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Abstract. A monomial chaos approach is presented for efficient uncertainty quantification in
nonlinear computational problems. Propagating uncertainty through nonlinear equations can be
computationally intensive for existing uncertainty quantification methods. It usually results in a set
of nonlinear equations which can be coupled. The proposed monomial chaos approach employs a
polynomial chaos expansion with monomials as basis functions. The expansion coefficients are solved
for using differentiation of the governing equations, instead of a Galerkin projection. This results in a
decoupled set of linear equations even for problems involving polynomial nonlinearities. This reduces
the computational work per additional polynomial chaos order to the equivalence of a single Newton
iteration. Error estimates are derived, and monomial chaos is applied to uncertainty quantification of
the Burgers equation and a two-dimensional boundary layer flow problem. The results are compared
with results of the Monte Carlo method, the perturbation method, the Galerkin polynomial chaos
method, and a nonintrusive polynomial chaos method.
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1. Introduction. In practical computational problems, physical parameters and
boundary conditions are often subject to uncertainty. Until recently, these physical
uncertainties were usually neglected, which resulted in a single deterministic run for
the mean values of the uncertain parameters. Nowadays, such a deterministic simu-
lation is no longer adequate for reliable computational predictions. Therefore, there
has recently been a growing interest in accounting for physical uncertainties in com-
putational problems [4].

Modeling uncertainty has been common in computational structure mechanics
for some time now [15]. Uncertainty analysis in computational fluid dynamics is rel-
atively new [12, 19, 24]. An important characteristic of problems in fluid dynamics is
that they are governed by a system of nonlinear partial differential equations. The
discretization of these equations for realistic flows results in computational problems
involving millions of unknowns. This makes deterministic computational fluid dynam-
ics already computationally intensive. Therefore, it is important to apply uncertainty
quantification methods which can deal with the nonlinearities in an efficient way.
By developing efficient methods, uncertainty quantification can become economically
feasible in practical flow problems.

Physical problems are usually described mathematically in terms of differential
equations. The uncertainty in these problems can often be modeled by parametric
uncertainties. Therefore, parametric uncertainty is considered in a physical model

∗Received by the editors October 20, 2006; accepted for publication (in revised form) November
29, 2007; published electronically March 21, 2008. This research is supported by the Technology
Foundation STW, applied science division of NWO, and the technology programme of the Ministry
of Economic Affairs.

http://www.siam.org/journals/sisc/30-3/67287.html
†Department of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS

Delft, The Netherlands (j.a.s.witteveen@tudelft.nl, h.bijl@tudelft.nl).

1296



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A MONOMIAL CHAOS APPROACH 1297

described by the following differential equation for u(x, t, ω) with operator L and
source term S:

(1.1) L(x, t, α(ω);u(x, t, ω)) = S(x, t, α(ω)), x ∈ D, t ∈ [0, T ],

with appropriate initial and boundary conditions and α(ω) an uncertain parameter
with a known uncertainty distribution. The argument ω is used to emphasize the fact
that an uncertain variable is a function of the random event ω ∈ Ω of the probability
space (Ω, σ, P ). Equation (1.1) is an uncertainty quantification problem for the uncer-
tain variable u(x, t, ω). Below, four widely used uncertainty quantification methods
are briefly reviewed for comparison with the proposed monomial chaos approach: the
Monte Carlo method, the perturbation method [10], the Galerkin polynomial chaos
method [3], and a nonintrusive polynomial chaos method [9]. For simplicity, the
methods are reviewed for the case of a single uncertain parameter α(ω). They all
have extensions to higher dimensions.

The Monte Carlo method. A robust approach to solving (1.1) is the Monte Carlo
method. It is based on solving the deterministic problem multiple times for a set of
N realizations of the uncertain parameter {αk}Nk=1 with αk ≡ α(ωk),

(1.2) L(x, t, αk;uk(x, t)) = S(x, t, αk), k = 1, . . . , N,

with uk(x, t) ≡ u(x, t, ωk). The stochastic properties of the output can be obtained
from the set of N realizations of the uncertain variable {uk(x, t)}Nk=1. Due to the slow
convergence rate, the standard Monte Carlo approach can be impractical when solving
a single deterministic problem already involving a large amount of computational
work. Methods exist to improve the convergence rate of standard Monte Carlo, such
as Latin-hypercube sampling and variance reduction techniques; see, for example, [6].

The perturbation method. A fast method for determining low-order statistics is
the perturbation method (also called the moment method) [7, 10, 16]. It has recently
been applied to problems in computational fluid dynamics [12, 17]. In the perturbation
method the statistical moments of the output are expanded around the expected
value of the uncertain parameter using Taylor series expansions. These expansions
are usually truncated at second order, since for higher orders the equations become
extremely complicated [3, 10]. The second-order estimate of the mean value is given
by [10] as

(1.3) E[u(x, t, ω)] ≈ u(x, t, ω)

∣∣∣∣
α=μα

+
1

2
Var(α(ω))

∂2u

∂α2

∣∣∣∣
α=μα

,

with μα ≡ E[α(ω)]. For the first-order approximation, this relation reduces to
E[u(x, t, ω)] ≈ u(x, t, ω)|μα . The first-order estimate of the variance is given as

(1.4) Var[u(x, t, ω)] ≈
(
∂u

∂α

∣∣∣∣
α=μα

)2

Var[α(ω)].

The moment approximations require the computation of the first and second sensitiv-
ity derivatives of the solution u(x, t, ω) with respect to the uncertain parameter α(ω)
for α(ω) = μα. A method for evaluating these sensitivity derivatives is the continuous
sensitivity equation method [7, 16]. In the continuous sensitivity equation method a

differential equation for the ith sensitivity derivative ∂iu
∂αi |μα

is obtained by implicit



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1298 JEROEN A. S. WITTEVEEN AND HESTER BIJL

differentiation of the governing equation (1.1) with respect to α for α(ω) = μα. The
resulting equation is called the ith continuous sensitivity equation

(1.5)
∂i

∂αi
L(x, t, α(ω);u(x, t, ω))

∣∣∣∣
μα

=
∂i

∂αi
S(x, t, α(ω))

∣∣∣∣
μα

.

The application of the perturbation method is limited to low-order approximations
for small perturbations, i.e., inputs with a small variance. Furthermore, the method
cannot readily be extended to compute the probability distribution function of the
response process [3, 10].

