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Abstract. In this paper we consider the a posteriori and a priori error analysis of discontinuous
Galerkin interior penalty methods for second—order partial differential equations with nonnegative
characteristic form on anisotropically refined computational meshes. In particular, we discuss the
question of error estimation for linear target functionals, such as the outflow flux and the local average
of the solution. Based on our a posteriori error bound we design and implement the corresponding
adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional
to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh
refinement. The theoretical results are illustrated by a series of numerical experiments.
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1. Introduction. The mathematical modeling of advection, diffusion, and reac-
tion processes arises in many application areas. Typically, the diffusion is often small
(compared to the magnitude of the advection and/or reaction), degenerate, or even
vanishes in subregions of the domain of interest. This multi-scale behavior between
the diffusion and the advection/reaction creates various challenges in the endeavor of
computing numerical approximations to PDE problems of this type in an accurate
and efficient manner. In particular, computationally demanding features may appear
in the analytical solutions of such problems; these include boundary/interior layers or
even discontinuities in the subregions where the problem is of hyperbolic type. When
such, essentially lower-dimensional, features are present in the solution, the use of
anisotropically refined meshes has been extensively advocated within the literature.
Indeed, anisotropically refined meshes aim to be aligned with the domains of definition
of these lower-dimensional features of the solution, in order to provide the necessary
mesh resolution in the relevant directions, thereby reducing the number of degrees of
freedom required to obtain an accurate approximation.

Discontinuous Galerkin finite element methods (DGFEMSs) exhibit attractive prop-
erties for the numerical approximation of problems of hyperbolic or nearly-hyperbolic
type, compared to both (standard) conforming finite element methods (FEMs) and
finite volume methods (FVMs). Indeed, in contrast with conforming FEMs, but to-
gether with FVMs, DGFEMs are, by construction, locally conservative; moreover,
they exhibit enhanced stability properties in the vicinity of boundary/interior lay-
ers and discontinuities present in the analytical solution. Additionally, DGFEMs
offer advantages in the context of hp-adaptivity, such as increased flexibility in the
mesh design (irregular grids are admissible) and the freedom to choose the elemental
polynomial degrees without the need to enforce any conformity requirements. The
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implementation of genuinely (locally varying) high-order reconstruction techniques for
FVMs still remains a computationally difficult task, particularly on general unstruc-
tured hybrid grids. Thereby, the combination of DGFEMs, which produce high—order
and stable approximations, even in unresolved regions of the computational domain,
with anisotropic mesh refinement, which aims to provide the desired mesh resolu-
tion in appropriate spatial directions, is an appealing technique for the numerical
approximation of these types of problems.

In this article, we consider the a priori and a posteriori error analysis of interior
penalty discontinuous Galerkin methods for second—order partial differential equa-
tions with nonnegative characteristic form on anisotropically refined computational
meshes. In particular, we are concerned with the question of error estimation for
linear target functionals of the analytical solution, such as the outflow flux and the
local average of the solution. The a priori error estimation is based on exploiting the
analysis developed in [13], which assumed that the underlying computational mesh is
shape-regular, together with an extension of the techniques developed in [10] which
precisely describe the anisotropy of the mesh; for related anisotropic approximation
results, we refer to [1, 22, 21, 6], for example. More specifically, we employ tools from
tensor analysis, along with local singular-value decompositions of the Jacobi matrix
of the local elemental mappings, to derive directionally-sensitive bounds for arbitrary
polynomial degree approximations, thus generalizing the ideas presented in [10], where
only the case of approximation with conforming linear elements was considered. These
interpolation error bounds are then employed to derive general anisotropic a prior:
error bounds for the DGFEM approximation of linear functionals of the underlying
analytical solution.

Additionally, Type I a posteriori error bounds are derived based on employing the
dual weighted residual approach, cf. [5, 14, 18, 20], for example. On the basis of our
a posteriori error bound we design and implement two new anisotropic adaptive algo-
rithms to ensure the reliable and efficient control of the error in the prescribed target
functional to within a given tolerance. This involves exploiting both local isotropic
and anisotropic mesh refinement, based on choosing the most competitive subdivision
of a given element k from a series of trial (Cartesian) refinements. The superiority of
the proposed algorithms in comparison with standard isotropic mesh refinement, and
a Hessian—based anisotropic mesh refinement strategy, will be illustrated by a series
of numerical experiments.

The paper is structured as follows. In Section 2 we introduce the model prob-
lem and formulate its discontinuous Galerkin finite element approximation. Then, in
Sections 3, 4, and 5 we develop the a posteriori and a priori analyses of the error
measured in terms of certain linear target functionals of practical interest. Guided
by our a posteriori error analysis, in Section 6 we design two adaptive finite element
algorithms to guarantee reliable and efficient control of the error in the computed
functional to within a fixed user—defined tolerance based on employing a combination
of local isotropic and anisotropic mesh refinement. The performance of the resulting
refinement strategies is then studied in Section 7 through a series of numerical ex-
periments. Finally, in Section 8 we summarize the work presented in this paper and
draw some conclusions.

Throughout this article we shall assume familiarity with the standard Hilbertian
Sobolev spaces Hk(w), k > 0, where w is a bounded domain in R%, d > 1; we also
adopt the notational convention H°(w) = La(w).
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2. Model problem and discretization. Let €2 be a bounded open polyhedral
domain in R, d = 2,3, and let I signify the union of its (d — 1)-dimensional open
faces. We consider the advection—diffusion—reaction equation

Lu=-V-(aVu)+ V- (bu)+cu=f, (2.1)

where f € Ly(Q) and ¢ € Loo(Q) are real-valued, b = {b;}¢; is a vector func-
tion whose entries b; are Lipschitz continuous real-valued functions on €2, and a =
{aij }f j—1 18 a symmetric matrix whose entries a;; are bounded, piecewise continuous
real-valued functions defined on €, with

¢Ta()¢ >0 V¢CeR?Y, ae z€Q. (2.2)

Under this hypothesis, (2.1) is termed a partial differential equation with nonnegative
characteristic form. By n(x) = {n;(z)}%_, we denote the unit outward normal vector
toI' at € T'. On introducing the so called Fichera function b-n (cf. [26]), we define

Ty = {x el n(z) a(z)n(z) > o} ,
I'_={ze\Io: b(z) n(x) <0}, I'y={zel\Iv: b(zx) n(z)>0}.

The sets I'_ and I'; will be referred to as the inflow and outflow boundary, respec-
tively. Evidently, ' =ToUT'_ UT;. If I’y is nonempty, we shall further divide it into
disjoint subsets I'p and I'y whose union is I'g, with I'p nonempty and relatively open
in T'. We supplement (2.1) with the boundary conditions

u=gp on I'pul_, n-(aVu)=gn on I'y, (2.3)

and adopt the (physically reasonable) hypothesis that b-n > 0 on I'y, whenever
'y is nonempty. Additionally, we assume that the following (standard) positivity
hypothesis holds: there exists a constant vector & € R? such that

c(x)+%V-b(x)+b(m)-£>O ae. z€Q. (2.4)

For simplicity of presentation, we assume throughout that (2.4) is satisfied with £ = 0;
we then define the positive function ¢y by

(co(x))? = c(x) + % V-b(z) ae. z€Q. (2.5)

For the well-posedness theory (for weak solutions) of the boundary value problem
(2.1), (2.3), in the case of homogeneous boundary conditions, we refer to [17, 19].

