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Abstract

A theta in a graph is an induced subgraph consisting of two nonadjacent
vertices joined by three disjoint paths. A prism in a graph is an induced
subgraph consisting of two disjoint triangles joined by three disjoint paths.
This paper gives a polynomial-time algorithm to test whether a graph has
an induced subgraph that is either a prism or a theta.



1 Introduction

The vertex set of a graph G is denoted by V (G) and the edge set by E(G).
All graphs in this paper are simple. A cycle is a connected subgraph in
which all vertices have degree two. A path P in G is an induced connected
subgraph of G such that either P is a one-vertex graph, or two vertices of
P have degree one and all others have degree two. (Please note that we are
using a non-standard definition.) The ends of a path are the two vertices
with degree one in the path. If X ⊆ V (G), the subgraph with vertex set X

and edge set all edges of G with both ends in X is denoted G|X, and called
the subgraph induced on X.

A prism is a graph consisting of two disjoint triangles {a1, a2, a3} and
{b1, b2, b3} together with three paths P1, P2 and P3 such that the union of
every two of P1, P2 and P3 is an induced cycle. A theta is a graph consisting
of two nonadjacent vertices s and t, and three paths P , Q and R with ends
s and t, such that the union of every two of P,Q and R is an induced cycle.
The vertices s, t are called the ends of the theta. Finally, a pyramid is a
graph consisting of a triangle {b1, b2, b3}, a vertex a 6∈ {b1, b2, b3}, and, for
i = 1, 2, 3 a path Pi between a and bi, such that a is adjacent to at most one
of b1, b2 and b3 and the union of every two of P1, P2 and P3 is an induced
cycle. An induced subgraph H of G is a prism, theta or pyramid in G if H

is a prism, theta or pyramid, respectively. We say that a graph G contains

a prism, a theta or a pyramid, if some induced subgraph of G is a prism, a
theta or a pyramid, respectively. A hole in a graph is an induced cycle of
length at least four. A hole is odd if it has an odd number of vertices, and
even otherwise. Given a graph G, the complement G of G is the graph with
the same vertex set as G, and such that two vertices are adjacent in G if
and only if they are non-adjacent in G. A graph G is called Berge if neither
G nor G contains an odd hole.

In [1] Chudnovsky, Cornuéjols, Liu, Seymour, and Vuškovíc present a
polynomial time algorithm to test whether a graph contains a pyramid.
The main result of [1] is a polynomial time algorithm to test if a graph is
Berge. Since every pyramid contains an odd hole, no Berge graph contains
a pyramid, and testing for pyramids is the first step in testing for Bergeness.
Similarly to pyramids, every theta and every prism contains an even hole,
and therefore a graph with no even holes contains no theta or prism. In
[4] Maffray and Trotignon prove that the problem of deciding if a graph
contains a prism is NP-complete, and in [2] Chudnovsky and Seymour show
that testing if a graph contains a theta can be done in polynomial time.
However, the complexity of deciding if a graph contains a prism or a theta
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remained open (and this is the analogue of the pyramid problem for graphs
with no even holes). Our main result here is a polynomial time algorithm
that given a graph G, decides if G contains either a prism or a theta. The
algorithm is described in Section 5, and its running time is O(|V (G)|35).

Before continuing with the outline of this algorithm, we need a few more
definitions. The interior of a path P is the set of vertices that have degree
two in P , and is denoted by P ∗. If u and v are two vertices in a path P ,
then u-P -v denotes the subpath of P whose ends are u and v, and if u and
v are consecutive then we may denote u-P -v by just u-v. For a subgraph
X of G we say that v ∈ V (G) \ V (X) has a neighbor in X if there exists a
vertex in V (X) adjacent to v.

For A ⊆ V (G), a vertex is called A-complete if it is adjacent to every
vertex in A. Two subsets A,B ⊆ V (G) are anticomplete to each other if no
vertex of A is adjacent to any vertex of B. For any two vertices a and b,
let N(a) be the set of neighbors of a in G, and let N(a, b) be the set of all
{a, b}-complete vertices in G.

Let K be a prism. Label the triangles of K {a1, a2, a3} and {b1, b2, b3}
and for i = 1, 2, 3 let Pi be the path from ai to bi. For i = 1, 2, 3 let mi be the
vertex in Pi such that for the paths ai-Pi-mi, denoted by Si, and mi-Pi-bi,
denoted by Ti, we have |E(Ti)| ≤ |E(Si)| ≤ |E(Ti)|+ 1. A K-major vertex,
or just a major vertex when there is no danger of confusion, is a vertex
not in V (K) whose neighbors in K are not a subset of the vertex set of a
3-vertex path contained in K.

Finally, a subgraph H is smaller than a subgraph H ′ if |V (H)| <

|V (H ′)|. An induced subgraph X of G that is either a theta or a prism
is called smallest if no other theta or prism in G is smaller than X.

The idea of the algorithm is as follows. Let G be the graph input to the
algorithm and suppose there is a prism K in G. A shortest path Q with the
same ends as S1 is called a shortcut across K. If the subgraph induced by
V (K) ∪ Q∗ \ S∗

1 is also a prism, then Q is good, and if not then Q is bad.
Shortest paths with the same ends as one of T1, S2, T2, S3 and T3 are also
called shortcuts across K. Shortcuts will be defined in the same way for
thetas. A theta or prism is clean if all shortcuts across it are good. The
algorithm uses a procedure called cleaning, first introduced by Conforti and
Rao in [3]. The idea of cleaning is to identify a cleaner, which is a subset
X ⊆ V (G) such that if G contains a prism or a theta, then the graph G′

induced by G on V (G) \ X contains a clean prism or a clean theta.
In G′, it becomes easy to detect the clean theta or prism. For example,

if G′ contains a clean prism K, then for any shortcut Q across the path S1

of K, the subgraph induced on V (K)∪Q∗ \S∗

1 is also a prism, because Q is
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a good shortcut. The same is true for any other shortcut across K. So the
algorithm checks all 9-tuples of vertices a1, a2, a3,m1,m2,m3, b1, b2, b3; for
each of the pairs a1m1, a2m2, a3m3, m1b1, m2b2, m3b3, it finds a shortest
path joining the pair, then tests whether the subgraph induced by the union
of these paths is a prism. If there is a clean smallest prism in G′, then it
can be shown that a prism is found when considering one of the 9-tuples. A
similar procedure works to find clean smallest thetas.

There are three stages of cleaning required. The first two cleaning al-
gorithms output a list of polynomially many subsets of V (G), one of which
is a cleaner if G contains a smallest prism or theta. The first outputs a
cleaner when G contains a smallest theta, and is given in Section 2. The
second outputs a cleaner when G contains a smallest prism K, and is given
in Section 3. However, the second algorithm requires that the input graph
G contain no K-major vertices. For this reason, we need the third cleaning
algorithm, which outputs a list of subsets of which one contains all K-major
vertices and is disjoint from V (K). This algorithm is given in Section 4.
Finally, the algorithms for detecting clean prisms and thetas are described
in Section 5.

2 Theta shortcuts

Let K be a theta in G with ends a and b and paths P1, P2 and P3 between
them. For 1 ≤ i ≤ 3, let si be the neighbor of a in Pi and ti the neighbor
of b in Pi. Also, for 1 ≤ i ≤ 3 define mi ∈ P ∗

i and subpaths Si and Ti of Pi

such that Si = si-Pi-mi, Ti = mi-Pi-ti, and |V (Ti)| ≤ |V (Si)| ≤ |V (Ti)| + 1.
We call P1, P2 and P3 the paths of K and S1, T1, S2, T2, S3, and T3 the
half-paths of K. The frame of the theta K is the 11-tuple

{a, b, s1, s2, s3,m1,m2,m3, t1, t2, t3},

and we say that K has a tidy frame if

• a and b have no neighbors in V (G) \ V (K), and

• for i = 1, 2, 3, if mi is adjacent to a and b then mi has no neighbors in
V (G) \ V (K).

If S is one of the half-paths of K, then a shortcut across S is a shortest
path in G with the same ends as S. A shortcut across K is a shortcut across
any half-path of K. A shortcut S′ across S is good if no interior vertex of
S′ has neighbors in V (K) \ V (S), and bad otherwise.

3



2.1. Let K be a smallest theta in G. Assume K has a tidy frame. Then

there is a vertex c ∈ P ∗

2 ∪ P ∗

3 such that c has a neighbor in the interior of

every bad shortcut across S1 or T1.

Proof. Let C be the cycle induced by G on V (P2) ∪ V (P3). Let Q be
a bad shortcut across S1. Suppose there is no edge between V (Q) and
V (C) except s1-a. Since Q is a bad shortcut, it follows that some vertex
of Q has a neighbor in V (T1) \ {m1} and then the graph induced by G on
V (C)∪V (Q)∪V (T1) contains a theta smaller than K, a contradiction. Since
m1 has no neighbors in C and a is the only neighbor of s1 in C, this proves
that some vertex in Q∗ has a neighbor in C. Let q ∈ Q∗ be the vertex with
neighbors in C such that no other vertex in q-Q-m1 has neighbors in C.

(1) The vertex q has exactly two neighbors in C, and they are adjacent to

each other.

If m1 = t1, then any shortcut between m1 and s1 has empty interior,
and therefore is a good shortcut. Consequently, we may assume m1 6= t1.

Suppose q has two neighbors in C that are not adjacent to each other.
Let u and v be the neighbors of q in C such that a path between u and v in C

contains b and no other neighbor of q. Then u and v are not adjacent to each
other. Let Cu be the path of C from u to b such that v 6∈ V (Cu) and let Cv be
the path of C from v to b such that u 6∈ V (Cv). The paths q-u-Cu-b, q-v-Cv-b
and a path between q and b with interior in V (q-Q-m1-T1-b) form a theta,
K ′. Since V (K ′) ⊆ (V (K) \ V (S1)) ∪ (V (Q) \ {s1}), and |V (Q)| ≤ |V (S1)|,
we have |V (K ′)| < |V (K)|, contradicting the fact that no theta in G is
smaller than K. Therefore all neighbors of q in C are pairwise adjacent.

Suppose q has exactly one neighbor in C; call it u. If u is not adjacent
to b then the two paths between u and b in C and a path with interior in
V (u-q-Q-m1-T1-b) form a theta, K ′. Since V (K ′) ⊆ (V (K)\V (S1))∪(V (Q)\
{s1}), K ′ is smaller than K, a contradiction. Therefore u is adjacent to b.
Assume u is not adjacent to a. Since m1 6= t1, the two paths between u and
a in C and a path P ′ between u and a with interior in V (u-q-Q-m1-S1-s1-a)
form a theta, K ′. If q is non-adjacent to s1, then |V (q-Q-m1)| < |V (T1)|,
and therefore |V (K ′)| < |V (K)|; and if q is adajcent to s1, then V (P ′) =
{q, s1, a}, and so V (K ′) = V (C) ∪ {s1} and, again, |V (K ′)| < |V (K)|, in
both cases a contradiction. Therefore u is adjacent to a. Since u is adjacent
to both a and b, it is one of m2 or m3, contradicting the fact that K has
a tidy frame. Therefore, q has two neighbors in C, and they are adjacent.
This proves (1).
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Let R be a bad shortcut across T1. Suppose there is no edge between
V (R) and V (C) except t1-b. Since R is a bad shortcut, it follows that some
vertex of R has a neighbor in V (S1) \ {m1} and then the graph induced by
G on V (C)∪V (R)∪V (S1) contains a theta smaller than K, a contradiction.
Since m1 has no neighbors in C and b is the only neighbor of t1 in C, this
proves that some vertex in R∗ has a neighbor in C. Let r ∈ R∗ be the vertex
with neighbors in C such that no other vertex in r-R-m1 has neighbors in
C.

(2) The vertex r has exactly two neighbors in C, and they are adjacent to

each other.

This proof is very similar to that of (1). If m1 = s1, then m1 = t1
and there are no shortcuts between m1 and t1. Therefore we may assume
m1 6= s1.