The Galerkin polynomial chaos method. A method that is not limited to low-
order statistics and small perturbations is the polynomial chaos expansion introduced
by Ghanem and Spanos [3]. The method has recently been applied to computational
fluid dynamics [19, 24]. The polynomial chaos expansion is a polynomial expansion
of orthogonal polynomials in terms of random variables to approximate the uncer-
tainty distribution of the output. The method is based on the homogeneous chaos
theory of Wiener [21]. The homogeneous polynomial chaos expansion, which is based
on Hermite polynomials and Gaussian random variables, can approximate any func-
tional in L2(C) and converges in the L2(C) sense [2]. It can achieve an exponential
convergence rate for Gaussian input distributions due to the orthogonality of the Her-
mite polynomials with respect to the Gaussian measure. The exponential convergence
has been extended to other input distributions by employing other basis polynomials
[20, 22, 23]. The expansion coefficients are determined in the context of a stochas-
tic finite element approach by using a Galerkin projection in probability space. The
polynomial chaos expansions of the uncertain input parameter α(ω) and the uncertain
solution u(x, t, ω) are

(1.6) α(ω) =
1∑

j=0

αjΦj(ξ(ω)), u(x, t, ω) =

∞∑
i=0

ui(x, t)Φi(ξ(ω)),

where {Φi(ξ)}∞i=0 is a set of orthogonal polynomials and the random variable ξ(ω)
is given by a linear transformation of α(ω) to an appropriate standard domain, i.e.
[−1, 1], [0,∞), or (−∞,∞). Due to this linear transformation the polynomial chaos
expansion of α(ω) in (1.6) is exact within the first two terms. For the numerical
implementation the polynomial chaos expansion for u(x, t, ω) in (1.6) is truncated to
(p+1) terms, where p is the polynomial chaos order of the approximation. Substituting
the truncated expansions into (1.1) and performing a Galerkin projection onto each
polynomial basis {Φi(ξ)}pi=0 results in a coupled set of (p+1) deterministic equations

(1.7)

〈
L

⎛
⎝x, t,

1∑
j=0

αjΦj ;

p∑
i=0

uiΦi

⎞
⎠ ,Φk

〉
=

〈
S

⎛
⎝x, t,

1∑
j=0

αjΦj

⎞
⎠ ,Φk

〉

for k = 0, 1, . . . , p. This system of equations can be solved using standard iterative
methods [5]. The Galerkin polynomial chaos method can be intrusive to implement
and computationally intensive to solve, due to the coupled set of equations (1.7).

A nonintrusive polynomial chaos method. To avoid solving a coupled set of
equations, a nonintrusive polynomial chaos method can be used. It approximates
the polynomial chaos coefficients by solving a series of deterministic problems. An
example of a nonintrusive polynomial chaos method is the method of Hosder and
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Walters (see [9, 18]). The polynomial chaos expansion coefficients {uk(x, t)}pk=0

in (1.6) are approximated by evaluating the deterministic problem at (p + 1) points
in random space {ξk}pk=0, with ξk ≡ ξ(ωk),

(1.8) L(x, t, αk;u
∗
k(x, t)) = S(x, t, αk), k = 0, 1, . . . , p,

where u∗
k(x, t) is the realization of u(x, t, ω) for α(ω) = αk. The polynomial chaos co-

efficients {uk(x, t)}pk=0 are then approximated by the following relatively small linear
system:

(1.9)

⎛
⎜⎜⎜⎜⎝

Φ0(ξ0) Φ1(ξ0) · · · Φp(ξ0)

Φ0(ξ1) Φ1(ξ1) · · · Φp(ξ1)

...
...

. . .
...

Φ0(ξp) Φ1(ξp) · · · Φp(ξp)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u0(x, t)

u1(x, t)

...

up(x, t)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

u∗
0(x, t)

u∗
1(x, t)

...

u∗
p(x, t)

⎞
⎟⎟⎟⎟⎠ ,

which can be solved using a single LU decomposition. This nonintrusive polynomial
chaos method can be shown to converge to the Galerkin polynomial chaos expansion
coefficients under certain conditions [9]. As for the Monte Carlo method (1.2), non-
intrusive polynomial chaos results in a set of equations (1.8) which coincide with the
deterministic problem for varying parameter values. However, the number of deter-
ministic evaluations can be orders of magnitude smaller than for a standard Monte
Carlo simulation due to the combination with the polynomial chaos expansion.

Compared to solving the problem deterministically, using a nonintrusive poly-
nomial chaos method results in a multiplication of computational work by a factor
(p + 1). For computationally very intensive problems this increase of computational
work can be a major drawback for the application of uncertainty quantification. Con-
sider, for example, practical applications of nonlinear computational fluid dynamics
in time dependent problems involving complex geometries. These deterministic prob-
lems can already take weeks or even longer to solve. An increase of this amount of
computational work by a factor (p + 1) is significant. Especially in iterative design
processes of industrial applications this can make uncertainty quantification imprac-
tical. On the other hand, uncertainty quantification is in these cases essential for
robust design optimization. Therefore, there is a need for a further reduction of the
computational costs of uncertainty quantification methods.

In this paper, a monomial chaos approach is proposed to reduce the costs of uncer-
tainty quantification in computationally intensive nonlinear problems. The method
employs the polynomial chaos expansion with monomials as basis functions. The
monomial chaos expansion coefficients are solved for using differentiation of the gov-
erning equations, instead of a Galerkin projection. This results in a decoupled set of
linear equations even for problems involving polynomial nonlinearities. This reduces
the computational work per additional polynomial chaos order to the equivalence of a
single Newton iteration. Therefore, monomial chaos can be a computationally efficient
alternative for existing uncertainty quantification methods in nonlinear problems. The
monomial chaos approach is introduced in this paper for one uncertain input param-
eter to demonstrate the properties of the method and to make a basic comparison
with other uncertainty quantification methods. The extension of monomial chaos to
multiple uncertain parameters and random fields is briefly addressed.

The paper is organized as follows. The monomial chaos is introduced and er-
ror estimates derived in section 2. In section 3 the monomial chaos is applied to
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the Burgers equation to demonstrate the properties of the proposed approach for a
standard nonlinear advection-diffusion test problem in one dimension. The results
are compared with results of the perturbation method, the Galerkin polynomial chaos
method, and the nonintrusive polynomial chaos method in section 4. In section 5 the
monomial chaos is applied to a two-dimensional boundary layer flow problem as an
example of a standard nonlinear test problem from two-dimensional incompressible
fluid dynamics. In section 6 the conclusions are summarized.