2.1. Meshes, finite element spaces and traces. Let 7, = {x} be a subdivi-
sion of the (polygonal) domain € into disjoint open element domains x constructed
through the use of the mappings Qx o Fy, where F,, : & — £ is an affine mapping
from the reference element & to %, and Q, : & — & is a C'—diffeomorphism from & to
the physical element x. Here, we shall assume that # is either the hypercube (—1,1)¢
or the unit d-simplex; in the latter case @), is typically the identity operator, unless
curved elements are employed. The mapping F); defines the size and orientation of
the element x, while @, defines the shape of x, without any significant rescaling, or
indeed change of orientation, cf. Figure 2.1 for the case when d = 2 and & = (—1,1)2.
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Fic. 2.1. Construction of the element mapping via the composition of an affine mapping Fi
and a C—diffeomorphism Q.

With this in mind, we assume that the element mapping Q. is close to the identity
in the following sense: the Jacobi matrix Jg, of Q. satisfies

Crl < det Jo Iy < C1y 15 ey < Coy 15 lLwon) < Cs (2.6)

for all £ in 7 uniformly throughout the mesh for some positive constants Cy, Co,
and Cj5. This will be important as our error estimates will be expressed in terms of
Sobolev norms over the element domains &, in order to ensure that only the scaling
and orientation introduced by the affine element maps F}; are present in the analysis.
Writing m,, mgz, and mg to denote the d—dimensional measure of the elements k,
R, and &, respectively, the above condition (2.6) implies that there exists a positive
constant Cy such that

C'4_1m,~i <m, <Cimg Vk €T, (2.7)

The above maps are assumed to be constructed in such a manner to ensure that
the union of the closure of the disjoint open elements x € 7, forms a covering of
the closure of Q, i.e., Q@ = Uper, k. For a function v defined on k, k € Tj,, we write
U =voQ, and v = v o F};, to denote the corresponding functions on the elements &
and &, respectively. Thereby, we have that o = v o @, o Fj.

REMARK 2.1. We note that a similar construction of the element mappings for
general meshes consisting of curved quadrilateral elements has also been employed for
both shape-reqular and anisotropic meshes in the articles [16] and [11], respectively.
The key difference in the current construction to that proposed in [11] is that here the
element mapping F,, contains information about both size and orientation of k. In
contrast, in the construction developed in [11] both orientation and shape information
are included in Q, while F,, only contains information relating to the size of k.

REMARK 2.2. Within this construction we admit meshes with possibly hanging
nodes; for simplicity, we shall suppose that the mesh Ty, is I-irreqular, cf. [16].

Associated with 7}, we introduce the broken Sobolev space of order s > 0 defined
by

H*(Q,Tp) ={u€ Lo(Q): ul, € H (k) Ve Th},

equipped with the usual broken Sobolev seminorm and norm, denoted, respectively,
by | - |s,7, and || - ||s.7,. For u € HY(Q,7,) we define the broken gradient V7, u of u
by (Vz,u)lx = V(ulx), & € Tp.
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2.2. Interior penalty discontinuous Galerkin method. We introduce the
(symmetric) interior penalty DGFEM discretization of the advection—diffusion-reaction
problem (2.1), (2.3). To this end, we define the following notation. Given a polynomial
degree p > 1 we define the finite element space S}, as follows

Shp={u€ L) : ulxoQuoF, € Ry(k); k € Tn},

where R, is Pp, when & is the unit d-simplex, or R, is Qp, when & = (—1, 1)d. Here,
P, denotes the set of polynomials of total degree p on # and Q,(%), the set of all
tensor-product polynomials on & of degree p in each coordinate direction.

An interior face of Tj, is defined as the (non-empty) (d—1)—dimensional interior of
O0k;NOkj, where k; and k; are two adjacent elements of 7, not necessarily matching.
A boundary face of T, is defined as the (non-empty) (d — 1)-dimensional interior of
0kNT', where k is a boundary element of 7;,. We denote by 'y, the union of all interior
faces of 7;,. Given a face f C I'in, shared by the two elements ; and &;, where the
indices ¢ and j satisfy ¢ > j, we write ny to denote the (numbering-dependent) unit
normal vector which points from &; to x;; on boundary faces, we put ny = n. Further,
for v € H*(2,7;) we define the jump of v across f and the mean value of v on f,
respectively, by [v] = v|ow,nf — v]ox,ns and (V) = 1 (v]ax,ng + V]ow;nf)-

On a boundary face f C 9k, we set [v] = v|gxns and (v) = v|gxnys. Finally, given
a function v € H'(2,7;) and an element x € 7}, we denote by v, (respectively, v, )
the interior (respectively, exterior) trace of v defined on 9k (respectively, dx\I'). Since
below it will always be clear from the context which element x in the subdivision 73,
the quantities v;7 and v correspond to, for the sake of notational simplicity we shall
suppress the letter x in the subscript and write, respectively, v and v~ instead.

Given that x is an element in the subdivision 73, we denote by dx the union of
(d — 1)~dimensional open faces of k. Let 2 € Ok and suppose that n,(z) denotes the
unit outward normal vector to Ok at x. With these conventions, we define the inflow
and outflow parts of Ok, respectively, by

O_k={zx€0k: b(z) ng(z) <0}, Idrr={zre€dr: bx) n.(xz)>0}.

For simplicity of presentation, we suppose that the entries of the matrix a are constant
on each element k in 7; i.e.,
dxd
a € [Sh,oleym - (2.8)

We note that, with minor changes only, our results can easily be extended to the case
of \/a € [Shyq]gyxrg, g > 0; moreover, for general a € LOO(Q)ganﬁl, the analysis proceeds
in a similar manner, based on employing the modified DG method proposed in [12].
In the following, we write @ = |\/a |3, where |- |2 denotes the matrix norm subordinate
to the lo—vector norm on R? and @, = al .

The DGFEM approximation of (2.1), (2.3) is defined as follows: find upg in Spp
such that

Bpa(upg,v) = fpc(v) (2.9)
for all v € S}, ;,. Here, the bilinear form Bpg(+,-) is defined by

Bpea(w,v) = By(w,v) + By(w,v) — By(v,w) — By(w,v) + Byg(w,v),
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where

B, (w,v) = Z aVw - Vvdez,

k€Th r

Bp(w,v) = Z {—/K(wb-Vv—cwv)da:

k€Th

+/ (b -n,)whov™ ds+/ (b-n)w vtdsy,
O+ K O_k\I'

Bf(w,v) = /1“ " ((aVw) - ny)v]ds, By(w,v) = /1“ Jw][v]ds ,

int U'D

and the linear functional ¢pg(-) is given by

tpc(v) = Z </nfvdx_/am(rDur)(b.nN)gDUJFdS

KETH

—/ gn((aVu™) -n,)ds+ / gnvTds + / dgpv™ ds) .
OrNI'p OkNI'N oOkNI'p

Here ¢ is called the discontinuity-penalization parameter and is defined by 9|, = 9y
for f C I'ing UT'p, where ¥+ is a nonnegative constant on face f. The precise choice
of ¥¢, which depends on a and the discretization parameters, will be discussed in
detail in the next section. We shall adopt the convention that faces f C iy UTD
with ¥|; = 0 are omitted from the integrals appearing in the definition of By(w,v)
and ¢pg(v), although we shall not highlight this explicitly in our notation; the same
convention is adopted in the case of integrals where the integrand contains the factor
1/9. Thus, in particular, the definition of the DG-norm, cf. (3.1) below, is meaningful
even if 9|y happens to be equal to zero on certain faces f C I'ins UI'D, given that such
faces are understood to be excluded from the region of integration.

