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Abstract

A mathematical theory on flocking serves the foundation for several ubiquitous multi-agent phenom-
ena in biology, ecology, sensor networks, economy, as well as social behavior like language emergence
and evolution. Directly inspired by the recent fundamental works of Cucker and Smale on the construc-
tion and analysis of a generic flocking model, we study the emergent behavior of Cucker-Smale flocking
under hierarchical leadership. The rates of convergence towards asymptotically coherent group patterns
in different scenarios are established.

The consistent convergence towards coherent patterns may well reveal the advantages and necessities
of having leaders and leadership in a complex (biological, technological, economic, or social) system with
sufficient intelligence.
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1 Introduction and Motivations

1.1 General Background on Flocking

Flocking, a universal phenomenon of multi-agent interactions, has gained increasing interest from various

research communities in biology, ecology, robotics and control theory, sensor networks, as well as sociology

and economics.

(i) (Biology and Ecology) The emergent behavior of bird flocks, fish schools, wolf packs, elephant

herds, or bacteria aggregations, for example, has long been a major research topic in population and

behavioral biology and ecology [8, 3, 4, 5, 9, 14, 20, 21].

(ii) (Robotics and Control) The coordination and cooperation among multiple mobile agents (robots

or sensors) have been playing central roles in sensor networking, with broad applications in military,

environmental control, or various field tasks [11, 22].

(iii) (Economy and Languages) Emergent economic behavior, such as a common belief in a price

system in a complex market environment, is also intrinsically connected to flocking. The emergence

of a common language in primitive societies is yet another example of a coherent collective behavior

emerging within a complex system [5, 6].

The present work can largely be categorized into the biology realm, and has been directly inspired by

the recent mathematical works of Cucker and Smale [4, 5], as the title suggests. Mathematical abstraction

and rigorous analysis are more focused herein than actual biological or physical realizability or feasibility.

As in physics, the study of idealized models can often shed light on various observed patterns in the real

world, if such models can indeed catch the very essence.

In biology and physics, the main goal of flocking study is to be able to interpret, model, analyze,

predict and simulate various flocking or multi-agent aggregating behavior. Most existing works have been

focusing on modeling and simulation [12, 23]. See, for example, the several important models investigated

by Flierl et al. [9] (and their stochastic formulation). The more recent paper of Parrish et al. [15] also

provides a comprehensive comparison among some major existing models and their governing variables (in

the context of fish schooling). Quantitative analysis (as in [4, 5, 11]) on the asymptotic rates of emergence

and convergence, on the other hand, has been relatively rare.

Mathematical efforts are gradually gaining strength in this multidisciplinary area. In the continuum

limit, for example, there have been several recent efforts made by Bertozzi’s group [20, 21], in which

global swarming (i.e., with densely populated agents) patterns are modeled and analyzed via suitable

spatiotemporal differential equations. Discrete-to-continuum limits of interacting particle systems have

also been investigated by the same group [1, 8] recently. Consistent and generic mathematical analysis

has been very much in an early stage for many biological aggregation phenomena. In the current paper,

following the recent remarkable works of Cucker and Smale [4, 5] on flocking analysis, we attempt to make

further extension along the same line.

1.2 Cucker-Smale Flocking Model

Given a flock of k agents (birds, fish, wolves, etc) labeled by i = 1, 2, . . . , k, the Cucker-Smale flocking

model is specified by the nonlinear autonomous dynamic system:
{

ẋi(t) = vi,

v̇i(t) =
∑

j∈L(i) aij(x)(vj − vi), i = 1 : k, t > 0,
(1)

where xi(t) and vi(t) are 3D (3 dimensional, which is non-essential) position and velocity vectors at time

t, x = (x1, . . . , xk) ∈ (R3)k, and L(i) ⊆ {1, · · · k} denotes the subgroup of agents that directly influence

2



agent i. Furthermore, the connectivity coefficients aij(x) are in the form of

aij(x) = w(|xi − xj|
2), for some nonnegative weight profile w(y).

In the current paper, by Cucker-Smale flocking model, we require as in [4, 5] that the interaction weight

function w(y) takes the form of:

w(y) =
H

(1 + y)β
, or w(y) ≥

H

(1 + y)β
, (2)

where H and β are two positive system parameters. One shall see that the two (= vs. ≥) make no

difference for the analysis hereafter as long as w(y) is bounded and sufficiently smooth (also see [4]). We

also must point out that this model has been put in a more general and abstract setting in the subsequent

work of Cucker and Smale [5].

The look of the system (1) is not entirely new. For example, the 2D model studied by Vicsek et al. [23]

is very similar in which vi’s share the same magnitude (or speed) while their heading directions θi’s satisfy

a similar set of equations.

It is the particular choice of the connectivity coefficients in (2) that has made the Cucker-Smale model

mathematically more attractive. Vicsek et al.’s model (in discrete time) [23] can be considered as taking

the following cut-off weight function:

w(y) = wr(y) = 1y≤r2(y), L(i) ≡ {1, . . . , k}, ∀i.

That is, two distinct agents xi and xj interact if and only if they are within a distance of r > 0, which

is assigned a priori and fixed throughout. The lack of long-range interactions has made the model very

difficult to analyze. For example, the remarkable efforts of Jadbabaie et al. [11] on emergence analysis

avoided the actual dynamic dependence of aij on the configuration x, but instead, they focused on an

altered setting that involves switching controls.

The main results of Cucker and Smale [4] can be summarized as follows: when β < 1/2, the flock

converge to some translating rigid structure (moving at a constant velocity) unconditionally, i.e., regardless

the initial configuration; and when β ≥ 1/2, the initial velocities and positions have to satisfy certain

compatible conditions so that the entire flock can converge asymptotically.

In summary, in the modeling and analysis of Cucker and Smale [4, 5], not only are the conditions

for pattern emergence easily verifiable (i.e., by checking the initial conditions), but the role of long-range

interaction is also clearly quantified. A smaller β signifies more intense long-range interactions among

agents while a bigger β leads to much weaker ones. It has been shown that the critical exponent βc = 1/2

is sharp and necessary. Previously, the connection between global pattern emergence and individual action

rules has often only been observed experimentally or addressed empirically (Vicsek et al. [23], for example,

experimentally observed phase transition induced by population density ρ and random fluctuation η. A

higher density corresponds to more interaction among agents, or loosely, smaller β in the Cucker-Smale

model.)

1.3 Motivations and Main Results of Current Work

In the current work, we investigate the emergent behavior of Cucker-Smale flocking under hierarchical

leadership (HL), which will be defined in detail in the next section.

Roughly, an HL flock is one whose members can be ordered in such a way that lower-rank agents are

led and only led by some agents of higher ranks. As explained in more details in Section 2, for HL flocks,

it is often either nontrivial or impossible to define a “fixed” inner product so that the Fiedler number of

the associated (graph) Laplacian can be exploited, which is the key to the original work of Cucker and
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Smale [4] and its subsequent generalization [5]. The current work thus takes a somewhat different approach

in order to fully benefit from the characteristic structures of HL.

As far as applications are concerned, there are two types of HL: passive and active ones.

(A) (Passive/Transient Leadership)

(A.1) (Disturbed Bird Flocks) In nature, certain types of leadership emerge in a transient and

dynamic fashion and is often prompted by a specific environment. For a disturbed bird flock

at rest, for example, the bird that first senses the approach of an unexpected pedestrian or

predator often takes flight first, warns others, and first gains full speed, and consequently flies

ahead of the entire flock and serves as a virtual leader.

