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MULTILEVEL LINEAR SAMPLING METHOD
FOR INVERSE SCATTERING PROBLEMS∗

JINGZHI LI† , HONGYU LIU‡ , AND JUN ZOU†

Abstract. A novel multilevel algorithm is presented for implementing the widely used linear
sampling method in inverse obstacle scattering problems. The new method is shown to possess
asymptotically optimal computational complexity. For an n×n sampling mesh in R

2 or an n×n×n
sampling mesh in R

3, the proposed algorithm requires one to solve only O(nN−1) far-field equations
for a R

N problem (N=2,3), and this is in sharp contrast to the original version of the method
which needs to solve nN far-field equations. Numerical experiments are presented to illustrate the
promising feature of the algorithm in significantly reducing the computational cost of the linear
sampling method.
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1. Introduction. In their original work [5], Colton and Kirsch developed a “sim-
ple” method for the shape reconstruction in inverse scattering problems which is
nowadays known as the linear sampling method (LSM). The method has been exten-
sively studied and extended in several directions; we refer the reader to [8] and [12]
for a comprehensive review. The current work is mainly concerned with an imple-
mentation technique of the LSM. We take as our model problem the inverse acoustic
sound-soft obstacle scattering by time-harmonic plane waves. But like the original
LSM, our algorithm can be equally applied to other inverse problems, such as the
acoustic sound-hard obstacle scattering or electromagnetic obstacle scattering.

Consider a sound-soft scatterer D, which is assumed to be the open complement
of an unbounded domain of class C2 in R

N (N = 2, 3), that is, we include scattering
from more than one (but finitely many) component obstacle in our analysis. Given
an incident field ui, the presence of the obstacle will give rise to a scattered field us.
Throughout, we take ui(x) = exp{ikx · d} to be a time-harmonic plane wave, where
i =

√
−1, d ∈ R

N−1, and k > 0 are, respectively, the incident direction and wave
number. We define u(x) = ui(x) + us(x) to be the total field, which satisfies the
following Helmholtz system (cf. [6], [7]):

(1.1)

⎧⎪⎨
⎪⎩

Δu + k2u = 0 in R
N\D̄,

u(x) = 0 on ∂D,

limr→∞ r(N−1)/2(∂u
s

∂r − ikus) = 0,

where r = |x| for any x ∈ R
N . The direct problem (1.1) has been well understood, and

it is known that there exists a unique solution u ∈ C2(RN\D̄)∩C(RN\D). Moreover,
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the asymptotic behavior at infinity of the scattered wave us is governed by

(1.2) us(x) =
eik|x|

|x|(N−1)/2

{
u∞(x̂) + O

(
1

|x|

)}
as |x| → ∞,

uniformly for all directions x̂ = x/|x| ∈ S
N−1. The analytic function u∞(x̂) is defined

on the unit sphere S
N−1 and called the far-field pattern (see [7]). We shall write

u∞(x̂;D, d, k) to specify its dependence on the observation direction x̂, the obstacle
D, the incident direction d, and the wave number k. The inverse obstacle scattering
problem is to determine ∂D from the measurement of u∞(x̂; d, k) for x̂, d ∈ S

N−1

and fixed k > 0. This problem has been playing an indispensable role in many areas
of sciences and technology such as radar and sonar, medical imaging, geophysical
exploration, and nondestructive testing (see, e.g., [7]). Next, we shall give a brief
description of the LSM for solving this important inverse problem.

First, we introduce the far-field operator F : L2(SN−1) �→ L2(SN−1) defined by

(1.3) (Fg)(x̂) :=

∫
SN−1

u∞(x̂, d)g(d)ds(d), x̂ ∈ S
N−1.

The LSM uses g as an indicator and solves the following far-field equation:

(1.4) (Fg)(x̂) = Φ∞(x̂, z), x̂ ∈ S
N−1, z ∈ R

N ,

where

(1.5) Φ∞(x̂, z) = γ exp{−ikx̂ · z}

with γ = 1/4π in R
3 and γ = eiπ/4/

√
8πk in R

2. The following theorem forms the
basis of the LSM (see, e.g., Theorem 4.1 in [8]).

Theorem 1.1. Assume that k2 is not a Dirichlet eigenvalue for −Δ in D. Then
the following hold:

1. For z ∈ D and a fixed ε > 0 there exists a gzε ∈ L2(SN−1) such that

‖Fgzε − Φ∞(·, z)‖L2(SN−1) < ε

and

lim
z→∂D

‖gzε‖L2(SN−1) = ∞.

