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Abstract. The aim of this paper is to adapt the Viability Theorem from differential inclusions
(governing the evolution of vectors in a finite dimensional space) to so-called morphological inclusions
(governing the evolution of nonempty compact subsets of the Euclidean space).
In this morphological framework, the evolution of compact subsets of RN is described by means of
flows along bounded Lipschitz vector fields (similarly to the velocity method alias speed method
in shape analysis). Now for each compact subset, more than just one vector field is admitted -
correspondingly to the set-valued map of a differential inclusion in finite dimensions.
We specify sufficient conditions on the given data such that for every initial compact set, at least
one of these compact-valued evolutions satisfies fixed state constraints in addition. The proofs follow
an approximative track similar to the standard approach for differential inclusions in RN , but they
use tools about weak compactness and weak convergence of Banach-valued functions. Finally an
application to shape optimization under state constraints is sketched.
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1. Introduction. State constraints provide challenging questions in any form
of dynamic system. Asking for sufficient and necessary conditions on the state con-
straints, the first complete answer for ordinary differential equations was given by
Nagumo [26] in 1942 and, this characterization (using Bouligand tangent cones) has
been rediscovered many times during the last decades.
If solutions of any given initial value problem are not unique, then two versions of
this question are to be distinguished from each other: Either we demand all so-
lutions to have their values in the fixed constrained set or (just) at least one so-
lution with this property has to exist. In the first case, the corresponding con-
strained set is called invariant and, in the latter case, it is viable or weakly invariant.
For autonomous differential inclusions in RN , the results are presented in Aubin’s
monography Viability theory [5], for example.

The main goal of this paper is a sufficient characterization of viability for shapes.
To be more precise, we leave the familiar Euclidean space RN and consider evo-
lutions of nonempty compact subsets of RN instead. Correspondingly, the so-
lution x : [0, T ] −→ RN (of a differential inclusion) is now replaced by a curve
K : [0, T ] −→ K(RN ) with K(RN ) denoting the set of nonempty compact subsets
of RN usually supplied with the Pompeiu–Hausdorff distance

dl(K1,K2) := sup
x∈K1,
y∈K2

{
dist(x,K1), dist(y, K2)

}
= sup

z∈RN

|dist(z,K1)− dist(z,K2)| .

The state constraints are again formulated as a subset, i.e. now V ⊂ K(RN ) (instead
of V ⊂ RN for differential inclusions).
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Lipschitz vector fields for specifying time derivatives of curves in (K(RN ), dl)

For formulating the viability problem in the metric space
(
K(RN ), dl

)
, we have

to specify how compact subsets of RN are “deformed”. The so–called velocity method
or speed method has led Céa, Delfour, Zolésio and others to remarkable results about
shape optimization (see e.g. [9, 11, 12, 33, 38] and references there). It is based
on prescribing a vector field v : RN × [0, T ] −→ RN such that the corresponding
ordinary differential equation d

dt x(·) = v(x(·), ·) induces a unique flow on RN . Indeed,
supposing v to be sufficiently smooth, the Cauchy problem

d
dt x(·) = v(x(·), ·) in [0, T ], x(0) = x0 ∈ RN

is always well–posed and, any compact initial set K ⊂ RN is deformed to

ϑv(t, K) :=
{

x(t)
∣∣ ∃ x(·) ∈ C1([0, t], RN ) : d

dt x(·) = v(x(·), ·) in [0, t], x(0) ∈ K
}

after an arbitrary time t ≥ 0. As a key advantage, this concept of set evolution does
not require any regularity conditions on the compact set K or its topological boundary
(but only on the vector field v). In a word, v can be interpreted as a “direction of
deformation” for (K(RN ), dl). So it is “possible to define directional derivatives and
speak of shape gradient and shape Hessian with respect to the associated vector
space of velocities. This [...] approach has been known in the literature as the velocity
method” [11, Chapter 1, § 6].
Aubin seized this notion for extending ODEs to this metric space of compact subsets.
The so–called morphological equations are sketched in [4] and then presented in [2, 3]
in more detail. (They seem to be closer to ODEs in RN than Panasyuk’s concept of
“quasidifferential equations” [27, 28, 29].)

For a given curve K(·) : [0, T ] −→ K(RN ), autonomous Lipschitz
vector fields RN −→ RN are used for specifying the counterparts
of time derivatives. To be more precise, a Lipschitz continuous
field g : RN −→ RN represents a first–order approximation of
K(·) at time t ∈ [0, T [ if

lim sup
h ↓ 0

1
h · dl

(
K(t + h), ϑg(h, K(t))

)
= 0. (∗)

Obviously, this limit superior being equal to 0 is even a limit because distances are
always nonnegative by definition. Of course, such a field g(·) need not be unique and
thus, all bounded Lipschitz vector fields with this property (∗) form the so–called

mutation
◦
K(t) of K(·) at time t ∈ [0, T [. In particular, the mutation is a subset of all

bounded Lipschitz functions RN −→ RN and extends the time derivative to curves in
the metric space (K(RN ), dl).

Solving a morphological equation with state constraints:
Aubin’s adaptation of Nagumo’s theorem

The step from specifying a time derivative (of a curve) to formulating a (generalized)
differential equation is rather small. It is based just on prescribing the time derivative
as a function of the current state. In connection with nonempty compact subsets
of RN , a function f : K(RN ) −→ Lip(RN , RN ) is given with Lip(RN , RN ) denoting
the set of all bounded and Lipschitz continuous functions RN −→ RN .
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For any initial set K0 ∈ K(RN ), we are looking for K(·) : [0, T ] −→ K(RN ) satisfying
1. K(·) is Lipschitz continuous with respect to the Pompeiu–Hausdorff distance dl,

2. f(K(t)) ∈
◦
K(t) for a.e. t∈ [0, T [, i.e. lim

h↓0
1
h · dl

(
K(t+h), ϑf(K(t))(h, K(t))

)
= 0,

3. K(0) = K0.

Then, K(·) is called solution of the (autonomous) morphological equation
◦
K (·) 3

f(K(·)) in [0, T ] with initial value K0.

At first glance, the symbol 3 here seems to be contradictory to the term “equation”.
The mutation

◦
K(t), however, is defined as subset of all transitions providing a first-

order approximation of K(t+ ·) and so, the “right-hand side” f(K(t)) ∈ Lip(RN , RN )
should be one of its elements. (In the classical framework of differentiable functions
and vector spaces, the mutation consists of just one vector.)

Considering now additional state constraints, the question about existence of a
solution has been answered completely by Aubin in [3, Theorem 0.1]. In particular,
the assumptions about state constraints and f(·) justify its interpretation as a coun-
terpart of Nagumo’s theorem. Some applications and further studies are presented in
[16, 18, 22].

Proposition 1.1 (Nagumo’s theorem for morphological equations [2, 3]).
Suppose V ⊂ K(RN ) to be nonempty and closed with respect to dl.
Let f : (K(RN ), dl) −→

(
Lip(RN , RN ), ‖ · ‖∞

)
be a continuous function satisfying

1. uniform bound of Lipschitz constants: supM ∈K(RN ) Lip f(M) < ∞,

2. uniform bound of supremum norms: supM ∈K(RN ) ‖f(M)‖∞ < ∞.

For any M ∈ V, let f(M) ∈ Lip(RN , RN ) be contingent to V at M in the sense that
0 = lim inf

h ↓ 0

1
h · dist

(
ϑf(M)(h, M), V

)
Def.= lim inf

h ↓ 0

1
h · inf

C ∈V
dl

(
ϑf(M)(h, M), C

)
.

Then, from any K0 ∈ V starts a solution K(·) : [0,∞[−→ K(RN ) of the morpho-

logical equation
◦
K(·) 3 f(K(·)) which is viable in V, i.e. K(t) ∈ V for all t.

The new step to morphological inclusions

This paper focuses on the corresponding conditions (of viability) if more than one
Lipschitz field is admitted for each compact set, i.e. the single–valued function f :
K(RN ) −→ Lip(RN , RN ) is replaced by a set–valued map F : K(RN ) Lip(RN , RN ).
This modification of given data leads directly to the following definition: A Lipschitz
continuous curve K(·) : [0, T ] −→ (K(RN ), dl) is called solution of the morphological
inclusion

◦
K(·) ∩ F(K(·)) 6= ∅ in [0, T [

if F(K(t))∩
◦
K(t) 6= ∅ for almost every t ∈ [0, T [, i.e. there exists w ∈ F(K(t)) ⊂

Lip(RN , RN ) with lim
h↓0

1
h · dl (K(t+h), ϑw(h, K(t))) = 0.

Obviously, every morphological equation can be regarded as a morphological inclusion
(just with single-valued F). So this step provides a real extension.
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Considering now additional state constraints on K(·), Doyen [19] has given suffi-
cient and some necessary conditions on F(·) and V ⊂ K(RN ) for the invariance of V
(i.e. all continuous solutions starting in V stay in V). His key notion is first to extend
Filippov’s existence theorem from differential inclusions (in RN ) to morphological in-
clusions in K(RN ) [19, Theorem 7.1] and then to verify dist(K(·),V) ≤ 0 (under the
assumption that the values of F(·) are always contained in the corresponding contin-
gent cone to V) [19, Theorem 8.2].

The main result here concerns sufficient conditions on F(·) and V ⊂ K(RN ) for
the viability of V, i.e. at least one Lipschitz continuous solution has to stay in V.
This question (in a more general environment) was pointed out as open in [2, § 2.3.3]
and, to the best of my knowledge, it has not been answered even for the special case
of morphological inclusions so far.