(A.2) (Driving in a Traffic) During rush hours, each individual driver mainly manoeuvres according

to the moving patterns of several cars right ahead in the visual field. Thus a chain of leadership

naturally arises and extends linearly along the traffic. The leadership here is also prompted by

the environment rather than being intrinsic among the stranger drivers.

(B) (Active/Intrinsic Leadership)

(B.1) (Governmental/Miltiary Hierarchies) Such hierarchical leadership is inherent in various

social groups or structures, and often leads to more efficient management. Examples include,

the chain of President-Governor-Mayor in the governmental system, and the chain of command

from the Commander in Chief all the way down to a soldier.

(B.2) (Social Animals) For some social animals such as monkeys, wolves, or elephants [3], the group

or social status of each member is clearly recognized by others and stably maintained, and

guides the action of each individual in the hierarchies. (See also the recent work of Couzin et

al. [3] for non-hierarchical but “effective” leadership.)

Our main results are the three theorems summarized below. All HL flocks are assumed to have Cucker-

Smale connectivity introduced in the preceding subsection.

(i) (Section 3) For an HL (k + 1)-flock marching at a sufficiently small discrete time step h, under the

similar classification scheme according to β < βc, = βc, or > βc, as in Cucker and Smale [4, 5], the

velocities of the flock converge at a rate of O(ρnhn
k−1), where the factor ρh ∈ (0, 1) only depends on

h, system parameters, and the initial configuration of the flock. The critical exponent is given by

βc = 1/(2k), instead of βc = 1/2 in the original work of Cucker and Smale [4]. (For a 2-flock (with

k = 1) they are the same. For k > 1, the βc herein could be over restrictive and due to the deficiency

of the particular methodology adopted.)

(ii) (Section 4) For an HL flock under continuous-time dynamics, when β < 1/2, there exists some

B > 0, such that the velocities of the flock converge at an exponential rate of O(e−Bt). The constant

B only depends on the system parameters and the initial configuration of the flock. (From the simple

calculation on an HL 2-flock, βc = 1/2 is sharp in order to achieve unconditional convergence.)

(iii) (Section 5) For an HL (k + 1)-flock [0, 1, . . . , k] of which the overall leader agent 0 takes a free-will

acceleration v̇0 = f(t) (thus the system is no longer autonomous), as long as the overall leader behaves

moderately so that f(t) = O((1 + t)−µ) for some µ > k, the velocities of the flock will still converge

at a rate of O((1 + t)−(µ−k)) when β < 1/2. (By (ii) where f ≡ 0, βc = 1/2 is again sharp for

unconditional convergence.)

We also mention that Jadbabaie et al. [11] also studied (under discrete time and working with Vicsek et

al.’s orientation model [23]) the effect of a single leader moving at a fixed constant velocity. As mentioned
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above, due to the difficulty in dealing with configuration-dependent dynamics, the authors switched to the

study of an altered control problem (under the assumption of intermittent joint connectivity).

In addition to the three main sections mentioned above, definitions and further detailed background

will be introduced in Section 2. The conclusion is drawn in Section 6.

2 HL Flocks, and Definability of Compatible Inner Products

2.1 Flocks under Hierarchical Leadership (HL Flocks)

Definition 1 (An HL Flock) A (k + 1)-flock is said to be under hierarchical leadership, if the agents

(birds, fish, wolves, etc.) can be labeled as [0, 1, . . . , k], such that

(i) aij = aagent i led by j 6= 0 implies that j < i; and

(ii) if we define the leader set of each agent i by

L(i) = {j | aij > 0},

then for any i > 0, L(i) 6= ∅ (non-empty).

If so, the flock is called an HL flock.

HL−flock HL−flock not an HL−flock

1

0

0

2

2

3

21

1

0

Figure 1: Two examples of HL flocks and one example of a non-HL flock. The arrow i → j means that
agent i is led by agent j, or equivalently, aij > 0. Visually, it means that i looks up to j.

Notice that the second condition requires that, except for agent 0, all the others must be subject to

some leadership. On the other hand, the first condition implies that L(0) = ∅. Thus agent 0 is the overall

leader (direct or indirect) for the entire flock. Figure 1 depicts the connectivity structure of two HL flocks

and one non-HL flock.

Proposition 1 (Connectivity Matrix of an HL Flock) A (k + 1)-flock is an HL flock if and only if

after some ordered labeling [0, 1, . . . , k], the connectivity matrix K = (aij)0≤i,j≤k is lower triangular, and

for any row i > 0, there exists at least one positive off-diagonal element aij.

Subject to convenience, in what follows a generic HL flock shall be denoted by either [0, 1, · · · , k] or

[1, · · · , k]. As in Cucker-Smale [4] or Chung [2], define the graph Laplacian matrix by

L = D −K, D = diag(d0, . . . , dk), di =
∑

j

aij. (3)

5



Similarly, define the two (non-orthogonally) complementing subspaces of Rk+1:

∆ = span












1
...
1






k+1







, and R
k =














0
x1
...
xk








| x′is ∈ R







.

Then it is easy to see that

∆ = Ker(L), and R
k = Range(L) is L-invariant.

Notice that the kernel assertion is directly guaranteed by the second condition of an HL flock, without

which the kernel could be larger.

From now one, as in Cucker and Smale [4, 5], we shall only consider the restriction of the Laplacian on

the reduced space R
k. Then it becomes nonsingular, and shall still be denoted by L for convenience. We

also must point out that when applied to actual flocking, the reduced Laplacian L is applied to R
3k (instead

of Rk) via the three spatial dimensions individually.

2.2 Definability of Compatible Inner Products

The general framework of Cucker and Smale [4] relies upon the Fiedler number of the Laplacian operator

L, i.e., the smallest positive eigenvalue in the reduced space. In particular, it assumes the existence of a

fixed inner product 〈·, ·〉 such that

〈Lv, v〉 ≥ ξ〈v, v〉, for any v ∈ R
k. (4)

Then an a priori lower bound on ξ = ξ(x) constitutes the core to the convergence results established

by Cucker and Smale [4, 5]. Below we show, however, that such inner products could fail to exist for

non-symmetric systems like HL flocks.

Theorem 1 Consider the special HL (k + 1)-flock [0, 1, . . . , k] such that L(i) = {i− 1} for i > 0, and an

instant when ai,i−1 ≡ a for some fixed a > 0 and any i > 0. Then the smallest eigenvalue is ξ = a, but

there exists no inner product 〈·, ·〉 in the reduced space R
k such that

〈Lv, v〉 ≥ a〈v, v〉, v ∈ R
k.

Proof. It is easy to see that the (reduced) Laplacian L is given by

L = La =








a 0 . . . 0 0
−a a . . . 0 0
...

...
. . .

...
...

0 0 . . . −a a








k×k

.

In particular, La = aL1, and it suffices to prove the case when a = 1. If such an inner did exist, one would

have

〈L1v, v〉 ≥ 〈v, v〉, or 〈Jv, v〉 ≥ 0,

where J = L1 − Id. Notice that Jv = (0,−z1, . . . ,−zk−1)
T for v = (z1, . . . , zk)

T .