2. For z ∈ R
N\D̄ and any given ε > 0, every gzε ∈ L2(SN−1) that satisfies

‖Fgzε − Φ∞(·, z)‖L2(SN−1) < ε

ensures

lim
ε→0

‖gzε‖L2(SN−1) = ∞.

The LSM elegantly turns the reconstruction of the shape of obstacle D into the
process of numerically determining the indicator function gz in Theorem 1.1. The
general procedure is stated as follows (see also Chapter 4 in [3]).

Algorithm LSM.
1. Select a mesh Th of sampling points in a region Ω which contains D.
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2. Use the Tikhonov regularization and the Morozov discrepancy principle to
compute an approximate solution gz to the far-field equation (1.4) for each
mesh point z of Th.

3. Select a cut-off value c ; then, count z ∈ D if ‖gz‖L2(SN−1) ≤ c and z 
∈ D if
‖gz‖L2(SN−1) > c.

A mathematical justification was given in [1] for the use of the LSM to determine D
through the information of the indicator function gz. The LSM has been proven to
be numerically very successful and shown to possess several remarkable merits; see
[8], [12], and the references therein. In fact, it has become one of the most important
reconstruction algorithms in inverse obstacle scatterings. But there are also some
drawbacks for the method; e.g., it fails to work when meeting some interior eigenvalue
problem, and there is no standard strategy to choose the cut-off values; see [3]. Though
the computational complexity is also one of its drawbacks, it is considerably more
efficient and less computationally expensive than many other nonlinear methods such
as the one based on the Lippmann–Schwinger equation (cf. [10]). Nevertheless, the
LSM can still be very expensive in numerical implementations, as one has to solve
the far-field equation (1.4) for each sampling point. There are several works which
attempt to either circumvent the cost of sampling or improve the image results; see,
e.g., [2], [4]. In the present work, we shall make an effort to reduce the computational
complexity of the method. As one can see, for an R

2 problem, by using an n × n
mesh, we have to solve one linear integral equation (1.4) at each mesh point, which
amounts to n2 totally, while it is n3 in the R

3 case. And the computational counts
can be huge in certain particular situations such as the following: When little a
priori information on D is available, the initial guess region Ω should be chosen to
be moderately larger than D. In order to achieve a high-resolution reconstruction
of D, one needs a very fine mesh over Ω, thus leading to a very large n. When the
scatterer consists of multiple component obstacles with the distance between each
two being several times larger than the sizes or diameters of the two obstacles, the
initial region Ω is then required to contain all these components, which means that Ω
must be chosen to be much larger than actually needed. Our main goal in this paper
is to provide a fast numerical procedure to implement the LSM, and thus further
consolidate its effectiveness, and, more importantly, to rigorously justify that the
numerical algorithm has optimal computational complexity in terms of the mesh size
n. To the best of our knowledge, this important issue on computational complexity
of the LSM has not been seriously investigated yet.

In the next section, we will address the motivations and implementation details
of the new algorithm and then prove its asymptotically optimal computational com-
plexity. In section 3, some numerical experiments are performed to illustrate the
promising feature of the algorithm in significantly reducing the computational cost of
the LSM.

2. Multilevel linear sampling method. In this section, we will present a
multilevel linear sampling method (MLSM), together with some theoretical analysis.
For the sake of simplicity, we will carry out our discussion in R

2, but all of the
subsequent results can be straightforwardly extended to the three-dimensional case.

Let D ⊂ R
2 be a bounded domain as shown in Figure 1 (top-left) and suppose

that we are going to use an n× n mesh for the LSM with (n− 1)2 cells of equal size.
Clearly, in order to get some satisfactory reconstruction for the profile of D, the mesh
must be moderately fine in some sense. However, by performing the LSM on this
fine mesh, we have to spend considerable computational cost in finding the indicator
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Fig. 1. Label-and-remove scheme.