In fact, the following statement is very similar to the viability theorem for differ-
ential inclusions in RN (as it is discussed in [5, Theorems 3.3.2, 3.3.4] and quoted
here in Theorem 3.3). Roughly speaking, F is supposed to be upper semicontinuous
with closed convex values — after specifying a suitable topology on Lip(RN , RN )
in a moment — and, we require (at least) one “contingent direction” in the value
F(K) ⊂ Lip(RN , RN ) for each K ∈ V.

Theorem 1.2 (Viability theorem for morphological inclusions).
Let F : K(RN )  Lip(RN , RN ) be a set–valued map and V ⊂ K(RN ) a nonempty
closed subset satisfying :
1.) all values of F are nonempty and convex (i.e. for any λ ∈ [0, 1] and

g1, g2 ∈ F(K) ⊂ Lip(RN , RN ), the function λ · g1 + (1− λ) · g2 ∈ Lip(RN , RN )
also belongs to F(K)),

2.) sup
M∈K(RN )

sup
f∈F(M)

Lip f < ∞ (uniformly bounded Lipschitz constants),

sup
M∈K(RN )

sup
f∈F(M)

‖f‖∞ < ∞ (uniformly bounded sup norms),

3.) the graph of F is closed (w.r.t. locally uniform convergence in Lip(RN , RN )),
4.) for each K ∈ V, some w ∈ F(K) ⊂ Lip(RN , RN ) is contingent to V at K

in the sense that 0 = lim inf
h ↓ 0

1
h · dist

(
ϑw(h, K), V

)
.

Then for every initial compact set K0 ∈ V, there exists at least one solution
K(·) : [0, 1] −→ K(RN ) of the morphological inclusion

◦
K(·) ∩ F(K(·)) 6= ∅ with

K(0) = K0 and K(t) ∈ V for all t ∈ [0, 1].

The new analytical aspects are closely related to the proof of this theorem. Indeed,
Haddad and others realized the theorem of Alaoglu as a powerful tool for constructing
solutions of differential inclusions in RN under state constraints. The counterparts of
time derivatives here, however, form a bounded sequence in L∞

(
[0, 1], Lip(RN , RN )

)
which cannot be identified with a dual space in an obvious way. So results of Ülger
and Kisielewicz come now into play for characterizing weakly compact subsets of
the Bochner integrable functions [0, 1] −→ X (denoted by L1([0, 1], X)) and the set
C0(K, X) of continuous functions K −→ X with a real Banach space X and a non-
empty compact set K ⊂ RN [23, 34].
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Sketching an application to shape optimization under state constraints

In shape optimization, the aim is to detect a minimizer of a given shape functional
J : K(RN ) −→ R. An additional constrained set V ⊂ K(RN )) makes the problem
rather complicated in general.
As an application of our Viability Theorem 1.2, we suggest a set-valued map F :
K(RN )  Lip(RN , RN ) (by means of generalized shape derivatives of J) with the
objective that every solution K(·) : [0,∞[ −→ K(RN ) of the morphological inclusion
◦
K(·)∩F(K(·)) 6= ∅ satisfies the following two conditions and thus provides candidates
(for the wanted minimizer):
(i) t 7→ J(K(t)) is nonincreasing and
(ii) every compact set C = Limn→∞ K(tn) ∈ V (for some sequence tn ↗∞)

satisfies a necessary condition on minimizers (in the form of Fermat’s rule).
Then Viability Theorem 1.2 provides sufficient conditions on F and V for the existence
of at least one solution K(·) with all its values in V (see Proposition 4.6).

This introduction (§ 1) is reflecting the structure of the paper: Aubin’s theory
of morphological equations is summarized in § 2. In particular, we mention the
counterparts of Filippov’s and Nagumo’s theorems for evolutions in the metric space(
K(RN ), dl

)
. Then, § 3 provides the step to morphological inclusions. It starts with

the viability theorem about differential inclusions (in § 3.1), collects the tools for
Banach-valued functions (in § 3.2) and verifies the viability theorem for morphological
inclusions (in § 3.3). Finally, in § 4, we present the analytical details of the application
to shape optimization.

2. A brief introduction to morphological equations. Morphological equa-
tions provide typical geometric examples of so–called mutational equations. First
presented in [4] and elaborated in [3, 2], mutational equations are to extend ordinary
differential equations to a metric space (E, d). In a word, the key idea is to describe
derivatives by means of continuous maps (called transitions) ϑ : [0, 1] × E −→ E,
(h, x) 7−→ ϑ(h, x) instead of affine–linear maps (h, x) 7−→ x + h v (that are usu-
ally used in vector spaces). Strictly speaking, such a transition specifies the point
ϑ(t, x) ∈ E to which any initial point x ∈ E has been moved after time t ∈ [0, 1].
It can be interpreted as a first–order approximation of a curve ξ : [0, T [−→ E at time
t ∈ [0, T [ if

lim
h ↓ 0

1
h · d

(
ξ(t + h), ϑ(h, ξ(t))

)
= 0.

The so–called morphological equations apply this concept to the set K(RN ) of
nonempty compact subsets of RN supplied with the Pompeiu–Hausdorff distance dl,

dl(K1,K2) := sup
x∈K1,
y∈K2

{
dist(x,K1), dist(y, K2)

}
= inf

{
ρ > 0

∣∣ K1 ⊂ K2 + ρ B1, K2 ⊂ K1 + ρ B1

}
.

Here B1 always denotes the closed unit ball in RN , i.e. B1 := {x ∈ RN | |x| ≤ 1}.
This is a very general starting point for geometric evolution problems as there are no
a priori restriction in regard to the regularity of sets and their boundaries. Motivated
by the velocity method (often used in shape optimization, e.g. [9, 11, 12, 33, 38]),
ordinary differential equations are here to lay the basis for transitions.
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Definition 2.1. Lip(RN , RN ) consists of all bounded and Lipschitz continu-
ous functions RN −→ RN .

Definition 2.2. Choosing any function f : RN × [0, T ] −→ RN , the so–called
reachable set ϑf (t, K) of the initial set K ∈ K(RN ) at time t ∈ [0, T ] is defined as

ϑf (t, K) :=
{

x(t) ∈ RN
∣∣∣ ∃ x(·) ∈ W 1,1([0, t], RN ) : x(0) ∈ K,

d
dτ x(τ) = f(x(τ), τ) for almost every τ ∈ [0, t]

}
(and correspondingly for an autonomous function f : RN −→ RN ).

The special case of constant functions f(·) ≡ v (with an arbitrary vector v ∈ RN )
leads to the Minkowski sum ϑf (t, K) = K + h · v ⊂ RN and, for an initial set
K = {x} with just one element, in particular, we return to the familiar affine–linear
map (h, x) 7−→ x + h · v that has already been mentioned as motivation.

An essential contribution of Aubin was to specify appropriate continuity condi-
tions on the maps ϑ : [0, 1] × E −→ E, (h, x) 7−→ ϑ(h, x) so that the familiar track
of ordinary differential equations can be followed in a metric space (E, d). Here we
quote his definition introduced in the monograph [2] (emphasizing the local features
slightly more than his original version in [3]). Reachable sets of every function
f ∈ Lip(RN , RN ) satisfy these conditions in the metric space (K(RN ), dl) :

Definition 2.3 ([2, Definition 1.1.2]). Let (E, d) be a metric space. A map
ϑ : [0, 1]×E −→ E is called transition on (E, d) if it satisfies the following conditions:

1. ϑ(0, x) = x for all x ∈ E,

2. lim
h ↓ 0

1
h · d (ϑ(t+h, x), ϑ(h, ϑ(t, x))) = 0 for all x ∈ E, t ∈ [0, 1[,

3. α(ϑ) := max
(
0, sup

x6=y
lim sup

h ↓ 0

d(ϑ(h,x), ϑ(h,y)) − d(x,y)
h · d(x,y)

)
< ∞

4. β(ϑ) := sup
x∈E

lim sup
h ↓ 0

1
h · d(x, ϑ(h, x)) < ∞.

For any two transitions ϑ1, ϑ2 : [0, 1]×E −→ E on the same metric space (E, d), the
transitional distance between ϑ1 and ϑ2 is defined by

dΛ(ϑ1, ϑ2) := sup
x∈E

lim sup
h ↓ 0

1
h · d (ϑ1(h, x), ϑ2(h, x))

Lemma 2.4. For every f ∈ Lip(RN , RN ), the map ϑf : [0, 1]×K(RN ) −→ K(RN ),
(h, K) 7−→ ϑf (h, K) of reachable sets (as introduced in Definition 2.2) is a well–defined
transition on the metric space (K(RN ), dl) according to Definition 2.3.

To be more precise, the reachable sets satisfy for all initial sets K, K1,K2 ∈ K(RN ),
vector fields f, g ∈ Lip(RN , RN ) and times t, h ≥ 0

ϑf (0,K) = K,
ϑf (t + h, K) = ϑf (h, ϑf (t, K)),

dl(ϑf (h, K1), ϑf (h, K2)) ≤ dl(K1,K2) · eLip f ·h

dl(ϑf (h, K), ϑg(h, K) ) ≤ ‖f − g‖∞ · h eLip f ·h

dl(ϑf (t, K), ϑf (t+h, K)) ≤ ‖f‖∞ h

and thus, α(ϑf ) ≤ Lipf, β(ϑf ) ≤ ‖f‖∞, dΛ(ϑf , ϑg) ≤ ‖f−g‖∞
Def.= sup

x∈RN

|f(x)−g(x)|.

In particular, dl (ϑf (h, K1), ϑg(h, K2)) ≤ eLip f ·h (dl(K1,K2) + h · ‖f − g‖∞).
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The proof is presented in [2, Proposition 3.5.3] – as a consequence of Cauchy–Lipschitz
Theorem (about solutions of ordinary differential equations). In particular, this
lemma justifies calling ϑf a shape transition on (K(RN ), dl) (or morphological tran-
sition – in accordance with [2, Definition 3.7.2]). For the sake of simplicity, f ∈
Lip(RN , RN ) is sometimes identified with its shape transition ϑf .