Let e′is denote the canonical basis of Rk, and define

G = (gij) = (〈ei, ej〉)k×k
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to be the associated Grammian matrix of the inner product. Then G must be positive definite. For any

v = (z1, · · · , zk)
T , one has

〈v, Jv〉 = vTG · Jv = (z1, . . . , zk)(gij)(0,−z1, . . . ,−zk−1)
T .

Consider a special vector in the form of w = wt = (0, . . . , 0, 1, t)T ∈ R
k. Then

〈wt, Jwt〉 = (0, . . . , 0, 1, t)(gij )(0, . . . , 0, 1)
T = gk−1,k + gk,kt.

Notice that gk,k = 〈ek, ek〉 > 0. Then for any

t < −
|gk−1,k|

gk,k
,

one must have 〈wt, Jwt〉 < 0, which is contradictory. �

Even when such compatible inner products do exist, for a general non-symmetric flock, they often

depend on the configuration of the flock, and are thus time-dependent. This causes much inconvenience

or a potential impasse for the Cucker-Smale approach in [4, 5]. The efforts in the current work follow a

different approach by exploiting the specific structures of HL flocks.

3 Discrete-Time Emergence

Recall that in the continuous time, the Cucker-Smale flocking model is given by

{

ẋ = v,

v̇ = −Lxv, t > 0,
(5)

Where the reduced Laplacian L = Lx is defined as in (3) and both x and v are considered in the reduced

(quotient) space. For a (k + 1)-flock, both of them belong to R
3k.

Fixing a discrete time step h > 0. Define

x[n] = x(nh), v[n] = v(nh), and Ln = Lx[n].

(Note: the parenthesis-bracket correspondence follows the convention in digital signal processing [19].)

Then the continuous-time system (5) is discretized to

{

x[n+ 1] = x[n] + hv[n],

v[n+ 1] = S[n]v[n], n = 0, 1, · · ·
(6)

where S[n] = Sh[n] = Id− hLn.

For an HL (k + 1)-flock [0, 1, . . . , k] , recall that the reduced Laplacian is given by

Ln =








d1[n] 0 . . . 0 0
−a21[n] d2[n] . . . 0 0

...
...

. . .
...

...
−ak1[n] −ak2[n] . . . −ak,k−1[n] dk[n]








k×k

. (7)

For i > 0, since the leader set L(i) 6= ∅, we have

di[n] =

k∑

j=1

aij[n] =
∑

j∈L[i]

aij [n] > 0. (8)

7



Under the Cucker-Smale model, one has for any j ∈ L(i),

aij[n] =
H

(

1 + |x̃j[n]− x̃i[n]|
2 /2

)β
, (9)

where x̃i denotes the original 3D position vector of agent i (and the factor 1/2 is for convenience). In the

reduced quotient space, one has xi = x̃i − x̃0 ∈ R
3 since the original configuration vector x̃ ∈ R

3(k+1) and

the reduced representation x ∈ R
3k are connected via:

x̃ =








x̃0
x̃1
...
x̃k







=








x̃0
x̃0
...
x̃0







+








0
x̃1 − x̃0

...
x̃k − x̃0







=








x̃0
x̃0
...
x̃0







+

[
0
x

]

.

As a result, for any pair i, j > 0,

|x̃i − x̃j|
2 = |xi − xj|

2 ≤ 2(|xi|
2 + |xj |

2) ≤ 2|x|2.

In combination with (8) and (9), this implies that under the Cucker-Smale connectivity,

di[n] ≥
H

(1 + |x[n]|2)β
, i > 0. (10)

Assume, as in Cucker and Smale [4], that under suitable initial conditions (according to whether β <,=,

or > βc = 1/(2k)), one has the uniform bound on the reduced position vector:

|x[n]|2 ≤ Bh, for n = 0, 1, · · · , (11)

where Bh is a constant bound depending only on h, the system parameters H and β, as well as the initial

configuration. (The existence of Bh is a crucial ingredient of the proof and will be further addressed

immediately after this main line.) Then one has, for any n ≥ 0, and i > 0,

di[n] ≥ d∗ =
H

(1 +Bh)β
. (12)

Proposition 2 (Uniform Elementwise Bound on S) For 0 < h <
1

2kH
, Sij[n] ≥ 0 for any i, j, and

max
i,j

Sij[n] ≤ 1− hd∗ := ρh, n = 0, 1, · · · (13)

Proof. By definition,

S[n] = Id− hLn = Ln =








1− hd1[n] 0 . . . 0 0
ha21[n] 1− hd2[n] . . . 0 0

...
...

. . .
...

...
hak1[n] hak2[n] . . . hak,k−1[n] 1− hdk[n]








k×k

.

Under the condition on h, for the off-diagonals i > j, we have

Sij[n] = haij ≤ hH <
1

2k
≤

1

2
.

For the diagonals, since aij ≤ H, we have di ≤ (k − 1)H, and

Sii[n] = 1− hdi ≥ 1− h(k − 1)H > 1−
1

2
=

1

2
.
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Therefore,

max
ij

Sij [n] = max
i

Sii[n] = 1− hmin
i

di ≤ 1− hd∗,

which completes the proof. �

Next, our goal is to be able to control the growth rate of the matrix iteration:

S[n]S[n− 1] · · · S[0], as n → ∞.

Normally, such asymptotic behavior is investigated via the so-called joint spectral radius (e.g., Strang and

Rota [16], Daubechies and Lagarias [7], or Shen [17, 18]):

lim
n→∞

‖S[n]S[n− 1] · · · S[0]‖
1
n ,

which is often too complex to be feasible since the matrices evolve and generally do not commute. The

approach below resembles the Lebesgue Dominant Convergence Theorem in Analysis [13].

Definition 2 (Domination) A matrix B = (bij) is said to be dominated by another matrix C = (cij) of

the same size, if

|bij | ≤ cij , for any i, j.

If so, we write B ≺ C.

Proposition 3 If B ≺ C, there exists some constant α, such that

‖B‖ ≤ α‖C‖,

where α only depends on the type of matrix norm adopted.

Proof. All norms in a finite-dimensional Banach space are equivalent. Therefore, it suffices to establish

the inequality under any special matrix norm. Consider the Fröbenius norm:

‖B‖2 = trace(BBT ) =
∑

i,j

b2ij ≤
∑

i,j

c2ij = trace(CCT ) = ‖C‖2,

with α = 1 (the superscript T here denotes transpose). The general constant α resurfaces when another

norm is used instead. �

Proposition 4 Suppose Bi ≺ Ci, for i = 0, . . . , n. Then

BnBn−1 · · ·B0 ≺ CnCn−1 · · ·C0.

The proof is trivial. Next we define a “complete” lower triangular matrix T = (tij)k×k by

tij =

{

1, i ≥ j;

0, otherwise.

Then the elementwise bound established in Proposition 2 directly implies the following.

Corollary 1 Let ρh = 1− hd∗ as in Proposition 2. Then

S[n] ≺ ρhT, and S[n− 1] · · · S[0] ≺ ρnhT
n, n = 0, 1, . . .

Lemma 1 Let T = (tij)k×k be defined as above. Then ‖T n‖ = O(nk−1).
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Proof. Denote by J the k by k lower triangular matrix whose nonzero elements are all 1’s and only

distributed right below the diagonal, e.g., the 3 by 3 case,

J =





0 0 0
1 0 0
0 1 0



 .