Suppose r has two neighbors in C that are not adjacent to each other.
Let u and v be the neighbors of r in C such that a path between u and v in C

contains a and no other neighbor of r. Then u and v are not adjacent to each
other. Let Cu be the path of C from u to a such that v 6∈ V (Cu) and let Cv be
the path of C from v to a such that u 6∈ V (Cv). The paths r-u-Cu-a, r-v-Cv-a
and a path between r and a with interior contained in V (r-R-m1-S1-a)
form a theta, K ′. Since V (K ′) ⊆ (V (K) \ V (T1)) ∪ (V (R) \ {t1}), and
|V (R)| ≤ |V (T1)|, we have |V (K ′)| < |V (K)|, contradicting the fact that no
theta in G is smaller than K. Therefore all neighbors of r in C are pairwise
adjacent.

Suppose r has exactly one neighbor in C; call it u. If u is not adjacent
to a then the two paths between u and a in C and a path with interior
in V (u-r-R-m1-S1-a) form a theta, K ′. Since V (K ′) ⊆ (V (K) \ V (T1)) ∪
(V (R)\{t1}), K ′ is smaller than K, a contradiction. Therefore u is adjacent
to a. Assume u is not adjacent to b. Since m1 6= s1, the two paths between
u and b in C and a path with interior in V (u-r-R-m1-T1-t1-b) form a theta,
K ′. Since r-R-m1 contains fewer vertices than R and |V (R)| ≤ |V (S1)|, we
have |V (K ′)| < |V (K)|, a contradiction. Therefore u is adjacent to b. Since
u is adjacent to both a and b, it is one of m2 or m3, contradicting the fact
that K has a tidy frame. Therefore, r has two neighbors in C, and they are
adjacent. This proves (2).

Let Q′ be another bad shortcut across S1, and let q′ ∈ Q′∗ be the vertex
with neighbors in C such that no other vertex in q′-Q′-m1 has neighbors
in C. Denote by xq and yq the neighbors of q in C, and by x′

q and y′q the
neighbors of q′ in C.
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Let R′ be another bad shortcut across T1, and let r′ ∈ R′∗ be the vertex
with neighbors in C such that no other vertex in r′-R′-m1 has neighbors
in C. Denote by xr and yr the neighbors of r in C, and by x′

r and y′r the
neighbors of r′ in C.

(3) No two of the subsets {xq, yq}, {x
′

q, y
′

q}, {xr, yr} and {x′

r, y
′

r} are disjoint.

Assume that {xq, yq} is disjoint from {x′

q, y
′

q}. Since K has a tidy frame,
{a, b}∩{xq, x

′

q, yq, y
′

q} = ∅. Let Q′′ be the path between q and q′ with interior
in V (q-Q-m1) ∪ V (q′-Q′-m1). The triangles {q, xq, yq} and {q′, x′

q, y
′

q}, the
two paths between them in C and the path Q′′ form a prism, K ′. Since

|V (Q′′)| ≤ 2|V (S1)| − 3 < |V (S1)| + |V (T1)| − 1,

and V (K ′) ⊆ V (C) ∪ V (Q′′), we deduce that K ′ is smaller than K, a con-
tradiction. Therefore, {xq, yq} ∩ {x′

q, y
′

q} 6= ∅.
Assume that {xr, yr} is disjoint from {x′

r, y
′

r}. Since K has a tidy frame,
{a, b}∩{xr , x

′

r, yr, y
′

r} = ∅. Let R′′ be the path between r and r′ with interior
in V (r-R-m1) ∪ V (r′-R′-m1). The triangles {r, xr, yr} and {r′, x′

r, y
′

r}, the
two paths between them in C and the path R′′ form a prism, K ′. Since

|V (R′′)| ≤ 2|V (T1)| − 3 < |V (S1)| + |V (T1)| − 2,

and V (K ′) ⊆ V (C) ∪ V (R′′), we deduce that K ′ is smaller than K, a con-
tradiction. Therefore, {xr, yr} ∩ {x′

r, y
′

r} 6= ∅.
Suppose {xq, yq} is disjoint from {xr, yr}. Then the triangles {q, xq, yq}

and {r, xr, yr}, the two paths in C between {xq, yq} and {xr, yr} and the path
between q and r with interior in V (q-Q-m1-R-r) form a prism, K ′. Since
V (K ′) ⊆ V (C) ∪ V (Q) ∪ V (R) \ {s1, t1}, the prism K ′ is smaller than K, a
contradiction. Therefore {xq, yq}∩{xr, yr} 6= ∅. By symmetry, we also have
that {xq, yq}∩{x

′

r, y
′

r} 6= ∅, {x′

q, y
′

q}∩{xr, yr} 6= ∅, and {x′

q, y
′

q}∩{x
′

r, y
′

r} 6= ∅.
This proves (3).

Let U,W and Z each be a bad shortcut across either S1 or T1. Since the
choices of Q,Q′, R and R′ were arbitrary, it follows from (1), (2) and (3)
that there exist u ∈ U∗, w ∈ W ∗ and z ∈ Z∗ such that u has two adjacent
neighbors xu, yu ∈ V (C), w has two adjacent neighbors xw, yw ∈ V (C), z

has two adjacent neighbors xz, yz ∈ V (C), and no two of {xu, yu}, {xw, yw}
and {xz, yz} are disjoint.

Assume that {xw, yw}∩{xz, yz} = {xw} and {xw, yw}∩{xu, yu} = {yw}.
Then, since xw and yw are adjacent and xz and yz are adjacent, {xz, yz}
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contains xw and the vertex adjacent to xw in V (C) \ {yw}. Similarly, since
xu and yu are adjacent, {xu, yu} contains yw and the vertex adjacent to yw in
V (C)\{xw}. Since xw and yw have no common neighbors in C, we have that
{xz , yz} ∩ {xu, yu} = ∅, a contradiction. Therefore, by symmetry between
xw and yw we may assume that xw ∈ {xz , yz} and xw ∈ {xu, yu}. Therefore
every bad shortcut across S1 or T1 contains an interior vertex adjacent to
xw; taking c = xw proves 2.1.

2.2. There is an algorithm with the following specifications:

• Input: A graph G.

• Output: A sequence of subsets X1, . . . ,Xr of V (G) with r ≤ |V (G)|3,
such that for every smallest theta K in G with a tidy frame and i ∈
{1, 2, 3}, one of X1, . . . ,Xr is disjoint from V (K) and contains a vertex

of every bad shortcut across the half-paths Si and Ti of K.

• Running Time: O(|V (G)|4).

Proof. The algorithm is as follows. Enumerate all triples of vertices (c, u, v)
for which u and v are adjacent to c. For each such triple, compute the subset
N(c) \ {u, v}. Let X1, . . . ,Xr be the subsets generated. We output the list
∅,X1, . . . ,Xr. That concludes the description of the algorithm; we now
prove that it works correctly. The number of subsets generated is at most
|V (G)|3 and the running time is O(|V (G)|4) because it takes linear time to
compute N(c). It remains to check that the sequence X1, . . . ,Xr has the
properties claimed. Let K be a smallest theta in G and assume it has a tidy
frame. By 2.1, for every i = 1, 2, 3 there is a vertex c′ ∈ V (K) such that
every bad shortcut across Si or Ti contains an interior vertex adjacent to
c′. The vertex c′ has exactly two neighbors in K; call them u′ and v′. One
of the triples enumerated by the algorithm will be (c′, u′, v′). The subset
N(c′) \ {u′, v′} includes all neighbors of c′ except its two neighbors that are
in K, and is therefore disjoint from V (K). This proves 2.2.

3 Prism shortcuts

Let K be a prism in G. Label the triangles of K {a1, a2, a3} and {b1, b2, b3}
and the paths P1, P2 and P3 such that for i = 1, 2, 3 the path Pi has
ends ai and bi. For i = 1, 2, 3 choose mi ∈ P ∗

i and subpaths Si and Ti

such that Si = ai-Pi-mi, Ti = mi-Pi-bi and |V (Si)| ≤ |V (Ti)| + 1 and
|V (Ti)| ≤ |V (Si)|+ 1. We call P1, P2 and P3 the paths of K and S1, T1, S2,
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T2, S3, and T3 the half-paths of K. The 9-tuple

{a1, a2, a3,m1,m2,m3, b1, b2, b3}

is the frame of K. A prism K has a tidy frame if for i = 1, 2, 3,

• neither ai nor bi has neighbors in V (G) \ V (K), and

• if mi is adjacent to ai and bi, then mi has no neighbors in V (G)\V (K).

The prism K in G is almost clean if it has a tidy frame and G contains no
K-major vertices.

If S is one of the half-paths of K, then a shortcut across S is a shortest
path in G with the same ends as S. A shortcut across K is a shortcut across
some half-path of K. A shortcut Q across S is good if no interior vertex of
Q has neighbors in V (K) \ V (S), and bad otherwise.

Let C be the cycle induced by G on V (P2) ∪ V (P3).

3.1. Let K be a smallest prism. For every bad shortcut Q across S1, some

vertex of Q∗ has a neighbor in C.

Proof. Suppose no vertex of Q∗ has a neighbor in C. Then, since Q is bad,
some vertex of Q∗ has a neighbor in V (T1) \ {m1}. Therefore, there exists a
path P ′

1 from a1 to b1 with P ′∗

1 ⊂ V (Q)∪ V (T1) \ {m1}. So there is a prism
contained in V (C) ∪ V (P ′

1) that is smaller than K, a contradiction because
K is a smallest prism. This proves 3.1.

In view of 3.1, for a bad shortcut Q across S1 or T1, define βQ ∈ Q∗ to
be the vertex with neighbors in V (C) such that no other vertex in βQ-Q-m1

has neighbors in V (C).

3.2. Let K be an almost clean smallest prism. For a bad shortcut Q across

S1, either |N(βQ) ∩ V (K)| = |N(βQ) ∩ V (C)| = 1 or N(βQ) ∩ V (K) is the

vertex set of a 3-vertex path of C.

Proof. Since K is almost clean, βQ is not a K-major vertex, and therefore
N(βQ) ∩ V (K) ⊆ N(βQ) ∩ V (C). Assume βQ has exactly two neighbors in
C, u and v. If u and v are not adjacent, then u-βQ-v and the two paths in C

between u and v form a theta that has fewer vertices than K, a contradiction.
So u and v are adjacent. Denote βQ-Q-m1 by U . Since K is almost clean,
{u, v} ∩ {b1, b2, b3} = ∅, so there is a prism K ′ containing the triangles
{b1, b2, b3} and {βQ, u, v} with V (K ′) ⊆ V (C) ∪ V (T1) ∪ V (U) (the three
paths of K ′ are two paths of C and the path contained in V (U) ∪ V (T1)).
Since |V (U)| < |V (S1)| (because a1 6∈ V (U)), K ′ is smaller than K, a
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contradiction. Therefore, βQ has either a unique neighbor in C or at least
three neighbors in C. Since K is almost clean, βQ is not K-major, so if it
has at least three neighbors in C then it has exactly three neighbors in C,
which are the vertex set of a 3-vertex path of C. This proves 3.2.

3.3. Let K be a smallest prism in G. Assume K is almost clean. Then

there exist two edges e1 and e2, one in E(P2) and the other in E(P3), such

that either

• there exists a bad shortcut T across S1 with |N(βT ) ∩ V (C)| = 1 and

for every bad shortcut Q across S1, if |N(βQ) ∩ V (C)| = 1 then βQ is

adjacent to an end of e1 and if |N(βQ)∩V (C)| > 1 then βQ is adjacent

to both ends of e1, or

• for every bad shortcut Q, |N(βQ) ∩ V (C)| = 3 and βQ is adjacent

either to both ends of e1 or to both ends of e2.

Proof. We start with a few observations about bad shortcuts across S1.

(1) There exists an edge e1 ∈ E(C) such that for every bad shortcut Q across

S1, if |N(βQ) ∩ V (C)| = 1 then βQ is adjacent to an end of e1.

We may assume that there exist two distinct bad shortcuts Q and Q′

across S1 such that βQ has a unique neighbor x in C, βQ′ has a unique
neighbor y in C, and x 6= y. Let U be the path βQ-Q-m1, let U ′ be the path
βQ′-Q′-m1 and let W be a path between βQ and βQ′ with interior in V (U)∪
V (U ′). If x and y are nonadjacent, then the two paths between them in C

and the path x-βQ-W -βQ′-y form a theta, K ′. Since |V (W )| ≤ 2|V (S1)| − 3
and |V (P1)| ≥ 2|V (S1)|−2, K ′ is smaller than K, a contradiction. Therefore,
x is adjacent to y.