2. The monomial chaos approach. In this section the monomial chaos ap-
proach is proposed. In section 2.1 the monomial chaos approach is introduced in
general as applied to (1.1). Error estimates are given in section 2.2.

2.1. The monomial chaos formulation. The monomial chaos approach em-
ploys a polynomial chaos expansion with monomials as basis functions to determine
the uncertainty distribution of the output. The equations for the monomial chaos
expansion coefficients are obtained by differentiating the deterministic equation with
respect to the uncertain input parameter. This results in a decoupled set of (p + 1)
equations for the (p + 1) coefficients of a pth-order monomial chaos expansion, in
which each equation solves for a monomial chaos coefficient sequentially. Due to the
product rule the differentiation of the governing equations also results in a set of
linear equations even for problems involving polynomial nonlinearities. This reduces
the additional computational work per polynomial chaos order to the equivalence of
a single Newton iteration. Therefore, monomial chaos can be an efficient alternative
for uncertainty quantification in computationally intensive nonlinear problems.

Consider the application of monomial chaos to a physical model involving poly-
nomial nonlinearities and parametric uncertainty given by (1.1),

L(x, t, α(ω);u(x, t, ω)) = S(x, t, α(ω)).

The uncertain parameter α(ω) and the solution u(x, t, ω) are expanded into a poly-
nomial chaos expansion

(2.1) α(ω) =
1∑

j=0

αjΨj(ξ(ω)), u(x, t, ω) =

∞∑
i=0

ui(x, t)Ψi(ξ(ω)),

where the random variable ξ(ω) is given by a linear transformation of the uncertain
input parameter α(ω) to an appropriate standard domain, i.e., [−1, 1], [0,∞), or
(−∞,∞) [23]. Due to this linear transformation the polynomial chaos expansion of
α(ω) in (2.1) is exact within the first two terms. In the monomial chaos the basis
polynomials {Ψi(ξ)}∞i=0 are monomials around ξ(ω) = μξ with μξ ≡ E[ξ(ω)]:

(2.2) Ψi(ξ(ω)) = (ξ(ω) − μξ)
i, i = 0, 1, . . . .

These monomials are chosen as basis functions because they satisfy the property

(2.3)
djΨi

dξj

∣∣∣∣
ξ=μξ

=

{
i!, i = j,

0, i �= j,

which says that taking the jth derivative of the monomials {Ψi(ξ)}∞i=0 with respect to
ξ at ξ(ω) = μξ results in a nonzero term for i = j only. This property of monomials
results in the decoupled set of equations for the monomial chaos coefficients {ui(x, t)}.
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Substitution of the monomial chaos expansions (2.1) with (2.2) into the governing
equation (1.1) results in

(2.4) L

⎛
⎝x, t,

1∑
j=0

αjΨj(ξ);

∞∑
i=0

ui(x, t)Ψi(ξ)

⎞
⎠ = S

⎛
⎝x, t,

1∑
j=0

αjΨj(ξ)

⎞
⎠ .

To obtain a set of equations for the expansion coefficients of the solution {ui(x, t)},
(2.4) is differentiated with respect to ξ for ξ(ω) = μξ. Taking the kth derivative
of (2.4) results in an equation for the kth expansion coefficient uk(x, t),

∂k

∂ξk
L

⎛
⎝x, t,

1∑
j=0

αjΨj(ξ);

∞∑
i=0

ui(x, t)Ψi(ξ)

⎞
⎠

∣∣∣∣∣
ξ=μξ

=
∂k

∂ξk
S

⎛
⎝x, t,

1∑
j=0

αjΨj(ξ)

⎞
⎠

∣∣∣∣∣
ξ=μξ

(2.5)

for k = 0, 1, . . . . This set of equations can be discretized using standard discretization
techniques [8]. Due to the combination of differentiation of (2.4) and property (2.3),
all higher-order coefficients {ui(x, t)}∞i=k+1 drop out of the equation, which results in a

decoupled set of equations for uk(x, t) in terms of {ui(x, t)}k−1
i=0 . This is illustrated in

section 3 where the monomial chaos is applied to the Burgers equation. Furthermore,
the decoupled set of equations (2.5) is linear in uk(x, t) due to the product rule in
differentiation, even if the governing equation (1.1) contains polynomial nonlinearities
(except for k = 0). The equation for k = 0 coincides with the deterministic problem
for the expected value of the uncertain parameter μα. For nonlinear problems solved
using Newton linearization, the additional computational work per polynomial chaos
order is proportional to one Newton iteration.

A pth-order monomial chaos approximation of the solution u(x, t, ω) is given by
truncating the monomial chaos expansion for u(x, t, ω) in (2.1) at p. The monomial
chaos coefficients {αj}1

j=0 of the uncertain parameter α(ω) with a known uncertainty
distribution can be determined by differentiating the monomial chaos expansion for
α(ω) in (2.1) with respect to ξ for ξ(ω) = μξ, which results, using property (2.3), in

(2.6) αj =
1

j!

djα

dξj

∣∣∣∣
ξ=μξ

, j = 0, 1,

where djα
dξj |μξ

is known and α0 = μα.

Equations (2.5) are similar to the continuous sensitivity equations (1.5) of the
perturbation method, which are obtained by implicit differentiation. The monomial
chaos method can be viewed as an extension of the perturbation method, which is usu-
ally limited to second-order approximations of the first two moments. The monomial
chaos approach can be employed for obtaining higher-order approximations of the
uncertainty distribution and the statistical moments of the output at computational
costs equivalent to those of the perturbation method.

On the other hand, in the monomial chaos approach the uncertain parameter and
variables are expanded in a polynomial expansion as in the polynomial chaos method,
using monomials instead of orthogonal polynomials in the polynomial chaos method.
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The monomial chaos approach can therefore be applied to the same set of arbitrary
input probability distributions as the polynomial chaos method. The outputs of the
monomial chaos approach are higher-order approximations of the distribution and
the statistical moments by solving a decoupled set of linear equations, instead of a
possibly coupled set of nonlinear equations in the polynomial chaos method.

