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High Density Limit of the Stationary One Dimensional

Schrödinger–Poisson System∗

Raymond El Hajj† Naoufel Ben Abdallah‡

Abstract

The stationary one dimensional Schrödinger–Poisson system on a bounded in-
terval is considered in the limit of a small Debye length (or small temperature).
Electrons are supposed to be in a mixed state with the Boltzmann statistics. Using
various reformulations of the system as convex minimization problems, we show that
only the first energy level is asymptotically occupied. The electrostatic potential is
shown to converge towards a boundary layer potential with a profile computed by
means of a half space Schrödinger–Poisson system.

Key words. convex minimization, min-max theorem, concentration-compactness
principle, boundary layer
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1 Introduction and main results

1.1 Introduction

The Schrödinger–Poisson system is one of the most used models for quantum transport
of charged particles in semiconductors as well as for quantum chemistry problems [3, 5,
8, 13, 14, 15, 18, 19, 20, 21, 22, 23, 30]. It describes the quantum motion of an ensemble
of electrons submitted to and interacting with an electrostatic potential. The electron
ensemble might be completely confined or in interaction with reservoirs. In the latter
case, one speaks about open systems for which the particles are described by means of
the scattering states of the Schrödinger Hamiltonian corresponding to the electrostatic
potential which is in turn coupled to electron particle density through the electrostatic
interaction. This leads to nonlinear partial differential equations whose analysis involves
scattering theory techniques and limiting absorption theorems [23, 4, 3] and in which the
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repulsive character of the electrostatic interaction plays an important role in the analysis
(it provides the necessary a priori estimates for solving the problem).

For closed systems, the particles are described thanks to the eigenstates and eigenen-
ergies of the Schrödinger Hamiltonian. The electron density is the superposition of the
densities of the eigenstates with an occupation number decreasingly depending on their
eigenenergy. The coupling is again obtained through the Poisson equation modeling the
electrostatic interaction. This problem was reformulated by Nier [20, 21, 22] as a mini-
mization of a convex function (whose unknown is the electrostatic potential) which allows
us to prove existence and uniqueness results. In [15], one can find generalizations in-
cluding local contributions to the potential and which can be included in the functional
to be minimized. This short review partially covers stationary problems. For evolution
problems, an extended bibliography is available, and we refer the reader to the books of
Markowich, Ringhofer, and Schmeiser [19] and Cazenave [10] for references.

In this paper we are interested in a singularly perturbed version of the Schrödinger–
Poisson system which arises from the description of the so-called two dimensional electron
gases [1, 11]. The electrons, in such systems, are strongly confined in one direction, at the
interface between two material, and are free to move in the two remaining ones. In [6],
the analysis of the Schrödinger equation of strongly confined electrons in one direction
is performed. The confined direction is called z and the confining potential is assumed
to be given and scaled as 1

ε2
Vc(

z
ε
), where ε is a small parameter. Approximate models

for the transport direction (orthogonal to z) derived heuristically in the previous works
[25, 26, 27] are then analyzed in [6, 24]. The aim of the present work is to somehow justify
the scaling 1

ε2
Vc(

z
ε
) by the analysis of the self-consistent Schrödinger–Poisson system in

the z direction. This is why we shall forget about the transport issues in the orthogonal
direction and assume that the considered system is invariant with respect to it. The
parameter ε in the present work is linked to the scaled Debye length as shall be explained
later. The analysis relies on the minimization formulation of the problem leading to a
singularly perturbed functional. After a rescaling argument, we are led to the analysis
of a half space Schrödinger–Poisson system in which only the first eigenstate is occupied.
Additional estimates are obtained thanks to reformulation of the single state Schrödinger–
Poisson system as another minimization problem whose unknown is the first eigenfunction
(and not the potential). This formulation is used in quantum chemistry [9].