functions in those “remote” cells which are far away from the scatterer D, or in those
“inner” cells which lie deeply inside D; e.g., see the red and blue colored regions in
Figure 1 (top-right). So, it would be very advantageous if we could get rid of the
remote and inner cells in our computations. This can be naturally realized with a
coarser mesh. In fact, this is reasonable since the indicator function gz has very large
norms for z in those remote cells while very small norms for z in those inner cells.
Moreover, it is noted that the cut-off value c for the LSM in the fine mesh is still
applicable on the coarsened mesh. Here, we would like to remark that, as pointed
out in [3], the choice of c is rather heuristic and there is still no standard strategy
for it. To be more precise, we first choose a coarse grid covering the sampling region
Ω and perform the LSM on this coarse level. Then based on the results of the LSM
we will label and remove those remote and inner cells. Then, we refine the mesh on
the remaining sampling region and perform the LSM again in this fine level to label
and remove those fine remote and inner cells; e.g., see Figure 1 (bottom-left) for those
remote and inner cells. By doing this labeling and removing technique in a multilevel
way, we can reconstruct the profile of D more accurately. We would like to remark
that in many cases the number of trimmed cells could be very large and thus save
a lot of computational time, especially when the scatterer is composed of multiple
components with the distance between each two being several times larger than the
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sizes or diameters of the two components (see, e.g., Figure 1 (bottom-right)).
Now, we are ready to formulate our algorithm in detail. In the following, the

sampling region Ω is always chosen to be a square in R
2. Then, let {Tk}Lk=1 be a

nested sequence of meshes on the sampling domain Ω such that Tk+1 is a refinement
of Tk for k = 1, . . . , L− 1. Throughout, we assume that Tk+1 is an nk+1 ×nk+1 mesh
while Tk is an nk × nk mesh, where nk+1 = 2nk − 1 for k = 1, . . . , L− 1. That is, we
refine the mesh Tk by equally subdividing every subsquare in Tk into four subsquares
of Tk+1. Then if the mesh length of Tk is hk for k = 1, . . . , L− 1, then hk+1 = hk/2.
Now, the MLSM can be formulated as follows.

Algorithm MLSM.
1. Set k = 0 and choose an initial mesh for the sampling region Ω.
2. Apply the LSM scheme on the kth-level mesh to investigate those mesh points

which have not been examined previously.
3. For a given cut-off value c, independent of the level k, classify and label the

kth-level subsquares (cells) into three sets—namely, remote cells, boundary
cells, and inner cells—based on the cut-off value principle in the LSM. A cell
is labeled as “remote” if the norms of the indicator functions at the vertices
of the cell are all larger than c, while a cell is labeled as “inner” if the norms
of the indicator functions at the vertices of the cell are all less than or equal
to c, and other remaining cells will be labeled as “boundary cells.” Then
remove the remote and inner cells.

4. Refine the remaining sampling mesh.
5. Set k = k + 1, and if k ≤ L, go to Step 2.

It is remarked that in order to exclude the extreme case that the obstacle is
trapped into a single subsquare of the sampling mesh, the initial mesh should be
chosen to be mildly fine such that both “remote” cells and “inner” cells exist.

Next, we will show that the MLSM algorithm is asymptotically optimal in compu-
tational complexity. For this purpose, we first present some lemmas. In the following,
we denote by Γ a C2-smooth curve in R

2 which forms the boundary of a bounded
domain G. For any h > 0, we define two curves parallel to Γ:

Γ+
h :={x + hν(x), x ∈ Γ, and ν(x) is the unit normal to Γ at x

directed to the exterior of G},(2.1)

Γ−
h :={x− hν(x), x ∈ Γ, and ν(x) is the unit normal to Γ at x

directed to the exterior of G}.(2.2)

Then we have the following lemma.
Lemma 2.1. There exist constants h+

0 > 0 and 0 < α+
0 ≤ 1 such that

(2.3) dist(Γ,Γ+
h ) ≥ α+

0 h whenever 0 < h < h+
0 .

Proof. Assume contrarily that there are no constants h+
0 and α+

0 such that (2.3)

holds. Then, for ĥ1 = 1/2, there must exist an h1 such that 0 < h1 < ĥ1 and

dist(Γ,Γ+
h1

) < h1/2; otherwise Lemma 2.1 is true with h+
0 = ĥ1 and α+

0 = 1/2.

Next, for ĥ2 = min{h1, 1/2
2}, there must exist an h2 such that 0 < h2 < ĥ2 and

dist(Γ,Γ+
h2

) < h2/2
2; otherwise Lemma 2.1 is true with h+

0 = ĥ2 and α+
0 = 1/22. Con-

tinuing with this procedure, we have by induction that for ĥk = min{hk−1, 1/2
k} (k ≥

3), there exists an hk such that 0 < hk < ĥk and dist(Γ,Γ+
hk

) < hk/2
k. So we obtain
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a positive sequence {hk}∞k=1 such that

(2.4) lim
k→∞

hk = 0 and lim
k→∞

dist(Γ,Γ+
hk

)

hk
= 0.