These reachable sets provide the tools for specifying (generalized) shape derivatives
of a compact–valued tube K(·) : [0, T [ RN , i.e. a curve K(·) : [0, T [−→ K(RN ). So
the next step will be to solve equations prescribing an element of the shape mutation.

Definition 2.5 ([2, § 3.5.4]). For any compact–valued tube K(·) : [0, T [ RN ,

the shape mutation
◦
K(t) at time t ∈ [0, T [ consists of all f ∈ Lip(RN , RN ) satisfying

lim
h ↓ 0

1
h · dl (ϑf (h, K(t)), K(t + h)) = 0.

Definition 2.6. For any given function f : K(RN )× [0, T [−→ Lip(RN , RN ),
a compact–valued K(·) : [0, T [ RN is called solution of the morphological equation

◦
K(·) 3 f(K(·), · )

if 1. K(·) : [0, T [ RN is Lipschitz continuous with respect to dl and

2. for almost every t ∈ [0, T [, f(K(t), t) ∈ Lip(RN , RN ) belongs to
◦
K(t)

or, equivalently, lim
h ↓ 0

1
h · dl

(
ϑf(K(t),t)(h, K(t)), K(t + h)

)
= 0.

These conditions on a solution are in accordance with [2, Definition 1.3.1] being for-
mulated for the autonomous case (i.e. f not depending on time explicitly).

As an essential result of [2, 3], the Euler algorithm can be applied in the framework
of morphological equations and so, the Cauchy–Lipschitz Theorem (about ordinary
differential equations) has the following counterpart that is proved in [2, Theorem
4.1.2] for the more general case that the values of f are bounded Lipschitz continuous
set-valued maps:

Theorem 2.7. Suppose f : (K(RN ), dl) −→
(
Lip(RN , RN ), ‖ · ‖∞

)
to be

Lipschitz continuous with Lipschitz constant λ and M := sup
K ∈K(RN )

Lip f(K) < ∞.

For every initial set K0 ∈ K(RN ) and time T > 0, there exists a unique compact-

valued solution K(·) : [0, T [ RN of the morphological equation
◦
K(·) 3 f(K(·)) with

K(0) = K0.

Furthermore every Lipschitz compact–valued tube Q : [0,∞[ RN with
◦
Q(t) 6= ∅ for

every t ≥ 0 satisfies the following estimate at each time t ≥ 0

dl(K(t), Q(t)) ≤ dl(K0, Q(0))·e(M+λ) t+
∫ t

0

e(M+λ) (t−s) · inf
g∈

◦
Q(s)

‖f(Q(s)) − g‖∞ ds.

In particular, the solution K(·) depends on the initial set K0 and the right–hand side f
in a Lipschitz continuous way.

Existence under (additional) state constraints proves to be a very interesting ques-
tion for many applications. In the particular case of ordinary differential equations,
Nagumo’s Theorem gives a necessary and sufficient condition on the constrained set V
for existence of local solutions. It uses the contingent cone (in the sense of Bouligand)
and has served as a key motivation for viability theory (see e.g. [5]).
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Definition 2.8 ([5, Definition 1.1.3]). Let X be a normed vector space, V ⊂ X
nonempty and x ∈ V. The contingent cone to V at x (in the sense of Bouligand) is

TV (x) :=
{

u ∈ X
∣∣ lim inf

h ↓ 0

1
h · dist(x + h u, V ) = 0

}
.

This classical definition of contingent cone in a vector space is now extended to the
metric space (K(RN ), dl) by using the shape transitions of Lip(RN , RN ) :

Definition 2.9 ([2, Definition 1.5.2]). For nonempty V ⊂ K(RN ) and K ∈ V,

TV(K) :=
{

f ∈ Lip(RN , RN )
∣∣∣ 0 = lim inf

h ↓ 0

1
h · dist

(
ϑf (h, K), V

)
Def.= lim inf

h ↓ 0

1
h · inf

C ∈V
dl

(
ϑf (h, K), C

)}
is called contingent transition set of V at K.

The “geometric” background of reachable sets implies an additional property of shape
transitions in TV(K) ⊂ Lip(RN , RN ). Indeed, for any f ∈ TV(K), every function
g ∈ Lip(RN , RN ) with f(·) = g(·) in a neighborhood of ∂K is also contained in
TV(K) because the Cauchy–Lipschitz Theorem about ODEs ensures ∂ϑf (t, K) =
ϑf (t, ∂K) = ϑg(t, ∂K) = ∂ϑg(t, K) for small t ≥ 0. So in other words, the criterion of
TV(K) depends only on an arbitrarily small neighborhood of the boundary ∂K.

In fact, Nagumo’s Theorem also holds for morphological equations as shown in
[2, Theorem 4.1.7] (again for the more general case that f is a single-valued function
whose values are uniformly bounded Lipschitz continuous set-valued maps RN  RN ):

Theorem 2.10 (Nagumo’s theorem for morphological equations [2]).
Suppose V ⊂ K(RN ) to be nonempty and closed with respect to dl.
Let f : (K(RN ), dl) −→

(
Lip(RN , RN ), ‖ · ‖∞

)
be a continuous function satisfying

1. supM ∈K(RN ) Lip f(M) < ∞,

2. supM ∈K(RN ) ‖f(M)‖∞ < ∞.

Then from any initial state K0 ∈ V starts at least one Lipschitz solution K(·) :

[0, T [−→ K(RN ) of
◦
K (·) 3 f(K(·)) viable in V (i.e. K(t) ∈ V for all t) if and only if

V is a viability domain of f in the sense of f(M) ∈ TV(M) for each M ∈ V.

3. The step to morphological inclusions. The main aim now is to prove a
similar viability theorem for morphological inclusions, i.e. the single–valued function
f : K(RN ) −→ Lip(RN , RN ) of the right–hand side is to be replaced by a set–valued
map F : K(RN ) Lip(RN , RN ). Correspondingly to Definition 2.6, we introduce the
solution of a morphological inclusion in the following way:

Definition 3.1. For any given function F : K(RN )  Lip(RN , RN ), a
compact–valued K(·) : [0, T [ RN is called solution of the morphological inclusion

◦
K(·) ∩ F(K(·), · ) 6= ∅

if 1. K(·) : [0, T [ RN is Lipschitz continuous with respect to dl and

2. F(K(t))∩
◦
K(t) 6= ∅ for almost every t, i.e. some w ∈ F(K(t)) ⊂ Lip(RN , RN )

belongs to
◦
K(t) or, equivalently, lim

h↓0
1
h · dl (K(t+h), ϑw(h, K(t))) = 0,
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3.1. The (well–known) Viability Theorem for differential inclusions.
The situation has already been investigated intensively for differential inclusions in
RN (see e.g. [5, 6]). For clarifying the new aspects of morphological inclusions, we
now quote the corresponding result from [5, Theorems 3.3.2, 3.3.5] after specifying
the required terms.

Definition 3.2 ([5, Definition 2.2.4]). Let X and Y be normed vector spaces.
A set–valued map F : X  Y is called Marchaud map if it has the following properties:
1. F is nontrivial, i.e. Graph F 6= ∅,
2. F is upper semicontinuous, i.e. for any x ∈ X, neighborhood V ⊃ F (x),

∃ neighborhood U ⊂ X of x s.t. F (U) ⊂ V,
3. F has compact convex values,
4. F has linear growth, i.e. sup

y∈F (x)

|y| ≤ C (1 + |x|) for all x ∈ X.

Theorem 3.3 (Viability theorem for differential inclusions [5, Th. 3.3.2, 3.3.5]).
Consider a Marchaud map F : RN  RN and a nonempty closed subset V ⊂ RN

with F (x) 6= ∅ for all x ∈ V.
Then for any T ∈ ]0,∞[, the following two statements are equivalent:
1. For every point x0 ∈ V, there is at least one solution x(·) ∈ W 1,1([0, T ], RN )

of x′(·) ∈ F (x(·)) (almost everywhere) with x(0) = x0 and x(t) ∈ V for all t.

2. F (x) ∩ TV (x) 6= ∅ for all x ∈ V.

The implication (1.) =⇒ (2.) is rather obvious. For proving (2.) =⇒ (1.), a standard
approach uses an “approximating” sequence

(
xn(·)

)
n∈N in W 1,∞([0, 1], RN ) such that

supt dist(xn(t), V )−→0 (n →∞) and
(
xn(t), d

dt xn(t)
)

is close to Graph F ⊂ RN×RN

for almost every t. Then the theorems of Arzela–Ascoli and Alaoglu provide a subse-
quence

(
xnj

(·)
)
j∈N and limits x(·) ∈ C0([0, 1], RN ), w(·) ∈ L∞([0, 1], RN ) with

xnj (·) −→ x(·) uniformly, d
dt xnj (·) −→ w(·) weakly* in L∞([0, 1], RN ).

Due to the continuous embedding L∞([0, 1], RN ) ⊂ L1([0, 1], RN ), we even obtain the
convergence d

dt xnj (·) −→ w(·) weakly in L1([0, 1], RN ). Thus, w(·) is the weak deriva-
tive of x(·) and, x(·) is Lipschitz continuous. Finally Mazur’s Lemma 3.5 implies

w(t) ∈
⋂
ε>0

co
( ⋃

z∈Bε(x(t))

F (z)
)

= F (x(t)) for almost every t.