3. Stability analysis. Before embarking on the error analysis of the discontin-
uous Galerkin method (2.9), we first derive some preliminary results. Let us first
introduce the DG—norm ||| - ||| by

1
ell> =) (||\/5Vw||%2(n) +lleowllZ, o + 5w 15 wnmur-)
k€T,

1 _ 1
gl = w1 e + 310 eor)
1
—|—/ Iw)* ds + / —{(aVw) -ny)?ds, (3.1)
TiutUTD TiueUlp ¥

where || - ||, 7 C Ik, denotes the (semi)norm associated with the (semi)inner-product
(v,w); = [ |b-n,Jvwds, and ¢ is as defined in (2.5). We remark that the above
definition of ||| - ||| represents a slight modification of the norm considered in [17]; in
the case b = 0, (3.1) corresponds to the norm proposed by Baumann et al. [4, 25]
and Baker et al. [3], cf. [27].

For a given face f C 'y, UT'p, such that f C Ok, for some k € Tj, we write f and
f to denote the respective faces of the mapped elements % and &, respectively, based
on employing the element mappings Q,. and F,.. More precisely, we write f = Q1 (f)
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and f = F1(f). Further, we define my, mg, and m; to denote the (d—1)-dimensional

measure (volume) of the faces f, f , and f , respectively; clearly, in two—-dimensions,
ie,d=2,m 7 the length of the corresponding face on the canonical element, is equal
to 2. In view of (2.6), we note that there exists a positive constant Cj, such that

C’glmf <my < C’5m]; (3.2)

for every face f C I'jpt U I'p. Moreover, the surface Jacobian S £F arising in the

transformation of the face f to f may be uniformly bounded in the following manner
”S fHL ) < Cs (3.3)

for all faces f C I'ipy U 'p, where Cg is a positive constant.

Let us now quote the following inverse inequality.

LEMMA 3.1. Let k be an element contained in the mesh Tp, and let f denote one
of its faces. Then, the following inverse inequality holds

m
101Z4) < Conv L 0110 (3.4)

for all v such that vo Q. o F,, € Qp(k), where Ciny is a constant which depends only
on the dimension d and the polynomial degree p.

Proof. On the reference element &, for any function ¥ € Qp(k), there exists a
positive constant C! _, such that

1917,y < CinlIOlZ, 2y (3.5)
see, for example, [2]. Thereby, employing (3.3) and (3.2) we deduce that

06 m
o1, 5) < Collol gy = Co |\v||L2(f) <G e I3, 5y (3.6)

In an analogous manner, by exploiting (2.7) and (2.6) gives
~ _ ~ mg  ~ Mg |~ mg
[8][7, 5y =det(F, 1)||U||%2(,z):m—k|\v||%2(,z) §C4m—ﬁ|\v||%2(&) §0104m—n||v||%2(n)-(3-7)

Inserting (3.6) and (3.7) into (3.5) gives the desired result. O

REMARK 3.2. The inverse inequality stated in Lemma 3.1 is an extension of
the standard result employed on isotropic finite element meshes to the case when
anisotropic elements may be present. Indeed, in the isotropic setting, we have that
m, ~ hﬁ and my ~ hﬁ_l, where h, denotes the diameter of the element k € Tp;
thereby, the scaling on the right-hand side of the inequality (3.4) is of size 1/h,, as
expected. Moreover, this result extends the inverse inequality stated in [11] to the case
when the affine mapping F,, includes not only size, but also orientation information,
cf. above.

We now define the function h in Lo (Tine UT'p), as h(z) = min{my,, my, }/my,
if z is in the interior of f = Ok, N Jka for two neighboring elements in the mesh
Th, and h(z) = my/my, if z is in the interior of f = Ok NI'p. We note that in
the isotropic setting we observe that h ~ h, where h denotes the mesh local mesh
size, cf. Remark 3.2 above. Similarly, we define the function a in Ly (Tins U T'p) by
a(x) = min{ay,, @y, } if = is in the interior of e = Ok1 N k2, and a(z) = @, if = is in
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the interior of 0k N T'p. With this notation, we now provide the following coercivity
result for the bilinear form Bpg(-,-) over Sk p X Shp.
THEOREM 3.3. Define the discontinuity-penalization parameter ¥ arising in (2.9)

by
19|f519,:cﬁ§ for fC TinUTp, (3.8)

where Cy is a sufficiently large positive constant (see Remark 3.4 below). Then, there
exists a positive constant C, which depends only on the dimension d and the polynomial
degree p, such that

Bpg(v,v) > C’|||U|H2 Yo € Shp. (3.9)

Proof. This result follows by application of the inverse estimate derived in Lemma 3.1,
following the general argument presented by Prudhomme et al. [27] in the case when
b = 0; cf., also [17]. O

REMARK 3.4. Theorem 3.3 indicates that the DG scheme is coercive over S, p x
Sh,p provided that the constant Cy > 0 arising in the definition of the discontinuity—
penalization parameter ¥, is chosen sufficiently large. More precisely, Cy should be
selected to be a positive constant which is greater than C¢Ciny /2, where Ciyy is the
constant arising in the inverse inequality stated in Lemma 3.1 and

Cy =max card{f CTineUT'p : f C Ok};
KETH

the restriction to 1-irregular meshes ensures that Cy is uniformly bounded indepen-
dently of the mesh size.

For the proceeding error analysis, we assume that the solution u to the boundary
value problem (2.1), (2.3) is sufficiently smooth: namely, u € H3/?*¢(Q,T;,), € > 0,
and the functions u and (aVu) - ny are continuous across each face f C 9x\I' that
intersects the subdomain of ellipticity, Qq = {z € Q : ¢'a(z)¢ > 0 V¢ € R4} If
this smoothness requirement is violated, the discretization method has to be modified
accordingly, cf. [17]. We note that under these assumptions, the following Galerkin
orthogonality property holds:

Bpa(u—upg,v) =0 Vv e Sy,. (3.10)

For simplicity of presentation, it will be assumed in the proceeding analysis, as
well as in Section 5.2, that the velocity vector b satisfies the following assumption:

b- VTh’U € S}LP Yv € Shm' (3.11)

To ensure that (2.1) is then meaningful (i.e., that the characteristic curves of the

differential operator £ are correctly defined), we still assume that b € [W1 ()] ‘.

REMARK 3.5. We note that hypothesis (3.11) is a standard condition assumed
for the analysis of the hp-version of the DGFEM; see, for example, [11, 18, 17].
Indeed, this condition is essential for the derivation of a priori error bounds which are
optimal in both the mesh size h and spectral order p; in the absence of this assumption,
optimal h—convergence bounds may still be derived, though a loss of p*/? is observed in
the resulting error analysis, unless the scheme (2.9) is supplemented by appropriate
streamline—diffusion stabilization, cf. the discussion in [16]. Given that within the
current setting, we are only interested in deriving error bounds for the h—version of the
DGFEM, hypothesis (3.11) is indeed unnecessary, but for simplicity of presentation,
we retain this assumption.
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4. Approximation results. In this section we develop the necessary approx-
imation results needed for the forthcoming a priori error estimation developed in
Section 5. To this end, on the reference element %, we define pr to denote the or-
thogonal projector in Ly(k) onto the space of polynomials Q,(%); i.e., given that
o € La(), we define TI,% by (0 —II,9,)s = 0 for all w € Q,(&), where (-,-)z denotes

the Lo(k) inner product. Similarly, we define the Lo-projection operators II, and II,
on & and k, respectively, by the relations

ﬁpf’ = (ﬁp(ﬁ o Fy))o Fn_la Hpv = (ﬁp(v °0Qx)) OQZI,

for © € Ly(R) and v € La(k), respectively.
We remark that this choice of projector is essential in the following a priori error
analysis, in order to ensure that

(u —pu,b-Vgv)=0 (4.1)

for all v in Sy p, cf. the proofs of Lemma 5.3 and Theorem 5.4 below. We remark
that this same choice of projector is also necessary in the corresponding case when
(3.11) fails to hold; in this situation an equality of the form (4.1) with b replaced by
a suitable projection of b is still necessary for the underlying analysis; cf. [11].