Then it is easy to see that

T = I + J + · · ·+ Jk−1.

Since Jk = Jk+1 = · · · = 0k×k, one can also write

T =
∞∑

m=0

Jm.

More generally, for any t with |t| < 1, one can define

T (t) =
∞∑

m=0

tmJm = (I − tJ)−1.

Then

T (t)n = (I − tJ)−n =

∞∑

m=0

(
−n

m

)

(−t)mJm =

k−1∑

m=0

(
n+m− 1

m

)

tmJm.

Letting t → 1, we have

T n = lim
t→1

T (t)n =

k−1∑

m=0

(
n+m− 1

m

)

Jm ≺ O(nk−1)T.

The proof is then complete via Proposition 3. �

Combining all the preceding results in this section, we have arrived at the following conclusion.

Theorem 2 In the discrete-time Cucker-Smale model (6) for an HL (k + 1)-flock , for any sufficiently

small marching step h (as in Proposition 2 and Cucker and Smale [4, 5]), there exists some ρh ∈ (0, 1)

under the conditions similar to [4, 5] based upon β <,=, or > βc = 1/(2k), such that

S[n] · · ·S[0] ≺ O(ρnhn
k−1)T.

In particular, one has

|v[n]| ≤ O(ρnhn
k−1)|v[0]|, n → ∞.

The order constant in O(·) only depends on the size k of the flock.

We point out that the polynomial growth rate O(nk−1) (coming from T n in Lemma 1) is characteristic

of triangular HL flocks. A “full” system would make the approach here infeasible since






1 · · · 1
...

. . .
...

1 · · · 1






n

k×k

=






1
...
1






(
1 · · · 1

)






1
...
1




 · · · · · ·

(
1 · · · 1

)
= kn−1






1 · · · 1
...

. . .
...

1 · · · 1




 .

The exponential growth rate kn would thus overpower ρnh and lead to an exponential blowup.

Finally, we further address the important issue raised earlier in the proof concerning the boundedness

condition in (11): |x[n]|2 ≤ Bh for all n. The existence of the convergence factor ρh has crucially depended
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on such a bound Bh. On the other hand, the very existence of Bh, as we intend to show now, depends on

ρh. This entanglement is characteristic of the nonlinear Cucker-Smale flocking model (as well as in Vicsek

et al. [23] and Jadbabaie et al. [11]), and makes this type of models difficult to analyze. In the rest of the

section, we introduce the brilliant approach of Cucker and Smale in unraveling such entanglement, which

then genuinely completes the proof.

Lemma 2 For any given integer k ≥ 1,

∞∑

m=0

tmmk−1 ≤ (k − 1)!(1 − t)−k, ∀ t ∈ [0, 1). (14)

Proof. Notice that the equality holds when k = 1. Generally, for any t ∈ [0, 1),

(k − 1)!(1 − t)−k = (k − 1)!

∞∑

m=0

(
−k

m

)

(−t)m

= (k − 1)!
∞∑

m=0

(
m+ k − 1

k − 1

)

tm

=

∞∑

m=0

(m+ k − 1) · · · (m+ 1)tm

≥

∞∑

m=0

mk−1tm,

which completes the proof. �

We now apply the self-bounding technique developed by Cucker and Smale in [4, 5] to establish the

bound
∣
∣x[n]

∣
∣2 ≤ Bh that is crucially needed in the proof of Theorem 2. It also explains the origin of the

critical exponent βc = 1/(2k) and its role.

We thus return to the step in (11). This time, instead of assuming a priori that
∣
∣x[n]

∣
∣2 ≤ Bh for all

n ≥ 0, we proceed as follows. Fix any discrete time mark N , and define

|x|∗ = max
0≤n≤N

|x|[n], N∗ ∈ argmax0≤n≤N |x|[n], (15)

and similarly define

d∗ =
H

(1 + |x|2∗)
β
. (16)

Thus |x|∗ could be considered as a “localized” version of Bh, restricted in any designated finite time segment

[0, N ].

Then all the earlier analysis and results hold up to the bounding formula on |v|[n] in Theorem 2, as

long as one restricts n within [0, N ]. In particular for ρh = 1− hd∗,

|v|[n] ≤ Aρnhn
k−1, n = 0, . . . , N,

where the constant A only depends on k but on neither n nor N .

Therefore, by the first equation of HL flocking in (6), for any n ∈ [0, N ],

|x|[n] ≤ |x|[0] +

n−1∑

m=0

|x[m+ 1]− x[m]| = |x|[0] + h

n−1∑

m=0

|v[m]|

≤ |x|[0] +Ah

n−1∑

m=0

ρmh mk−1 ≤ |x|[0] +Ah

∞∑

m=0

ρmh mk−1

≤ |x|[0] + (k − 1)!Ah(1 − ρh)
−k.
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In particular, for n = N∗,

|x|∗ = |x|[N∗] ≤ |x|[0] + (k − 1)!Ah(1 − ρh)
−k.

Now that

(1− ρh)
−k = h−kd−k

∗ = (hH)−k(1 + |x|2∗)
βk,

one has the Cucker-Smale type of self-bounding inequality for the unknown |x|∗:

|x|∗ ≤ |x|[0] + (k − 1)!Ah(hH)−k(1 + |x|2∗)
βk.

Define Z = (1 + |x|2∗)
1/2. Then

Z ≤ 1 + |x|∗ ≤ c+ bZ2βk, (17)

with c = 1 + |x|[0] and b = (k − 1)!Ah(hH)−k .

The rest of analysis then goes exactly as in Cucker and Smale [4, 5]. Define

F (z) = z − bzs − c, with s = 2βk, and z > 0.

Then when s < 1, the nonlinear function F (z) has a unique zero z∗ after which F stays positive. Since

F (Z) ≤ 0, one thus must have Z ≤ z∗, or

|x|∗ ≤ Z ≤ z∗.

Now that z∗ only depends on c and b, which are independent of the pre-assigned time mark N , we have

obtained the uniform bound

|x|[N ] ≤ |x|[N∗] = |x|∗ ≤ z∗, ∀ N = 0, 1, · · · .

Thus Bh = z2∗ is the uniform bound needed in the proof of Theorem 2. This is the case when β ≤ βc =

1/(2k).

The other two cases when β = βc and β > βc (corresponding to s = 1 and s > 1 for F (z)) can

be analyzed exactly in the same manner as in Cucker and Smale [4, 5], and will be omitted herein. In

particular, in both cases, there will be sufficient-type of conditions on the initial configurations in order

for the bound Bh to exist. In the third case β > βc, there will also be more stringent upper bound on the

time marching size h. We refer the reader to Cucker and Smale for the detailed analysis on F (z) in these

two cases. This completes the proof of Theorem 2.

In the next section, we investigate the emergent behavior of the continuous-time HL flocking using quite

different methods. There, the results hint that the unconditional convergence range β ∈ [0, 1/(2k)) just

established might still be extendable onto [0, 1/2), as in Cucker and Smale [4]. Thus the critical exponent

βc = 1/(2k) might be further improved if other alternative approaches are to be investigated in the future.