Let Q′′ be any other bad shortcut across S1 such that βQ′′ has a unique
neighbor z in C. By the previous argument, applied to the pairs Q,Q′′ and
Q′, Q′′, it follows that z is equal or adjacent to x and equal or adjacent to
y. Then either z ∈ {x, y} or z is adjacent to both x and y. But since x

and y are adjacent vertices of C, they have no common neighbor in C, so
z ∈ {x, y}. Therefore, there exists an edge e1 = x-y such that whenever βQ′′

has a unique neighbor in C, βQ′′ is adjacent to an end of e1. This proves
(1).

(2) There exist edges e1 ∈ E(P2) and e2 ∈ E(P3) such that for every bad

shortcut Q across S1, if |N(βQ) ∩ V (C)| = 3 then βQ is either adjacent to

both ends of e1 or to both ends of e2.
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Let Q be a bad shortcut across S1 such that βQ′ has three neighbors in
C. By 3.2, N(βQ) ∩ V (C) is the vertex set of a 3-vertex path of C. Since
K is almost clean, N(βQ) ∩ V (C) is contained in either P ∗

2 or P ∗

3 .
Therefore, in order to prove (2), it is enough to show that there exist

edges e1 ∈ E(P2) and e2 ∈ E(P3) such that for every bad shortcut Q across
S1, if |N(βQ) ∩ V (P2)| = 3 then βQ is adjacent to both ends of e1, and if
|N(βQ) ∩ V (P3)| = 3, then βQ is adjacent to both ends of e2.

Let Q and Q′ be bad shortcuts across S1. Suppose that each of βQ and
βQ′ has three neighbors in P2. Then each of N(βQ) ∩ V (C) and N(βQ′) ∩
V (C) is the vertex set of a 3-vertex path of P2.

We claim that |N(βQ) ∩ V (C) ∩ N(βQ′)| ≥ 2. Assume that |N(βQ) ∩
V (C)∩N(βQ′)| < 2. If βQ and βQ′ are adjacent to each other, then there is
a path P ′

2 between a2 and b2 whose interior is contained in P ∗

2 ∪ {βQ, βQ′}
and is anticomplete to V (K)\P ∗

2 . Then (V (K)\P ∗

2 )∪P ′∗

2 contains a prism
smaller than K, a contradiction. So we may assume that βQ and βQ′ are
not adjacent to each other. Then there are two paths A and B between βQ

and βQ′ whose interiors are anticomplete to each other and are contained
in V (C). The paths A, B and a path between βQ and βQ′ with interior in
V (Q) ∪ V (Q′) form a theta, K ′. Since |V (Q) ∪ V (Q′)| ≤ 2|V (S1)| − 3 <

|V (S1)| + |V (T1)| − 1 = |V (P1)|, the theta K ′ is smaller than the prism K,
a contradiction. This proves the claim.

Label the neighbors of βQ in C x, y and z and the neighbors of βQ′ in C

x′, y′ and z′ such that x-y-z and x′-y′-z′ are paths of C. Let Q′′ be another
bad shortcut across S1 such that βQ′′ has three neighbors x′′, y′′ and z′′ in P2

and x′′-y′′-z′′ is a path of P2. Then we have that |{x′′, y′′, z′′}∩{x, y, z}| ≥ 2
and |{x′′, y′′, z′′} ∩ {x′, y′, z′}| ≥ 2. Since x-y-z is a path, either {x, y} ⊂
{x′, y′, z′} or {y, z} ⊂ {x′, y′, z′}, and similarly, either {x, y} ⊂ {x′′, y′′, z′′}
or {y, z} ⊂ {x′′, y′′, z′′}. Assume that {x, y, z} ∩ {x′, y′, z′} = {x, y} and
{x, y, z} ∩ {x′′, y′′, z′′} = {y, z}. Then since x-y-z is a path and x′-y′-z′ is a
path, {x′, y′, z′} contains {x, y} and the vertex adjacent to x in V (P2)\{y}.
Similarly, since x′′-y′′-z′′ is a path, {x′′, y′′, z′′} contains {y, z} and the vertex
adjacent to z in V (P2)\{y}. Since x and z are not adjacent and x and z have
no common neighbors in V (P2)\{y}, it follows that {x′, y′, z′}∩{x′′, y′′, z′′} =
{y}, a contradiction. Therefore, by symmetry between {x, y} and {y, z} we
may assume that {x, y} ⊂ {x′, y′, z′} and {x, y} ⊂ {x′′, y′′, z′′}. This proves
that for every bad shortcut R across S1, if |N(βR) ∩ V (P2)| = 3 then βR is
adjacent to both ends of e1 = x-y.

From the symmetry, there exists an edge e2 ∈ E(P3) such that for every
bad shortcut R across S1, if |N(βR) ∩ V (P3)| = 3 then βR is adjacent to
both ends of e2. This proves (2).
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(3) If Q and Q′ are bad shortcuts across S1 with |N(βQ) ∩ V (C)| = 1 and

|N(βQ′) ∩ V (C)| = 3, then the neighbor of βQ in C is adjacent to βQ′.

Denote by x the neighbor of βQ in C. By 3.2, the neighbors of βQ′ in C

are the vertex set of a 3-vertex path of C, say c1-c2-c3.
Assume that x 6∈ {c1, c2, c3}. Then the subgraph induced by G on

(V (C) \ {c2}) ∪ V (Q) ∪ V (Q′) contains a theta, K ′ (the three paths of
K ′ are two paths between βQ′ and x with interior in C and the path with
interior in V (βQ′-Q′-m1-Q-βQ-x)). Since V (K ′) ⊆ V (C) ∪ Q∗ ∪ Q′∗ ∪ {m1}
and |Q∗| + |Q′∗| + 1 ≤ 2|V (S1)| − 3 < |V (S1)| + |V (T1)| − 1, the theta K ′

is smaller than K, a contradiction. Therefore, x ∈ {c1, c2, c3}. This proves
(3).

If for every bad shortcut Q, |N(βQ)∩V (C)| = 3, then the second outcome
of the theorem holds by (2). So we may assume that there exists a bad
shortcut Q with N(βQ) ∩ V (C) = {x}. Suppose there exists a bad shortcut
Q′ with |N(βQ′) ∩ V (C)| = {y} such that x 6= y. Then by (1) and (3) the
first outcome of the theorem holds with e1 being the edge as in (1). So we
may assume that for every bad shortcut Q′ with |N(βQ′) ∩ V (C)| = 1, βQ′

is adjacent to x. Let c1-x-c2 be the 3-vertex path in C with x as its interior
vertex. If there exist bad shortcuts Q′ and Q′′ with |N(βQ′) ∩ V (C)| = 3
and |N(βQ′′) ∩ V (C)| = 3 such that βQ′ is not adjacent to c1 and βQ′′ is
not adjacent to c2, then N(βQ′)∩ V (C) ∩N(βQ′′) = {x}, contradicting (2).
Thus one of c1 and c2, say c1, is complete to {βQ′ , βQ′′}, and the theorem
holds with e1 = c1-x. This completes the proof of 3.3.

3.4. Let K be a smallest prism in G. Assume K is almost clean. Then

there exist two edges e1 and e2, one in E(P2) and the other in E(P3), such

that either

• there exists a bad shortcut T across S1 or T1 with |N(βT )∩V (C)| = 1,
and for every bad shortcut Q across S1 or T1, if |N(βQ) ∩ V (C)| = 1
then βQ is adjacent to an end of e1 and if |N(βQ) ∩ V (C)| > 1 then

βQ is adjacent to both ends of e1, or

• for every bad shortcut Q across S1 or T1, |N(βQ)∩V (C)| = 3 and βQ

is adjacent either to both ends of e1 or to both ends of e2.

Proof. We start with a few observations about bad shortcuts across S1 and
T1.
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(1) Let Q be a bad shortcut across S1 with |N(βQ)∩V (C)| = 1 and R a bad

shortcut across T1 with |N(βR)∩ V (C)| = 1. Then the neighbor of βQ in C

and the neighbor of βR in C are either equal or adjacent to each other.

Let {xq} = N(βQ) ∩ V (C) and {xr} = N(βR) ∩ V (C). Assume that xq

and xr are distinct and nonadjacent. There are two paths between them, A

and B, each of length at least two and contained in C. There is a path P

between xq and xr with interior in V (βQ-Q-m1-R-βR). The three paths A,
B and P form a theta, K ′. Since |V (P )| ≤ |Q∗ ∪ {m1} ∪R∗| < |V (P1)|, the
theta K ′ is smaller than the prism K, a contradiction. This proves (1).

(2) Let Q be a bad shortcut across S1 with |N(βQ)∩V (C)| = 3 and N(βQ)∩
V (C) ⊆ P ∗

2 . Let R be a bad shortcut across T1 with |N(βR) ∩ V (C)| = 3
and N(βR) ∩ V (C) ⊆ P ∗

2 . Then there is an edge in E(P2) whose ends are

{βQ, βR}-complete.

Assume that |N(βQ)∩V (C)∩N(βR)| < 2. By 3.2, each of N(βQ)∩V (K)
and N(βR)∩V (K) is the vertex set of a 3-vertex path of C. If βQ is adjacent
to βR then there is a path A between a2 and b2 with interior in P ∗

2 ∪{βQ, βR}
such that {βQ, βR} ⊂ V (A). Since |N(βQ) ∩ V (C)| = |N(βR) ∩ V (C)| = 3,
it follows that |(N(βQ) ∪ N(βR)) ∩ V (C)| ≥ 5. So |V (P2) \ V (A)| ≥ 3 and
|V (A) \ V (P2)| = 2, which implies that |V (A)| < |V (P2)|. It follows from
3.2 that A∗ is anticomplete to P ∗

1 and P ∗

3 , and so the induced subgraph with
vertex set (V (K)\V (P2))∪V (A) is a prism smaller than K, a contradiction.
This proves that βQ is not adjacent to βR. It follows that there are two paths
B and B′ between βQ and βR whose interiors are anticomplete to each other
and are contained in V (C). There is also a path P between them with
interior contained in V (βQ-Q-m1-R-βR). Since βQ is not adjacent to βR,
P has length at least two. Since |V (P )| ≤ |Q∗ ∪ {m1} ∪ R∗| < |V (P1)|,
the paths B, B′ and P form a theta smaller than K, a contradiction. This
proves that |N(βQ)∩ V (C)∩N(βR)| ≥ 2. Since each of N(βQ)∩ V (C) and
N(βR) ∩ V (C) is the vertex set of a 3-vertex subpath of P2, (2) follows.

(3) Let Q be a bad shortcut across S1 with |N(βQ)∩V (C)| = 1 and R a bad

shortcut across T1 with |N(βR)∩ V (C)| = 3. Then the neighbor of βQ in C

is adjacent to βR.

Let {xq} = N(βQ) ∩ V (C). Assume that xq 6∈ N(βR). There are two
paths A and B between xq and βR whose interiors are anticomplete to each
other and are contained in V (C). There is a path P between xq and βR with
interior in V (βQ-Q-m1-R-βR). Since |V (P )| ≤ |Q∗∪{m1}∪R∗|+1 < |V (P1)|,
the paths A, B and P form a theta smaller than K, a contradiction. This
proves (3).
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(4) Suppose that there exist p ∈ V (P2) and s ∈ V (P3) such that for every

bad shortcut Q across S1 or T1, βQ is adjacent to p or s. Then the theorem

holds.