Considering now morphological inclusions on (K(RN ), dl) (instead of differential
inclusions), an essential aspect changes: The derivative of a curve is not represented as
a function in L1([0, 1], RN ) any longer, but rather as a function [0, 1] −→ Lip(RN , RN ).
So the classical theorems of Arzela–Ascoli, Alaoglu and Mazur might have to be re-
placed by their counterparts concerning functions with their values in a Banach space
(instead of RN ).

3.2. Tools for functions with values in metric or Banach spaces.
Before adapting this concept for finite-dimensional differential inclusions to Banach-
valued functions, we collect briefly the main tools in this framework. They consist
mainly of (particularly weakly sequential) compactness criteria for both Bochner-
integrable functions on a probabilistic space and continuous functions on a compact
Hausdorff space.
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First of all, the theorems of Arzela–Ascoli and Mazur do not change significantly.
Indeed, we always use the following general versions in this paper:

Proposition 3.4 (Arzela–Ascoli in metric spaces [21]).
Let (E1, d1), (E2, d2) be precompact metric spaces, i.e. for any ε > 0, each set Ei

(i = 1, 2) can be covered by finitely many ε-balls with respect to metric di. Moreover,
suppose the sequence (fn)n∈N of functions E1 −→ E2 to be uniformly equicontinuous
(i.e. with a common modulus of continuity in E1).
Then there exists a sequence nj ↗ ∞ such that (fnj

)j∈N is Cauchy sequence with
respect to uniform convergence. If (E2, d2) is complete in addition, then (fnj )j∈N
converges uniformly to a continuous function E1 −→ E2.

Proposition 3.5 (Mazur’s Lemma, e.g. [36, § V.1, Theorem 2]).
For any weakly converging sequence (xn)n∈N in a normed vector space, its weak limit
is contained in the closed convex hull of {xn | n ∈ N}.

The so-called Bochner integral extends the familiar concept of integration from real-
valued functions to Banach-valued functions on the basis of “simple” functions.

Definition 3.6 ([15]). Let (Ω,Σ, µ) be a finite measure space and X a Banach
space. A function f : Ω −→ X is called simple if there exist x1, x2 . . . xn ∈ X and
E1, E2 . . . En ∈ Σ such that f =

∑n
j=1 xj χEj with χEj : Ω −→ {0, 1} denoting the

characteristic function of Ej ⊂ Ω.
A function f : Ω −→ X is called µ–measurable if there exists a sequence (fn)n∈N of
simple functions Ω −→ X with ‖f − fn‖X −→ 0 µ–almost everywhere for n →∞.
A µ–measurable function f : Ω −→ X is called Bochner integrable if there exists a
sequence (fn)n∈N of simple functions Ω −→ X such that

lim
n→∞

∫
Ω

‖f − fn‖X dµ = 0.

Then, the Bochner integral of f over E ∈ Σ is defined by
∫

E

f dµ := lim
n→∞

∫
E

fn dµ.

Let L1(µ,X) denote the Banach space of Bochner integrable functions Ω −→ X
equipped with its usual L1 norm.

In the nineties, Ülger proved that restricting the values of Bochner integrable
functions to a weakly compact subset of X implies the relative weak compactness
of these functions in L1(µ,X). For real-valued Lebesgue integrable functions, this is
closely related with Alaoglu’s Theorem and a compact embedding.

Proposition 3.7 ([34, Proposition 7]). Let (Ω,Σ, µ) be a probabilistic space,
X an arbitrary Banach space. For any weakly compact subset W ⊂ X, the set{

h ∈ L1(µ,X)
∣∣ h(ω) ∈ W for µ–almost every ω ∈ Ω

}
is relatively weakly compact.

An earlier version of this result is presented in [13] and, [14] considers weak compact-
ness of Bochner integrable functions with values in an arbitrary Banach space under
weaker assumptions (see also [8]).
The next proposition of Ülger provides a “weakly pointwise” characterization of
weakly convergent sequences in L1(µ,X).
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Proposition 3.8 ([34, Corollary 5]). Let (Ω,Σ, µ) be a probabilistic space and
X an arbitrary Banach space as in Proposition 3.7.
Set W :=

{
g ∈ L1(µ,X)

∣∣ |g(ω)| ≤ 1 for µ–almost every ω ∈ Ω
}
.

A sequence
(
gn(·)

)
n∈N in W ⊂ L1(µ,X) converges weakly to g ∈ L1(µ,X) if and

only if for any subsequence
(
gnk

(·)
)
k∈N given, there exists a sequence

(
hk(·)

)
k∈N with

hk ∈ co
{
gnk

, gnk+1 . . .
}

such that for µ–almost every ω ∈ Ω,
hk(ω) −→ g(ω) (k −→∞) weakly in X.

In fact, the classical theorem of Scorza–Dragoni [32] has a counterpart for Banach-
valued functions as shown by Ricceri and Villani. A so-called Carathéodory function
depends on two arguments and, it is measurable with respect to the first one and
continuous with respect to second one. The key point of Scorza-Dragoni is to ensure
continuity with respect to both arguments on “almost” the whole domain in the fol-
lowing sense:

Proposition 3.9 ([31, Theorem 1]). Let S be a compact Hausdorff topological
space, µ a Radon measure on S and X, Y metric spaces. Suppose X to be separable.
Then every Carathéodory function g : S × X −→ Y satisfies the so–called Scorza–
Dragoni property, i.e. for every ε > 0, there exists a closed subset Sε ⊂ S with
µ(S \ Sε) < ε such that the restriction f |Sε×X is continuous.

So this proposition can be regarded as a counterpart of well-known Lusin’s Theorem
(relating measurability to continuity almost everywhere) – but for functions with two
arguments.
Last but not least, we quote a result of Kisielewicz characterizing weakly converging
sequences of continuous functions on a compact Hausdorff space (like [0, T ] ⊂ R).

Proposition 3.10 ([23, Theorem 3]). Let S be a compact Hausdorff space
and X an arbitrary Banach space. C0(S, X) denotes the Banach space of continuous
functions S −→ X supplied with the supremum norm ‖ · ‖∞.
A sequence

(
gn(·)

)
n∈N in C0(S, X) converges weakly to g ∈ C0(S, X) if and only if

∧

{
sup

n

∥∥gn

∥∥
∞ < ∞ and

gn(s) −→ g(s) weakly in X (n −→∞) for every s ∈ S.

3.3. Adapting this concept to morphological inclusions.

Now F : K(RN ) Lip(RN , RN ) and a constrained set V ⊂ K(RN ) are given.
Correspondingly to Theorem 3.3 about differential inclusions, we focus on the so-called
viability condition demanding from each compact set K ∈ V that the value F(K) and
the contingent transition set TV(K) ⊂ Lip(RN , RN ) have at least one transition in
common. Lacking a concrete counterpart of Aumann integral in the metric space
(K(RN ), dl), the question of its necessity (for the existence of “in V viable” solutions)
is more complicated than for differential inclusions in RN and thus, we skip it here
deliberately.
The main contribution of this paper is that in combination with appropriate assump-
tions about F(·) and V, the viability condition is sufficient. The proof is given in
several steps by approximative solutions:



12 THOMAS LORENZ

Theorem 3.11. Let F : K(RN )  Lip(RN , RN ) be a set–valued map and
V ⊂ K(RN ) a nonempty closed subset satisfying :
1.) all values of F are nonempty and convex,
2.) A := sup

M∈K(RN )

sup
f∈F(M)

Lip f < ∞,

B := sup
M∈K(RN )

sup
f∈F(M)

‖f‖∞ < ∞,

3.) the graph of F is closed (w.r.t. locally uniform convergence in Lip(RN , RN )),
4.) TV(K0) ∩ F(K0) 6= ∅ for all K0 ∈ V.

Then for every initial compact set K0 ∈ V, there exists a compact–valued Lipschitz
continuous solution K(·) : [0, 1] RN of

◦
K(·) ∩ F(K(·)) 6= ∅ with K(0) = K0 and

K(t) ∈ V for all t ∈ [0, 1].

Lemma 3.12 (Constructing approximative solutions). Choose any ε > 0.
Under the assumptions of Viability Theorem 3.11, there exist a B–Lipschitz contin-
uous function Kε(·) : [0, 1] −→ K(RN ) and a piecewise constant function fε(·) :
[0, 1[−→ Lip(RN , RN ) satisfying with Rε := ε eA

a) Kε(0) = K0,

b) dist
(
Kε(t), V

)
≤ Rε for all t ∈ [0, 1],

c) fε(t) ∈
◦
Kε(t) ∩ F

(
BRε(Kε(t))

)
6= ∅ for all t ∈ [0, 1[.

Proof. follows the same track as [2, Lemma 1.6.5] and uses Zorn’s Lemma: For
ε > 0 fixed, let Aε(K0) denote the set of all tuples (τK , K(·), f(·)) consisting of some
τK ∈ [0, 1], a B–Lipschitz continuous function K(·) : [0, τK ] −→ (K(RN ), dl) and some
piecewise constant function f(·) : [0, 1[−→ Lip(RN , RN ) such that
a) K(0) = K0,

b’) 1.) dist
(
K(τK), V

)
≤ rε(τK) with rε(t) := ε eA t t,

2.) dist
(
K(t), V

)
≤ Rε for all t ∈ [0, τK ],

c) f(t) ∈
◦
K(t) ∩ F

(
BRε(K(t))

)
6= ∅ for all t ∈ [0, τK [.

Obviously, Aε(K0) is not empty since it contains (0, K(·) ≡ K0, f(·) ≡ f0) with
arbitrary f0 ∈ Lip(RN , RN ). Moreover, an order relation � on Aε(K0) is specified by
(τK , K(·), f(·)) � (τM , M(·), g(·)) :⇐⇒ τK ≤ τM , M

∣∣
[0,τK ]

= K, g
∣∣
[0,τK [

= f.