4 Continuous-Time Emergence

Let [1, . . . , k] be an HL k-flock in that order, connected via the Cucker-Smale strength with parameters β

and H as in (2). In this section, we establish the emergence behavior for the entire flock when β < 1/2,

via the methods of induction and perturbation. The associated intuition is as follows. If the sub-flock

[1, . . . , i− 1] almost reaches convergence, it shall look like a rigid one-body to agent i. Then [1, . . . , i− 1, i]

is not far from a simpler two-agent flock. Our goal is to develop rigorous mathematical analysis to quantify

and support this point of perspective. (In this section, we shall work with [1, . . . , k] instead of [0, 1, . . . , k]

due to the lack of advantage of introducing index 0.)
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4.1 The Property of Positivity

The general properties to be established in this subsection are characteristic of the Cucker-Smale flocking

model. They could be useful for any future works on the model, on top of their roles in the proof of the

main results of this section.

Let xi, vi ∈ R
3 denote the 3D position and velocity vectors of agent i. Recall that the Cucker-Smale

flocking model is given by

{

ẋi = vi,

v̇i = −(Lxv)i =
∑

j∈L(i) aij(x)(vj − vi),
(18)

for t > 0, i = 1, . . . , k, and x = (x1, x2, . . . , xk) ∈ R
3k. The Cucker-Smale connectivity strength is specified

by

aij(x) =
H

(1 + |xj − xi|2)
β
, j ∈ L(i).

(As mentioned earlier in the Introduction, changing “=” to “≥” does not affect the subsequent analysis

as long as aij(x)’s are bounded and sufficiently smooth.) Given a solution (x(t), v(t)) to the continuous

Cucker-Smale model (18), we write for convenience

aij(t) = aij(x(t)), and Lt = Lx(t).

Let η = (η1, η2, · · · ηk)
T ∈ R

k be k scalars, and consider the following system of ordinary differential

equations:

η̇ = −Ltη, t > 0, given η0 = η
∣
∣
t=0

. (19)

Componentwise, we have

η̇i =
∑

j∈L(i)

aij(t)(ηj − ηi), i = 1, . . . , k. (20)

L(i)

L  (i)
2

i

Figure 2: The leaders of an agent i at different levels: L0(i) = {i},L(i),L2(i), · · · .

Theorem 3 (Positivity) Suppose η0i ≥ 0 for i = 1, . . . , k. Then for all t > 0 and i, ηi(t) ≥ 0.

Proof. For any agent i in the flock, define

L0(i) = {i},

Lm(i) = L(Lm−1(i)), all m-th level leaders of i, and

[L](i) = L0(i) ∪ L1(i) ∪ L2(i) · · · , all leaders of i, direct or indirect.

(21)
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Then it is easy to see that the system (20) restricted on [L](i) is always self-contained, i.e., (ηj | j ∈ [L](i))

is not influenced by any variables in (ηj | j /∈ [L](i)) (but certainly not vice versa).

For convenience, we shall call the restriction of the system (19) or (20) on the sub-flock [L](i) the [L](i)-

system. Then it suffices to establish the theorem for each [L](i) system. In Figure 2, we have sketched an

example of the hierarchies of leaders of a given agent i.

Suppose otherwise that the theorem were false on an [L](i)-system for some particular agent i. There

would exist some j̄ ∈ [L](i), and t̄ > 0 such that ηj̄(t̄) < 0. Define

t∗ = inf{t > 0 | there exists some j ∈ [L](i), such that ηj(t) < 0}.

Then 0 ≤ t∗ ≤ t̄ < ∞, and we claim additionally the following.

(i) For any j ∈ [L](i), ηj(t∗) ≥ 0.

(ii) There must exist some ĵ ∈ [L](i), and a sequence of moments (tn) such that tn > t∗, tn → t∗ as

n → ∞, and ηĵ(tn) < 0.

(iii) There must exist some j∗ ∈ [L](i), such that ηj∗(t∗) > 0.

(i) and (ii) result directly from the definition of t∗. Suppose otherwise (iii) were false. Then in particular,

for any j ∈ [L](ĵ), one must have ηj(t∗) = 0 by (i). Consider the [L](ĵ)-system after t∗:

η̇j =
∑

l∈L(j)

ajl(t)(ηl − ηj), j ∈ [L](ĵ), t > t∗.

Since this is a homogeneous system with zero initial conditions at t = t∗, by the uniqueness theorem of

ODEs (e.g., [10]), the solution to the [L](ĵ)-system must be identically zero: ηj(t) ≡ 0 for any t > t∗ and

j ∈ [L](ĵ). Now that ĵ ∈ [L](ĵ), one must have ηĵ(t) ≡ 0 for all t > t∗, which contradicts to Property (ii).

Thus (iii) holds.

Define

m̂ = min{m ≥ 0 | there exists some j∗ ∈ Lm(i), such that ηj∗(t∗) > 0}.

Property (i) and (iii) imply that 0 < m̂ < ∞. Then by iteratively differentiating the L(ĵ)-system, one can

easily establish:

ηĵ(t∗) = η′
ĵ
(t∗) = · · · = η

(m̂−1)

ĵ
(t∗) = 0, η

(m̂)

ĵ
(t∗) > 0,

which contradicts to Property (ii). Thus the theorem must hold and the proof is complete. �

The most important consequence is the following bounding capability.

Theorem 4 (Boundedness of Velocities under Evolution) The Cucker-Smale model (18) has the

following closedness properties.

(i) Suppose Ω is a convex compact domain in R
3, and for any agent i, initially vi(t = 0) ∈ Ω. Then for

any t > 0 and i, vi(t) ∈ Ω.

(ii) In particular, let D0 = maxi |vi(t = 0)|. Then |vi(t)| ≤ D0 for all t > 0 and i.

Proof. Since the closed ball BD0(0) in R
3 is convex and compact, (ii) is implied by (i). It suffices to

establish (i).

For any unit vector n ∈ S2, and given vector a ∈ R
3. We first claim that if

n · (vi − a)
∣
∣
t=0

≥ 0, ∀ i,
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then n · (vi(t)− a) ≥ 0 remains valid for all t > 0 and i. To proceed, define ηi = n · (vi − a).

η̇ = n · v̇i

= n ·




∑

j∈L(i)

aij(t)(vj − vi)





= n ·




∑

j∈L(i)

aij(t) [(vj − a)− (vi − a)]





=
∑

j∈L(i)

aij(t)(ηj − ηi)

= −(Ltη)i.

Then by the preceding theorem, the claim is indeed valid: ηi(t) ≥ 0 for all t > 0 and i.

For any compact convex domain Ω, let p : S2 → R
3 be its support function, so that for any unit

direction n ∈ S2, a = p(n) has the property that a ∈ ∂Ω and the closed flat half-space

πa,−n = {x ∈ R
3 | (−n) · (x− a) ≥ 0}

contains Ω. When the domain is convex but not strictly convex, p(n) could be a set of points, which

however does not influence the argument herein. Furthermore, we have

Ω =
⋂

n∈S2

πp(n),−n.

Since each half-space has just been shown invariant under the Cucker-Smale evolution, we conclude that

Ω must be invariant as well under the evolution, which completes the proof. �

4.2 Perturbation and Induction

We now first prepare a lemma. Together with the boundedness property just established above, it facilitates

the later analysis on the emergent behavior of HL flocks.

Lemma 3 Suppose x(t), v(t) ∈ R
3 (which could be considered as x2 − x1 and v2 − v1 for a 2-flock), and

satisfy the perturbed 2-flock system parametrized by some T > 0:
{

ẋ = v(t)

v̇ = −aT (x, t)v(t) + εT (t), t ≥ 0.
(22)

Assume in addition that the following conditions hold.