With this notation, we now quote the following approximation result on the ref-
erence element <.

LEMMA 4.1. Let & be the reference element, and let f denote one of its faces.
Given a function © € H*(k), the following error bounds hold for m = 0,1:

|0 — T, g 2y < C10] 5 (2 m < s <min(p + 1, k), (4.2)
|6 = Ty0| g 5y < Clolaezy,  m+1<s<min(p+1,k), (4.3)
where C' is a positive constant which depends only on the dimension d and the poly-
nomial order p.
Proof. The proof of (4.2) is standard; see [8], for example. The approximation
result (4.3) follows upon application of the multiplicative trace inequality, cf. [16]. O
COROLLARY 4.2. Using the notation of Lemma 4.1, there exists a positive con-
stant C', which depends only on the dimension d and the polynomial order p, such that
form=0,1:
[0 = Tyl () < Cldet(Je )2 TR I [0l me(), M < s < min(p+1,k), (4.4)
[v =] g gy < Clmg| Y2 | T5 15 10lpre sy, m+1<s<min(p+1,k). (4.5)

Proof. The proof of the each inequality stated in the corollary is based on exploit-
ing a standard scaling argument to the respective left—hand sides of the approximation
results stated in Lemma 4.1, together with (2.6), (3.2), (3.3), and (3.6). Indeed, the
proof of (4.4) exploits (4.2), together with the following (scaling) inequality

|0 = 0 Frm () < 1 det T, ooy 190 1T () 17 = T 3m (5
< C1(Co)*™ [0 = 0 Gm () < C1(C2)*™| det i, || T3 157 6 — 6 3m s (4.6)
here we have used (2.6). Finally, employing (2.6), (3.3), and (3.2), we deduce that
. CyCs
= Cs

m ~ T~ m — mi N
|U - HP“'%V”(]’) < CB Cﬁlv - HPU|2 m( m_fA”JF,j”g |U - HP’U|§{m(f)' (4'7)
!
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Upon substituting (4.7) into (4.3), we deduce (4.5). O

Finally, it remains to scale the H*(&), s > 0, semi-norm defined on the reference
element % to £ based on employing the affine element transformation F,. In order
to retain the anisotropic mesh information within the Jacobian Jp,_, we first re-write
the square of the H*(&) semi-norm of a function ¢ terms of the integral of the square
of the Frobenius norm of an sth-order tensor containing the s—order derivatives of .
With this definition the transformation of the s—order derivatives of © defined over
£ may naturally be transformed to derivatives of the (mapped) function ¢ defined
over k. Indeed, for the case when s = 2, this approach is analogous to the technique
employed in [10].

To this end, we now introduce the following tensor notation; here, and in the
following we use calligraphic letters A, B, ... to denote Nth—order tensors, where it
is understood that a Oth—order tensor is a scalar, a lst-order tensor is a vector, a
2nd-order tensor is a matrix, and so on. The following discussion regarding tensors
is based on the work presented in the article [24].

DEFINITION 4.3. For an Nth order tensor A € RIV<12XeXIN the matriz unfold-
ing Am) € RInxUniilngaInhiladno1) =1 . N, contains the element Giyig..in
at the position with row number i, and column number equal to

(in+1 - 1)In+21n+3 e INIQ e In—l + (in+2 - 1)In+3ln+4 e INIlIQ e In—l + e
+inv—1VOI. . . Iy 1+ (1 — DIols.. . Ly + (io— DIsly ... Iy 1+ ...+ ip_1.

This definition prompts us to consider a way of multiplying a tensor by a ma-
trix. Clearly if we have a matrix U € R/»*!» then we can pre-multiply Ay by
U. Forming an Nth order tensor from UA(,) by reversing the matrix unfolding
procedure we have the product of a matrix and a tensor, giving rise to a tensor
B € R IXe -1 JnxIngax..In We formalize this in the following definition:

DEFINITION 4.4. The n-mode product of a tensor A € RN 12X XIN by o matriz
U € R7»*In denoted by A x,, U, is an Iy x Iy x ... x In_1 X Jp X Ing1 % ... In-
tensor of which the entries are given by

I,
(A X D)isi i = D (Aivin i viminirming 0 )juin-

in=1
LEMMA 4.5. For A € RIvx2XXIn qnd U € R/»*In we have that

(.A Xn U)(n) = UA(n).

Proof. Consider element (A Xy, U)iyiy...in_1jninss..in» it position in (A Xy, U) ()
is at row number j, and column number k, where

k= (in+1 - 1)In+2In+3 e INI2 e In_l + (in+2 - 1)In+3In+4 e INfllg .. .In—l + ...
+in—Vhils.. . Ina+ (i1 —DIaIs... Tyoq + (io— DIsly .. . In1 4+ ... +ip—_1.
Now,

I I,

UAw) ik = D () juin(Aw)ink = D (Aivisinsininr.in ()i

in=1 in
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Hence, (A X, U)(n) = UA(y), as required. O

By considering a vector v as an I,, x 1 matrix, then an n-mode product of v' and
A can be formed to produce an Iy X Iy X ... x I,_1 X1 X I,,41 X ...x Iy-tensor. This
tensor could be viewed as an N — 1-tensor, but instead we leave it as an N-tensor
in order that we can form other m-mode products without the value of m having to
change. However, if we have a 1 x 1 X ... x 1-tensor then we simply view this as a
scalar. The n-mode produce satisfies the following property:

Property 1. For a tensor A € RIt>*12X--XIN gnd the matrices F € R7»*I» and
G € R/m*Im n - m, we have

(AXp F) X G=(AXpm G) X F=Ax, Fxp,G.

We also introduce the Frobenius norm of a tensor.
DEFINITION 4.6. The Frobenius-norm, || - ||r, of a tensor A € RI1>I2X-xIn g
given by

L I In
||v4||%P = Z Z Z (A)’Lzliz""iN'

i1=114=1 in=1

LEMMA 4.7. Given a tensor A € RIW<I2XeXIN gnd an orthonormal matriz
F € RI»*In the following holds

[ A xn Fllp = [[Allf. (4.8)

Proof. For a matrix A € RI»*™ we have that
[FAllr = [|AllF. (4.9)
Using the identity in Lemma 4.5, namely, (A X, F')(,) = FA(y), we deduce that
A X0 Fllp = [[F A |-
Given that A, € RInxIntrdn-Didnoa Cexploiting (4.9) gives

[Axn Fllp = [[FAm|r = [Amllr = Al

In order to rescale |9z to the corresponding quantity on &, we first note that
~12 NS/ N2 14
0B = [ D@ da.
K
where D* (9) € Réxdx-xd jg the sth-order tensor containing the sth—order derivatives
of ¢ with respect to the coordinate system & = (Z1,...,2q), i.e.,
A 0°0
D(0)) iy ig,ie = =5, tp=1,...,d, fork=1,... s.
( ( ))ll,lz,mﬂs ajj“ afczs k

Thereby, for s = 0, ﬁs(ﬁ) =0, for s =1, 155(17) is the gradient vector, and for s = 2,
D*(9) is the Hessian matrix of second—order derivatives. Writing D*(9) € R4*dx~xd
to denote the sth—order tensor containing the sth—order derivatives of © with respect
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to the coordinate system & = (Z1,...,Z4), we now state the following lemma relating
|o %S(k) to |ﬁ|§{s(&)'

LEMMA 4.8. Under the foregoing assumptions, for © € H*(k), s > 0, we have
that

10130 (r) = |det(J;:)|/~ |D*(0) x1 Jf %2 Jg X3z...xs 5 |3 di.