Next to the relatively low computational work per polynomial chaos order the
monomial chaos has additional advantages which are important for practical appli-
cations. First, the polynomial chaos order of the monomial chaos approximation can
be determined during the computation while solving for the higher-order coefficients
sequentially. Second, the equations (2.5) depend only on the mean value of the un-
certain input parameter μα. Therefore, the influence of different input uncertainty
distributions and variances can be studied after solving (2.5) once. This is an im-
portant property since in practical problems the input distribution itself can also be
subject to uncertainty.

The monomial chaos is moderately intrusive, since for solving (2.5) the summation
of the matrix and vector entries in the deterministic solver have to be modified. For
decreasing the intrusiveness of the monomial chaos, the differentiation of the governing
equations can be replaced by finite difference differentiation in random space.

Here, the monomial chaos approach is considered for a single uncertain input pa-
rameter. The monomial chaos approach can be extended to multiple uncertain input
parameters by introducing a vector of random variables ξ(ω) = (ξ1(ω), . . . , ξn(ω)),
where n is the number of uncertain input parameters. The basis consists in that
case of multidimensional monomials Ψi(ξ(ω)), which are tensor products of the one-
dimensional monomials Ψi(ξj(ω)). The set of equations for the monomial chaos
coefficients (2.5) is then derived using mixed partial derivatives of (2.4) with respect
to the random variables {ξj(ω)}nj=0.

The uncertainty quantification methods reviewed in section 1 can also be extended
to multiple uncertain input parameters. For comparison, in the extension of the
perturbation method to multiple uncertain input parameters, the statistical moments
of the output are expanded around the expected value of the uncertain parameters
using multidimensional Taylor series expansions. The polynomial chaos method can
be extended to n uncertain parameters by using a multidimensional polynomial chaos
expansion in (1.6). The multidimensional polynomial chaos expansion is based on a
vector of random variables ξ(ω) = (ξ1(ω), . . . , ξn(ω)) and multidimensional orthogonal
polynomials Φi(ξ(ω)).

A random field can be handled by the monomial chaos method by first represent-
ing the random field in terms of a finite number of independent random input pa-
rameters using a Karhunen–Loève expansion [11] as in the polynomial chaos method.
For a random field with a relatively high spatial correlation, the number of random
input parameters needed to reach a reasonable accuracy with the Karhunen–Loève
expansion can be small. In that case the monomial chaos method can be applied to
the random input parameters to resolve the effect of the random field. For random
fields and random processes with low correlation the required number of random in-
put parameters can be much higher, and approaches other than the monomial chaos
method or the polynomial chaos method can be more competitive.

2.2. Error estimates. In this section error estimates for the monomial chaos
approach are derived. For simplicity the arguments x and t are dropped. After
computing the monomial chaos coefficients in (2.5), approximations of the mean μu,
variance σ2

u, higher-order moments, and the distribution function can be derived. If
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the uncertain variable u(ω) is expanded in an infinite monomial chaos series, the mean
μu is given in terms of the monomial chaos coefficients {ui}∞i=0 by

(2.7) μu =

∞∑
i=0

uiμξ,i,

with μξ,i the ith central statistical moment of ξ(ω),

(2.8) μξ,i =

∫
supp(ξ)

Ψi(ξ)pξ(ξ)dξ,

with μξ,0 = 1, μξ,1 = 0 and where supp(ξ) and pξ(ξ) are the support and the proba-
bility density of ξ(ω), respectively. The variance σ2

u is given by

(2.9) σ2
u =

∞∑
i=0

∞∑
j=0

ũiũjμξ,i+j ,

with

(2.10) ũi =

{
ui − μu, i = 0,

ui, i = 1, 2, . . . .

In the numerical implementation the infinite series in (2.7) and (2.9) are truncated at
a polynomial chaos order p. The errors in the approximation in the mean εμu

and the
variance εσ2

u
due to the truncation of the monomial chaos expansion are then given

by

(2.11) εμu = −
∞∑

i=p+1

uiμξ,i,

and

(2.12) εσ2
u

= −2

∞∑
i=p+1

∞∑
j=p+1

uiujμξ,i+j .

If the monomial chaos coefficients ui decrease fast enough with i for i = p+1, p+2, . . . ,
such that the leading truncation error term is due to neglecting the (p+1)th coefficient,
then the truncation errors can be estimated as

(2.13) εμu ≈ −up+1μξ,p+1

and

(2.14) εσ2
u
≈ −2u2

p+1μ
2
ξ,p+1,

which says that the leading error term in the approximation of the variance σ2
u results

in an underestimation. These a posteriori error estimates can be used in a stop-
ping criterion for determining the polynomial chaos order p of the monomial chaos
approximation.

Another contribution to the error in the mean μu and the variance σ2
u can be due

to the divergence of the monomial chaos expansion in a part of the domain of ξ(ω). In
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case of an input distribution with an infinite support, i.e., ξ(ω) ∈ (−∞,∞), there is
always a domain ξ(ω) ∈ (−∞, ξ−]∪ [ξ+,∞) in which the monomial chaos expansion of
u(ω), (2.1), diverges. However, it is demonstrated in the following propositions that
the divergence of the monomial chaos expansion in ξ(ω) ∈ (−∞, ξ−]∪ [ξ+,∞) results
in errors ε̃μu , ε̃σ2

u
which are in general small with respect to the truncation errors εμu

and εσ2
u
, and the mean μu and variance σ2

u.
Proposition 2.1. Let ξ(ω) ∈ (−∞,∞) and let ξ(ω) ∈ (ξ−, ξ+) be the domain of

convergence of the monomial chaos expansion of u(ω), (2.1). If the probability density
pξ(ξ) of ξ(ω) decreases fast enough as ξ → ±∞ such that

(2.15)

∞∑
i=0

|ui|
∣∣∣∣∣
∫

(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣ 	
∣∣∣∣∣∣

∞∑
i=p+1

ui

∫ ξ+

ξ−
Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣∣ ,
then the error in the monomial chaos approximation of the mean μu due to the di-
vergence of the monomial chaos expansion in ξ(ω) ∈ (−∞, ξ−] ∪ [ξ+,∞) is small
compared to the truncation error; i.e., |ε̃μu | 	 |εμu |.