So Zorn’s Lemma provides a maximal element
(
τ, Kε(·), fε(·)

)
∈ Aε(K0).

As all considered functions with values in K(RN ) have been supposed to be B–
Lipschitz continuous, Kε(·) is well-defined on the closed interval [0, τ ] ⊂ [0, 1].

Assuming τ < 1 for a moment, we obtain a contradiction if Kε(·), fε(·) can be
extended to a larger interval [0, τ + δ] ⊂ [0, 1] (δ > 0) preserving conditions (b’), (c).
Since closed bounded balls of (K(RN ), dl) are compact, the closed set V contains an
element Z ∈ K(RN ) with dl(Kε(τ), Z) = dist(Kε(τ), V) ≤ rε(τ) and, assump-
tion (4.) of Viability Theorem 3.11 provides an element

g ∈ TV(Z) ∩ F(Z) ⊂ Lip(RN , RN ).
Due to Definition 2.9 of the contingent transition set TV(Z), there is a sequence hm ↓ 0
in ]0, 1−τ [ such that dist(ϑg(hm, Z), V) ≤ ε hm for all m ∈ N. Now set

Kε(t) := ϑg

(
t− τ, Kε(τ)

)
, fε(t) := g for each t ∈ [τ, τ + h1].
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Obviously, Lemma 2.4 implies g ∈
◦
Kε(t) for all t ∈ [τ, τ + h1[. Moreover, it leads to

dl
(
Kε(t), Z

)
≤ dl

(
ϑg(t− τ, Kε(τ)), Kε(τ)

)
+ dl

(
Kε(τ), Z

)
≤ B · (t− τ) + ε eA τ τ ≤ Rε

for every t ∈ [τ, τ + δ[ with δ := min
{
h1, ε eA 1− τ

1 + B

}
, i.e. conditions (b’)(2.)

and (c) hold in the interval [τ, τ + δ]. For any index m ∈ N with hm < δ,

dist
(
Kε(τ +hm), V

)
≤ dl

(
ϑg(hm, Kε(τ)), ϑg(hm, Z)

)
+ dist

(
ϑg(hm, Z), V

)
≤ dl

(
Kε(τ), Z

)
· eA hm + ε · hm

≤ ε eA τ τ · eA hm + ε · hm ≤ rε(τ + hm),
i.e. condition (b’)(2.) is also satisfied at time t = τ + hm with any large m ∈ N.
So Kε(·)

∣∣
[0, τ+hm]

and fε(·)
∣∣
[0, τ+hm[

provide the wanted contradiction and thus, τ = 1.

Using the abbreviation K̃j := Bj+B(K0)
Def.=

{
x ∈ RN

∣∣ dist(x,K0) ≤ j +B
}

(j ∈ N)
for (arbitrarily large) compact neighborhoods of the initial set K0, we obtain

Lemma 3.13 (Selecting an approximative subsequence). Under the assump-
tions of Viability Theorem 3.11, there are sequences Kn(·) : [0, 1] −→ K(RN ),
fn(·) : [0, 1[ −→ Lip(RN , RN ) (n ∈ N) and functions K(·) : [0, 1] −→ K(RN ),
f(·) : [0, 1[−→ Lip(RN , RN ) such that for every j, n ∈ N,

a) K0 = Kn(0) = K(0),
b) K(·) and Kn(·) are B–Lipschitz continuous w.r.t. dl,

c) fn(·) is piecewise constant,
sup

t∈[0,1[

Lip fn(t) ≤ A < ∞, sup
t∈[0,1[

‖fn(t)‖∞ ≤ B < ∞,

d) dist
(
Kn(t), V

)
≤ 1

n for all t ≤ 1,

e) fn(t) ∈
◦
Kn(t) ∩ F

(
B1/n(Kn(t))

)
6= ∅ for all t < 1,

f ) dl
(
Km(·), K(·)

)
−→ 0 uniformly in [0, 1] for m −→∞,

g) fm(·)| eKj
−→ f(·)| eKj

weakly in L1
(
[0, 1], C0(K̃j , RN )

)
for m −→∞,

h) Lip f(t)(·) ≤ A, ‖f(t)(·)‖∞ ≤ B for a.e. t < 1.

Proof. is based on the approximative solutions of Lemma 3.12, of course.
Indeed, for each index n ∈ N, Lemma 3.12 provides Kn(·) : [0, 1] −→ K(RN ) and
fn(·) : [0, 1[ −→ Lip(RN , RN ) corresponding to ε := 1

n e−A. Obviously, they satisfy
the properties (a) – (e) claimed here.
In particular, these features stay correct whenever we consider subsequences instead
and again abbreviate them as (Kn(·))n∈N, (fn(·))n∈N respectively.

For property (f) about uniform convergence of (Kn(·)) w.r.t. dl :
The B–Lipschitz continuity of each Kn(·) has two important consequences, i.e.
1. all Kn(·) : [0, 1] −→

(
K(RN ), dl

)
(n ∈ N) are equi–continuous and

2.
⋃

n∈N
t ∈[0,1]

{
Kn(t)

}
is contained in the compact subset BB(K0) of

(
K(RN ), dl

)
.

So, Proposition 3.4 of Arzela–Ascoli provides a subsequence (again denoted by)
(Kn(·))n converging uniformly to a continuous function K(·) : [0, 1] −→ (K(RN ), dl).
In particular, K(·) is also B–Lipschitz continuous with K(0) = K0, i.e. properties
(a) – (f) are fulfilled completely.
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For property (g) about weak convergence of fn(·)| eK with fixed compact K̃ ⊂ RN :
We cannot follow the same track as for differential inclusions any longer. Indeed, the
functions fn(·) of shape transitions have their values in Lip(RN , RN ) which cannot
be regarded as a dual space in an obvious way. So Alaoglu’s Theorem (stating that
closed balls of dual Banach spaces are weakly* compact) cannot be applied similarly
to differential inclusions.
Alternatively, we restrict our considerations to a compact neighborhood K̃ of⋃

n∈N
t ∈[0,1]

Kn(t) ⊂ RN and use a sufficient condition on relatively weakly compact sets

in L1
(
[0, 1], C0(K̃, RN )

)
. Here C0(K̃, RN ) (supplied with the supremum norm ‖·‖∞)

denotes the Banach space of all continuous functions K̃ −→ RN .
In fact, the set

{
fn(t)

∣∣ n ∈ N, t ∈ [0, 1]
}
⊂ C0(RN , RN ) is uniformly bounded

by B and equi–continuous (due to property (c)). So according to Proposition 3.4 of
Arzela–Ascoli, the set of their restrictions to K̃

W :=
{

fn(t)
∣∣ eK

∣∣∣ n ∈ N, t ∈ [0, 1]
}
⊂ C0(K̃, RN )

is relatively compact with respect to ‖·‖∞. Thus,
{
fn(·)| eK ∣∣n ∈ N

}
is relatively weakly

compact in L1
(
[0, 1], C0(K̃, RN )

)
according to Proposition 3.7 and, we obtain a

subsequence (again denoted by) (fn(·))n∈N and some g(·) ∈ L1
(
[0, 1], C0(K̃, RN )

)
with fn(·)| eK −→ g(·) weakly in L1

(
[0, 1], C0(K̃, RN )

)
.

Obviously, both the subsequence and g(·) depend on K̃, however.

For property (g) about fn(·)| eKj
with every compact K̃j ⊂ RN (j ∈ N) :

Now this construction of subsequences is applied to the compact subsets K̃j
Def.=

Bj+B(K0) of RN for j = 1, 2, 3 . . . successively. By means of Cantor’s diagonal con-
struction, we obtain a subsequence (again denoted by) (fn(·))n∈N and a function
gj(·) ∈ L1

(
[0, 1], C0(K̃j , RN )

)
(for each j∈N) such that for all j∈N,

fn(·)| eKj
−→ gj(·) weakly in L1

(
[0, 1], C0(K̃j , RN )

)
.

As restrictions to K̃j of one and the same subsequence (fn(·))n∈N converge weakly for
each j ∈ N, the inclusion K̃j ⊂ K̃j+1 implies for any indices j < k

gj(t)(·) = gk(t)(·)| eKj
∈C0(K̃j , RN ) for almost every t ∈ [0, 1]

and, so (gj(·))j∈N induces a single function f : [0, 1[−→ C0(RN , RN ) defined as

f(t)(x) := gj(t)(x) for x ∈ K̃j and almost every t ∈ [0, 1[.

For property (h) about Lipschitz continuity and bounds of limit function f(·):
Finally, we verify f(t) ∈ Lip(RN , RN ), Lip f(t) ≤ A and ‖f(t)‖∞ ≤ B for
almost every t ∈ [0, 1[. Indeed, as in the case of differential inclusions (§ 3.1), Mazur’s
Lemma 3.5 ensures here for each j ∈ N (fixed)

f(·)| eKj
∈

⋂
n∈N

co
{
fn(·)| eKj

, fn+1(·)| eKj
. . .

}
in L1

(
[0, 1], C0(K̃j , RN )

)
.

Thus, f(·)| eKj
can be approximated by convex combinations of

{
f1(·)| eKj

, f2(·)| eKj
. . .

}
with respect to the L1 norm. A further subsequence (of these convex combinations)
converges to f(·)| eKj

almost everywhere in [0, 1]. So, for almost every t ∈ [0, 1],

f(t)| eKj
belongs to the same compact convex subset of

(
C0(K̃j , RN ), ‖ · ‖∞

)
as

f1(t)| eKj
, f2(t)| eKj

. . . , namely
{
w ∈ Lip(K̃j , RN )

∣∣ Lip w ≤ A, ‖w‖∞ ≤ B
}
.
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Lemma 3.14 (The limit function is a solution). Under the assumptions of
Viability Theorem 3.11, consider both Kn(·),K(·) : [0, 1] −→ K(RN ) (n ∈ N) and
fn(·), f(·) : [0, 1[−→ Lip(RN , RN ) specified in Lemma 3.13.