Since both Γ and Γ+
hk

are compact sets in R
2, there exist xk ∈ Γ and y+

k ∈ Γ+
hk

for
any k ∈ N such that

(2.5) dist(Γ,Γ+
hk

) = |xk − y+
k |.

Set

(2.6) yk = y+
k − hkν(y+

k ) ∈ Γ for k ∈ N,

where ν(y+
k ) is the unit outward normal to Γ+

hk
at y+

k . By extracting subsequences if
necessary, we may assume that

(2.7) lim
k→∞

xk = x0 and lim
k→∞

yk = y0.

By (2.6), (2.7), we see that limk→∞ y+
k = y0, which together with (2.4), (2.5) implies

that

(2.8) x0 = y0 = x∗

for some x∗ ∈ Γ. Noting that ν(x) is continuous, for an arbitrary ε > 0 there exists
δ > 0 such that

(2.9) |ν(x) − ν(x∗)| < ε ∀x ∈ Bδ(x
∗) ∩ Γ,

where Bδ(x
∗) = {x ∈ R

2; |x− x∗| < δ}. By (2.7) and (2.8), we know that there exists
kε ∈ N such that

xk ∈ Bδ(x
∗), yk ∈ Bδ(x

∗) ∀k > kε.

Furthermore, by (2.4), we can assume that kε is chosen such that

(2.10)
dist(Γ,Γ+

hk
)

hk
<

1

2
∀k > kε,

namely

(2.11) |xk − y+
k | <

1

2
hk ∀k > kε.

It is noted that by (2.11) we must have xk 
= yk for all k > kε, since otherwise we
would have |xk − y+

k | = |yk − y+
k | = hk. Let τ(x) be the tangential to Γ at x, and we

know from (2.9) that

(2.12) |τ(x) − τ(x∗)| < ε ∀x ∈ Bδ(x
∗) ∩ Γ.

Next, we investigate the angle ∠(−−→xkyk, τ(yk))(∈ [0, π/2]) between the two vectors −−→xkyk
and τ(yk) for k > kε. From the geometric interpretation of Lagrange’s theorem, we
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know that there exists ξk ∈ Bδ(x
∗)∩ Γ such that τ(ξk) is parallel to −−→xkyk. By (2.12),

we know that

(2.13) λk := 〈τ(ξk), τ(yk)〉 = 〈τ(x∗) −O(ε), τ(x∗) −O(ε)〉 = 1 −O(ε) as ε → +0,

where 〈·, ·〉 is the inner product in R
2. Hence,

(2.14) θk := ∠(−−→xkyk, τ(yk)) = arccosλk = O(
√
ε) as ε → +0.

Now, let �xkyky
+
k denote the triangle with vertices xk, yk, and y+

k . It is easily seen

that the interior angle of �xkyky
+
k at yk, namely ∠(−−→xkyk,

−−−→
y+
k yk), is either π/2 + θk

or π/2 − θk. Then, by (2.10) and (2.14), we take ε0 > 0 to be sufficiently small and
kε0 ∈ N be sufficiently large such that for all k > kε0 ,

(2.15)
|xk − y+

k |
hk

<
1

2
and sin

(π
2
− θk

)
>

1

2
.

Then, in the case that ∠(−−→xkyk,
−−−→
y+
k yk) = π/2 + θk > π/2,

|xk − y+
k | > |yk − y+

k | = hk,

and in the case that ∠(−−→xkyk,
−−−→
y+
k yk) = π/2 − θk,

|xk − y+
k |

hk
=

|xk − y+
k |

|yk − y+
k |

≥ sin(π/2 − θk) >
1

2
.

In both cases, we have a contradiction with the first inequality in (2.15). This com-
pletes the proof of Lemma 2.1.

Lemma 2.2. There exist constants h−
0 > 0 and 0 < α−

0 ≤ 1 such that

(2.16) dist(Γ,Γ−
h ) ≥ α−

0 h whenever 0 < h < h−
0 .

Proof. The lemma can be proved in a most similar way to that of Lemma
2.1.

Lemma 2.3. There exist constants h0 > 0 and α0 > 0 such that

dist(Γ,Γ±
α0h

) ≥
√

2h whenever 0 < h < h0.