Proof. The case when s = 0 follows trivially. For s > 1, we first note that the

entry (D?(0))s,4,...i. may be written in the form
d d -
0°v 0°v
= 2 2 R )i UR i g
for iz, =1,...,d and k = 1,...,s; this follows by employing an induction argument
together with the chain rule. Thereby, from Definition 4.4 and Property 1 above, we
deduce that

D*(0) = D*(0) x1 Jg, X2 g X3... X5 Jp . (4.10)

The statement of the lemma now follows by a simple change of variables. O

REMARK 4.9. For the case when s = 0, Lemma 4.8 simply states the change of
variable formula for the Lo-norm. For s = 1 we note that (4.10) gives rise to the
usual change of variables for the gradient operator, namely,

D*(0) = Va0 = D*(0) x1 Ji = J} Vi,

where Vi and Vi denote the gradient operator with respect to the coordinate systems
& and &, respectively. Similarly, for s =2, (4.10) may be written in the more famil-
iar form Hg(0) = Jg Hz(0)Jp,, where Hg(-) and Hz(-) denote the Hessian matriz
operators with respect to the coordinate systems & and &, respectively, cf. [10].

In order to describe the length scales and orientation of the element & we adopt a
similar approach to that developed in [10]. Namely, we perform an SVD decomposition
of the Jacobi matrix Jg,_ of the affine element mapping F,.. Thereby, we write

Jr, = U2 V.|,

where U,, and V; are d x d orthogonal matrices containing the left and right singular
vectors of Jg, , and X = diag(o1,x, 02k, - - -, 04,k is & dx d diagonal matrix containing
the singular values 0; ., ¢ = 1,...,d, of Jp,. By convention, we assume that oy, >
0245 > ... > 04, > 0. Writing U, = (u1,4...04,), where u; , i = 1,...,d, denote
the left singular vectors of Jp,_, we note that u; ., ¢ = 1,...,d, give the direction of
stretching of the element x, while 0 ., i = 1,...,d, give the stretching lengths in the
respective directions. Indeed, for axiparallel meshes, as considered in [11], for example,
then u; ., 1 = 1,...,d will be parallel to the coordinates axes and o0;,,, 1 = 1,...,d,
will denote the local mesh lengths within the respective coordinate direction.
With this notation, we make the following observations

|det(Jp, )| =T y05n,  |IJ5 l2=1/0ak, ms < Crll o, (4.11)
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where C is a positive constant independent of the element size. Employing Lemma 4.7,
we note that

D (3) x1 Jp X2 Jp X3...%s Jp |5

d d d
= Z Z . Z(O’il_’,ﬁgiz_’,{ .. .0'1'57,1)2(DS(’L~)) X1 u;[)ﬁ X9 u;N X3 ... Xg uiTS7N)2
i1=1142=1 is=1
= D(3, S, Uy). (4.12)

Thereby, exploiting (4.11) and (4.12) together with Corollary 4.2, we deduce the
following approximation result.

THEOREM 4.10. Using the notation of Lemma 4.1, there exists a positive constant
C, which depends only on the dimension d and the polynomial order p, such that for
m=0,1:

1/2
|v = Hpv|gm ey < Cloax|™™ [/ Di(0,%,,Uy) di] , m<s<min(p+ 1,k),

1/2
lv =T Ly < Clog..|~1/? [[ D:(0,%,,Uy) di] , 1 <s<min(p+1,k),

1/

2 1/2
|v = IIpv| gy gc’m |oa..| [/ Dz(@ZmUﬁ)dg}] , 2<s<min(p+1,k).
s i

REMARK 4.11. For the purposes of deriving the forthcoming a priori error bound
on the error in the computed target functional, cf. Theorem 5.4 below, it is convenient
to leave the statement of the third approximation result above in terms of my and
my, rather than in terms of the stretching factors o;,, i = 1,...,d, solely, since
these quantities naturally arise within the definition of the discontinuity-penalization
parameter o defined in (3.8).

In the next section, we consider the a posteriori and a priori error analysis of the
discontinuous Galerkin finite element method (2.9) in terms of certain linear target
functionals of practical interest.

5. A posteriori and a priori error analysis. Very often in problems of prac-
tical importance the quantity of interest is an output or target functional J(-) of the
solution. Relevant examples include the lift and drag coefficients for a body immersed
into a viscous fluid, the local mean value of the field, or its flux through the outflow
boundary of the computational domain. The aim of this section is to develop the a
posteriori and a priori error analysis for general linear target functionals J(-) of the
solution; for related work, we refer to [5, 14, 18, 23, 20], for example.

5.1. Type I a posteriori error analysis. In this section we consider the
derivation of so-called Type I (cf. [18]) or weighted a posteriori error bounds. Fol-
lowing the argument presented in [18, 20] we begin our analysis by considering the
following dual or adjoint problem: find z € H?(§2,T;) such that

Bpc(w,2) = J(w) Yw € H*(Q,Tp,). (5.1)

Let us assume that (5.1) possesses a unique solution. Clearly, the validity of this
assumption depends on the choice of the linear functional under consideration; see
the discussion in [18].
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For a given linear functional J(-) the proceeding a posteriori error bound will
be expressed in terms of the finite element residual Rj, defined on k € 75 by
Rintlx = (f — Lupg)|x, which measures the extent to which upg fails to satisfy
the differential equation on the union of the elements x in the mesh 7;; thus we refer
to Rint as the internal residual. Also, since upg only satisfies the boundary conditions
approximately, the differences gp — upg and gx — (aVupg) - n are not necessarily zero
on I'p UT'_ and I'y, respectively; thus we define the boundary residuals Rp and Ry,
respectively, by

Rplasnrpur_) = (90 — upe)lonn@pur_) > Rnlornry = (g — (@Vus) - n)|oenry-

With this notation, after application of the divergence theorem, the Galerkin
orthogonality condition (3.10) may be written in the following equivalent form:

0= BD(}(’U, — UpG, v) = ED(}(’U) — ch;(u[)g, ’U) (52)
= Z / Ringv do — / (b-n,) Rpv" ds + / (b-n,)[upc]v’ ds
weTh K O_ kNI O_k\I'
- / Rp((aVv™) -n,)ds + / YRpvT ds + / Ryutds
OxkNI'p OxkNI'p OxNI'n

1
+§ /BK\F { [unc](aVv™) - n, — [(aVupg) - nn]v+} ds — /

Iupc|ot ds
Or\I'

for all v € Sy . Here, we have employed the result E?:l a;j(z)n; = 0 on I'\ Iy,
i=1,...,d, cf. [19]. The starting point for the analysis is the following general result.

THEOREM 5.1. Let u and upg denote the solutions of (2.1), (2.8) and (2.9), re-
spectively, and suppose that the dual solution z is defined by (5.1). Then, the following
error representation formula holds:

J(u) = J(upg) = Ealupa, b, p, 2 — 2np) = Z M s (5.3)
KETH

N = / Rine(z — Zh,p) dx — / (b-n,.)Rp(z — Zhvp)Jr ds
. o_rNIl

+ /a;-c\r(b -ny) [upc|(z — Zh,p)+ ds — /amrD Rp((aV(z — Zh,p)+) ‘n,.)ds

—|—/ YRp(z — zpp) T ds + / RN(z = zpp) T ds — / Iupc](z — znp) T ds
P OrNT'x Or\T

—|—§ / { [upc](aV(z — zhyp)Jr) ‘n, — [(aVupg) - ng(z — zhﬁp)Jr} ds (5.4)
Or\I'

for all zn,p € Shp.
Proof. On choosing w = u — upg in (5.1) and recalling the linearity of J(-) and
the Galerkin orthogonality property (5.2), we deduce that

J(u) — J(UD(}) = J(u — ch;) = BDG (u — UDG, Z) = BDg(u — UDG, R — Zhﬁp), (55)

and hence (5.3). O
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Thereby, on application of the triangle inequality, we deduce the following Type
I a posteriori error bound.