Proof. The error ε̃μu
in the monomial chaos approximation of the mean μu due

to the divergence in ξ(ω) ∈ (−∞, ξ−] ∪ [ξ+,∞) is defined as

(2.16) ε̃μu
=

∞∑
i=0

ui

∫
(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ,

with

(2.17)∣∣∣∣∣
∞∑
i=0

ui

∫
(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣ ≤
∞∑
i=0

|ui|
∣∣∣∣∣
∫

(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣ .
The truncation error εμu

in the monomial chaos approximation of the mean μu due
to the truncation of the monomial chaos expansion at p is given by (2.11),

εμu = −
∞∑

i=p+1

ui

∫ ∞

−∞
Ψi(ξ)pξ(ξ)dξ(2.18)

= −
∞∑

i=p+1

ui

∫
(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ −
∞∑

i=p+1

ui

∫ ξ+

ξ−
Ψi(ξ)pξ(ξ)dξ,

with

(2.19)∣∣∣∣∣∣
∞∑

i=p+1

ui

∫
(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣∣ ≤
∞∑
i=0

|ui|
∣∣∣∣∣
∫

(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣ .
According to the assumption, |ε̃μu | 	 |εμu |.

Proposition 2.2. Let ξ(ω) ∈ (−∞,∞), and let ξ(ω) ∈ (ξ−, ξ+) be the domain
of convergence of the monomial chaos expansion of u(ω), (2.1). If (i) the probability
density pξ(ξ) of ξ(ω) decreases fast enough as ξ → ±∞ such that

(2.20)

∣∣∣∣∣
∞∑
i=0

ui

∫
(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣ 	
∣∣∣∣∣
∞∑
i=0

ui

∫ ξ+

ξ−
Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣ ,
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or (ii) the probability density pξ(ξ) of ξ(ω) decreases fast enough as ξ → ±∞ such that
(2.15) holds and the probability density pξ(ξ)of ξ(ω) decreases fast enough as ξ → ±∞
such that

(2.21)

∣∣∣∣∣∣
∞∑

i=p+1

ui

∫ ∞

−∞
Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣∣ 	
∣∣∣∣∣

p∑
i=0

ui

∫ ∞

−∞
Ψi(ξ)pξ(ξ)dξ

∣∣∣∣∣ ,
then |ε̃μu

| 	 |μu|.
Proof. The error ε̃μu

in the monomial chaos approximation of the mean μu due
to the divergence in ξ(ω) ∈ (−∞, ξ−] ∪ [ξ+,∞) is given by (2.16),

ε̃μu =

∞∑
i=0

ui

∫
(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ.

The mean μu is given by (2.7) and (2.8), which can be written as

(2.22) μu =

∞∑
i=0

ui

∫
(−∞,ξ−]∪[ξ+,∞)

Ψi(ξ)pξ(ξ)dξ +

∞∑
i=0

ui

∫ ξ+

ξ−
Ψi(ξ)pξ(ξ)dξ.

According to assumption (i), |ε̃μu | 	 |μu|. The mean μu based on an infinite monomial
chaos series expansion of u(ω) is given by (2.7) and (2.8), which can also be written
as

(2.23) μu =

p∑
i=0

ui

∫ ∞

−∞
Ψi(ξ)pξ(ξ)dξ +

∞∑
i=p+1

ui

∫ ∞

−∞
Ψi(ξ)pξ(ξ)dξ.

The error εμu in the monomial chaos approximation of the mean μu due to the trun-
cation of the monomial chaos expansion at p is given by (2.11),

(2.24) εμu
= −

∞∑
i=p+1

ui

∫ ∞

−∞
Ψi(ξ)pξ(ξ)dξ.

According to assumption (ii), we have |εμu | 	 |μu|. The result of Proposition 2.1
gives |ε̃μu

| 	 |μu|.
An example of a probability distribution that can satisfy the assumptions of

Propositions 2.1 and 2.2 is the Gaussian distribution with density function pξ(ξ) =

(1/
√

2πσ2
ξ )exp(−(ξ − μξ)

2/(2σ2
ξ )), and μξ and σ2

ξ the mean and variance of ξ(ω),

respectively. This probability density function is exponentially decreasing as ξ → ±∞.
Whether a given Gaussian probability distribution satisfies the assumptions depends
on the combination of a not too large variance of the uncertain input parameter
through σ2

ξ and sufficient regularity of the uncertain variable u(ω) through {ui}∞i=0,

ξ−, and ξ+. One can use (2.15), (2.20), and (2.21) to verify whether the monomial
chaos expansion of a certain order p is appropriate to use in a particular application.
Similar propositions hold for the variance σ2

u and the errors ε̃σ2
u

and εσ2
u
.

3. Application of monomial chaos. In this section the monomial chaos is
applied to the Burgers equation. The test problem is intended for demonstrating
the properties of monomial chaos applied to a nonlinear problem and for comparing
the results to those of other methods. The Burgers equation is often used to study
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Fig. 1. Deterministic solution of the nonlinear advection-diffusion problem for several values
of the viscosity parameter ν = {0; 0.25; 0.5; 1; 2;∞}.

the nonlinear advection-diffusion phenomena of fluid dynamics in one dimension [1],
and also in combination with the effect of uncertainty [13, 19, 25]. The efficiency of
uncertainty quantification in computational fluid dynamics applications is important,
since deterministically fluid dynamics simulations can already result in high compu-
tational costs. The monomial chaos formulation for the Burgers equation is given in
section 3.1. In section 3.2 numerical results for monomial chaos are presented.

3.1. Burgers’ equation. In this section the one-dimensional steady nonlinear
advection-diffusion problem known as the viscous Burgers equation is considered [1].
The Burgers equation for the velocity u(x, ω) in one dimension is given by

(3.1) u
∂u

∂x
− ν

∂2u

∂x2
= 0, x ∈ [0, 1],

with an uncertain viscosity ν(ω). The deterministic boundary conditions are u(0, ω) =
1 and u(1, ω) = 0. The solution of the deterministic variant of (3.1) is shown in
Figure 1 for several values of the viscosity ν = {0; 0.25; 0.5; 1; 2;∞}. In Figure 1
also the sensor location xsl = 0.5 is shown. The monomial chaos expansions for the
uncertain viscosity ν(ω) and the velocity u(x, ω) are

(3.2) ν(ω) =
1∑

j=0

νjΨj(ξ(ω)), u(x, ω) =

∞∑
i=0

ui(x)Ψi(ξ(ω)),

where ξ(ω) is a linear transformation of ν(ω) to a standard domain and {Ψi(ξ)}∞i=0

are monomials around ξ(ω) = μξ given by (2.2). The expansion coefficients {νj}1
j=0

of the viscosity with a known uncertainty distribution are given by

(3.3) νj =
1

j!

djν

dξj

∣∣∣∣
ξ=μξ

, j = 0, 1,

where djν
dξj |μξ

is known. Substituting the monomial chaos expansions (3.2) into the

Burgers equation (3.1) results in

(3.4)

∞∑
i=0

∞∑
j=0

Ψi(ξ)Ψj(ξ)uj
dui

dx
−

∞∑
i=0

1∑
j=0

Ψi(ξ)Ψj(ξ)νj
d2ui

dx2
= 0.
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Taking the kth derivative of (3.4) with respect to ξ for ξ(ω) = μξ and using the
Leibniz identity and property (2.3) results in a differential equation for uk(x),

(3.5)

k∑
l=0

(
k

l

)
uk−l(x)

dul

dx
−

k∑
l=max{0,k−1}

(
k

l

)
νk−l

d2ul

dx2
= 0, k = 0, 1, . . . .