Then K(·) is a solution of the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ with

K(0) = K0 and K(t) ∈ V for all t ∈ [0, 1].

Proof. K(t) ∈ V for all t ∈ [0, 1] results directly from properties (d), (f) of
Lemma 3.13 because V is assumed to be a closed subset of

(
K(RN ), dl

)
.

So f(t) ∈
◦
K(·) ∩ F(K(·)) is still to prove for Lebesgue-almost every t ∈ [0, 1].

The Carathéodory property of each fn(·) and, every Kn(·) is reachable set:
As each fn : [0, 1[−→ Lip(RN , RN ) from Lemma 3.13 is piecewise constant, it can be
regarded as a measurable/Lipschitz function [0, 1[ ×RN −→ RN , (t, x) 7−→ fn(t)(x)
in the sense of [7, Definition 9.5.1], i.e.
fn(·)(x) : [0, 1[−→ RN is Lebesgue measurable for every x ∈ RN and
fn(t)( ·) : RN −→ RN is A–Lipschitz continuous for every t ∈ [0, 1[.
In addition, ‖fn(t)(·)‖∞ ≤ B for every t ∈ [0, 1[, n ∈ N.

Moreover, each compact set Kn(t) ⊂ RN coincides with the reachable set

ϑfn(t, K0)
Def.= {x(t) | ∃ x ∈ W 1,1([0, t], RN ) : x′(s) = fn(s)(x(s)) for a.e. s, x(0) ∈ K0}

of the initial set K0 and the function fn(·)(·) : [0, 1[ ×RN −→ RN . Indeed, con-
sider a subinterval [s1, s2[⊂ [0, 1[ in which fn(·) is constant, i.e. fn(·)|[s1,s2[ ≡ g ∈
Lip(RN , RN ), and assume Kε(s1) = ϑfn(s1,K0) (with subsequent induction in mind).
Then both Kε(·) and the reachable set ϑfn(·,K0) satisfy the morphological equation
◦
Q(·) 3 g in [s1, s2[ and are B–Lipschitz continuous. So according to Theorem 2.7,
Kε(·) ≡ ϑfn(·,K0) in [s1, s2]. By means of induction, we conclude Kε(·) ≡ ϑfn(·,K0)
in [0, 1].

For characterizing K(t) as reachable set of f(·) : K(t) ⊂ ϑf (t, K0) for every t.

Indeed, Lemma 3.13 (f) implies the characterization as limit with respect to dl (or,
equivalently for compact sets here, in the sense of Painlevé–Kuratowski)

K(t) = Limn→∞ Kn(t) = Limn→∞ ϑfn(t, K0).
For every x ∈ K(t), there is a sequence

(
xn(·)

)
n∈N of functions in W 1,1([0, t], RN )

satisfying
x′n(s) = fn(s)(xn(s)) for a.e. s ∈ [0, t],
xn(0) ∈ K0,

xn(s) ∈ ϑfn
(s,K0) ⊂⊂ B1+B(K0)

Def.= K̃1 for each s ∈ [0, t],
xn(t) −→ x for n −→∞ .

Seizing the notions of [5, Convergence Theorem 2.4.4], the theorems of Arzela–Ascoli
and Alaoglu provide a subsequence

(
xnj

(·)
)
j∈N and functions x(·) ∈ C0([0, t], RN ),

v(·) ∈ L1([0, t], RN ) such that
xnj (·) −→ x(·) uniformly in [0, t], x′nj

(·) −→ v(·) weakly in L1([0, t], RN )
implying the absolute continuity of x(·) with x′(·) = v(·).
For verifying x′(·) = f(·)(x(·)) (a.e.), we now prove fnj (·)(xnj (·)) −→ f(·)(x(·))
weakly in L1([0, t], RN ) for j −→∞. For any g ∈ L∞([0, t], RN ) ∼=

(
L1([0, t], RN )

)∗
,
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the A–Lipschitz continuity of each fnj (s) implies∫ t

0

g(s)T fnj (s)(xnj (s)) ds ∈
∫ t

0

g(s)T fnj (s)(x(s)) ds + c ‖x(·)− xnj (·)‖∞ · B1

j→∞−→
∫ t

0

g(s)T f(s)(x(s)) ds

since L1
(
[0, 1], C0(K̃1, RN )

)
−→ R, h 7−→

∫ t

0
g(s)T h(s)(x(s)) ds is continuous and

linear. Thus, x = x(t) ∈ ϑf (t, K0).

For characterizing K(t) as reachable set of f(·) : ϑf (t, K0) ⊂ K(t) for every t.

The next step is to verify that the tube K(·) : [0, 1]  RN is invariant under f, i.e.
for every initial point x ∈ K(t) (with t ∈ [0, 1[), the solution x(·) ∈ W 1,1([t, 1], RN ) of
x′(·) = f(·)(x(·)) (a.e.) with x(t) = x satisfies x(τ) ∈ K(τ) for any τ ∈ [t, 1]. Due to
K(0) = K0, this property implies ϑf (t, K0) ⊂ K(t) for every t ∈ [0, 1].
Indeed, existence and uniqueness of this solution x(·) result from (generalized) Filip-
pov’s Theorem (e.g. [35]) since [0, 1]×RN , (s, y) 7−→ f(s)(y) is measurable/Lipschitz
(in the sense of [7, Definition 9.5.1]). Each x ∈ K(t) = Limn→∞ Kn(t) is limit
of a sequence (xn)n∈N with xn ∈ Kn(t) and there exist corresponding solutions
xn(·) ∈ W 1,1([t, 1], RN ) (n ∈ N) of x′n(·) = fn(·)(xn(·)) (a.e.) with xn(t) = xn. For
the same reasons as before, we obtain a subsequence

(
xnj (·)

)
j∈N and a limit function

y(·) ∈ W 1,1([t, 1], RN ) satisfying
xnj

(·) −→ y(·) uniformly in [t, 1],
x′nj

(·) −→ y′(·) weakly in L1([t, 1], RN ),
fnj

(·)(xnj
(·)) −→ f(·)(y(·)) weakly in L1([t, 1], RN ).

So y(·) is identical to the uniquely determined solution x(·) of x′(·) = f(·)(x(·)) (a.e.)
with x(t) = x, i.e. the limit y(·) does not depend on the selection of the subse-
quence

(
xnj (·)

)
j∈N. This implies indirectly that even the whole sequence

(
xn(·)

)
n∈N

converges to x(·) uniformly and all its derivatives tend weakly to x′(·). In particular,
x(τ) = lim

n→∞
xn(τ) ∈ Limn→∞ Kn(τ) = K(τ) for every τ ∈ [t, 1].

Thus, K(t) = ϑf (t, K0) for every t ∈ [0, 1].

K(t) as reachable set and Scorza-Dragoni ensure solution property at a.e. time,
i.e. describing K(t) as reachable set of f(·)(·) : [0, 1[×RN −→ RN implies that

f(t) ∈ Lip(RN , RN ) belongs to the shape mutation
◦
K(t) for a.e. t ∈ [0, 1] :

lim
h ↓ 0

1
h · dl

(
ϑf(t)(h, K(t)), K(t + h)

)
= 0.

Indeed, f(·)(·) : [0, 1[×RN −→ RN is measurable/Lipschitz and thus, Proposition 3.9
ensures the following (slightly modified) Scorza–Dragoni property:
For any ε > 0, there exists a closed subset Jε ⊂ [0, 1− ε] with L1([0, 1]\Jε) < 2ε such
that the restriction of f(·)(·) to Jε×RN is continuous. Seizing an idea in the proof of
[20, Lemma 2.6], let J̃ε be the subset of all density points of Jε that are also Lebesgue
points of the characteristic function χ[0,1]\Jε

(·). Then, L1(J̃ε) = L1(Jε) > 1 − 2ε,
because Lebesgue points of each L1 function always have full Lebesgue measure [37,
Theorem 1.3.8] and so, in particular, density points of any measurable set also have
full Lebesgue measure.
For any t ∈ J̃ε, x ∈ K(t), there exist unique solutions x(·), y(·) ∈ Lip([t, 1], RN ) of

x′(·) = f(·)(x(·)), y′(·) = f(t)(y(·)) almost everywhere in [t, 1],
respectively, with x(t) = x = y(t). Then, we obtain for every τ ∈ ]t, 1]
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∣∣

=
∣∣∣ ∫ τ

t

(
f(s)(x(s))− f(t)(y(s))

)
ds

∣∣∣
≤

∣∣∣ ∫
[t,τ ]∩Jε

(
f(s)(x(s))− f(t)(y(s))

)
ds

∣∣∣ + 2B · L1([t, τ ] \ Jε)

≤
∫

[t,τ ]∩Jε

∣∣f(s)(x(s))− f(t)(x(s))
∣∣ ds + 2B · L1([t, τ ] \ Jε)

+
∫

[t,τ ]∩Jε

A · |x(s)− y(s)| ds.

For δ > 0 arbitrarily small and each t ∈ J̃ε, the construction of Jε and J̃ε provides
some T ∈ ]t, 1] satisfying

sup
s∈ [t,T ]∩ Jε

sup
z: dist(z,K0)≤B

|f(s)(z)− f(t)(z)| < δ,

sup
s∈ [t,T ]

1
|s−t| · L

1([t, s] \ Jε) < δ,

thus,
∣∣x(τ)− y(τ)

∣∣ ≤ A

∫
[t,τ ]

|x(s)− y(s)| ds + δ
(
1 + 2 B

)
(τ − t) for any τ ∈ ]t, T ].