COROLLARY 5.2. Under the assumptions of Theorem 5.1, the following Type I a
posteriori error bound holds:

|J(’LL) - J(UDG)| S 5|Q\(UDG7 h7pa z— Zh,p) = Z |77N| ) (56)
r€TH

where 1y, s defined as in (5.4).

As discussed in [14, 20], the local weighting terms involving the difference between
the dual solution z and its projection/interpolant z,, onto Si, appearing in the
Type I bound (5.6) provide invaluable information concerning the global transport
of the error. Thereby, we refrain from eliminating the weighting terms involving the
(unknown) dual solution z and approximate z numerically; this will be discussed in
Section 6.

5.2. A priori error bounds. In this section we derive an a priori error bound
for the interior penalty DGFEM introduced in Section 2.2. To this end, we decompose
the global error © — upg as

u—upc = (u—1pu) + Mpyu —upg) =n+&, (5.7)

where II,, denotes the Lo—projection operator introduced in Section 4. With these
definitions we have the following result.
LEMMA 5.3. Assume that (2.4) and (3.11) hold and let v1|, = HC/COH%,,O(N); then

the functions & and n defined by (5.7) satisfy the following inequality

HMWSC(E:@ﬁww%m+%MHMHWW%Mm+MW%MO
~€TH

1
f Sevmentass [ alPas)
FingU'p DintUl'D

where C is a positive constant that depends only on the dimension d and the polynomial
degree p.

Proof. From the Galerkin orthogonality condition (3.10), we deduce that Bpg (&, £)
= —Bpa((n,§), where £ and 7 are as defined in (5.7). Thereby, employing the coer-
civity result stated in Theorem 3.3, gives

Ell” <~ Boa (. &). (53)

Using the identity (4.1), the right—hand side of (5.8) may be bounded as follows:

Bpa(n,€) < Cl[€]l] (Z (H\/EVUH%Q(R) +yilnllZ, ) + 17713, car
KET)

B 1 1/2
S Bae) + [ S [ aRas) i)
intUI'D

l—‘in':UFD
see [9, 17] for details. Substituting (5.9) into (5.8) gives the desired result. O

For the rest of this section, let us now assume that the volume of the elements,
denoted by m,, for each k € 7, cf. above, has bounded local variation; i.e., there
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exists a constant Cg > 1 such that, for any pair of elements x and s’ which share a
(d — 1)~dimensional face,

Cgt < my/me < Csg. (5.10)

With this hypothesis, we now proceed to prove the main result of this section.
THEOREM 5.4. Let Q C R? be a bounded polyhedral domain, Ty, = {r} a subdivi-
sion of Q, such that the elemental volumes satisfy the bounded local variation condition
(5.10). Then, assuming that conditions (2.4), (2.8), and (3.11) on the data hold, and
ue€ HYQ,T), k> 2, 2 € H(Q,Ty), | > 2, then the solution upg € Shp of (2.9)

obeys the error bound

|J<u>—J<uDG>|2§C(Z {%+ - +<ﬁ1+wl>}/Dz<a7zn,Un>df>

g
w€TH d,k d,K

X (Z {%4— 62 +(61+")/2)}/~D£(27E,{,U,€)d57>,

g g
KETH dr dye

for 2 < s < min(p + 1,k) and 2 < ¢t < min(p + 1,1), where a|, = az, bils =
e+ bl Bole = [Bllzcir, Ml = /0l ey 22l = e+ 7 B)col3_
for all k € Tp,. Here, C' is a constant depending on the dimension d, the polynomial
degree p, and the parameters C;, i1 =1,...,8.

Proof. Decomposing the error u — upg as in (5.7), we note that the error in the
target functional J(-) may be expressed as follows:

J(u) = J(upc) = Bpa(n, 2 — znp) + Boa (€, 2 — znp) = T+ 1L (5.11)

Let us first deal with term I. To this end, we define zp , = I,z and w = 2z — 2, p; after
a lengthy, but straightforward calculation, we deduce that

r<c <Z {||\/5V77||2LZ(H) + BulnlZ o) + Boe NIV, o) + IIIIE_
rETH

0@V 1 s @ty + 19721 ourrmeiron |)

X

(Z {IVaTw0l3, 0y + BullwllE oy + BocellwllEy oy + 0ll3

KETY

+H[072aVw)l|7, @nn(rmurs) T ||191/2[w]||%2(am(rimurD))}) (5.12)

for any set of real positive numbers €., k € 7. Let us now consider Term II. Here,
we note that a bound analogous to (5.9) in the proof of Lemma 5.3 holds with » and
¢ replaced by £ and w in (5.9), respectively. Indeed, in this case we have that

[Boa (&, w)| < [lIE]1] < [Z (II\/EVwII%2<K> +y2llwlL, o + w5

~k€Th
1

_ 2
+||791/2[w]||2Lg(am(rimurD))+ |9 1/2<avw>||%2(am(rimura))ﬂ - (5.13)
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Thereby, employing Lemma 5.3 in (5.13) and inserting the result and (5.12) into (5.11)
we deduce that

|J(u) = J(upe)|* < C (Z {H\/EV??H%Q(N) + B+ 7)1l ) + Boe IV L)
Kk€Th

HIr 13, wnr + 015 e + 5.

102V Iy o cmir oy + 197211 omrmeiron )

x (Z {IVaVwl 0 + (81 + Baes +72) ol

wk€Th

+||1.U+ ||(29,n + ||1971/2 <avw> ||%2(8ﬁﬁ(l—‘intUFD))
192 [0l I3 (o ) - (5.14)

After application of Theorem 4.10 gives

2 Qg Qg my Od,x ZfC@n 19f
|J(u) — J(upg)|” < C Z — 1+m—ﬁzl9—f+a—ﬁ
k€T dr | fcox ]
e LR RACR )Y R NUATEY
Od,k €x0d kK i

a a m o4, )

% Z 2»; 14 O Z f+ KszCBR f
o My f Q.

k€Th K fCOk

B

Od,k

[1+exoan] + (01 + 72)} / DL(2,%,,U,) d:E) )

+

The statement of theorem now follows by selecting €,, = 1/04, s, for each x € T3, and
employing the definition of the discontinuity-penalization parameter ¢ stated in (3.8),
together with the bounded variation of the elemental volumes (5.10) and (4.11). O

REMARK 5.5. The above result represents an extension of the a priori error bound
derived in the article [13] to the case when general anisotropic computational meshes
are employed. We note that although the analysis presented in [13] assumed shape—
regular meshes, the explicit dependence of the polynomial degree was retained in the
resulting a priori error bound; however, following the arguments in [13] an analogous
hp—version bound of the form stated in Theorem 5.4 may easily be deduced.

REMARK 5.6. The a priori bound stated in Theorem 5.4 clearly highlights that in
order to minimize the error in the computed target functional J(-), the design of an
optimal mesh must exploit anisotropic information emanating from both the primal
and dual solutions u and z, respectively. Indeed, a mesh solely optimized for u may be
completely inappropriate for z, and vice versa, thus there must me a trade-off between
aligning the elements with respect to either solution in order to minimize the overall
error in J(-).