Terms without uk(x) can be brought to the right-hand side of (3.5), which results in

u0
du0

dx
− ν0

d2u0

dx2
= 0, k = 0,(3.6a)

uk
du0

dx
+ u0

duk

dx
− ν0

d2uk

dx2
= −

k−1∑
l=1

(
k

l

)
uk−l(x)

dul

dx
+ kν1

d2uk−1

dx2
, k = 1, 2, . . . .

(3.6b)

As mentioned before, the equation for k = 0, (3.6a), coincides with the deterministic
problem for the mean value of the uncertain viscosity ν0. Equations (3.6b) form a
decoupled set of equations for the higher-order monomial chaos coefficients uk(x),
with k = 1, 2, . . . , as function of {uj(x)}k−1

j=0 which can be solved sequentially for
increasing k. These equations are linear in uk(x). The computational work for solv-
ing each equation of (3.6b) is equivalent to one Newton iteration for solving (3.6a).
Therefore, monomial chaos results in relatively low computational costs per additional
polynomial chaos order compared to the deterministic solve.

A pth-order approximation of the solution for u(x, ω) can be obtained by trun-
cating the monomial expansion for u(x, ω) in (3.2) at p. The error estimates (2.13)
and (2.14) can be used to determine a suitable polynomial chaos order p of the ap-
proximation. Equations (2.7) and (2.9) can be used to determine the approximation
of the mean and the variance of the velocity u(x, ω).

3.2. Results for Burgers’ equation. In this section results of the monomial
chaos for the Burgers equation are presented. In section 4, the results of the monomial
chaos approach are compared to results of the perturbation method, the Galerkin
polynomial chaos method, and a nonintrusive polynomial chaos method as reviewed
in section 1. For this comparison two error measures are used for the error in the
mean εμu(x) and the variance εσ2

u
(x) at the sensor location xsl = 0.5:

(3.7) εμu =

∣∣∣∣μu(xsl) − μu,ref(xsl)

μu,ref(xsl)

∣∣∣∣ , εσ2
u

=

∣∣∣∣∣σ
2
u(xsl) − σ2

u,ref(xsl)

σ2
u,ref(xsl)

∣∣∣∣∣ .
The reference solution is a Monte Carlo simulation based on 106 realizations of the
uncertain parameter ν(ω) evenly spaced in sample space ω ∈ [0, 1]. Approximations
of the probability distribution function and the probability density function are also
presented. A second-order finite volume method is used to discretize the spatial do-
main. The nonlinear problem is solved using Newton linearization with an appropriate
convergence criterion εnl = 10−9 for the L∞-norm of the residual, which results for
this problem in four Newton iterations.

The mean value of the uncertain input is assumed to be μν = 1. Probability
distributions with either a finite or a (semi-)infinite support of the uncertain viscosity
ν(ω) are considered. The uniform distribution is chosen for the distribution on the
finite domain. This corresponds to the assumption of an interval uncertainty, which
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Fig. 2. Monomial chaos (MCh) results for the uniform input distribution.

is often used in practical applications in case not enough information is available
to prescribe an uncertainty distribution. The input coefficient of variation for the
uniform distribution is covν = 0.3. Physical uncertainties are often described using a
normal distribution. Since the viscosity is a positive physical parameter, the lognormal
distribution is selected instead of the normal distribution for the distribution on the
(semi-)infinite domain. For the lognormal distribution an input coefficient of variation
of covν = 0.2 is considered to limit the main parameter variations to the same range as
for the uniform distribution. It has been verified that variation of the input coefficient
of variation covν and the choice of the sensor location xsl do not affect the results
significantly in comparison with the other methods.

3.2.1. Results for the uniform input distribution. In Figure 2 the mono-
mial chaos results for the uniform input distribution are presented. In Figure 2(a)
the mean μu and the 90% uncertainty intervals are given as function of x. The un-
certainty is largest in the interior of the domain due to the deterministic boundary
conditions. The uncertainty bars are asymmetrical with respect to the mean, which
was expected from the deterministic parameter study of Figure 1. In Figure 2(b) the
approximation of the probability distribution function at the sensor location xsl is
shown. The monomial chaos approximations for p = 3 and p = 7 are compared to the
reference solution. The 7th-order approximation is very accurate, and the 3rd-order
approximation results in a less accurate resolution of the tails of the distribution.

In Figure 3 the error convergence of the monomial chaos is given as a function of
both the polynomial chaos order and the computational work for the uniform input
distribution. In the same figure results for the perturbation method are given, which
are discussed in section 4. The mean and the variance converge on average exponen-
tially as functions of polynomial chaos order; see Figure 3(a). The odd coefficients
do not contribute to the approximation of the mean (2.7), since the central moments
μν,i of ν(ω) are zero for odd i. This is the reason for the staircase convergence of the
approximation of the mean.

In Figure 3(b), the error convergence as a function of the computational work is
given in terms of the equivalent number of deterministic solves. The error conver-
gence with respect to computational work is four times faster than the convergence
with respect to polynomial chaos order. For p = 0 the monomial chaos results in a
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Fig. 3. Error convergence of the monomial chaos (MCh) and the perturbation method (PM)
for the uniform input distribution.

deterministic solve for the mean value of the uncertain input μν . In this case four
Newton iterations are required to solve the nonlinear problem. Per additional polyno-
mial chaos order a linear problem has to be solved. The computational work for these
linear solves is equivalent to one Newton iteration for the nonlinear problem. For an
8th-order monomial chaos approximation of the mean with an error of 1 · 10−5 this
results in computational costs equivalent to three deterministic solves. These results
depend on the number of Newton iterations required for the deterministic problem.