(i) aT (x, t) ≥
H

(1 + |x|2)β
, with β < 1/2.

(ii) εT ∈ R
3, and

|εT (t)| ≤ ae−b(t+T )η , for some η ∈ (0, 1]. (23)

(iii) |v(t)| ≤ D0 for all t ≥ 0, and |x0| ≤ R0 +D0T .

Here H,β, a, b, η,D0, and R0 are given constants independent of T . Let (xT (t), vT (t)) denote the depen-

dency on T . Then

|vT (T )| ≤ Ae−BT (1−2β)∧η−

, (24)

where η− = η − δ for any small but positive δ when η < 1, and η− = 1 when η = 1, and A and B are

two constants only depending upon H,β, a, b, η−,D0, and R0 (but not T ). The notation a ∧ b represents

min(a, b).
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Remark 1 We first make two comments on the conditions.

(1) The all-time bound |v(t)| ≤ D0 seems very stringent, but is now natural by Theorem 4 in the preceding

subsection.

(2) As outlined in the beginning of the current section, the lemma will be applied during the induction

process going from the sub-flock [1, . . . , i − 1] to [1, . . . , i]. To agent i, the perturbation factor εT (t)

comes from the exponentially small dispersion of the leading sub-flock [1, . . . , i−1] from reaching exact

emergence.

We now proceed to the proof of Lemma 3.

Proof. From the equation for v, we have

〈v, v̇〉 = −aT (x, t)〈v, v〉+ 〈v, εT (t)〉, or

|v| · |v|t =
1

2

(
|v|2

)

t
= −aT |v|

2 + 〈v, εT (t)〉.

Assuming that v is never identically zero on any non-empty open time interval (noticing that the oppo-

site scenario trivializes the lemma on any such intervals and the following argument only needs a minor

modification), one has

|v|t ≤ −aT |v|+ |εT |

≤ −
H

(1 + |x|2)β
|v|+ ae−b(t+T )η ,

by the conditions (i) and (ii). By ẋ = v and (iii),

|x| ≤ |x0|+

∫ t

0
|v|(τ)dτ

≤ R0 +D0T +D0t = R0 +D0(t+ T ).

As a result,

|v|t ≤ −
H

(1 + (R0 +D0(t+ T ))2)β
|v|+ ae−b(t+T )η .

Then by the Gronwall-type integration,

|v(t)| ≤ |v0|e
−

∫ t
0

H

(1+(R0+D0(τ+T ))2)β
dτ

+ a

∫ t

0
e−b(τ+T )η · e

−
∫ t
τ

H

(1+(R0+D0(s+T ))2)β
ds
dτ

≤ D0 · e
− Ht

(1+(R0+D0(t+T ))2)β +
a

bη
T 1−ηe−bT η

.

We denote v(t) by vT (t) to indicate its dependency on T . Then

|vT (T )| ≤ D0 · e
− H·T

(1+(R0+2D0T )2)β +
ã(a, b, η−)

bη−
e−bT η−

≤ D0e
−H̃(H,R0,D0,β)T 1−2β

+ C(a, b, η−)e−bT η−

(when T ≥ 1)

≤ Ae−BT (1−2β)∧η−

,

where the two constants A and B are independent of T . Also notice that when η = 1, the monomial factor

T 1−η = 1 and the lowering from η to η− is unnecessary in the first line. Finally, since |vT (t)| ≤ D0 by

the given conditions, by suitably increasing A, the condition T ≥ 1 in the last second line can actually be

removed. This completes the proof. �

We are now ready to state and prove the main theorem.
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Theorem 5 (Convergence of an HL Flock) Let [1, 2, . . . , k] be a Cucker-Smale flock under hierarchi-

cal leadership with β < 1/2. Then for some B > 0, which depends only on the initial configuration and all

the system parameters, one has

max
1≤i,j≤k

|vi(t)− vj(t)| = O(e−Bt), t > 0. (25)

Proof. We prove the theorem by induction on the sub-flocks, from [1, . . . , l − 1] to [1, . . . , l].

First we show that the theorem holds for a 2-flock [1, 2]. By definition, the leader set L(2) is nonempty

and has to be L(2) = {1}, i.e., a21 > 0. Let x = x2 − x1, and v = v2 − v1. Then

{

ẋ = v

v̇ = v̇2 − v̇1 = v̇2 = a21(v1 − v2) = −a21v.

Here a21 = a21(x) =
H

(1 + |x|2)β
, with β < 1/2. Then Cucker and Smale’s analysis in [4] still applies

directly, and |v(t)| = O(e−Bt) for some B > 0.

l

2

l−1
v

x

x

l

l

l

3

1

x = x   −   x  
l l

Figure 3: The induction process from [1, . . . , l−1] to [1, . . . , l−1, l] reduces the l-flock system to a perturbed
2-flock system.

Assume now that the theorem holds for the sub-flock [1, . . . , l − 1], we intend to show that it must be

true for [1, . . . , l − 1, l] as well for l > 2. As a result, the main focus shall be the agent l.

By induction, there exists some b > 0, such that

max
i,j∈{1,...,l−1}

|vi(t)− vj(t)| = O(e−bt), t → ∞. (26)

Define the average velocity (of the direct leaders of agent l) by

v̂l(t) =
1

d l

∑

i∈L(l)

vi(t), with dl = #L[l].

Then for any j ∈ L(l),

|vj(t)− v̂l(t)| ≤
1

dl

∑

i∈L(l)

|vj − vi| = O(e−bt), (27)

by the induction assumption. Similarly, define

x̂l(t) =
1

dl

∑

i∈L(l)

xi(t), and x(t) = xl(t)− x̂l(t), v(t) = vl(t)− v̂l(t).
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Then ẋ = v, and

v̇ = v̇l −
dv̂l
dt

=
∑

j∈L(l)

alj · (vj − vl)−
dv̂l
dt

=
∑

j∈L(l)

alj · (v̂l − vl) +
∑

j∈L(l)

alj · (vj − v̂l)−
dv̂l
dt

︸ ︷︷ ︸

ε(t)

. (28)

Since each v̇i (i ∈ L(l)) is the linear combination of some (vj − vi)’s with j ∈ L(i) ⊆ {1, . . . , l− 1}, by (26),

one must have
dv̂l
dt

= O(e−bt).

Similarly, due to (27) and the boundedness of alj’s, one has

∣
∣
∑

j∈L(l)

alj · (vj − v̂l)
∣
∣ = O(e−bt).

In combination, we conclude that

|ε(t)| ≤ ce−bt, t > 0, for some c > 0. (29)

On the other hand, define

a =
∑

j∈L(l)

alj =
∑

j∈L(l)

H

(1 + |xj − xl|2)
β
. (30)

Then (28) simply becomes

v̇ = −av + ε. (31)

Define g(s) =
H

(1 + s)β
with s ≥ 0. Then g(s) is convex, and

1

dl

∑

j∈L(l)

g(sj) ≥ g




1

dl

∑

j∈L(l)

sj



 .