Proof. Set

α0 =

√
2

min(α+
0 , α

−
0 )

and h0 =
min(h+

0 , h
−
0 )

α0
,

where α±
0 and h±

0 are constants given in Lemmas 2.1 and 2.2. Then, it is easy to
verify that when h < h0, namely α0h < min(h+

0 , h
−
0 ),

(2.17) dist(Γ,Γ+
α0h

) ≥ α+
0 α0h ≥

√
2h

and

(2.18) dist(Γ,Γ−
α0h

) ≥ α−
0 α0h ≥

√
2h.
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The following theorem is crucial to our subsequent investigation.
Theorem 2.4. Let T be an n × n mesh on the sampling region Ω. There exist

two constants κ0 > 0 and n0 ∈ N such that ∂D lies on at most κ0n subsquares of T
for all n ≥ n0.

Proof. To ease the discussion, we assume that the scatterer D is composed of a
single component obstacle. That is, D is a bounded domain. But we remark that
our subsequent proof can be easily modified to the case that D has finitely many
connected components.

Let Γ := ∂D in Lemma 2.3. Take n ∈ N to be sufficiently large such that the
mesh length h of T satisfies h < h0. Suppose that ∂D lies on m subsquares of T . By
(2.17) and (2.18), it is easily seen that these m subsquares must lie in the ring-shaped
region formed by Γ+

α0h
and Γ−

α0h
. Let s0 denote the area occupied by this ring-shaped

region, ω0 = |Ω| be the area of Ω, and η0 = |∂D| be the length of the boundary curve
∂D. Then, we have

mh2 ≤ s0 ≤ 2η0α0h;

hence

m ≤ 2η0α0

h
.

By noting n2h2 = ω0, we further have

m ≤ 2η0α0√
ω0

n.

Now, the theorem is seen to be held with

κ0 =

⌈
2η0α0√

ω0

⌉
,

where for a positive number a, �a� denotes the smallest integer not less than a.
The above theorem shows that for a sufficient fine n×n mesh, ∂D lies on at most

O(n) subsquares. We next show that ∂D also lies on at least O(n) subsquares.
Theorem 2.5. Let T be an n × n mesh on the sampling region Ω. There exist

two constants β0 > 0 and m0 ∈ N such that ∂D lies on at least β0n subsquares of T
for all n ≥ m0.

Proof. As in Theorem 2.4, we need only to consider the simple case that D is a
connected bounded domain, and that the subsequent proof is easily modified to the
case that D has finitely many connected components.

By our assumption on the sampling mesh, we may choose T to be fine enough
such that there is at least one inner cell. Take one of the edges of this cell and denote
its connected extension in D by AB with the two endpoints A and B lying on ∂D
(see Figure 2). We suppose that AB lies on m subsquares of T . Let A0, A1, . . . , Am

be the vertices of those subsquares, all lying on the extended line of AB and ordered
in the direction from A to B (see Figure 2). By our organization, A either is A0 or lies
between A0 and A1, and B either is Am or lies between Am−1 and Am, whereas Aj , j =
1, 2, . . . ,m−1, all lie inside of D. We denote by l0, l1, . . . , lm those line segments of T
in Ω which, respectively, pass through A0, A1, . . . , Am. Noting that D is connected,
by the fundamental property of connected set, we know that lj , j = 1, 2, . . . ,m − 1
must have intersection with ∂D. We denote by A′

1, A
′
2, . . . , A

′
m−1 those intersection
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Fig. 2. Illustration of the proof of Theorem 2.5.

points which lie on one side of AB. It is remarked that Aj for j = 1, . . . ,m− 1 is not
necessarily unique. Now, by the connectedness of ∂D, we know that between A and
A′

1, B and A′
m−1, and A′

j and A′
j+1 for j = 1, . . . ,m− 2 there must be a connected

part of ∂D which lies in the stripped region, respectively formed by l0 and l1, lm−1

and lm, and lj and lj+1 for j = 1, . . . ,m − 2. Therefore, if we suppose that ∂D lies
on m′ subsquares of T , then there must be at least one from those subsquares which
lies in the stripped region formed by lj and lj+1 for j = 0, 1, . . . ,m − 1. Hence, we
have m′ ≤ m. Next, we set A0 = A and Am = B, and by noting that |AjAj+1| ≤ h
for j = 0, 1, . . . ,m− 1, we have

m−1∑
j=0

|AjAj+1| ≤ mh, i.e., |AB| ≤ mh.

Finally, we have by noting n2h2 = |Ω| that

(2.19) m′ ≥ m ≥ |AB| 1
h
≥ β0n,

with β0 = |AB|/
√
|Ω|. This completes the theorem.

Theorems 2.4 and 2.5 reveal that in order to achieve a good reconstruction of the
scatterer D, we need to at least solve O(n) far-field equations (1.4) with a fine n× n
sampling mesh. Now, we are ready to present the main result—that the algorithm
MLSM possesses the asymptotically optimal computational complexity.