Gronwall’s Lemma implies
∣∣x(τ)− y(τ)

∣∣ ≤ δ
(
1 + 2 B

)
eA·(τ−t) (τ − t) for any τ.

As x ∈ K(t) is chosen arbitrarily and T does not depend on x (but only on δ, ε, t), the
reachable sets ϑf(t)(h, K(t)) and K(t+h) = ϑf (h, K(t)) satisfy for any h ∈ [0, T−t]

dl
(
ϑf(t)(h, K(t)), K(t + h)

)
≤ δ

(
1 + 2 B

)
eA h h,

i.e. lim
h ↓ 0

1
h · dl

(
ϑf(t)(h, K(t)), K(t + h)

)
= 0 for every t ∈ J̃ε.

Finally, f(t) ∈ F(K(t)) for almost every t ∈ [0, 1[.

Due to Lemma 3.13 (e),(g), fn(·)| eKj
−→ f(·)| eKj

weakly in L1
(
[0, 1], C0(K̃j , RN )

)
for each compact set K̃j := Bj+B(K0) (j ∈ N) and, fn(t) ∈ F

(
B1/n(Kn(t))

)
for

every n ∈ N, t ∈ [0, 1[.
Fixing the index j∈N of compact sets arbitrarily, Proposition 3.8 provides a sequence(
hj,n(·)

)
n∈N with hj,n(·) ∈ co

{
fn(·)| eKj

, fn+1(·)| eKj
. . .

}
⊂ L1

(
[0, 1], C0(K̃j , RN )

)
such that for L1 almost every t ∈ [0, 1],

hj,n(t) −→ f(t)| eKj
(n −→∞) weakly in C0(K̃j , RN ).

Proposition 3.10 and assumption (2.) of Viability Theorem 3.11, i.e.
sup

M∈K(RN )

sup
g∈F(M)

Lip g ≤ A < ∞, sup
M∈K(RN )

sup
g∈F(M)

‖g‖∞ ≤ B < ∞,

imply hj,n(t) −→ f(t)| eKj
uniformly in K̃j for n −→∞ and a.e.t ∈ [0, 1[.

Let Cj ⊂ [0, 1[ denote the set of full measure for which this uniform convergence holds.
Then C :=

⋂
j ∈N Cj ⊂ [0, 1[ is also a set of full measure, i.e. L1([0, 1] \ C) = 0.

Choose t ∈ C arbitrarily. Then for each j ∈ N, there exists an index nj > j
such that nj > nj−1 and

∥∥hj,nj (·)| eKj
− f(·)| eKj

∥∥
∞ < 1

j .

Due to hj,n(·) ∈ co
{
fn(·)| eKj

, fn+1(·)| eKj
. . .

}
, each hj, nj (t)| eKj

has a continuation
to RN in co

{
fn(t), fn+1(t) . . .

}
⊂ C0(RN , RN ) (that again is denoted by hj,nj (t))

and, hj, nj (t) −→ f(t) locally uniformly in RN for j −→∞.

Furthermore, co
{
fn(t), fn+1(t) . . .

}
⊂ co F

(
B1/n

( ⋃
m≥n Km(t)

))
.

So finally, dl(Kn(t),K(t)) −→ 0 and the assumption (3.) about the closed graph of F
(with its convex values) imply f(t) ∈ F(K(t)).
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4. An application to shape optimization under state constraints. Let
J : K(RN ) −→ R be a shape functional that is Lipschitz continuous with respect
to the Pompeiu–Hausdorff distance dl. Moreover, V ⊂ K(RN ) denotes a nonempty
closed constrained set. Detecting a minimizer K̂ ∈ V of the optimization problem

inf
{
J(K)

∣∣ K ∈ V ⊂ K(RN )
}

usually proves to be rather complicated ([11, 12], see [17, 24, 38] supplementarily).
Thus, we prefer here to isolate candidates (for a minimizer) constructively by means
of a necessary condition (similarly to [25]). Viability Theorem 3.11 for morphological
inclusions is then to lay the basis for a curve K(·) : [0,∞[−→ V ⊂ K(RN ) such that
(i) t 7→ J(K(t)) is nonincreasing and
(ii) every compact set C = Limn→∞ K(tn) ∈ V (for some sequence tn ↗∞)

satisfies a necessary condition on minimizers (in the form of Fermat’s rule).

The first step is to specify a map F : K(RN ) Lip(RN , RN ) satisfying the following
conditions on its values:
1.) all values of F are convex and closed (w.r.t. locally uniform convergence),
2.) sup

M∈K(RN )

sup
f∈F(M)

(‖f‖∞ + Lip f) < ∞,

Essentially, the choice of F is to guarantee that the composition t 7→ J(K(t)) is non-
increasing for every compact–valued solution K(·) : [0, 1] RN of the morphological

inclusion
◦
K(·) ∩ F(K(·)) 6= ∅. For combining this aim with the conditions on its

values, we do not use the so–called shape semiderivative of J in direction v(·)

δJ(K)(v) := lim
h↓0

1
h · (J(ϑv(h, K)) − J(K))

for K ∈ K(RN ) (assuming the limit to exist) as in [11, 12], but we prefer the notion of
Clarke’s generalized directional derivative in a Banach space (see e.g. [10]) and extend
it to shape transitions:

Definition 4.1. Let J :
(
K(RN ), dl

)
−→ R be a Lipschitz continuous shape

functional. Clarke’s generalized shape derivative of J(·) at K ∈K(RN ) in direc-
tion v∈Lip(RN , RN ) is defined as

δCJ(K)(v) := lim sup
h↓0, M→K

(M∈K(RN ))

1
h · (J(ϑv(h, M)) − J(M)) .

Set ιJ(K) := lim sup
M−→K

(M∈K(RN ))

inf
{

δCJ(M)(v)
∣∣∣ v ∈ Lip(RN , RN ), ‖v‖∞ + Lip v ≤ 1

}
.

Remark. 1. Let Λ ≥ 0 denote the Lipschitz constant of J :
(
K(RN ), dl

)
−→ R.

Then, due to Lemma 2.4, |J(ϑv(h, K)) − J(K)| ≤ Λ ·dl (ϑv(h, K), K) ≤ Λ ·‖v‖∞ h
for every v ∈ Lip(RN , RN ) and thus,

∣∣δCJ(K)(v)
∣∣ ≤ Λ ‖v‖∞, ιJ(K) ≥ −Λ.

In particular, δCJ(K)(0) = 0 for every K ∈ K(RN ).

2. ιJ(·) : K(RN ) −→ R is the upper semicontinuous envelope of the minimal
generalized shape derivative δCJ(·)(v) over all v in the unit ball of Lip(RN , RN ).
Furthermore, ιJ(K) ≤ δCJ(K)(0) = 0 for all K ∈ K(RN ).

Definition 4.2. Using the notation of Def. 4.1, set F : K(RN ) Lip(RN , RN ),

F(K) :=
{

v ∈ Lip(RN , RN )
∣∣∣ ‖v‖∞ + Lip v ≤ 1, δCJ(K)(v) ≤ 1

2 · ιJ(K)
}

.
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Here both the bound 1 and the factor 1
2 are rather arbitrary. We show in subsequent

Lemma 4.5 that all values of the set-valued map F are nonempty, convex and closed
with respect to locally uniform convergence.

Lemma 4.3. Let J : (K(RN ), dl) −→ R be a Lipschitz continuous shape
functional and K(·) : [0, 1]  RN be any compact–valued Lipschitz solution of the

morphological inclusion
◦
K(·) ∩F(K(·)) 6= ∅ with F(·) introduced in Def. 4.2. Then,

1. [0, 1] −→ R, t 7−→ J(K(t)) is nonincreasing.
2. Suppose infK(RN ) J(·) > −∞ in addition. and, let C belong to the ω–limit

set of K(·) in K(RN ), i.e. dl(K(tn), C) −→ 0 for some tn ↗∞. Then ιJ(C) = 0.

Proof. 1. results from the Lipschitz continuity of the composition [0, 1] −→ R,
t 7−→ J(K(t)) and the definition of F . Indeed, at almost every time t ∈ [0, 1], there
exists v ∈ F(K(t)) ⊂ Lip(RN , RN ) with lim

h↓0
1
h · dl (K(t+h), ϑv(h, K(t))) = 0.

Thus,
lim sup

h ↓ 0

1
h · (J(K(t + h))− J(K(t)))

≤ lim sup
h ↓ 0

1
h ·

(
J(ϑv(h, K(t))) − J(K(t)) + Lip J · dl(ϑv(h, K(t)), K(t + h))

)
≤ δCJ(K(t)) (v) + 0
≤ 1

2 · ιJ(K(t)) (since v ∈ F(K(t)))
≤ 0 (due to preceding Remark (2.)).

2. Assume the contrary, i.e. κ := ιJ(C) < 0. Then, there exists some small ρ > 0
such that all sets M ∈ K(RN ) with dl(M,C) ≤ 2 ρ satisfy ιJ(M) < κ

2 < 0. For
all n ∈ N sufficiently large, K(tn) has the Pompeiu–Hausdorff distance < ρ from C.
As all values of F contain only functions v ∈ Lip(RN , RN ) with ‖v‖∞ + Lip v ≤ 1,

every compact-valued solution K(·) of the morphological inclusion
◦
K(·)∩F(K(·)) 6= ∅

has Lipschitz constant ≤ 1 (with respect to dl) similarly to Lemma 2.4.
Thus, dl(K(s), C) < 2 ρ for all s ∈ [tn−ρ, tn+ρ]. Now the same adaptation of chain rule
as in (1.) implies J(K(s2)) ≤ J(K(s1))+ κ

4 ·(s2−s1) for all tn−ρ ≤ s1 ≤ s2 ≤ tn+ρ
and large n ∈ N — contradicting the hypothesis inf J(·) > −∞.