Since there are no K-major vertices in G, for every bad shortcut Q across
S1 or T1 with N(βQ)∩V (C) ⊆ P ∗

2 , N(βQ)∩V (C) is contained in the vertex
set of the 5-vertex path c1-c2-p-c3-c4 contained in C. Suppose there exist
two bad shortcuts P and P ′ across either S1 or T1 with N(βP ) ∩ V (C) =
{c1, c2, p} and N(βP ′)∩V (C) = {p, c3, c4}. Then N(βP )∩V (C)∩N(βP ′) =
{p}. If both P and P ′ are shortcuts across S1 or both are shortcuts across T1,
then this contradicts both outcomes of 3.3. If one of P and P ′ is a shortcut
across S1 and the other is a shortcut across T1, then this contradicts (2).
Therefore, there exists a 4-vertex path A of C with p ∈ A∗ such that for every
bad shortcut P across S1 or T1, if N(βP )∩V (C) ⊆ P ∗

2 then N(βP )∩V (C) ⊂
V (A). Let e1 be the edge with both ends in A∗. It follows that for every bad
shortcut P across S1 or T1 with N(βP )∩V (C) ⊆ P ∗

2 , if |N(βP )∩V (C)| = 1
then βP is adjacent to the end p of e1, and if |N(βP )∩V (C)| > 1 then βP is
adjacent to both ends of e1. By symmetry between P2 and P3, it also follows
that there is an edge e2 ∈ E(P3) such that for every bad shortcut P across
S1 or T1 with N(βP )∩V (C) ⊆ P ∗

3 , if |N(βP )∩V (C)| = 1 then βP is adjacent
to an end of e2, and if |N(βP )∩V (C)| > 1 then βP is adjacent to both ends
of e2. So if for all bad shortcuts Q across S1 and T1, |N(βQ) ∩ V (C)| > 1,
then the second outcome of the theorem holds. If not, then by (1) and (3),
either for all bad shortcuts Q across S1 and T1, N(βQ)∩ V (C) ⊆ P ∗

2 , or for
all bad shortcuts Q across S1 and T1, N(βQ) ∩ V (C) ⊆ P ∗

3 . In both cases,
(with e2 in place of e1 in the second case), the first outcome of the theorem
holds. This proves (4).

First assume that there exist a bad shortcut Q across S1 with |N(βQ) ∩
V (C)| = 1 and a bad shortcut R across T1 with |N(βR) ∩ V (C)| = 1. The
first outcome of 3.3 holds for both S1 and T1. Let {xq} = N(βQ) ∩ V (C)
and {xr} = N(βR) ∩ V (C). Assume that xq 6= xr. By (1), xq is adjacent
to xr. Let Q′ be any other bad shortcut across S1 and let R′ be any other
bad shortcut across T1. It follows from (1) that if |N(βQ′)∩V (C)| = 1 then
βQ′ is adjacent to xq or xr; it also follows that if |N(βR′) ∩ V (C)| = 1 then
βR′ is adjacent to xr or xq. Also, 3.3 implies that if |N(βQ′) ∩ V (C)| > 1
then βQ′ is adjacent to xq, and if |N(βR′) ∩ V (C)| > 1 then βR′ is adjacent
to xr. By (3), if |N(βQ′) ∩ V (C)| > 1 then βQ′ is adjacent to xr and if
|N(βR′)∩V (C)| > 1 then βR′ is adjacent to xq. Therefore, the first outcome
of the theorem holds with e1 being xq-xr. Now we may assume that for every
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bad shortcut Q across S1 with |N(βQ) ∩ V (C)| = 1 and R across T1 with
|N(βR) ∩ V (C)| = 1, if {xq} = N(βQ) ∩ V (C) and {xr} = N(βR) ∩ V (C),
then xq = xr. By the first outcome of 3.3, for any bad shortcut Q′ across S1

with |N(βQ′) ∩ V (C)| > 1, βQ′ is adjacent to xq, and for any bad shortcut
R′ across T1 with |N(βR′) ∩ V (C)| > 1, βR′ is adjacent to xr, which equals
xq. By (4) with p = xq, the first outcome of the theorem holds.

Next assume that there exists a bad shortcut Q across S1 with |N(βQ)∩
V (C)| = 1. Then we may assume because of the previous paragraph that
for every bad shortcut R across T1, |N(βR) ∩ V (C)| > 1. The first outcome
of 3.3 holds for shortcuts across S1 and the second outcome of 3.3 holds for
shortcuts across T1. Let {xq} = N(βQ) ∩ V (C). Suppose there is a bad
shortcut Q′ across S1 with N(βQ′) ∩ V (C) = {xq′} such that xq′ 6= xq. By
the first outcome of 3.3, xq is adjacent to x′

q and for every bad shortcut Q′′

across S1, if |N(βQ′′) ∩ V (C)| = 1 then βQ′′ is adjacent to either xq or to
xq′ , and if |N(βQ′′) ∩ V (C)| > 1 then βQ′′ is adjacent to both xq and xq′ .
By (3), for every bad shortcut R′ across T1, both xq and xq′ are adjacent
to βR′ . Then the first outcome of the theorem holds with e1 being the edge
xq-xq′ . So for every bad shortcut Q′ across S1 with |N(βQ′)∩V (C)| = 1 we
may assume that βQ′ is adjacent to xq. By the first outcome of 3.3, for any
bad shortcut Q′ across S1 with |N(βQ′) ∩ V (C)| > 1, βQ′ is adjacent to xq.
By (3), for any bad shortcut R′ across T1, βR′ is adjacent to xq. Therefore,
by (4) with p = xq, the first outcome of the theorem holds.

If there exists a bad shortcut R across T1 with |N(βR) ∩ V (C)| = 1,
then by symmetry, the argument of the previous paragraph applies. So
we may finally assume that for every shortcut P across either S1 or T1,
|N(βP )∩V (C)| > 1. Then the second outcome of 3.3 holds for both S1 and
T1. Let Q be a bad shortcut across S1 with N(Q)∩V (C) ⊆ P ∗

2 . Let c1-p-c2

be a subpath of P2 such that N(Q) ∩ V (C) = {c1, p, c2}. By the second
outcome of 3.3, for any bad shortcut Q′ across S1 with N(βQ′)∩V (C) ⊆ P ∗

2 ,
βQ′ is adjacent to p. Also, by (2), for any bad shortcut R across T1 with
N(βR)∩V (C) ⊆ P ∗

2 , βR is adjacent to p. By symmetry between P2 and P3,
there is also a vertex s ∈ P ∗

3 such that for every bad shortcut R across S1

or T1 with N(βR) ∩ V (C) ⊆ P ∗

3 , βR is adjacent to s. Therefore, by (4), the
second case of the theorem holds. This proves 3.4.

3.5. There is an algorithm with the following specifications:

• Input: A graph G.

• Output: A sequence of subsets X1, . . . ,Xr of V (G) with r ≤ 2|V (G)|4,
such that for every almost clean smallest prism K in G and i ∈
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{1, 2, 3}, one of X1, . . . ,Xr is disjoint from V (K) and contains a ver-

tex of every bad shortcut across the half-paths Si and Ti of K.

• Running Time: O(|V (G)|5).

Proof. The algorithm is as follows. Enumerate all quadruples of distinct
vertices (u1, u2, u3, u4). For each, define the subset

Y = (N(u2) ∪ N(u3)) \ {u1, u2, u3, u4}

and the subset
Z = N(u1, u2) ∪ N(u3, u4).

Let Y1, . . . , Ys and Z1, . . . , Zs be the subsets generated. Output ∅, Y1, . . . , Ys,
Z1, . . . , Zs.

That concludes the description of the algorithm; we now prove that
it works correctly. It takes time O(|V (G)|5) to find the sets Y1, . . . , Ys and
Z1, . . . , Zs and the number of subsets in the output is ≤ 2|V (G)|4. It remains
to check that the output sequence has the properties claimed. Let K be an
almost clean smallest prism in G with half-paths S1, T1, S2, T2, S3 and T3.
We may assume by symmetry that i = 1. Apply 3.4 to S1 and T1.

If the first outcome of 3.4 holds, then there is an edge in P ∗

2 ∪ P ∗

3 , say
u2-u3, such that every bad shortcut across S1 or T1 contains an interior
vertex adjacent to either u2 or u3. Choose u1 to be the neighbor of u2 in
V (K) \ {u3} and u4 to be the neighbor of u3 in V (K) \ {u2}. Then the
subset (N(u2)∪N(u3)) \ {u1, u2, u3, u4} is disjoint from V (K) and contains
an interior vertex of every bad shortcut across S1 or T1.

If the second outcome of 3.4 holds, then there are two edges in P ∗

2 ∪P ∗

3 ,
say u1-u2 and u3-u4, such that the set N(u1, u2) ∪ N(u3, u4) contains an
interior vertex of every bad shortcut across S1 or T1. Since u1 and u2 are
adjacent, they have no common neighbors in V (K), and since u3 and u4 are
adjacent, they have no common neighbors in V (K), so N(u1, u2)∪N(u3, u4)
is disjoint from V (K). This proves 3.5.

4 Major vertices

In this section, let K be a smallest prism in a graph G, and assume that
K has a tidy frame. Let the vertices of P1 be f1, f2, . . . , fn, numbered in
order with f1 = a1 and fn = b1. Let the vertices of P2 be h1, h2, . . . , hm,
numbered in order with h1 = a2 and hm = b2, and let the vertices of P3 be
g1, g2, . . . , gp, numbered in order with g1 = a3 and gp = b3.
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Recall that a K-major vertex is a vertex in V (G)\V (K) whose neighbors
in K are not contained in a 3-vertex path in K. Since K has a tidy frame,
every K-major vertex is anticomplete to {a1, a2, a3, b1, b2, b3}. For a K-
major vertex x, if x has neighbors in P1, let jx be minimal such that x

is adjacent to fjx
and let kx be maximal such that x is adjacent to fkx

.
Similarly, let sx be minimal and tx maximal such that x is adjacent to hsx

and htx , and let cx be minimal and dx maximal such that x is adjacent to
gcx

and gdx
.

We start with a few easy but useful lemmas.

4.1. A K-major vertex has at least three neighbors in K.

Proof. Let x be a major vertex with N(x)∩V (K) = {u, v}. We may assume
by symmetry that {u, v} ⊂ V (P2) ∪ V (P3). Since x is major, u and v are
not adjacent, so the subgraph induced by G on V (P2) ∪ V (P3) ∪ {x} is a
theta smaller than K, a contradiction.

4.2. There is no K-major vertex with exactly two neighbors in P2 and no

neighbors in P3.

Proof. Let x be a K-major vertex with N(x)∩V (P2) = {hsx
, htx} and N(x)∩

V (P3) = ∅. By 4.1, x has at least one neighbor in P1. If sx + 1 < tx, then
the subgraph induced by G on V (P2) ∪ V (P3) ∪ {x} is a theta smaller than
K, a contradiction. So we may assume that sx + 1 = tx. Now the triangles
{hsx

, htx , x} and {a1, a2, a3} and the paths hsx
-P2-a2, htx -P2-b2-b3-P3-a3 and

x-fjx
-P1-a1 form a prism, K ′. Since V (K ′) ⊆ V (K) ∪ {x} \ {fjx+1, b1},

the prism K ′ is smaller than K unless fjx+1 = b1. Also, the triangles
{x, hsx

, htx} and {b1, b2, b3} and the paths hsx
-P2-a2-a3-P3-b3, htx -P2-b2 and

x-fkx
-P1-b1 form a prism, K ′′. Since V (K ′′) ⊆ V (K) ∪ {x} \ {fkx−1, a1},

the prism K ′′ is smaller than K unless fkx−1 = a1. Therefore, since K is a
smallest prism, fjx+1 = b1 and fkx−1 = a1. It follows that jx = kx and fjx

is adjacent to both a1 and b1, so fjx
= m1, contradicting the fact that K

has a tidy frame.

4.3. Let x and y be vertices each with at least two nonadjacent neighbors in

a path P = v1- · · · -vn. If there do not exist paths A and B between x and

y with A∗ ⊂ V (P ) and B∗ ⊂ V (P ) such that A∗ and B∗ are anticomplete

to each other, then for some 1 ≤ i ≤ n, N(x) ∩ V (P ) ⊂ {v1, . . . , vi+1} and

N(y) ∩ V (P ) ⊂ {vi, . . . , vn}.