3.2.2. Results for the lognormal input distribution. The results of the
monomial chaos for the lognormal input distribution are given in Figure 4. In Fig-
ure 4(a) the monomial chaos approximation of the probability density function for
p = 3 and p = 7 is compared to the reference solution at the sensor location xsl.
Especially near the tails of the distribution the 7th-order approximation is more ac-
curate than the 3rd-order approximation. In Figure 4(b) the weighted error in the
approximation of the probability density function is shown. The error weighted with
its probability is small near the point of highest probability, which corresponds ap-
proximately to μν , and it vanishes in the tails.

In Figure 5 the error convergence of the monomial chaos is given for the lognormal
input distribution. The mean and the variance converge, but the error convergence
is less regular than for the uniform input distribution. Initially the convergence is
less smooth due to the alternating over- and underestimation in combination with the
asymmetrical input distribution. The first-order coefficient u1(xsl) has no contribution
to the approximation of the mean, since the first-order central moment μν,1 of ν(ω)
is by definition zero. The error convergence with respect to computational work is
again four times faster than with respect to polynomial order; see Figure 5(b).

4. Comparison with other methods. In this section the results of the mono-
mial chaos for the Burgers equation are compared to the results of the perturbation
method [10], the polynomial chaos method [3], and a nonintrusive polynomial chaos
method [9]. An error convergence study with respect to the Monte Carlo reference
solution is performed as a function of polynomial chaos order and computational
work. For the Galerkin polynomial chaos method an optimal polynomial basis is
constructed based on the input uncertainty distribution. For a nonintrusive polyno-
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Fig. 4. Monomial chaos (MCh) results for the lognormal input distribution.
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Fig. 5. Error convergence of the monomial chaos (MCh) and the perturbation method (PM)
for the lognormal input distribution.

mial chaos method the solution is not unique since the samples ξk in random space
in (1.9) can be chosen arbitrarily [9]. Here the sampling points are chosen uniformly
distributed in ω.

4.1. Comparison with the perturbation method. In contrast with the
monomial chaos approach, the perturbation method results only in low-order ap-
proximations of the mean and the variance. These results are compared to the results
of the monomial chaos in Figures 3 and 5 for the uniform and lognormal input distri-
bution, respectively. The results of the perturbation method are similar to those of
the monomial chaos for p = 0, 1, 2. Higher-order monomial chaos approximations for
the uniform input distribution are orders of magnitude more accurate than those of
the perturbation method. This demonstrates that the monomial chaos method can be
viewed as an extension of the perturbation method to higher-order approximations of
the mean, the variance, and the distribution function. Also the computational costs
of the monomial chaos approach and the perturbation method of the same order are



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A MONOMIAL CHAOS APPROACH 1311

0 2 4 6 8 10
10

−6

10
−4

10
−2

10
0

polynomial chaos order p

er
ro

r

MCh: mean
MCh: variance
PC: mean
PC: variance

(a) polynomial order

0 2 4 6 8 10 12
10

−6

10
−4

10
−2

10
0

computational work [# deterministic solves]

er
ro

r

MCh: mean
MCh: variance
PC: mean
PC: variance

(b) computational work

Fig. 6. Error convergence of the monomial chaos (MCh) and the Galerkin polynomial chaos
(PC) for the uniform input distribution.

similar; see Figures 3(b) and 5(b). For higher-order approximations the monomial
chaos approach maintains these low computational costs per additional polynomial
chaos order.

4.2. Comparison with the Galerkin polynomial chaos method. The mean
and variance approximations of the monomial chaos approach and the Galerkin poly-
nomial chaos method are compared in Figures 6 and 7 for the uniform and lognormal
input distribution, respectively. In terms of polynomial chaos order, the Galerkin poly-
nomial chaos method results in exponential and faster convergence than the monomial
chaos approach; see Figures 6(a) and 7(a). However, solving the coupled set of non-
linear equations in the Galerkin polynomial chaos method results in a relatively fast
increase of computational work per polynomial chaos order in comparison with the
monomial chaos approach. Let p be the polynomial chaos order, nN be the number
of Newton iterations for solving the nonlinear problem, and nGS be the number of
Gauss–Seidel iterations for solving the coupled system of the Galerkin polynomial
chaos. Then the monomial chaos approach results in an amount of computational
work equivalent to ( p

nN
+ 1) deterministic solves. The computational work for the

Galerkin polynomial chaos is equivalent to nGS(p+1) deterministic solves. Therefore,
in this case the monomial chaos approach converges as a function of computational
work by approximately a factor of three faster than the Galerkin polynomial chaos
method; see Figures 6(b) and 7(b).

4.3. Comparison with a nonintrusive polynomial chaos method. In Fig-
ures 8 and 9 the error convergence of the monomial chaos and a nonintrusive polyno-
mial chaos method is compared for the uniform and lognormal distribution, respec-
tively. The nonintrusive polynomial chaos method achieves a slightly higher error con-
vergence rate as a function of the polynomial chaos order; see Figures 8(a) and 9(a).
The absolute errors are approximately of the same order of magnitude as those of
the monomial chaos. The computational work of the nonintrusive polynomial chaos
method per additional polynomial chaos order is equivalent to a nonlinear determinis-
tic solve. So, the nonintrusive polynomial chaos results in an amount of computational
work equivalent to (p + 1) deterministic solves compared to ( p

nN
+ 1) for the mono-

mial chaos approach. This results in this case in an approximately two times higher
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Fig. 7. Error convergence of the monomial chaos (MCh) and the Galerkin polynomial chaos
(PC) for the lognormal input distribution.

0 2 4 6 8 10
10

−6

10
−4

10
−2

10
0

polynomial chaos order p

er
ro

r

MCh: mean
MCh: variance
NIPC: mean
NIPC: variance

(a) polynomial order

0 2 4 6 8 10
10

−6

10
−4

10
−2

10
0

computational work [# deterministic solves]

er
ro

r

MCh: mean
MCh: variance
NIPC: mean
NIPC: variance

(b) computational work

Fig. 8. Error convergence of the monomial chaos (MCh) and a nonintrusive polynomial chaos
method (NIPC) for the uniform input distribution.

error convergence rate as a function of computational work for the monomial chaos
approach compared to the nonintrusive polynomial chaos method; see Figures 8(b)
and 9(b).