The next lemma will be used for verifying the convexity of all values of F in Lemma 4.5:

Lemma 4.4. For every λ ∈ ]0, 1[, there exists µ ∈ L1([0, 1]) satisfying

1
t ·

∫ t

0

(µ(s)− λ) ds −→ 0 (t ↓ 0), µ(·) ∈ {0, 1} piecewise constant in ]0, 1[.

Proof. µ(·) is defined in each interval
[

1√
n+1

, 1√
n

[
(n∈N).

Set µ(t) :=

{
0 for 1√

n+1
≤ t < λ√

n+1
+ 1−λ√

n

1 for λ√
n+1

+ 1−λ√
n

≤ t < 1√
n

for each n ∈ N.

Then,
∫ 1√

n

1√
n+1

(µ(s)− λ) ds = 0 and thus,
∫ 1√

n

0

(µ(s)− λ) ds = 0.

Moreover,
∫ 1√

n

1√
n+1

|µ(s)− λ| ds = 2 λ (1− λ)
(

1√
n
− 1√

n+1

)
implies

sup
1√

n+1
≤ t≤ 1√

n

1
t ·

∣∣∣∣∫ t

0

(µ(s)− λ) ds

∣∣∣∣ ≤
√

n + 1 ·
∫ 1√

n

1√
n+1

|µ(s)− λ| ds
n→∞−→ 0.
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Lemma 4.5. Consider Lip(RN , RN ) with the topology of locally uniform con-
vergence. All values of the set-valued map F : K(RN )  Lip(RN , RN ) introduced in
Definition 4.2 are nonempty, convex and closed.

Proof. For every K ∈ K(RN ), the value F(K) is a nonempty because
either ιJ(K) = 0 and then, 0 ∈ F(K)
or ιJ(K) < 0 and then there is v ∈ Lip(RN , RN ) with ‖v‖∞ + Lip v ≤ 1,

δCJ(K)(v) ≤ 3
4 · ιJ(K) < 0 (due to the def. of infimum),

i.e. v ∈ F(K) induces a shape transition along which J(·) is
strictly decreasing for short times.

Furthermore, F(K) ⊂ Lip(RN , RN ) is convex. Indeed, choose any v, w ∈ F(K)
and λ ∈ ]0, 1[. According to Lemma 4.4, there exists some µ ∈ L1([0, 1]) satisfying

1
t ·

∫ t

0

(µ(s)− λ) ds −→ 0 (t ↓ 0), µ(·) ∈ {0, 1} piecewise constant in ]0, 1[.

Now we compare the evolution of an arbitrary set K ∈ K(RN ) along the autonomous
Lipschitz field

u : RN −→ RN , x 7−→ λ · v(x) + (1− λ) · w(x)
and along the nonautonomous vector field

g : RN × [0, 1] −→ RN , (x, t) 7−→ µ(t) · v(x) + (1− µ(t)) · w(x).

We verify dl(ϑu(t, M), ϑg(t, M)) ≤ o(t) for t ↓ 0 uniformly in M.
For any initial point x0 ∈ RN given, let x(·) ∈ C1([0, 1], RN ) denote the (unique)
solution to x′(·) = u(x(·)), x(0) = x0. As each g(·, t) is Lipschitz continuous (with
Lipschitz constant ≤ 1), Filippov’s Theorem (applied to differential equations here)
guarantees that the Cauchy problem{

y′(·) = g(y(·), ·) almost everywhere in [0, 1]
y(0) = x0 ∈ RN

has a solution y(·) ∈ W 1,1([0, t], RN ). These solutions x(·), y(·) always satisfy
|x(t)− y(t)|

=
∣∣∣ ∫ t

0

(
λ v(x(s)) − µ(s) v(y(s)) + (1− λ) w(x(s)) − (1− µ(s)) w(y(s))

)
ds

∣∣∣
≤

∣∣∣ ∫ t

0

(
(λ− µ(s)) v(x(s)) + (µ(s)− λ) w(x(s))

)
ds

∣∣∣
+

∫ t

0

µ(s) · Lip v · |x(s)− y(s)| ds +
∫ t

0

(1− µ(s)) · Lip w · |x(s)− y(s)| ds

≤
∣∣∣ ∫ t

0

(λ− µ(s)) ·
(
v(x0)− w(x0)

)
ds

∣∣∣+∫ t

0

∣∣λ− µ(s)
∣∣ (Lip v+Lip w)

∣∣x(s)− x0

∣∣ ds

+
∫ t

0

|x(s)− y(s)| ds

≤ 2
∣∣∣ ∫ t

0

(λ− µ(s)) ds
∣∣∣ +

∫ t

0

1 · 2 · s ds +
∫ t

0

|x(s)− y(s)| ds

due to ‖v‖∞ + Lip v ≤ 1, ‖w‖∞ + Lip w ≤ 1.
Gronwall’s Lemma ensures |x(t)− y(t)| ≤ o(t) for t ↓ 0 uniformly in x0 ∈ RN .
(In particular, the estimate of Filippov’s Theorem is difficult to be applied here
immediately as the integral mean of µ(·)− λ, but not of |µ(·)− λ| is o(t) for t ↓ 0.)
Thus, for any initial set M ∈ K(RN ), the reachable sets satisfy

dist (ϑu(t, M), ϑg(t, M)) ≤ o(t) for t ↓ 0 uniformly in M ∈ K(RN ).
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The same uniform estimates holds for dist (ϑg(t, M), ϑu(t, M)) since the preceding
solutions x(·) and y(·) have needed only a joint initial point x0 ∈ RN .

According to the proof of Lemma 4.4, we can suppose to have a sequence sn ↘ 0
in ]0, 1[ such that µ(·) ∈ {0, 1} is constant in [sn+1, sn[ for each n ∈ N.
So for every set M ∈ K(RN ) and time t ∈ [sn+1, sn], the reachable set ϑg(t, M)
is either ϑv

(
t−sn+1, ϑg(sn+1,M)

)
or ϑw

(
t−sn+1, ϑg(sn+1,M)

)
.

Fix ε > 0 arbitrarily small. For each h ∈ ]0, s1], choose m ∈ N with sm < h ≤ sm−1

and, we obtain (at least) for small h > 0 and M ∈ K(RN ) sufficiently close to K

J(ϑu(h, M)) − J(M)
≤ J(ϑg(h, M)) − J(M) + o(h)

= J(ϑg(h, M))− J(ϑg(sm,M)) +
∞∑

n=m

(
J(ϑg(sn,M))− J(ϑg(sn+1,M))

)
+ o(h)

≤ (h− sm) ·
( ιJ(K)

2 + ε
)

+
∞∑

n=m

(sn − sn+1) ·
( ιJ(K)

2 + ε
)

+ o(h)

= h ·
( ιJ(K)

2 + ε
)

+ o(h)

So, δCJ(K)(u) ≤ ιJ(K)
2 + ε with any ε > 0, i.e. u

Def.= λ v + (1− λ) w ∈ F(K).

Finally, we verify that F(K) is closed. Let (vn)n∈N be a sequence in F(K) ⊂
Lip(RN , RN ) converging to v ∈ Lip(RN , RN ) locally uniformly. Obviously, the limit
holds ‖v‖∞+Lipv ≤ 1. Moreover, similarly to Lemma 2.4, Filippov’s Theorem implies

sup
M ∈K(RN )
dl(K,M)≤ 1

dl
(
ϑvn(h, M), ϑv(h, M)

)
≤ h eh · sup

B2(K)

|vn(·)− v(·)| −→ 0

for n −→ ∞ uniformly in h ∈ [0, 1] and for every set K ∈ K(RN ). So due to the
Lipschitz continuity of J(·), Clarke’s generalized shape derivative satisfies
δCJ(K)(v) ≤ lim sup

h↓0, M→K

(M∈K(RN ))

1
h ·

(
J(ϑvn(h, M)) − J(M)

)
+ Lip J · sup

B2(K)

|vn(·)− v(·)|

≤ 1
2 · ιJ(K) + Lip J · sup

B2(K)

|vn(·)− v(·)|

n −→∞ reveals v ∈ F(K).

Remark. In regard to Viability Theorem 3.11, the graph of F : K(RN ) Lip(RN , RN )
ought to be closed (still using the topology of locally uniform convergence). This fea-
ture is closely related with the lower semicontinuity of δCJ(·)(v) : K(RN ) −→ R (with
v ∈ Lip(RN , RN ) fixed) and, it will be dealt here as an additional assumption about J.

So now Lemmas 4.3 and 4.5 have laid the basis for applying the morphological
Viability Theorem 3.11. We summarize the main result of this paragraph:

Proposition 4.6. Suppose J : K(RN ) −→ R to be Lipschitz continuous with
respect to the Pompeiu–Hausdorff distance dl and bounded from below.
Using Definitions 4.1, 4.2, F : K(RN )  Lip(RN , RN ) is assumed to have closed
graph with respect to locally uniform convergence on Lip(RN , RN ).
Let V ⊂ K(RN ) be nonempty and closed such that for every K ∈ V, the intersection
F(K) ∩ TV(K) is nonempty.
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Then there exists a Lipschitz continuous solution K : [0,∞[ −→ V ⊂ K(RN ) of

the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ such that

1. [0,∞[−→ R, t 7−→ J(K(t)) is nonincreasing,
2. every element C ∈ K(RN ) of its ω–limit set in K(RN ) satisfies the following

necessary condition on minimizers of J(·) in K(RN ) : ιJ(C) = 0.
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