Theorem 2.6. Consider an L-level MLSM algorithm with a nested sequence of
sampling mesh {Tk}Lk=1. Suppose that for each k, Tk is of size nk × nk with mesh
length hk such that 0 < h1 < h0, where h0 is given in Lemma 2.3 corresponding to
∂D. Then, by using the MLSM to reconstruct ∂D, the far-field equation (1.4) is solved
O(nL) times in total.

Proof. We denote by Ck, k = 1, 2, . . . , L, the points to be investigated on the
kth level. By Theorem 2.4, we know that ∂D lies on at most κ0nk subsquares of Tk.
Next, when we turn to the (k + 1)th level, by our description of the MLSM, we need
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checked point unexplored point

Fig. 3. Illustration of the proof of Theorem 2.6.

only to investigate the mesh points on those subsquares of Tk+1 which have not been
examined before and can be easily seen to be at most 5κ0nk mesh points as shown in
Figure 3. Hence, we have

(2.20) Ck ≤ Ck−1 + 5κ0nk−1, k = 2, . . . , L,

where nk−1 = (nk + 1)/2. Recursively, we can obtain

CL ≤ CL−1 + 5κ0nL−1,

CL−1 ≤ CL−2 + 5κ0nL−2,

· · · · · · · · · · · ·
C2 ≤ C1 + 5κ0n1.

By summing up the above inequalities we get

CL ≤ C1 + 5κ0[nL−1 + nL−2 + · · · + n1].

Since it is easy to deduce that nL−k = nL/2
k +

∑k
j=1 1/2j for k = 1, 2, . . . , L− 1, we

see that

CL ≤ C1 + 5κ0(L + nL),

i.e.,

CL ≤ O(nL) for sufficiently large nL ∈ N.

This means that the MLSM has the asymptotically optimal computational complexity.
This completes the proof.

Remark 2.7. As we have pointed out earlier, all of the results in this section
can be modified to the R

3 case, where the MLSM algorithm needs to solve far-field
equations (1.4) O(n2

L) times.
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3. Numerical experiments with discussions. In this section, we perform
three tests to illustrate the effectiveness and efficiency of the newly proposed MLSM
algorithm. All of the programs in our experiments are written in MATLAB and run
on a Pentium 3GHz PC.

The scatterer in system (1.1) will be chosen to be the kite-shaped object which
has been widely tested in inverse scattering problems (see, e.g., [5], [8], and [12]).
There are a total of three tests to be considered, which are, respectively, referred to
as SK, SKn, and DKn. For experiments SK and SKn, the scatterer D is composed
of a single kite. However, in experiment SK, we would not add noise to the synthetic
far-field data, and in experiment SKn, we add random noise. For experiment DKn,
the scatterer D is composed of two kites, and the synthetic far-field data is also added
with random noise. The other parameters chosen for these experiments are listed in
Table 1.

Table 1

Experimental parameters for the tests.

Test 1 (SK) Test 2 (SKn) Test 3 (DKn)

Sampling domain Ω [−3, 3] × [−3, 3] [−3, 3] × [−3, 3] [−4, 8] × [−4, 8]

Incident wave number k 1 1 1

Finest level nL 129 129 129

Upper threshold c1 0.03 0.032 0.03

Lower threshold c2 0.03 0.032 0.02

Noise level δ 0 0.10 0.05

No. of incident directions 32

No. of observation directions 32

It is noted that for experiment DKn, we have taken two cut-off values, c1 and c2,
c1 < c2, instead of only one cut-off value, c. Since in DKn, the scatterer is composed
of two kites, it is better to take a range of cut-off values, i.e., [c1, c2], which enables us
to get a buffer region of locating the boundary of the underlying object. Like in the
original LSM, we label as inner those points with the norm of distributed density g
less than c1 and remote those points with the norm of distributed density g greater
than c2.

The synthetic far-field data are generated by solving the layer potential operator
equation with Nyström’s method (see section 3.5, Chapter 3 in [7]). We compute
the far-field patterns at 32 equidistantly distributed observation points (cos tj , sin tj),
tj = 2jπ/32, j = 0, 1, . . . , 31, and 32 equidistantly distributed incident directions
(cos τj , sin τj), τj = 2jπ/32, j = 0, 1, . . . , 31. The far-field patterns we obtain are
subjected pointwise to uniform random noise. The uniform random noise is added
according to the following formula:

uδ
∞ = u∞ + δr1|u∞| exp(iπr2),

where r1 and r2 are two uniform random numbers, both ranging from –1 to 1, and δ
is the noise level. For each mesh point z, the corresponding far-field equation (1.4) is
solved by using the Tikhonov regularization method (cf. [3]), with the regularization
parameter determined by the standard L-curve method.