As a result, when sj = |xj − xl|,

∑

j∈L(l)

H

(1 + |xj − xl|2)β
≥ dl

H
(

1 + 1
dl

∑

j∈L(l) |xj − xl|2
)β

. (32)

By the least-square principle,

1

dl

∑

j∈L(l)

|xl − xj |
2 = |

x
︷ ︸︸ ︷

xl − x̂l |
2 +

1

dl

∑

j∈L(l)

|xj − x̂l|
2, (33)

since x̂l is the center or mean of {xj | j ∈ L(l)}. By the induction assumption on the emergence of

[1, . . . , l − 1] ⊇ L(l), there exists some M > 0, such that

1

dl

∑

j∈L(l)

|xj − x̂l|
2 ≤ M − 1. (34)
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Combining Eqn.’s (30) through (34), we have

a = a(x, t) ≥
dlH

(M + |x|2)β
≥

H̃

(1 + |x|2)β
, (35)

where the updated constant H̃ = H̃(H, dl,M, β). (Notice that the notation a(x, t) summarizes all the

influence from {xj | j ∈ L(l)} into the t-variable.)

The combination of (29), (31), and (35) leads to the reduced system:

{

ẋ = v

v̇ = −a(x, t)v + ε(t),
(36)

with a(x, t) ≥
H̃

(1 + |x|)β
, and |ε(t)| ≤ ce−bt. In order to apply Lemma 3, further define

D0 = 2 max
1≤i≤k

|vi(t = 0)|, and R0 = 2 max
1≤i≤k

|xi(t = 0)|. (37)

Then by Theorem 4, we have

|vi(t)| ≤
D0

2
, ∀ i and t > 0.

Consequently,

|v(t)| ≤
1

dl

∑

j∈L(l)

|vj − vl| ≤
1

dl

∑

j∈L(l)

D0 = D0. (38)

Similarly, for any T > 0,

|x(T )− x(0)| ≤ |xl(T )− xl(0)| +
1

dl

∑

j∈L(l)

|xj(T )− xj(0)|

≤
D0

2
T +

1

d l

∑

j∈L(l)

D0

2
T = D0T.

As a result,

|x(T )| ≤ |x(0)|+D0T

≤ |xl(0)|+
1

dl

∑

j∈L(l)

|xj(0)| +D0T

≤
R0

2
+

1

dl

∑

j∈L(l)

R0

2
+D0T = R0 +D0T.

(39)

To conclude, for any T > 0, if we define

xT (t) = x(t+ T ), vT (t) = v(t+ T ), aT (x
T , t) = a(xT , t+ T ), and εT (t) = ε(t+ T ),

then, {

ẋT = vT

v̇T = −aT (x
T , t)vT + εT (t), t > 0,

and all the three conditions in Lemma 3 are satisfied (with η = 1). Therefore, there must exist two positive

constants Ã and B̃, such that for any T > 0,

|v(2T )| = |vT (T )| ≤ Ãe−B̃T (1−2β)∧1
= Ãe−B̃T 1−2β

.
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Since T is arbitrary, we thus must have, after adjusting the constants,

|v(t)| ≤ Âe−B̂t1−2β
, t > 0, for some constants Â and B̂.

Moreover, since β < 1/2 by assumption, one then must have
∫ ∞

0
|v(t)|dt < ∞,

which in return implies that there exists some constant M > 0, such that

|x(t)| ≤ M, t > 0.

Then by repeating the similar calculation in the proof of Lemma 3, assisted with this new constant bound

|x| ≤ M instead of |x| ≤ R0 +D0(t+ T ) there, one arrives at:

|v(t)| ≤ A′e−B′t, (since η = 1),

for two positive constants A′ and B′ independent of t. Combined with the induction base (26), we thus

conclude that the theorem must hold true for the sub-flock [1, . . . , l − 1, l] with the exponent coefficient

B = B′ ∧ b. This completes the proof. �

5 HL Flocking Under a Free-Will Leader

In this section, partially inspired by the preceding perturbation methods, we investigate a more realistic

scenario when the ultimate leader agent 0 (in an HL flock [0, 1, . . . , k]) can have a free-will acceleration,

instead of merely flying in a constant velocity.

The following phenomenon is not uncommon near lakes, grasslands, or any open spaces where a flock

of birds often visit. When the flock is initially approached by an unexpected pedestrian or a predator from

a corner on the outer rim, the bird which takes off first (and alerts others subsequently) generally takes a

curvy flying path before it reaches a stable flying pattern with an almost constant velocity. Such a bird

gains the full speed fast, flies ahead of the entire flock, and serves as a virtual overall leader.

For an HL flock [0, 1, . . . , k], in addition to the Cucker-Smale system
{

ẋi = vi(t)

v̇i =
∑

j∈L(i) aij(x)(vj(t)− vi(t)), i > 0,
(40)

we now also impose for the ultimate leader agent 0:
{

ẋ0 = v0

v̇0 = f(t), t > 0,
(41)

coupled with a given set of initial conditions. For convenience, we shall call f(t) the free-will acceleration

of the leader. In combination, the new system is no longer autonomous.

The main goal of this section is to establish the following theorem.

Theorem 6 Suppose an HL (k+1)-flock [0, . . . , k] with a free-will leader satisfies both (40) and (41),

with the Cucker-Smale connectivity strength of β < 1/2. In addition, assume that the leader’s free-will

acceleration satisfies

|f(t)| = O((1 + t)−µ), with some exponent µ > k.

Then the flock still has the following emergent behavior:

max
0≤i,j≤k

|vi − vj |(t) = O
(

(1 + t)−(µ−k)
)

.
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Remark 2 We first make two comments regarding why one should expect to put some regularity conditions

on the leader’s behavior in order for a coherent pattern to emerge asymptotically.

(1) Intuitively, if the leader keeps changing its velocity substantially, it will be more difficult for the entire

flock to follow and behave coherently. An extreme example is a flock with a drunken leader which

flies in a Brownian random path. Then the entire flock cannot be expected to synchronize with the

unpredictable motion of the leader instantaneously.

(2) In the theorem, the decaying constraint µ > k depends on the size k of the flock. Thus qualitatively

speaking, it requires the leader to exert less free will when the flock is larger, in order to lead a coherent

flock asymptotically. Consider the special hierarchical leadership under a linear chain of command:

k → k − 1 → · · · → 1 → 0.

The tail agent k has to go through all the k intermediate stages to sense any move that the leader is

making. Thus intuitively, there will be a long time delay in between, and the leader has to be tempered

enough to allow its distantly connected followers to respond coherently.

We first prepare a lemma that is similar to Lemma 3. Since the new non-autonomous system does not

necessarily have the positivity property, we take a slightly different approach.

Lemma 4 Let x, v, g ∈ R
3, and satisfy

{

ẋ = v(t)

v̇ = −a(x, t)v(t) + g(t).

Suppose that

a(x, t) ≥
H

(1 + |x|2)β
, for some β < 1/2, and,

|g(t)| = O
(
(1 + t)−η

)
, with some constant η > 1.

Then, |v(t)| = O((1 + t)−(η−1)) with the order constant only depending on the initial conditions x(t =

0), v(t = 0), and H, β, and η.

Proof. From the second equation, one has

|v| · |v|t =

(
v2

2

)

t

= 〈v, vt〉 = −a〈v, v〉+ 〈v, g〉 ≤ −a|v|2 + |v| · |g|

Assume that v does not vanish identically on any non-empty open intervals for the same reason as in the

proof of Lemma 3. Then one has

|v|t ≤ −a|v|+ |g|, t > 0.