Proof. Let vs and vt be the neighbors of x in P with s minimum and t

maximum. Let vp and vr be the neighbors of y in P with p minimum and
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r maximum. Since x and y each have two nonadjacent neighbors in P ,
s + 1 < t and p + 1 < r. If p < s and r > t then there are paths A and B

between x and y with A∗ ⊆ {vp, . . . , vs} and B∗ ⊆ {vt, . . . , vr} and A∗ and
B∗ are anticomplete to each other, a contradiction. So either p ≥ s or r ≤ t.
By symmetry, we may assume that p ≥ s. If r ≤ t then there are paths
A and B between x and y with A∗ ⊆ {vs, . . . , vp} and B∗ ⊆ {vr, . . . , vt}
and A∗ and B∗ are anticomplete to each other, a contradiction. Therefore,
r > t. If p < t − 1 then there are paths A and B between x and y with
A∗ ⊆ {vs, . . . , vp} and B∗ ⊆ {vt, . . . , vr} and A∗ and B∗ are anticomplete
to each other, a contradiction. So p ≥ t − 1, and the theorem holds with
i = t − 1. This proves 4.3.

4.4. Every K-major vertex has neighbors in at least two of P1, P2 and P3.

Proof. Let v be a K-major vertex with N(v) ∩ V (K) ⊆ V (P1). Since v

is major, jv + 2 < kv . The subgraph induced by G on V (K) ∪ {v} \
{fjv+1, . . . , fkv−1} is a prism that is smaller than K. Therefore, N(v) ∩
V (K) 6⊆ V (P1). By symmetry between P1, P2 and P3, it follows that
N(v) ∩ V (K) 6⊆ V (P2) and N(v) ∩ V (K) 6⊆ V (P3). This proves 4.4.

4.5. Let x and y be K-major vertices that are not adjacent to each other.

Then for some i, j with 1 ≤ i < j ≤ 3, N(x) ∩ V (K) ⊆ V (Pi) ∪ V (Pj) and

N(y) ∩ V (K) ⊆ V (Pi) ∪ V (Pj).

Proof. We first prove that each of x and y has neighbors in exactly two of
P1, P2 and P3.

(1) None of x and y has neighbors in all of P1, P2, P3.

Assume that x and y both have neighbors in all three of P1, P2 and P3.
Then there are three paths between x and y each with interior in P ∗

i for i ∈
{1, 2, 3}. These paths form a theta whose vertex set is contained in (V (K)\
{a1, a2, a3, b1, b2, b3}) ∪ {x, y} and is thus smaller than K, a contradiction.
Therefore, at least one of x and y does not have neighbors in all three paths
P1, P2 and P3.

We may assume by symmetry that N(y) ∩ V (P1) = ∅. Also, we may
assume that x has neighbors in all of P1, P2 and P3, because otherwise (1)
holds. By 4.4, y has neighbors in both P2 and P3. By 4.1, it has at least two
neighbors in one of these paths, say P2. Then by 4.2, it has two nonadjacent
neighbors in P2.

Since x and y both have neighbors in P3, there is a path R between them
with interior in P ∗

3 . Let P be the path hsy
-P2-a2-a1-P1-b1-b2-P2-hty . Assume
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that x has two nonadjacent neighbors in P . Then by 4.3, there are two
paths R′ and R′′ between x and y whose interiors are anticomplete to each
other and contained in V (P ). Since V (P ) is anticomplete to P ∗

3 , the paths
x-R-y, x-R′-y and x-R′′-y form a theta, K ′. Since V (K ′) ⊆ V (K)∪ {x, y} \
{a3, b3, hsy+1}, K ′ is smaller than K, a contradiction. Therefore, x does
not have two nonadjacent neighbors in P . Since P1 is a subpath of P , this
implies that x does not have two nonadjacent neighbors in P1, so jx ≥ kx−1.
Also, since N(x)∩P ∗

1 6= ∅, it follows that N(x)∩ (V (P ) \V (P1)) = ∅. Thus
sx > sy and tx < ty.

If sx < ty − 1 then the paths x-R-y, x-fkx
-P1-b1-b2-P2-hty -y, and a path

between x and y with interior in {hsy
, . . . , hsx

} form a theta, K ′. Since
V (K ′) ⊆ V (K) ∪ {x, y} \ {hty−1, a3, b3}, K ′ is smaller than K, a contradic-
tion. Therefore, sx ≥ ty − 1. Since sx ≤ tx and tx < ty, this proves that
sx = ty−1 = tx. If tx > sy+1, then the paths x-R-y, x-fjx

-P1-a1-a2-P2-hsy
-y

and a path between x and y with interior in {htx , hty} form a theta, K ′.
Since V (K ′) ⊆ V (K) ∪ {x, y} \ {hsy+1, a3, b3}, K ′ is smaller than K, a con-
tradiction. Therefore, tx ≤ sy + 1. Since tx = sx > sy, this proves that
sx = tx = sy + 1. Therefore, sy + 2 = ty and N(x) ∩ V (P2) = {hsy+1}.

If y is not adjacent to hsy+1 then |N(y)∩V (P2)| = 2 and N(y)∩V (P1) =
∅, contradicting 4.2. Therefore, y is adjacent to hsy+1. If jx = kx then the
subgraph induced by G on V (P1)∪V (P2)∪{x} is a theta smaller than K, a
contradiction. Therefore, jx < kx, and since jx ≥ kx−1, it follows that jx =
kx − 1. If cy < cx then the triangles {hsy

, hsy+1, y} and {a1, a2, a3} and the
paths hsy

-P2-a2, hsy+1-x-fjx
-P1-a1 and y-gcy

-P3-a3 form a prism, K ′. Since
V (K ′) ⊆ V (K) ∪ {x, y} \ {b1, b2, b3}, K ′ is smaller than K, a contradiction.
Therefore cy ≥ cx. If cx < cy then the triangles {x, fjx

, fkx
} and {a1, a2, a3}

and the paths x-gcx
-P3-a3, fjx

-P1-a1 and fkx
-P1-b1-b2-P2-hty -y-hsy

-P2-a2

form a prism, K ′. Since V (K ′) ⊆ V (K) ∪ {x, y} \ {hsy+1, b3, gcy
}, K ′ is

smaller than K, a contradiction. Therefore, cx = cy. By the symmetry of
the prism K, it follows by the same argument that dx = dy.

If cx = dx then the induced subgraph with vertex set V (P2)∪V (P3)∪{x}
is a theta smaller than K, a contradiction. So cx < dx, which means that
cy < dy. If cy < dy − 1 then the paths x-gcy

-y, x-gdy
-y and x-hsy+1-y form

a theta smaller than K, a contradiction. Therefore, cy = dy − 1. But then
|N(y) ∩ V (P3)| = 2 and N(y) ∩ V (P1) = ∅, which contradicts 4.2. This
proves (1).

By 4.4 and (1), each of x and y has neighbors in precisely two of the
paths P1, P2 and P3. Assume that N(x) ∩ V (K) and N(y) ∩ V (K) are not
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both contained in the union of the same two of V (P1), V (P2) and V (P3). By
symmetry, we may assume that N(x)∩V (P3) = ∅ and that N(y)∩V (P1) = ∅.

Assume that jx < kx − 1 and cy < dy − 1; this means that x has two
nonadjacent neighbors in P1 and y has two nonadjacent neighbors in P3.
Since both x and y have neighbors in P2, there exists a path R between
x and y with interior in P ∗

2 . Then the three paths x-fjx
-P1-a1-a3-P3-gcy

-y,
x-fkx

-P1-b1-b3-P3-gdy
-y and x-R-y form a theta, K ′. Since V (K ′) ⊆ V (K)∪

{x, y} \ {a2, b2, fjx+1}, K ′ is smaller than K, a contradiction. This implies
that either x does not have two nonadjacent neighbors in P1 or y does not
have two nonadjacent neighbors in P3. By symmetry we may assume that
x does not have two nonadjacent neighbors in P1, so jx ≥ kx − 1. By
4.2, N(x) ∩ V (P1) does not consist of two adjacent vertices. Therefore,
|N(x) ∩ V (P1)| = 1, and jx = kx.

Since x is K-major, by 4.1, |N(x)∩V (P2)| ≥ 2 and by 4.2, N(x)∩V (P2)
does not consist of two adjacent vertices. Therefore, x has two nonadjacent
neighbors in P2, and sx < tx − 1.

First assume that |N(y) ∩ V (P2)| = 1. Then sy = ty, and by 4.2 and
4.1, y has two nonadjacent neighbors in P3, so cy < dy − 1. If sy < tx − 1
then the paths y-gdy

-P3-b3-b2-P2-htx -x, y-gcy
-P3-a3-a1-P1-fjx

-x, and a path
between x and y with interior in V (hsy

-P2-hsx
) form a theta, K ′. Since

V (K ′) ⊆ V (K) ∪ {x, y} \ {htx−1, a2, b1}, K ′ is smaller than K, a con-
tradiction. Therefore, sy ≥ tx − 1. From the symmetry, sy ≤ sx + 1.
So we have that tx − 1 ≤ sy ≤ sx + 1 and sx < tx − 1, from which it
follows that sx + 1 = sy = tx − 1. If x is not adjacent to hsx+1 then
|N(x) ∩ V (P2)| = 2 and N(x) ∩ V (P3) = ∅, contradicting 4.2. Therefore, x

is adjacent to hsx+1. The triangles {hsx
, hsx+1, x} and {a1, a2, a3} and the

paths hsx
-P2-a2, hsx+1-y-gcy

-P3-a3 and x-fjx
-P1-a1 form a prism, K ′. Since

V (K ′) ⊆ V (K) ∪ {x, y} \ {b1, b2, b3}, K ′ is smaller than K, a contradiction.
This proves that |N(y) ∩ V (P2)| > 1.

By 4.2, y has more than two neighbors in P2, and sy < ty − 1. Let Q be
the path x-fjx

-P1-a1-a3-P3-gcy
-y. If there are two paths A and B between x

and y whose interiors are anticomplete to each other and contained in P ∗

2 ,
then the paths Q, A and B form a theta, K ′. Since V (K ′) ⊆ V (K)∪{x, y}\
{b1, b2, b3}, K ′ is smaller than K, a contradiction. Therefore, there are no
two paths between x and y whose interiors are anticomplete to each other
and contained in P ∗

2 . Then by 4.3, either N(y) ∩ V (P2) ⊆ {h1, . . . , hsx+1}
or N(y) ∩ V (P2) ⊆ {htx−1, . . . , hm}. By symmetry, we may assume that
N(y) ∩ V (P2) ⊆ {h1, . . . , hsx+1}, which means that ty ≤ sx + 1.

If ty ≤ sx, then the paths y-hsy
-P2-a2-a1-P1-fjx

-x, y-gdy
-P3-b3-b2-P2-htx -x,

and a path between x and y with interior in V (hty -P2-hsx
) form a theta,
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K ′. Since V (K ′) ⊆ V (K) ∪ {x, y} \ {a3, b1, hsx+1}, K ′ is smaller than K,
a contradiction. Therefore, ty > sx, and since ty ≤ sx + 1, it follows that
ty = sx + 1 and y is adjacent to hsx+1.

Assume that sy < sx−1 and tx > ty+1. Then the paths x-fjx
-P1-a1-a2-P2-hsy

-y,
x-htx -P2-b2-b3-P3-gdy

-y and a path between x and y with interior in {hsx
, hsx+1}

form a theta, K ′. Since V (K ′) ⊆ V (K) ∪ {x, y} \ {a3, hsx−1, htx−1}, K ′ is
smaller than K, a contradiction. Therefore, either sy ≥ sx−1 or tx ≤ ty +1.

First assume that sy ≥ sx − 1. Then since sx = ty − 1 and sy < ty − 1,
this implies that sy = sx − 1. If y is adjacent to hsx

then the triangles
{hsx−1, hsx

, y} and {a1, a2, a3} and the paths hsx−1-P2-a2, hsx
-x-fjx

-P1-a1

and y-gcy
-P3-a3 form a prism, K ′. Since V (K ′) ⊆ V (K)∪{x, y}\{b1, b2, b3},

K ′ is smaller than K, a contradiction. Therefore, y is not adjacent to hsx
.