In tests 1 and 2, the kite-shaped object D is shown in Figure 4 with the boundary
∂D given by the following parametric form:

(3.1) x(t) = (cos t + 0.65 cos 2t− 0.65, 1.5 sin t), 0 ≤ t ≤ 2π.
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Fig. 4. Kite-shaped obstacle.
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Fig. 5. Two kite-shaped objects.

For test 3, the two kite-shaped objects are shown in Figure 5, which are derived
from the kite in Figure 4 by rigid motions: the bottom-left one is given by the one
in Figure 4 after a counterclockwise π/2 rotation, and the top-right one is given by
the one in Figure 4 after a counterclockwise π/4 rotation and 5-unit displacement in
both longitude and latitude directions.

We now turn to experiment SK. First, we solve the far-field equation (1.4) on the
finest mesh (129 × 129) to find gz with z being a sampling mesh point. In order to
have a view of the behavior of this gz over the sampling mesh, we plot the negative
logarithm of its L2-norm, namely − log ‖gz‖L2(S1), in a 3D graph (see Figure 6(a)), but
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(a) The negative logarithm of the

L2-norm of gz plotted in 3D.
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(b) Contours of the negative loga-

rithm of the L2-norm of gz .
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(c) The negative logarithm of the

L2-norm of gz plotted in 3D with-
out regularization in deriving gz .
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(d) Contours of the negative loga-

rithm of the L2-norm of gz without
regularization in deriving gz .

Fig. 6. Test 1 (SK): Surface and contours of the negative logarithm of the L2-norm of gz with
and without regularization.

such scalings are not needed in our MLSM procedure for those tests. The correspond-
ing contours for − log ‖gz‖L2(S1) are also given in Figure 6(b) for a 2D view. Then,
we can use the cut-off value principle to detect the kite, and this gives the original
LSM. In this case, we would like to refer the reader to [9] for a glance at the numerical
outcome. We remark that the regularization is crucial in the numerical procedure.
Even in this noise-free case with δ = 0, regularization is still necessary since the exact
far-field data u∞ is not available and computed here numerically by using Nyström’s
method, thus causing some approximation errors in addition to the normal rounding-
off errors. We have also plotted the negative logarithm of the L2-norm of gz obtained
by solving the far-field equation without regularization, from which it can be seen that
the reconstruction would be rather unsatisfactory; see the 3D display and 2D contour
curves in Figure 6(c) and Figure 6(d), respectively. This phenomenon reflects the
ill-posed nature of the problem at hand and is consistent with the one observed in [9].

Next, we apply our (6-level) MLSM to this problem with nL := n6 = 129 and plot
the evolution of the detected boundary of the underlying object level-by-level. Figures
7 and 8 demonstrate that the boundary of the kite-shaped object can be approximated
in a clearly improving manner as we go from coarse to fine meshes, but the points
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level 1

level 2

level 3

Fig. 7. MLSM iteration for test 1 (SK). Figures on the left: Refinement of the previous coarse
grid. Figures on the right: The remote and inner cells are removed.
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level 4

level 5

level 6

Fig. 8. MLSM iteration for test 1 (SK). Figures on the left: Refinement of the previous coarse
grid. Figures on the right: The remote and inner cells are removed.
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Table 2

Number of points checked by the MLSM at each level and the total number of points checked by
MLSM and LSM in the tests.

Level of grid

1 2 3 4 5 6 MLSM LSM

Test 1 25 8 25 56 121 248 483 16641

Test 2 25 8 34 61 129 260 517 16641

Test 3 25 24 36 71 163 375 694 16641

examined are kept within the order O(nL). This first experiment SK suggests that
the MLSM performs as well as the original LSM method but the computational costs
have reduced significantly. We have also counted the numbers of points which have
been exploited in the MLSM and listed them in Table 2. For test 1, it is 483 and
this is roughly one thirtieth of that for the LSM, which is 16641 (= 129× 129). Here
we would like to point out an important observation about the implementation of the
MLSM: If at a certain level, a cell is labeled as remote (or inner) and we trim it from
this level, but part of its boundary is left for the next level, then all of the sampling
points of this fine level lying on that part of the boundary should be labeled as having
been exploited, since they are obviously remote (resp., inner). We take the number 8
in the second level for test 1 as an illustration. From the left subfigure of level 2 in
Figure 7, we know that a total of 16 new points come out from the refinement of the
mesh. But eight of these sixteen points, which lie on the outermost boundary of the
second level mesh, need not be exploited by our MLSM. This is because they are on
the boundary of some trimmed remote cells from the first level; we know that they
are remote points without exploiting. The same rule applies in order to interpret the
numbers at the finer levels and the other tests.

