) for any edgeuv such that

f(u)/dyy € [1/4; 4] and Ier}ax}ﬁu(w) <2
| (12)

To prove Lemma 5.2 for a metric of doubling dimension
3, recall that for any such metric there existg’adoubling
measure:. Plug this measure in Lemma C.1, with- 45+
1 andk = O(log 3); note that3,, (u) < 2* for every node
u. We get the embedding i) with O(3log §) dimensions
that satisfies the conditions in Lemma 5.2.

We'll need the following simple fact:

If dy, < f(u)/8 for some edgew, then
Bu(f(w)/8) C Bu(f(v)/2) C Bu(f(u)) (12)

Indeed, lettingf,, = f(u) the first inclusion follows since
fo/2 > (fu — duwv)/2 > fu/8 + duy, @and the second one
holds sincel,, + fv/2 < duy + (fu + duv)/2 < fu.

Proof of Lemma C.1: Define the transformation of:
with respect tof asps(u) = p(u)/2u(B), whereB =
B.(f./2). Fix k = clogn wherec is an absolute con-

stants to be specified later. The coordinates are indexed

by ij, wherei € [t] andj € [k]. For each(i,j)-
pair construct a random sét;; by selecting[2¢u¢(V)]
nodes independently according to the probability distribu
tion w5 (-)/per (V). Let us define thej-th coordinate ofu
asg;;(u) = min (fu, d(u, Us;)).

Note that each map;; is 1-Lipschitz as the minimum
of two 1-Lipschitz maps. Therefore part (a) holds trivially
The hard part is part (b). Fix an edge; letd = dy.,.
For any nodev let a,, (¢) be the smallest radiussuch that
wr[Buw(r)] > € and let

pi = max[t,(27%),1,(279)], where
Yw(€) = minfou,(€),d/2, fu].

Claim C.2 For eachi > 1 and eachyj € [k] with probabil-
ity (1) we havey;; (uv) = |gi;(u) — gi; (V)| = pi — pit1.

Then by Chernoff bounds (Lemma A.1(a)) w.h.p. we have
t
> gii(uv) = k) (pi—piv1) = k) (p1—pr). (13)
iJ i=1

Proof of Claim C.2: Fix ¢ > 1 andj, and note that if
pi+1 = d/2 thenp; = d/2, in which case the claim is triv-
ial. So let's assumg; 1 < d/2 and without loss of gener-
ality supposep, (27¢) > ,(27%). Consider the open ball
B of radiusp; aroundu. Sincep; = 1, (27%) < a,(27%),

it follows thatp s (B) < 27%. Now there are two cases:

o If pir1 = f, then the desired evept; (uv) > p; —
pi+1 happens whenevér;; missesB, which happens
with at least a constant probability sineg(B) < 2.

e If p;y1 < f, then the desired event happens when-
everU;; missesB and hitsB’ = B,,(p;+1). This hap-
pens with at least a constant probability by Claim C.4
sincepir1 > ¥, (1/2741) > a,(1/211) and there-
fore us(B’) > 1/2+1, and the two ball$3 and B’ are
disjoint.

This completes the proof of the claim. |

Claim C.3 For any nodew we havegaw(%) > fw/8and

o (1/Bu(w)) < fu/16.

Proof: LetB = B,,(f.,/8). By (12) foranyw’ € B
p(w) /20 Buy(fuw)] < pp(w') < p(w)/2u(B),

sous(B) < & andys[Bu(fu/16)] = 1/6,(w). o

Suppose that (11) holds; let = max(f,, f,). Then
using Claim C.3 and the definitions pf andv,, we have:

max min(fy,/8,d/2) > min(z/8,d/2),

we{u,v}

Y

P1

IN

max @, (271 < max ay (1 w
we{u,v} ( ) we{u,v} ( /ﬁu( ))

max f,/16 < 2/16.
we{u,v}

Pt

IN

By (13) forp = 1 it remains to show that; — p: > Q(d).
There are two cases:

e if f, <4dthenp; > x/8,s0p1 —p: > /16 > Q(d).
e if f, > 4dthenp, > d/2 and (sincef is 1-Lipschitz)
pr < fu/16 < (fu+d)/16 < 5d/16,
S0p1 — py > 3d/16.

This completes the proof for the cgse- 1. To extend it to
p > 1, note that the embedded-distance is

(Zij 9ij (UU)p)l/p = (kt)l/p (% Zij Gij (UU)p)

> (k)17 (X, 905(uv)) = QA7) (k)17

This completes the proof of the Lemma. |

1/p

In the above proof we used the following claim which
is implicit in [33] and also stated in [29]; for the sake of
completeness, we prove this claim in the full version.

Claim C.4 Let u be a probability measure on a finite set
V. Consider disjoint event&, E’ C V such thatu(E) >

g and u(E’) < 2¢ < 1/2 for some numbeg > 0. Let
S be a set off1/¢| points sampled independently frdrh
according tou. ThensS hits E and misse€’ with at least

a constant probability.