Then since ty = sy+2, this means that |N(y)∩V (P2)| = 2, which contradicts
4.2. This proves that sy < sx − 1, so we may now assume that tx ≤ ty + 1.
Since ty = sx + 1 and tx > sx + 1, this implies that tx = sx + 2. If x is
adjacent to hsx+1 then the triangles {hsx+1, htx , x} and {b1, b2, b3} and the
paths hsx+1-y-gdy

-P3-b3, htx -P2-b2, and x-fkx
-P1-b1 form a prism, K ′. Since

V (K ′) ⊆ V (K)∪{x, y} \ {a1, a2, a3}, K ′ is smaller than K, a contradiction.
Therefore, x is not adjacent to hsx+1. Then since tx = sx + 2, this means
that |N(x) ∩ V (P2)| = 2, which contradicts 4.2. This proves 4.5.

4.6. Two K-major vertices that are not adjacent have a common neighbor

in K.

Proof. Let x and y be K-major vertices that are not adjacent to each other.
Assume that N(x) ∩ V (K) ∩ N(y) = ∅. From 4.5 we may assume that
(N(x) ∪ N(y)) ∩ V (K) ⊂ P ∗

1 ∪ P ∗

2 . By 4.4, each of P ∗

1 and P ∗

2 contains a
neighbor of x and a neighbor of y. Let C be the cycle induced by G on
V (P1) ∪ V (P2). A gap is a minimal path in C containing a neighbor of x

and a neighbor of y. Every edge of C is in at most one gap and any vertex
common to two distinct gaps is an end of both. Since x and y have no
common neighbor in C, there is an even number of gaps. For a gap P , let
P+ be the path between x and y whose interior is V (P ). Let R1, . . . , Rk

be the gaps of C numbered in their order on C, such that the vertex set of
the path of C sharing one end with Ri and the other end with Ri+1, and
with interior disjoint from all the gaps, is anticomplete to y if i is odd and
anticomplete to x if i is even. Call a gap a small gap if it consists of one
edge and shares both of its ends with other gaps.

(1) There are at most six gaps.
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Suppose there are at least eight gaps. Assume that for some i, Ri is
not a small gap. Then the paths R+

i+1
, R+

i+4
and R+

i+7
form a theta, K ′.

It is smaller than K because each of Ri, Ri+2 ∪ Ri+3 and Ri+5 ∪ Ri+6

contains at least one vertex not in V (K ′). Therefore, every gap is small.
Then every edge of C is in a gap and every gap consists of one edge, so
V (C) ⊆ N(x) ∪ N(y). But this contradicts the fact that x and y have no
neighbors in {a1, a2, b1, b2} ⊆ C. This proves (1).

(2) There are at most four gaps.

Suppose there are six gaps. Assume that no gap is small. The paths
R+

1 , R+
3 and R+

5 form a theta. It is smaller than K because R2, R4 and R6

each contain at least one vertex not in the theta since they are not small
gaps. So there is a small gap; by symmetry let it be R1. Assume next that
none of R2, R4 or R6 is a small gap. Then the paths R+

1 , R+
3 and R+

5 form
a theta smaller than K. Therefore one of R2, R4 or R6 is small.

First assume that R2 is a small gap. Then R1∪R2 is a three-vertex path
whose vertices are contained in N(x)∪N(y), and so it is a subpath of either
P1 or P2 in K, because x and y have no neighbors in {a1, a2, b1, b2}. By
symmetry assume it is a subpath of P1. Both x and y have a neighbor in P2,
so there is a path Q between them with interior in P2. Let u be the vertex
that is an end of both R1 and R2. The three paths u-R+

1 -y, u-R+
2 -y and

u-x-Q-y form a theta, K ′. Since V (K ′) is disjoint from {a1, a2, a3, b1, b2, b3},
it follows that the theta K ′ is smaller than K, a contradiction. This proves
that R2 is not a small gap. From the symmetry, we deduce that R6 is not a
small gap either.

Therefore R4 is a small gap. From the argument in the previous para-
graph with R4 playing the role of R1, we deduce that neither of R3, R5

is a small gap. Since R1 is a small gap and R5 is not, we deduce that
V (R1)∩V (R6) 6= ∅, and that V (R6) is anticomplete to V (R4). Let V (R1)∩
V (R6) = {v}. The paths x-R+

4 -y-v, R+
6 \ y, and R+

1 \ y form a theta smaller
than K, a contradiction.

This proves (2).

(3) There are at most two gaps.

Assume there are four gaps. Let Q1, . . . , Q4 be subpaths of C such that
none of their interiors meet any gap, and such that for 1 ≤ i ≤ 3, one end of
Qi is an end of Ri and the other is an end of Ri+1, while the ends of Q4 are
ends of R1 and R4. The neighbors of x in C are contained in V (Q1)∪V (Q3)
and the neighbors of y in C are contained in V (Q2) ∪ V (Q4).
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Assume that Q1 and Q3 both have length at most one. Then since x has
neighbors in both P1 and P2 but no neighbors in {a1, a2, b1, b2}, one of Q1

and Q3 is a subpath of P1 and the other is a subpath of P2. But then x has
at most two neighbors in each of P1 and P2, contradicting 4.1 or 4.2. This
shows that at least one of Q1 and Q3 has length at least two. By symmetry,
we may assume that Q1 does. Therefore V (R1) is anticomplete to V (R2).

By the same argument applied to Q2 and Q4, we deduce that at least
one of Q2 and Q4 has length at least two. From the symmetry, we may as-
sume that Q2 has length at least two, and therefore V (R2) is anticomplete
to V (R3). Since the paths R+

1 , R+
2 and R+

3 do not form a theta smaller
than K, it follows that |V (Q3)| = |V (Q4)| = 1 and R4 is a small gap. Let
V (Q3) = {q3} and V (Q4) = {q4}. Since V (R2) is anticomplete to both
V (R1) and V (R3), the paths x-q3-q4, R+

1 \ y, and x-R+
2 -y-q4 form a theta

smaller that K, a contradiction. This proves (3).

Since x and y each have a neighbor in C, there are at least two gaps;
so from (3) there are two gaps. Since x and y each have neighbors in both
P1 and P2, there is a gap contained in P1 and a gap contained in P2. The
subgraph C \ (R1 ∪R2) is the disjoint union of two paths, Q1 and Q2, such
that Q1 contains no neighbors of x and Q2 contains no neighbors of y. By 4.1
and 4.2, each of x and y has two nonadjacent neighbors in one of P1 and P2,
so each of x and y has a neighbor in C that is anticomplete to V (R1)∪V (R2).
Therefore, there is a path S between x and y whose interior is anticomplete
to V (R1) ∪ V (R2) and is contained in V (K) \ (V (R1) ∪ V (R2)). The paths
S, R+

1 and R+
2 form a theta smaller than K, a contradiction. This proves

4.6.

A broom is a vertex v ∈ V (G) such that for some {i1, i2, i3} = {1, 2, 3},

• N(v) ∩ V (Pi1) = ∅,

• |N(v) ∩ V (Pi2)| = 1, and

• N(v) ∩ V (Pi3) is the vertex set of a three-vertex path.

4.7. If x and y are two K-major vertices that are not adjacent to each other,

then one of them is a broom, and for some i, j such that 1 ≤ i < j ≤ 3,
N(x) ∩ V (Pi) ∩ N(y) 6= ∅ and N(x) ∩ V (Pj) ∩ N(y) 6= ∅.

Proof. By 4.5, we may assume that N(x) ∩ V (K) ⊆ P ∗

1 ∪ P ∗

2 and N(y) ∩
V (K) ⊆ P ∗

1 ∪ P ∗

2 . By 4.4, x and y each have a neighbor in both P ∗

1 and
in P ∗

2 . Also, by 4.6, x and y have a common neighbor in K, and by the
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symmetry between P1 and P2 we may assume that fr ∈ P ∗

1 is a neighbor of
both x and y.

Let A be the path induced by G on V (P1) ∪ V (P2) \ {fr−1, fr, fr+1}.

(1) x and y do not both have a neighbor in V (A) ∩ V (P1).

Suppose both x and y have a neighbor in V (A) ∩ V (P1). Then there
is a path, S, between x and y with interior in (V (A) ∩ V (P1)) ∪ V (P3).
Since x and y each have a neighbor in P ∗

2 there is a path, R, between
them with interior in P ∗

2 . The paths S, x-fr-y and R form a theta, K ′.
Since V (K ′) ⊆ V (K) ∪ {x, y} \ {fr−1, fr+1, a2, b2}, K ′ is smaller than K, a
contradiction. This proves (1).

(2) If exactly one of x and y has a neighbor in V (A) ∩ V (P1), then the

theorem holds.

Assume that exactly one of x and y has neighbors in V (A) ∩ V (P1). By
symmetry between x and y we may assume that N(x)∩V (A)∩V (P1) 6= ∅ and
N(y)∩V (A)∩V (P1) = ∅. By 4.1 and 4.2, y has two nonadjacent neighbors
in at least one of P1 and P2. Since y has no neighbors in V (A)∩V (P1), this
means that it either has two nonadjacent neighbors in P2, so ty > sy + 1, or
it is adjacent to both fr−1 and fr+1.

First assume that ty > sy+1. Since N(x)∩V (A)∩V (P1) 6= ∅ and N(x)∩
V (P2) 6= ∅, each of x and y has two nonadjacent neighbors in A. If there
are two paths S and R between x and y whose interiors are anticomplete
to each other and are contained in V (A), then the paths x-fr-y, S and
R form a theta smaller than K, a contradiction. Therefore, by 4.3 we
may assume that N(x) ∩ V (A) ⊆ V (a1-P1-fr−2) ∪ V (a2-P2-hsy+1), which
means that tx ≤ sy + 1. Since N(x) ∩ V (A) ∩ V (P1) 6= ∅, jx < r − 1. If
sx < ty − 1, then the paths x-fr-y, x-fjx

-P1-a1-a3-P3-b3-b2-P2-hty -y and a
path between x and y with interior in V (hsx

-P2-hsy
) form a theta, K ′. Since

V (K ′) ⊆ V (K)∪{x, y}\{a2, b1, fr−1}, K ′ is smaller than K, a contradiction.
Therefore, sx ≥ ty − 1, and since tx ≤ sy + 1 and ty > sy + 1, it follows that
sy + 1 = ty − 1 and N(x) ∩ V (P2) = {hsy+1}. By 4.2, |N(y) ∩ V (P2)| 6= 2,
so y is adjacent to hsy+1. Also by 4.2, |N(y) ∩ V (P1)| 6= 2, so y is either
complete or anticomplete to {fr−1, fr+1}.

Suppose that y is {fr−1, fr+1}-complete. If x is not adjacent to fr+1 then
the triangles {fr, fr+1, y} and {b1, b2, b3} and the paths fr-x-fjx

-P1-a1-a3-P3-b3,
fr+1-P1-b1 and y-hty -P2-b2 form a prism, K ′. Since V (K ′) ⊆ V (K)∪{x, y}\
{hsy

, hsy+1, fr−1}, K ′ is smaller than K, a contradiction. So x is adjacent
to fr+1, and the paths x-fr+1-y, x-hsy+1-y and a path between x and y with
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interior in V (fjx
-P1-fr−1) form a theta smaller than K, a contradiction.

Therefore, y is anticomplete to {fr−1, fr+1}, and so y is a broom and the
theorem holds.

Since we have shown that the theorem holds when ty > sy + 1, we may
now assume that ty ≤ sy + 1 and that y is {fr−1, fr+1}-complete. By 4.2,
|N(y) ∩ V (P2)| 6= 2, so ty = sy. Since N(x) ∩ V (A) ∩ V (P1) 6= ∅, either
jx < r − 1 or kx > r + 1. By symmetry we may assume that jx < r − 1.