Fix any time T > 0, and define

|x|∗ = sup
t≤T

|x|(t), and a∗ = inf
t≤T

H

(1 + |x|2)β
=

H

(1 + |x|2∗)
β .

(42)

Then one has

|v|t ≤ −a∗|v|+ |g|, t ∈ [0, T ]. (43)

Since a∗ is constant, integration yields

|v|(t) ≤ |v|(0)e−a∗t +

∫ t

0
|g|(τ)e−a∗(t−τ)dτ.
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In particular, for any t < T ,

|v|(t) ≤ |v|(0) +

∫ t

0
|g|(τ)dτ ≤ |v|(0) +

∫ ∞

0
|g(τ)|dτ := A0.

(Since η > 1 by assumption, the integral of |g| is finite.) Now that A0 is independent of the time mark T ,

we conclude that the last upper bound must hold for any t > 0: |v|(t) ≤ A0, t > 0. Therefore, from the

first equation ẋ = v(t), one has

|x|(t) ≤ |x|(0) +

∫ t

0
|v|(τ)dτ ≤ B0 +A0t, t > 0,

where B0 = |x|(0). In particular, for any time mark T > 0, the quantities in (42) are subject to:

|x|∗ ≤ B0 +A0T, and a∗ ≥
H

[1 + (B0 +A0T )2]β
.

We then go back and integrate the inequality (43) again, but from T/2 to T this time:

|v|(T ) ≤ |v|(T/2)e−
a∗T
2 +

∫ T

T/2
|g|(τ)e−a∗(T−t)dt

≤ A0e
− HT/2

[1+(B0+A0T )2]β +

∫ ∞

T/2
|g|(t)dt

≤ A0e
−H̃(A0,B0,β)(1+T )1−2β

+

∫ ∞

T/2
O
(
(1 + t)−µ

)
dt

= A0e
−H̃(1+T )1−2β

+O
(

(1 + T )−(µ−1)
)

.

Since β < 1/2, we conclude that

|v|(T ) = O
(

(1 + T )−(µ−1)
)

,

where the constant in O(·) is independent of T . Since T is arbitrary, the lemma is established. �

We are now ready to prove Theorem 6. Details on some similar calculations will be directed to the

proof of Theorem 5.

Proof. It suffices to prove the following more general result:

max
0≤i,j≤l

|vi − vj|(t) = O
(

(1 + t)−(µ−l)
)

, t > 0, (44)

for any sub-flock [0, 1, . . . , l] and l ≥ 1.

When l = 1, define x = x1 − x0 and v = v1 − v0. Then ẋ = v, and

v̇ = v̇1 − v̇0 = a10(v0 − v1)− f = −a10v − f.

By the definition of an HL flock, L(1) 6= ∅, and it has to be agent 0, implying that a10 is subject to the

Cucker-Smale formula. Then by the preceding lemma (with η = µ), one has

|v|(t) = O
(

(1 + t)−(µ−1)
)

,

and (44) holds.

Suppose now that (44) is true for the sub-flock [0, 1, . . . , l − 1] with 2 ≤ l ≤ k, so that

max
0≤i,j≤l−1

|vi − vj |(t) = O
(

(1 + t)−(µ−l+1)
)

. (45)
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As in the proof of Theorem 5, define the average features of the direct leaders of agent l by:

x̂l =
1

dl

∑

j∈L(l)

xj , and v̂l =
1

dl

∑

j∈L(l)

vj, dl = #L(l),

and x = xl − x̂l and v = vl − v̂l.

Then as in the proof of Theorem 5, one has ẋ = v and

v̇ = −a(x, t) · v + gl(t), with

gl(t) =
∑

j∈L(l)

alj · (vj − v̂l)−
dv̂l
dt

.

a(x, t) =
∑

j∈L(l)

alj(xl − xj).

We first estimate gl. Since |alj | ≤ H and L(l) ⊆ [0, 1, . . . , l− 1], by the induction assumption (45), the first

term in gl must be of the order O((1 + t)−η) with η = µ− l + 1. For the remaining second term in gl, let

10∈L(l) denote the logical variable which is 1 when agent 0 belongs to L(l), and 0 otherwise. Then

dv̂l
dt

=
1

dl

∑

j∈L(l)

v̇j = 10∈L(l) ·
1

dl
v̇0 +

1

dl

∑

j∈L(l)\{0}

v̇j .

Now that v̇0 = f(t) = O((1+ t)−µ), and each v̇j with j ∈ L(l) \ {0} is some linear combination of (vs − vj)

with s’s in L(j) ⊆ [0, 1, . . . , l−1]. Thus by the induction assumption (45), one must have dv̂l
dt = O((1+t)−η)

with η = µ− l + 1.

We now estimate a(x, t). Since µ > k by the given condition, we have µ − l + 1 > k − l + 1 = 1. As a

result, by the induction assumption on the sub-flock [0, 1, . . . , l − 1], for any i, j ≤ l − 1,

|xi − xj |(t) ≤ |xi − xj |(0) +

∫ t

0
|vi − vj |(τ)dτ

≤ |xi − xj |(0) +

∫ ∞

0
O
(

(1 + τ)−(µ−l+1)
)

dτ < ∞, ∀ t > 0.

Therefore the boundedness property in (34) still holds, and the same calculation in the proof of Theorem 5

leads to

a(x, t) ≥
H̃

(1 + |x|2)β
,

for some constant H̃ = H̃(H, dl, β, f, initial conditions of [0, . . . , l − 1]).

Combining the estimations on gl and a, one sees that x(t) and v(t) satisfy a perturbed system as in

Lemma 4 with η = µ− l + 1. Therefore, by Lemma 4,

|vl − v̂l|(t) = |v|(t) = O
(

(1 + t)−(η−1)
)

= O
(

(1 + t)−(µ−l)
)

.

Now that by the induction assumption, for any j ≤ l − 1, one must have

|vj − v̂l|(t) = O
(

(1 + t)−(µ−l+1)
)

, since |vj − vi| = O
(

(1 + t)−(µ−l+1)
)

, ∀ i ∈ L(l).

Therefore, for any j ≤ l − 1,

|vl − vj| ≤ |vl − v̂l|+ |vj − v̂l| = O
(

(1 + t)−(µ−l)
)

.

This completes the proof of (45), and thus the entire theorem. �
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Corollary 2 Under the same statements as in the preceding theorem, suppose µ > k+1, then there exists

a constant configuration (dij)0≤i,j≤k with dij ∈ R
3, such that

lim
t→∞

(xi(t)− xj(t)) = di,j, 0 ≤ i, j ≤ k,

and the convergence rate is O
(
(1 + t)−(µ−k−1)

)
.

6 Conclusion

In this paper, we have investigated the emergent behavior of Cucker-Smale flocking under the structure of

hierarchical leadership (HL). The convergence rates are established for the general cases of both discrete-

time and continuous-time HL flocking, as well as for HL flocking under an overall leader with free-will

accelerations.

In all these cases, the consistent convergence towards some asymptotically coherent patterns may reveal

the advantages and necessities of having leaders and leadership in a complex (biological, technological,

economic, or social) system with sufficient intelligence and memory.

Our future work shall focus more on extending the results herein onto other flocking systems or lead-

ership structures, a few of which have been mentioned in the Introduction.
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