5. Application to two-dimensional boundary layer flow. In this section
the monomial chaos approach is applied to a two-dimensional incompressible bound-
ary layer flow as a standard test problem of computational fluid dynamics [14]. Un-
certainty quantification in computational fluid dynamics can be highly expensive in
practical applications due to the large computational work already involved in solv-
ing the deterministic problem. Monomial chaos can be a computationally efficient
alternative for uncertainty quantification in this type of problem.

For two-dimensional flow along a flat plate the Navier–Stokes equations of viscous
fluid dynamics reduce to the nonlinear two-dimensional incompressible boundary layer
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Fig. 9. Error convergence of the monomial chaos (MCh) and a nonintrusive polynomial chaos
method (NIPC) for the lognormal input distribution.

equations

∂u

∂x
+

∂v

∂y
= 0,(5.1a)

ρu
∂u

∂x
+ ρv

∂u

∂y
− μ

∂2u

∂x2
= 0,(5.1b)

where u and v are the velocity components parallel and perpendicular to the plate,
respectively. The flow is assumed to be laminar, the pressure gradient normal to the
plate is neglected, and the density ρ and viscosity μ are assumed to be uniform and
independent of temperature. The boundary layer equations describe the conservation
of mass (5.1a) and the conservation of momentum in the free stream direction (5.1b).
The flat plate is aligned with the free stream direction x; see Figure 10. The free
stream velocity u∞ equals unity, and the density at standard sea level conditions,
ρISA = 1.225kg/m3, is used. The computational domain has length 1m and height
0.05m and is discretized with cells of length Δx = 1 ·10−3m with an aspect ratio of 2.
A mixed upwind-central discretization is used. The flat plate of length 0.9m starts at
x = 0.1m. To solve the deterministic problem, eight Newton iterations were required
to reach the convergence criterion of εu = 1 · 10−4 in the L1-norm.

The uncertainty is introduced in terms of an uncertain dynamic viscosity coeffi-
cient μ(ω). The uncertainty is described by a lognormal distribution, since viscosity
is a positive physical parameter. The mean value is the viscosity at standard sea level
conditions, μISA = 1.789 · 10−5kg/ms, and the coefficient of variation is covμ = 5%.
The effect of the uncertainty in the viscosity on the velocity field and the drag of the
flat plate are considered.

A third-order monomial chaos expansion is employed to solve for the uncertainty
propagation in the boundary layer flow. The uncertain velocity components u(x, y, ω)
and v(x, y, ω) and the viscosity μ(ω) are expanded in a monomial chaos expansion.
After substitution and differentiation of the governing equations (5.1), the uncertainty
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Fig. 10. The two-dimensional boundary layer flow problem.

quantification problem is given by

∂uk

∂x
+

∂vk
∂y

= 0,(5.2a)

k∑
l=0

(
k

l

)
uk−l

∂ul

∂x
+

k∑
l=0

(
k

l

)
vk−l

∂ul

∂y
−

k∑
l=max{0,k−1}

(
k

l

)
μk−l

∂2ul

∂x2
= 0,(5.2b)

for k = {0, 1, 2, 3}. In Figure 11 the results for the mean μu(x, y) and the standard
deviation σu(x, y) of the u-velocity field are shown. The presence of the flat plate
results in a typical boundary layer behavior of the mean u-velocity field; see Fig-
ure 11(a). The standard deviation of the u-velocity field has local maxima inside the
boundary layer and near the leading edge of the flat plate. It vanishes both near
the flat plate further downstream and in the outer flow; see Figure 11(b). The error
estimates (2.13) and (2.14) estimate a maximum error of 4 · 10−6 and 8 · 10−5 in the
mean and variance field, respectively.

The drag Fdrag(ω) of the two-sided flat plate is a function of the uncertain viscosity
μ(ω) and the uncertain velocity gradient at the wall ∂u

∂y |y=0(ω),

(5.3) Fdrag(ω) = 2

∫
L

τw(ω)dx = 2

∫ 1

0.1

μ(ω)
∂u

∂y

∣∣∣∣∣
y=0

(ω)dx,

where τw(ω) is the skin friction. In Figure 12 the third-order monomial chaos ap-
proximation of the uncertainty distribution of the drag is shown. In Figure 12(a)
the probability distribution function is compared to a Monte Carlo simulation based
on 100 realizations uniformly sampled in ω. The results show good agreement. In
Figure 12(b) the error in the distribution function weighted by its probability is given.
The error is minimal for the drag corresponding to the mean value of the viscosity
and vanishes in the tails.

The additional computational costs of the presented uncertainty quantification
are equivalent to less than a deterministic solve. As mentioned before, solving the
nonlinear deterministic problem requires eight Newton iterations. The third-order
monomial chaos results in three linear solves in addition to the deterministic solve
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(a) mean μu(x, y) (b) standard deviation σμ(x, y)

Fig. 11. Uncertain u-velocity field in the two-dimensional boundary layer flow problem subject
to uncertain viscosity.
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Fig. 12. Uncertainty distribution of the drag in the two-dimensional boundary layer flow prob-
lem subject to uncertain viscosity.

for the mean value of the uncertain input parameter. So, the additional computa-
tional costs for the uncertainty quantification using monomial chaos are in this case
equivalent to 3

8 of the computational cost for solving the deterministic problem. Per-
forming uncertainty quantification in computationally intensive practical applications
is economically feasible with this order of computational costs.

6. Summary. A monomial chaos approach is proposed for efficient uncertainty
quantification in computationally intensive nonlinear problems. The proposed ap-
proach employs a polynomial chaos expansion with monomials as basis functions.
The equations for the deterministic coefficients are obtained by differentiating the
governing equations. Propagating uncertainty through nonlinear equations can be
computationally intensive for other polynomial chaos methods. It usually results in
a set of nonlinear equations which can be coupled. The proposed monomial chaos
approach results in a decoupled set of linear equations even for problems involving
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polynomial nonlinearities. This reduces the computational work per additional poly-
nomial chaos order to the equivalence of a single Newton iteration. Error estimates
for the monomial chaos approach have been presented. It has been demonstrated
numerically that the monomial chaos approach can achieve a 2–3 times faster con-
vergence as a function of computational work than other polynomial chaos methods.
Application to a two-dimensional flow problem demonstrated that the additional com-
putational work for performing an uncertainty quantification using monomial chaos
can be smaller than a single deterministic solve.
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