6. Adaptive algorithm. For a user-defined tolerance TOL, we now consider the
problem of designing an appropriate finite element mesh 7}, such that

|J(u) — J(upg)| < TOL,
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(a) (b) (c)

Fic. 6.1. Cartesian refinement in 2D: (a) & (b) Anisotropic refinement; (c) Isotropic refinement.

subject to the constraint that the total number of elements in 73 is minimized; for
simplicity of presentation, in this section we only consider the case when  C R? and
Ty, consists of 1-irreqular quadrilateral elements. Following the discussion presented
[18], we exploit the a posteriori error bound (5.6) with z replaced by a discontinuous
Galerkin approximation Z computed on the same mesh 7}, used for the primal solution
upg, but with a higher degree polynomial, i.e., 2 € Sh 5 , p = P + Pinc; in Section 7,
we set pinc = 1, cf. [14, 20]. Thereby, in practice we enforce the stopping criterion

(c:"m = g‘m(uDg, zZ— Zhyp) < TOL. (61)

If (6.1) is not satisfied, then the elements are marked for refinement/derefinement
according to the size of the (approximate) error indicators |),|; these are defined
analogously to |n,| in (5.4) with z replaced by 2. In Section 7 we use the fixed
fraction mesh refinement algorithm, with refinement and derefinement fractions set
to 20% and 10%, respectively.

To subdivide the elements which have been flagged for refinement, we employ
a simple Cartesian refinement strategy; here, elements may be subdivided either
anisotropically or isotropically according to the three refinements (in two—dimensions,
i.e., d = 2) depicted in Figure 6.1. In order to determine the optimal refinement,
stimulated by the articles [28, 29], we propose the following two strategies based on
choosing the most competitive subdivision of k from a series of trial refinements,
whereby an approximate local error indicator on each trial patch is determined.

Algorithm 1: Given an element & in the computational mesh 7}, (which has been
marked for refinement), we first construct the mesh patches 7p, ;, i = 1,2, 3, based on
refining x according to Figures 6.1(a), (b), & (c), respectively. On each mesh patch,
Th,i, © = 1,2,3, we compute the approximate error estimators

Ei(ung,i, 2i — Zhp) = E Mit iy
K,G,Z-h,i

for © = 1,2,3, respectively. Here, upg,, ¢ = 1,2,3, is the discontinuous Galerkin
approximation to (2.1), (2.3) computed on the mesh patch 7, ;, i = 1, 2, 3, respectively,
based on enforcing appropriate boundary conditions on dx computed from the original
discontinuous Galerkin solution upg on the portion of the boundary 9« of xk which is
interior to the computational domain €, i.e., where Ox N T' = (). Similarly, 2; denotes
the discontinuous Galerkin approximation to z computed on the local mesh patch 7j, ;,
i = 1,2, 3, respectively, with polynomials of degree p, based on employing suitable
boundary conditions on xkNT = @) derived from 2. Finally, n, ;, ¢ = 1,2, 3, is defined
in an analogous manner to 7, cf. (5.4) above, with upg and z replaced by upg,; and
Zi, respectively.
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The element « is then refined according to the subdivision of x which satisfies

min 1] = |Exi(Uunc.is 2 — 2hp)|
i=1,2,3  #dofs(7}, ;) — #dofs(k)

where #dofs(x) and #dofs(7},;), i = 1,2, 3, denote the number of degrees of freedom
associated with x and 73 ;, @ = 1,2, 3, respectively.

Algorithm 2: This is very similar to Algorithm 1; however, here we only con-
struct the mesh patches 7}, ;, ¢ = 1,2, and compute the approximate local primal and
dual solutions on these meshes only. Given an anisotropy parameter 6 > 1, isotropic
refinement is selected when

maxi—1 2 |Ex.i (UG, 2 — Zhp)]

min—1 2 [€xi(upa.i, 2 — Zhp)]

< 0;

otherwise an anisotropic refinement is performed based on which refinement gives rise
to the smallest predicted error indicator, i.e., the subdivision for which |y ;(upa.i, 2i—
Zhp)|, ¢ = 1,2, is minimal. Based on computational experience, we select § = 2-3.

For purposes of comparison with standard anisotropic refinement strategies em-
ployed within the literature, we also consider the use of a Hessian—based algorithm.
More precisely, for each element in the mesh, we construct a metric for the primal
and dual problems based on computing the positive part of the Hessian matrix of the
computed numerical solutions upg and 2, respectively. Upon application of the metric
intersection algorithm proposed in [7], elements marked for refinement are anisotrop-
ically /isotropically subdivided, as in Figure 6.1, according to the relative size of the
eigenvalues of the newly constructed metric; see [10] for details.

7. Numerical experiments. In this section we present a number of experi-
ments to numerically to demonstrate the performance of the anisotropic adaptive
algorithms outlined in Section 6.

7.1. Example 1. In this first example we consider a linear singularly perturbed
advection-diffusion problem on the (unit) square domain Q = (0,1)2?, where a = I,
0<e<1l,b=(1,1)T,¢c=0, and f is chosen so that

u(a,y) = x4yl —a) +[e/F —e OO/ [ _e Vel (1)

cf. [17]. For 0 < ¢ < 1, solution (7.1) has boundary layers along z = 1 and y = 1;
throughout this section we set € = 1072,

Here, we suppose that the aim of the computation is to calculate the (weighted)
mean value of u over Q, ie., J(u) = [,uydz, where ¢» = 100(1 — tanh(100(r; —
0.01)(r1 + 0.01)))(1 — tanh(100(r2 — 0.2)(r2 +0.2))), r1 = & — 1.0 and ro = y — 0.5;
thereby, J(u) = 4.409917162888037.

To demonstrate the versatility of the proposed refinement algorithms, in this
section we employ bi-linear, bi-quadratic, and bi-cubic elements, i.e., p = 1, p = 2, and
p = 3, respectively. To this end, in Figure 7.1 we plot the error in the computed target
functional J(-) using both an isotropic (only) mesh refinement algorithm, together
with the three anisotropic refinement strategies outlined in Section 6. Firstly, for
each polynomial degree employed, we clearly observe the superiority of employing the
anisotropic mesh refinement Algorithms 1 & 2 in comparison with standard isotropic
subdivision of the elements. Indeed, the error |J(u) — J(upg)| computed on the
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Fic. 7.1. Example 1: Comparison between adaptive isotropic and anisotropic mesh refinement.
() p=1; (b)p=2; (c) p=3.

series of anisotropically refined meshes designed using the two proposed algorithms
outlined in Section 6 is always less than the corresponding quantity computed on
the isotropic grids. Here, we observe that there is an initial transient whereby the
error in the computed target functional decays rapidly using the former refinement
algorithms, in comparison with the latter, after which the gradient of the convergence
curves become very similar. This type of behavior is indeed expected, since for a
fixed order method, i.e. h—version, we can only expect to improve the convergence
of the error by a fixed constant, as the mesh is refined. Notwithstanding this, we
note that, for each polynomial degree employed, the true error between J(u) and
J(upg) using anisotropic refinement is around an order of magnitude smaller than
the corresponding quantity when isotropic refinement is employed alone. Secondly, we
observe that for all polynomial degrees employed, the Hessian strategy is inferior to
Algorithms 1 & 2, in the sense that the error in the target functional computed using
the either of the two latter strategies is always smaller that the corresponding quantity
computed using the former strategy, for a fixed number of degrees of freedom. Indeed,
even for bi-linear elements, for which the Hessian strategy has been proposed on the
basis of interpolation theory, Algorithms 1 & 2 lead to a 35% reduction in the error
on the final mesh in comparison with the corresponding quantity computed using
the former strategy. Similar behavior is also observed for bi-quadratic and bi-cubic
elements, though in the latter case, the Hessian strategy actually generates meshes
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(a) (b)

FiG. 7.2. Example 1: Adaptively refined meshes for p=1. (a) Isotropic mesh after 5 adaptive
refinements, with 2680 elements; (b) Anisotropic mesh designed using Algorithm 2 after 7 adaptive
refinements, with 963 elements

which in many cases are inferior to their isotropic counterparts. Finally, we note
that, despite the additional work involved in the implementation of Algorithm 1 in
comparison to Algorithm 2, we see that both approaches lead to quantitatively very
similar reductions in the error in the computed target functional.