Suppose that |N(x) ∩ V (P2)| = 1. If x is adjacent to fr+1 then the
path x-fr+1-y, a path between x and y with interior in V (fjx

-P1-fr−1) and
a path between x and y with interior in P ∗

2 form a theta smaller than K, a
contradiction. Therefore, x is not adjacent to fr+1. If sx < sy then the tri-
angles {fr, fr+1, y} and {b1, b2, b3} and the paths fr-x-fjx

-P1-a1-a3-P3-b3,
fr+1-P1-b1 and y-hsy

-P2-b2 form a prism, K ′. Since V (K ′) ⊆ V (K) ∪
{x, y} \ {fr−1, a2, hsx

}, K ′ is smaller than K, a contradiction. If sx > sy,
then the triangles {fr, fr+1, y} and {a1, a2, a3} and the paths fr-x-fjx

-P1-a1,
fr+1-P1-b1-b3-P3-a3 and y-hsy

-P2-a2 form a prism, K ′. Since V (K ′) ⊆
V (K) ∪ {x, y} \ {fr−1, b2, hsx

}, K ′ is smaller than K, a contradiction. This
proves that sx = sy, and y is a broom, so the theorem holds. So we may
assume that |N(x) ∩ V (P2)| > 1, and it follows from 4.2 that sx < tx − 1.

Let Q be the path between x and y with interior in V (fjx
-P1-fr−1). If

tx ≤ sy then the paths Q, x-htx -P2-hsy
-y and x-hsx

-P2-a2-a3-P3-b3-b1-P1-fr+1-y
form a theta, K ′. Since V (K ′) ⊆ V (K) ∪ {x, y} \ {fr, a1, b2}, K ′ is smaller
than K, a contradiction. Therefore, tx > sy. If sx ≥ sy then the paths
Q, x-hsx

-P1-hsy
-y and x-htx -P2-b2-b1-P1-fr+1-y form a theta, K ′. Since

V (K ′) ⊆ V (K)∪{x, y} \ {a1, a2, a3}, K ′ is smaller than K, a contradiction.
Therefore, sx < sy. If x is not adjacent to hsy

, then the path hsy
-y-fr-x, a

path between hsy
and x with interior in V (hsy

-P2-hsx
) and a path between

hsy
and x with interior in V (hsy

-P2-htx) form a theta smaller than K, a
contradiction. Thus x is adjacent to hsy

, and y is a broom, so the theorem
holds. This proves (2).

(3) If neither x nor y has a neighbor in V (A) ∩ V (P1), then the theorem

holds.

Suppose that neither x nor y has a neighbor in V (A) ∩ V (P1). By 4.2,
each of x and y is either complete or anticomplete to {fr−1, fr+1}. If both
x and y are {fr−1, fr+1}-complete, then the paths x-fr−1-y, x-fr+1-y and
a path between x and y with interior in P ∗

2 form a theta smaller than K,
a contradiction. This means that at most one of x and y is {fr−1, fr+1}-
complete.
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Assume that exactly one of x and y is {fr−1, fr+1}-complete. By sym-
metry, we may assume that x is, and that y is anticomplete to {fr−1, fr+1}.
By 4.1 and 4.2, |N(y) ∩ V (P2)| ≥ 3, so sy + 1 < ty.

Suppose that |N(x) ∩ V (P2)| > 1; then by 4.2, |N(x) ∩ V (P2)| ≥ 3 so
sx +1 < tx. If there are two paths S and R between x and y whose interiors
are anticomplete to each other and contained in P ∗

2 , then S, R and x-fr-y
form a theta smaller than K, a contradiction. So from 4.3, we may assume
that tx ≤ sy + 1. From this it follows that sx < sy. Then the triangles
{fr, fr+1, x} and {b1, b2, b3} and the paths fr-y-hty -P2-b2, fr+1-P1-b1 and
x-hsx

-P2-a2-a3-P3-b3 form a prism, K ′. Since V (K ′) ⊆ V (K) ∪ {x, y} \
{a1, hsy

, fr−1}, K ′ is smaller than K, a contradiction. This proves that
|N(x) ∩ V (P2)| = 1.

If sx < sy then the triangles {fr−1, fr, x} and {a1, a2, a3} and the paths
fr−1-P1-a1, fr-y-hty -P2-b2-b3-P3-a3 and x-hsx

-P2-a2 form a prism, K ′. Since
V (K ′) ⊆ V (K) ∪ {x, y} \ {hsy

, b1, fr+1}, K ′ is smaller than K, a contradic-
tion. Therefore sx ≥ sy, and from the symmetry sx ≤ ty.

If y is not adjacent to hsx
, then sy < sx and ty > sx. The path

y-fr-x-hsx
and two paths between y and hsx

with interiors in V (hsy
-P2-hsx

)
and V (hty -P2-hsx

) form a theta smaller than K, a contradiction. So y is
adjacent to hsx

. Since x is a broom, the theorem holds.
Since we have shown that the theorem holds when one of x and y is

{fr−1, fr+1}-complete, we may now assume that {x, y} is anticomplete to
{fr−1, fr+1}. Now N(x)∩ V (P1) = N(y)∩ V (P1) = {fr}, so by 4.1 and 4.2,
x and y each have two nonadjacent neighbors in P2. If there are two paths S

and R between x and y whose interiors are anticomplete to each other and
contained in P ∗

2 , then the paths S, R and x-fr-y form a theta smaller than
K, a contradiction. Therefore, by 4.3, we may assume that tx ≤ sy + 1.

If tx ≤ sy then the paths x-fr-y, x-htx -P2-hsy
-y and x-hsx

-P2-a2-a3-P3-b3-b2-P2-hty -y
form a theta, K ′. Since V (K ′) ⊆ V (K)∪{x, y}\{a1, b1, hsy+1}, K ′ is smaller
than K, a contradiction. Therefore tx > sy so tx = sy + 1.

If sx < sy−1 and ty > tx+1 then the paths x-fr-y, x-hsx
-P2-a2-a3-P3-b3-b2-P2-hty -y

and a path between x and y with interior in {hsy
, htx} form a theta, K ′.

Since V (K ′) ⊆ V (K) ∪ {x, y} \ {a1, b1, hsy−1}, K ′ is smaller than K, a con-
tradiction. Therefore, either sx ≥ sy − 1 or ty ≤ tx + 1. From the symmetry
we may assume that sx ≥ sy − 1. Then since sx < tx − 1 and tx = sy + 1, it
follows that sx = sy −1. If x is not adjacent to hsy

then |N(x)∩V (P2)| = 2,
contradicting 4.2. So x is adjacent to hsy

. Then x is a broom and the theo-
rem holds. This proves (3).

Now 4.7 follows from (1), (2) and (3).
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Let M be the subgraph of G induced on the set of K-major vertices.
The following algorithm constructs a superset of V (M) that is disjoint from
V (K) and is used for cleaning.

4.8. There is an algorithm with the following specifications:

• Input: A graph G.

• Output: A sequence of subsets X1, . . . ,Xr of V (G), with r ≤ 2|V (G)|6,
such that for every smallest prism K in G, if K has a tidy frame then

one of X1, . . . ,Xr is disjoint from V (K) and contains all K-major

vertices.

• Running Time: O(|V (G)|7).

Proof. The algorithm is as follows. For each triple of vertices (a, b, c) com-
pute the set U of vertices complete to N(a, b) ∪ {c}. List all subsets W ⊆
V (G) of at most three vertices. For each pair of (a, b, c) and W , compute
the subset

N(a, b) ∪ {c} ∪ U \ W.

Label the subsets generated Y1, . . . , Ys, and label the list of subsets N(a, b)
by N1, . . . , Np. Enumerate all quintuples of vertices (u,w, z1, z2, z3). For
each, compute the subset

Z(u,w, z1, z2, z3) = {u}∪(N(u)\{w, z1 , z2, z3})∪N(w, z1)∪N(w, z2)∪N(w, z3).

Label the subsets generated Z1, . . . , Zt. Output the subsets

∅, N1, . . . ,Np, Y1, . . . , Ys, Z1, . . . , Zt.

This completes the description of the algorithm.
Since p ≤ |V (G)|2, s ≤ |V (G)|6 and t ≤ |V (G)|5, the number of subsets

in the output sequence is r ≤ 2|V (G)|6. For each triple (a, b, c), the subset
U can be computed in quadratic time and the subsets W can be enumerated
in cubic time. Computing N(a, b) ∪ {c} ∪ U \ W takes linear time, so the
time taken to generate the sequence N1, . . . ,Np, Y1, . . . , Ys is O(|V (G)|7).
Since each of the |V (G)|5 subsets Z can be computed in linear time, their
computation does not affect the total running time.

Let K be a smallest prism in G, and assume K has a tidy frame. Let M

be the subgraph induced by G on the set of K-major vertices. Suppose M is
the complete graph. We may assume that there exists a set {a, b} ⊆ V (K)
that is not a subset of the vertex set of a 3-vertex subpath of K, because if
no such choice is possible then V (M) = ∅, which is in the output. We may
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also assume that, subject to these conditions, {a, b} is chosen with |N(a, b)|
maximum. Then N(a, b) ⊆ V (M). If N(a, b) = V (M) then V (M) is in
the output sequence. Otherwise there is a vertex c ∈ V (M) \N(a, b). Then
since N(a, b)∪{c} ⊆ V (M) and M is a complete graph, the set U of vertices
complete to N(a, b) ∪ {c} contains V (M) \ (N(a, b) ∪ {c}); so

V (M) ⊆ N(a, b) ∪ {c} ∪ U.

If U ∩ V (K) is not a subset of the vertex set of a 3-vertex path of K, then
there are two vertices a′, b′ ∈ U ∩ V (K) such that {a′, b′} is not a subset of
the vertex set of a 3-vertex path of K. Since N(a, b) ∪ {c} ⊆ N(a′, b′), this
contradicts the choice of a and b. So |U ∩ V (K)| ≤ 3 and we can choose
W = U ∩ V (K). Then the subset N(a, b) ∪ {c} ∪ U \ W contains V (M)
and since (N(a, b) ∪ {c})∩ V (K) = ∅, N(a, b)∪ {c} ∪U \W is disjoint from
V (K). The subset in the output corresponding to this choice of (a, b, c) and
W contains V (M) and is disjoint from V (K).

Therefore, we may assume that M is not a complete graph. Then there
exist two vertices in V (M) that are not adjacent to each other. By 4.7, one of
these is a broom. So we may choose u to be a broom such that z1, z2, z3 and w

are its neighbors in K and z1-z2-z3 is a path of K. By 4.7, any nonneighbor
of u in V (M) is contained in the subset N(w, z1) ∪ N(w, z2) ∪ N(w, z3).
Therefore the subset Z(u,w, z1, z2, z3) contains V (M). Since w is in the
interior of a different path of the prism K from that containing {z1, z2, z3},
the subset N(w, z1) ∪ N(w, z2) ∪ N(w, z3) is disjoint from V (K). Since
N(u)∩V (K) = {w, z1, z2, z3}, Z(u,w, z1, z2, z3) is disjoint from V (K). This
proves 4.8.

5 The Complete Algorithm

5.1. There is an algorithm with the following specifications:

• Input: A graph G.

• Output: Either:

- a theta in G, or

- a determination that there is no smallest theta in G.

• Running Time: O(|V (G)|22).

Proof. Here is the algorithm. Enumerate all 11-tuples (a, b, s1, s2, s3,m1,m2,m3, t1, t2, t3)
of vertices of G such that

• a, b, s1, s2 and s3 are all distinct,
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• a, b, t1, t2 and t3 are all distinct,

• a is not adjacent to b, and

• a is complete to {s1, s2, s3} and b is complete to {t1, t2, t3}.

We can find all such 11-tuples in time O(|V (G)|11). For each 11-tuple do
the following.

Remove N(a) \ {s1, s2, s3} and N(b) \ {t1, t2, t3} from V (G), and for
i = 1, 2, 3, if mi is adjacent to a and b then remove N(mi) \ {a, b} from
V (G). This can be done in linear time, and after this step every smallest
theta in G with the 11-tuple as its frame has a tidy frame. Run the algorithm
of 2.2, which takes O(|V (G)|4) time. Let X1, . . . ,Xt be the subsets in the
output; t ≤ |V (G)|3. For every triple of subsets (Xi1 ,Xi2 ,Xi3) from this
list, do the following.