Next, we add 10% uniform random noise to the far-field data and run the MLSM
again for the SKn case. The evolution of the boundary of the kite is illustrated in
Figures 9 and 10. We see the total number of the points examined to locate the
boundary is 517, almost the same as the previous SK case (see Table 2).

Then, we test our MLSM for the DKn case with 5% uniform random noise to the
far-field data and plot the evolution of the boundary of these two kites in Figures 11
and 12. Note that there is a slight increase in the number of exploited points which
is due to a buffer range of cut-off values used in this test.

Finally, we plot all the subsquares that have been checked in the MLSM procedure
in a single figure for all of the above experiments; see Figure 13 for test 1 (SK), Figure
14 for test 2 (SKn), and Figure 15 for test 3 (DKn). From those figures, we get a have
concrete feeling about how MLSM works to identify the boundary of the underlying
object.

For comparison, we list in Table 2 the number of points examined at each level in
the MLSM procedure and the total number of points examined by MLSM and LSM for
all of the three tests. It can be seen from Table 2 that the number of points examined
at each level is about σ0nk with σ0 ≈ 2, which is consistent with our theoretical
analysis in section 2.

To consolidate the asymptotically optimal computational complexity, we perform
the three tests again with the mesh size nL in the finest level being 33, 65, 129, and
257, respectively. But for all of those experiments, we start with the coarsest mesh
given by n1 = 5. Furthermore, we let the cut-off value c be the average of c1 and c2
in Table 1, and this is to eliminate the possible deterioration due to the additional
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level 1

level 2

level 3

Fig. 9. MLSM iteration for test 2 (SKn). Figures on the left: Refinement of the previous
coarse grid. Figures on the right: The remote and inner cells are removed.
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level 4

level 5

level 6

Fig. 10. MLSM iteration for test 2 (SKn). Figures on the left: Refinement of the previous
coarse grid. Figures on the right: The remote and inner cells are removed.
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level 1

level 2

level 3

Fig. 11. MLSM iteration for test 3 (DKn).
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level 4

level 5

level 6

Fig. 12. MLSM iteration for test 3 (DKn).
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Fig. 13. One kite-shaped object (SK).

Fig. 14. One kite-shaped object (SKn).

points checked in the buffer region. The total number of points examined and the
time for each test are listed in Table 3. Moreover, we compare the time cost between
MLSM and LSM only for test 2, since the computational cost for investigating one
point is relatively fixed, the time cost for tests 1 and 3 is of slight difference compared
with that for test 2 by using the LSM. As shown in Table 3, the computational cost
for MLSM grows linearly as nL increases, compared with the quadratic increase of the
time consumption of the traditional LSM. It can be seen that the number of far-field
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Fig. 15. Two kite-shaped objects (DKn).

Table 3

Comparison of different nL in the tests.

MLSM LSM

Test 1 Test 2 Test 3 Test 2

nL Pts. Time (sec.) Pts. Time (sec.) Pts. Time (sec.) Pts. Time (sec.)

33 114 0.61 128 0.67 138 0.72 1089 5.98

65 235 1.29 257 1.40 266 1.43 4225 24.07

129 483 2.77 517 2.96 516 2.95 16641 99.16

257 989 5.60 1037 5.81 1016 5.75 66049 396.90

equations that have been solved in each test is around ζ0nL with ζ0 ≈ 4, and this
further verifies our results in section 2.

4. Concluding remarks. A novel multilevel linear sampling method (MLSM)
is investigated in detail for reconstructing scatterers from far-field measurements.
Both theoretical analysis and numerical experiments demonstrate the asymptotically
optimal computational complexity of the MLSM. The new method is mainly a new
implementation of the linear sampling method (LSM) for inverse scattering problems.
It can significantly reduce the computational cost of LSM without any deterioration
in quality of the reconstructed scatterers. Exactly as for LSM, MLSM can be ap-
plied equally to sound-soft obstacle scattering as well as inverse acoustic sound-hard
obstacle scattering, inverse electromagnetic obstacle scattering, and the factorization
method in inverse scattering problems (see [11]).
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