In Figure 7.2 we show the meshes generated using both isotropic and anisotropic
mesh adaptation. For brevity, we only show the meshes for p = 1, and in the latter
case employing Algorithm 2. Firstly, we note that in both cases the mesh is primarily
concentrated in the vicinity of the boundary layer along x = 1, where the support
of the weighting function ¢ appearing in the definition of the target functional J(-)
is non-zero. Indeed, the region of the computational domain where the remainder of
the boundary layer along x = 1 and moreover where the boundary layer along y = 1
are located are not refined, since the resolution of these sharp features present in the
analytical solution are not important for the accurate computation of the selected
target functional, cf. [14], for example. For Algorithm 2, we observe that the refine-
ment strategy has clearly identified the anisotropy in the underlying primal and dual
solutions, and refined the mesh accordingly. Indeed, we observe that the boundary
layer along z = 1, 0 < y < 1, has been significantly refined, as we would expect,
with the elements being mostly refined in the direction parallel to the boundary. We
note, however, that some anisotropic refinement perpendicular to I' is performed in
the region of the boundary layer in order to accurately capture the anisotropy of the
dual solution z.

7.2. Example 2. In this second example we investigate the performance of the
proposed anisotropic refinement algorithms applied to a mixed hyperbolic—elliptic
problem with discontinuous boundary data. To this end, we let Q = (0,2) x (0,1),
a = e(x)I, where € = (1 —tanh(100(r; —0.12)(r140.12)))(1 — tanh(100(ry —0.12)(r2+
0.12)))/1000, r; =  — 1.3 and ro = y — 0.3. Furthermore, we set

b — (y,1 —2)T ifz <1,
T (L1107 if e > 1,
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Fia. 7.3. Example 2: Comparison between adaptive isotropic and anisotropic mesh refinement.
(a)p=1; (b) p=2.

¢ =0, and f = 0. On the inflow boundary I'_, we select u(z,y) = 1 along y = 0,
1/8 < x < 3/4 and u(z,y) = 0, elsewhere. This is a variant of the test problem
presented in [15]. We note that the diffusion parameter ¢ will be approximately equal
to 3.6 x 1072 in the square region (1.18,1.42) x (0.18,0.42), where the underlying
partial differential equation is uniformly elliptic. As (z,y) moves outside of this region,
¢ rapidly decreases through a layer of width @(0.1); for example, when & = 1.3 and
y > 0.7 we have ¢ < 10715, so from the computational point of view ¢ is zero to within
rounding error; in this region, the partial differential equation undergoes a change of
type becoming, in effect, hyperbolic. Thus, we shall refer to the part of 2 containing
this square region (including a strip of size (0(0.1)) as the elliptic region, while the
remainder of the computational domain will be referred to as the hyperbolic region.
[Strictly speaking, the partial differential equation is elliptic in the whole of €.]

Here, we suppose that the aim of the computation is to calculate the value of
the (weighted) outflow advective flux along x = 2, 0 < y < 1, i.e., J(u) = fol(b .
n)u(2,y)1(y) dy, where the weight function ¥(y) = (/8 =((W=5/8)"=3/8)"% Tpe
(approximate) true value of the functional is given by J(u) = 0.200620167062140.

In Figure 7.3 we plot the error in the computed target functional J(-) using both
an isotropic (only) mesh refinement algorithm, together with the three anisotropic
refinement strategies outlined in Section 6 for p = 1 and p = 2. As in the previous
section, we clearly observe the superiority of employing anisotropic mesh refinement
in comparison with standard isotropic subdivision of the elements. Indeed, the error
|J(u) — J(upg)| computed on the series of anisotropically refined meshes is (almost)
always less than the corresponding quantity computed on isotropic grids. Moreover,
we again observe that (apart from an initial transient for p = 1), both Algorithms
1 & 2 give rise to an improvement in the error in the computed target functional,
for a given number of degrees of freedom, when compared to the Hessian strategy;
indeed, on the final mesh, Algorithm 2 leads an improvement in |J(u) — J(upg)| of
around one and two orders of magnitude for p = 1 and p = 2, respectively. In this
example, we again observe that Algorithms 1 & 2 perform very similarly, in the sense
that they both lead to approximately the same error in J(-) for a fixed number of
degrees of freedom, though Algorithm 2 is still preferred since it is computationally
less expensive.

Finally, in Figure 7.4 we show the meshes generated using both isotropic and



DG METHODS ON ANISOTROPICALLY REFINED MESHES 23

T
e

+

S

HHiE
S5

H
i

am

()

Fic. 7.4. Ezample 1: Adaptively refined meshes for p = 1. (a) Isotropic mesh after 8 adap-
tive refinements, with 6539 elements; (b) & (c) Anisotropic meshes designed using Algorithm 2
after: 8 adaptive refinements, with 606 elements, and 14 adaptive refinements, with 1762 elements,
respectively.

anisotropic mesh adaptation (based on Algorithm 2), for bi-linear elements. Firstly,
we note that in both cases the grid is primarily concentrated in the vicinity of the
discontinuity of the analytical solution u which emanates from the point (x,y) =
(3/4,0) on the inflow boundary; the second discontinuity in w is significantly less
refined, as the resolution of this sharp feature in the solution is not essential for the
computation of J(-). Additional mesh refinement has also been performed within the
elliptic region, as well as the portion of the computational domain downstream of
this region, though here we still observe a general concentration of elements within
the ‘smoothed’ discontinuity of the analytical solution. Secondly, we observe that the
anisotropic refinement algorithm has clearly identified the anisotropy in the underlying
primal and dual solutions, and refined the mesh accordingly. Indeed, here we observe
that in regions where the discontinuities/layers in u are well aligned with the mesh
lines of the original background mesh, anisotropic refinement has been employed; in
other regions of the computational domain, isotropic refinement has been utilized.

8. Concluding remarks. This article has been concerned with the a priori and
a posteriori error analyses of the (symmetric) interior penalty discontinuous Galerkin
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finite element discretization of second—order partial differential equations with nonneg-
ative characteristic form, based on employing anisotropically refined computational
meshes. Of particular interest has been the approximation of linear output functionals
of the analytical solution. To this end, new, sharp directionally-sensitive bounds have
been derived for the polynomial approximation on anisotropic elements exploiting
the ideas presented in [10], and subsequently generalizing the results of that paper.
These new anisotropic polynomial approximation results have been exploited in the
proceeding a priori analysis of the numerical error for general linear target functionals
of the solution on anisotropic meshes. Moreover, Type I (weighted) a posteriori er-
ror bounds have been derived and implemented within two adaptive mesh refinement
algorithms, both employing a combination of local isotropic and anisotropic mesh re-
finement, where the choice of refinement is based on the solution of (cheap and fully
parallelizable) local problems. The performance of the resulting refinement strategies
were then studied through a series of numerical experiments, demonstrating the supe-
riority of the proposed algorithms in comparison with both standard isotropic mesh
refinement, and an anisotropic Hessian—based refinement strategy.
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