Let G1 be the graph induced by G on V (G) \ Xi1 . Find shortest paths
S′

1 between s1 and m1 and T ′

1 between m1 and t1 in G1. Next, let G2 be
the graph induced by G1 on V (G1) \ Xi2 . Find shortest paths S′

2 between
s2 and m2 and T ′

2 between m2 and t2 in G2. Finally, let G3 be the graph
induced by G2 on V (G2) \ Xi3 . Find shortest paths S′

3 between s3 and m3

and T ′

3 between m3 and t3 in G3. Finding these paths takes quadratic time.
Finally, test whether the following are true in the graph G:

• For 1 ≤ i ≤ 3, V (S′

i) \ {mi} and V (T ′

i ) \ {mi} are disjoint and anti-
complete to each other, and

• For 1 ≤ i, j ≤ 3 with i 6= j, V (S′

i) ∪ V (T ′

i ) and V (S′

j) ∪ V (T ′

j) are
disjoint and anticomplete to each other.

If these conditions are satisfied, output that {a, b} and the three paths
a-s1-S

′

1-m1-T
′

1-t1-b, a-s2-S
′

2-m2-T
′

2-t2-b and a-s3-S
′

3-m3-T
′

3-t3-b form a theta
and stop. Testing these conditions takes quadratic time. So the time it
takes to examine one 11-tuple is O(|V (G)|11).

After examining all 11-tuples, output that G contains no smallest theta.
The total running time is O(|V (G)|22). Now we need to prove that this
algorithm is correct. Suppose there is a smallest theta K in G; let its half-
paths be S1, T1, S2, T2, S3 and T3. Some 11-tuple chosen is the frame of K,
and after the first step of the algorithm, K and every smallest theta in G

with the same frame as K have a tidy frame.
By 2.2, we may choose Xi1 such that the graph G1 contains K and there

are no bad shortcuts across S1 or T1 in G1. Therefore, the subgraph induced
by G1 on V (K)\(V (S1)∪V (T1))∪V (S′

1)∪V (T ′

1) is a theta, K1, in G1. Since
S′

1 and T ′

1 are shortest paths, |V (K1)| ≤ |V (K)|, so K1 is also a smallest
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theta in G1. Since K1 is not smaller than K in G it follows that V (S′

1)\{m1}
and V (T ′

1) \ {m1} are anticomplete to each other. We observe that K1 has
the same frame as K, so it has a tidy frame.

Therefore, by 2.2, for some subset Xi2 the graph G2 contains K1 and
all shortcuts across S2 or T2 in G2 are good shortcuts across K1. Then the
subgraph induced by G2 on V (K1) \ (V (S2) ∪ V (T2)) ∪ V (S′

2) ∪ V (T ′

2) is a
theta, K2, in G2. Since S′

2 and T ′

2 are shortest paths, |V (K2)| ≤ |V (K1)|, so
K2 is also a smallest theta in G2. Since K2 is not smaller than K1 in G it
follows that V (S′

2)\{m2} and V (T ′

2)\{m2} are anticomplete to each other.
We observe that K2 has the same frame as K, so it has a tidy frame.

Finally, by 2.2 again, for some subset Xi3 the graph G3 contains K2 and
all shortcuts across S3 or T3 in G3 are good shortcuts across K2. Then the
subgraph induced by G3 on V (K2) \ (V (S3) ∪ V (T3)) ∪ V (S′

3) ∪ V (T ′

3) is
a theta, K3, in G3. Since K3 is not smaller than K2 in G it follows that
V (S′

3) \ {m3} and V (T ′

3) \ {m3} are anticomplete to each other. We observe
that K3 is the theta that is output by the algorithm when it considers
Xi1 ,Xi2 ,Xi3 . This proves that the output of the algorithm is a theta.

Conversely, if the algorithm outputs that there is a theta, then the prop-
erties of the 11-tuple and the conditions on the paths that the algorithm
checks ensure that this output is actually a theta.

5.2. There is an algorithm with the following specifications:

• Input: A graph G.

• Output: Either:

- a prism in G, or

- a determination that there is no smallest prism in G.

• Running Time: O(|V (G)|35).

Proof. Here is the algorithm. Enumerate all 15-tuples of vertices of G

(a1, a2, a3,m1,m2,m3, b1, b2, b3, a
′

1, a
′

2, a
′

3, b
′

1, b
′

2, b
′

3)

such that

• a1, a2, a3, b1, b2, b3 are distinct,

• a1, a2, a3, a
′

1, a
′

2, a
′

3 are distinct,

• b1, b2, b3, b
′

1, b
′

2, b
′

3 are distinct,

• G induces a triangle on each of {a1, a2, a3} and {b1, b2, b3}, and

• for i = 1, 2, 3, a′i is adjacent to ai and b′i is adjacent to bi.
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For each 15-tuple, do the following.
For i = 1, 2, 3 remove the subsets N(ai) \ {a′i, a1, a2, a3} and N(bi) \

{b′i, b1, b2, b3} from V (G), and if mi = a′i = b′i then remove N(mi) \ {ai, bi}
from V (G). Now any smallest prism K that has {a1, a2, a3,m1,m2,m3, b1, b2, b3}
as its frame and contains {a′1, a

′

2, a
′

3, b
′

1, b
′

2, b
′

3} has a tidy frame.
Run the algorithm of 4.8 on G. This outputs O(|V (G)|6) subsets. For

each subset Y output, do the following. Let G′ be the graph induced by G

on V (G) \ Y . Run the algorithm of 3.5, which takes O(|V (G)|5) time and
outputs O(|V (G)|4) subsets. Let X1, . . . ,Xt be the subsets in the output.
For every triple of subsets (Xi1 ,Xi2 ,Xi3) from this list, do the following.

Let G1 be the graph induced by G′ on V (G′) \Xi1 . Find shortest paths
S′

1 between a1 and m1 and T ′

1 between m1 and b1 in G1. Remove from V (G1)
the set U1 consisting of all vertices in V (G1) \ (S′∗

1 ∪ T ′∗

1 ∪ {a1, b1,m1}) that
have a neighbor in S′∗

1 ∪ T ′∗

1 . Next, let G2 be the graph induced by G1 on
V (G1) \ Xi2 . Find shortest paths S′

2 between a2 and m2 and T ′

2 between
m2 and b2 in G2. Remove from G2 the set U2 consisting of all vertices in
V (G2) \ (S′∗

2 ∪ T ′∗

2 ∪ {a2, b2,m2}) that have a neighbor in S′∗

2 ∪ T ′∗

2 . Finally,
let G3 be the graph induced by G2 on V (G2) \ Xi3 . Find shortest paths S′

3

between a3 and m3 and between m3 and b3 in G3. Finding these paths and
removing these subsets takes quadratic time.

Finally, for 1 ≤ i < j ≤ 3 test whether V (S′

i) ∪ V (T ′

i ) ∪ V (S′

j) ∪ V (T ′

j)
is the vertex set of an induced cycle in the graph G. If so, then output
that the triangles {a1, a2, a3} and {b1, b2, b3} and the paths a1-S

′

1-m1-T
′

1-b1,
a2-S

′

2-m2-T
′

2-b2 and a3-S
′

3-m3-T
′

3-b3 form a prism and stop. Testing this takes
quadratic time. So the time it takes to examine one 15-tuple is O(|V (G)|20).

After examining all 15-tuples, output that G contains no smallest prism.
The total running time is O(|V (G)|35).

Now we need to prove that this algorithm is correct. Suppose there is
a smallest prism K in G; let its half-paths be S1, T1, S2, T2, S3 and T3.
For some 15-tuple chosen, {a1, a2, a3,m1,m2,m3, b1, b2, b3} is the frame of
K, and {a′1, a

′

2, a
′

3, b
′

1, b
′

2, b
′

3} ⊆ V (K). Therefore, after the first step of the
algorithm runs for this 15-tuple, K has a tidy frame.

(1) Let J be an almost clean smallest prism in a graph H and let S′ be a

good shortcut across a half-path S of J . Let U ⊂ V (H) be the set of vertices

not in V (S′) that have a neighbor in S′∗. Then the subgraph J ′ induced by

H on (V (J) \ V (S)) ∪ V (S′) is an almost clean smallest prism in the graph

induced by H on V (H) \ U .

Since S′ is a good shortcut, the subgraph J ′ induced by H on (V (J) \
V (S))∪V (S′) is a prism. Since a good shortcut is a shortest path, |V (J ′)| ≤
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|V (J)|, so J ′ is a smallest prism in H. We observe that since J ′ has the
same frame as J , it has a tidy frame. Assume that there is a J ′-major vertex
v ∈ V (H) \ U . Then since v 6∈ U , N(v) ∩ S′∗ = ∅. Since v is J ′-major, this
means that N(v)∩(V (J ′)\S′∗) is not a subset of the vertex set of a 3-vertex
path in J ′. Since N(v) ∩ (V (J ′) \ S′∗) = N(v) ∩ (V (J) \ S∗), v is J-major,
contradicting the fact that J is almost clean in H. Therefore, all J ′-major
vertices are contained in U . We observe also that U is disjoint from V (J ′)
because J ′ is a prism, so J ′ is an almost clean prism in the the graph induced
by H on V (H) \ U . This proves (1).

By 4.8, we can choose Y such that G′ contains no K-major vertices. Then
K is almost clean in G′, so by 3.5, we can choose Xi1 such that the graph
G1 contains K and there are no bad shortcuts across S1 or T1 in G1. Let K1

be the subgraph induced by G1 on V (K)\ (V (S1)∪V (T1))∪V (S′

1)∪V (T ′

1).
Since K1 is not smaller than K in G, S′∗

1 is anticomplete to T ′∗

1 . It now
follows from (1) applied twice (once for each half-path S1 and T1) that after
removing the set U1 from V (G1), K1 is an almost clean smallest prism in
G1.

Therefore, by 3.5, we can choose Xi2 such that the graph G2 contains K1

and there are no bad shortcuts across S2 or T2 in G2. Let K2 be the subgraph
induced by G2 on V (K1)\ (V (S2)∪V (T2))∪V (S′

2)∪V (T ′

2). Since K2 is not
smaller than K1 in G, S′∗

2 is anticomplete to T ′∗

2 . Again it follows from (1)
applied twice (once for each half-path S2 and T2) that after removing the
set U2 from V (G2), K2 is an almost clean smallest prism in G2.

Finally, by 3.5, we can choose Xi3 such that the graph G3 contains K2

and there are no bad shortcuts across S3 or T3 in G3. Then it follows that
the subgraph K3 induced by G3 on V (K2)\(V (S3)∪V (T3))∪V (S′

3)∪V (T ′

3)
is a prism. Since K3 is not smaller than K2 in G, S′∗

3 is anticomplete to
T ′∗

3 . We observe that since G3 is an induced subgraph of G, a prism in G3

is a prism in G, and that K3 is the prism output by the algorithm when it
considers Xi1 ,Xi2 ,Xi3 . This proves that the algorithm outputs a prism.

Conversely, if the algorithm outputs that there is a prism, then the
properties of the 15-tuple and the conditions on the paths that the algorithm
checks ensure that this output is actually a prism.

Finally, we can put together the algorithms of 5.1 and 5.2 to construct
the complete algorithm.

5.3. There is an algorithm with the following specifications:

• Input: A graph G.
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• Output: Either:

- a theta or a prism in G, or

- a determination that there is no theta or prism in G.

• Running Time: O(|V (G)|35).

Proof. First run the algorithm of 5.1. If it outputs a theta then output this
theta and stop. Otherwise run the algorithm of 5.2. If it outputs a prism
then output this prism and stop. Otherwise, output that there is no theta
or prism in G.

The running time of this algorithm is the maximum of those of 5.1 and
5.2, which is O(|V (G)|35). If this algorithm outputs either a theta or a
prism, then it follows from 5.1 and 5.2 that it is correct. Conversely, if G

contains a theta or a prism, then it contains a smallest theta or a smallest
prism. Therefore, one of the algorithms of 5.1 or of 5.2 will output a theta or
a prism, which will then be output by this algorithm. This proves 5.3.
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“Recognizing Berge graphs”, Combinatorica, 25 (2005), no. 2, 143–186.

[2] M. Chudnovsky and P. Seymour, “The three-in-a-tree problem”, submit-

ted for publication.

[3] M. Conforti and M. R. Rao, “Testing balancedness and perfection of
linear matrices”, Mathematical Programming 61 (1993), 1–18.

[4] F. Maffray and N. Trotignon, “Algorithms for perfectly contractile
graphs”, SIAM J. Discrete Math. 19 (2005), no. 3, 553–574.

32