Let us now come to the precise description of the problem and the results. The system
is one dimensional and occupies the interval [0, 1]. The electrostatic energy is given by
Vε(z). It satisfies the following one dimensional stationary Schrödinger–Poisson system:







−d
2ϕp

dz2
+ V ϕp = Epϕp, z ∈ [0, 1],

ϕp ∈ H1(0, 1), ϕp(0) = 0, ϕp(1) = 0,

∫ 1

0

ϕpϕq = δpq,

−ε3d
2V

dz2
=

1

Z

+∞∑

p=1

e−Ep |ϕp|2, Z =
+∞∑

p=1

e−Ep ,

V (0) = 0,
dV

dz
(1) = 0.

(1)

The dimensionless parameter ε is a small parameter which is devoted to tending to zero.
The choice of the third power is done for notational convenience as shall be understood
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later. This parameter is related to the Debye length and shall be explicitly given by the
rescaling of the Schrödinger–Poisson system (19) (see subsection 1.3). The eigenvalues
of the Schrödinger operator (Ep)p are the energy levels in the potential well. The sum
in the right-hand side of the Poisson equation includes all eigenvalues of the Schrödinger
operator. In the limit ε → 0, one expects that the wave functions concentrate at z = 0.
The boundary condition for the potential at z = 1 is physically justified in some physical
situations such as in bulk materials. However, a Dirichlet condition is more commonly
used in such problems. The analysis can be carried out in that case with the cost of
technical complexity since a new boundary layer at z = 1 will appear and the eigenvalues
will have asymptotically a double multiplicity. For simplicity, we do not consider this
case. Since the density is very high in the limit ε → 0+, the Boltzmann statistics should
be replaced by the Fermi–Dirac ones. The analysis can be done in this case with the
cost of technical complications. More detailed comments about this are given in the last
section of this paper. In order to analyze the boundary layer, we make the change of
variables

ϕp(z) =
1√
ε
ψp

(z

ε

)

, Ep =
1

ε2
Ep, V (z) =

1

ε2
U
(z

ε

)

, ξ =
z

ε
. (2)

Then, U verifies −d2U
dξ2

= 1
Z̃
∑+∞

p=1 e
−Ep

ε2 |ψp|2 with Z̃ =
∑+∞

p=1 e
−Ep

ε2 . Since there is a uniform

gap with respect to ε between E1 and Ep for p ≥ 2 (see Lemma 4.2), the terms e
−Ep

ε2 with
p ≥ 2 are expected to be negligible when compared to the first one (p = 1). Therefore, it
is natural to expect the solution of (1) to be asymptotically close to the solution of the
following Schrödinger–Poisson system in which only the first energy level is taken into
account: 





−d
2ϕ̃1

dz2
+ Ṽ ϕ̃1 = Ẽ1ϕ̃1, z ∈ [0, 1],

Ẽ1 = inf
ϕ∈H1

0 (0,1), ‖ϕ‖L2=1

{∫ 1

0

|ϕ′|2 +
∫ 1

0

Ṽ ϕ2

}

,

−ε3d
2Ṽ

dz2
= |ϕ̃1|2,

Ṽ (0) = 0,
dṼ

dz
(1) = 0.

(3)

Moreover, when ε goes to zero, we will prove that the electrostatic potential, Ṽε, solution of
(3) converges towards a boundary layer potential with profile, U0, solution of the following
half line problem:







−d
2ψ1

dξ2
+ Uψ1 = E1ψ1, ξ ∈ [0,+∞[,

E1 = inf
ψ∈H1

0 (R
+), ‖ψ‖

L2=1

{∫ +∞

0

|ψ′|2 +
∫ +∞

0

Uψ2

}

,

−d
2U

dξ2
= |ψ1|2,

U(0) = 0,
dU

dξ
∈ L2(R+).

(4)
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1.2 Main results

In this paper, a rigourous analysis and comparison of the systems presented above will
be provided. Namely, (1) and (3) are posed on a bounded domain. The one dimensional
Schrödinger–Poisson system on a bounded interval was studied by Nier in [20]. Each of
these systems can be reformulated as a minimization problem (see section 2 for details).
However, the limit problem (4) is posed on an unbounded domain. Our first result deals
with the study of (4). We also prove that it can be formulated as a minimization problem.

Theorem 1.1. Let J0(.) be the energy functional defined on Ḣ1
0 (R

+) (given by (22)) by

J0(U) =
1

2

∫ +∞

0

|U ′|2 − E∞
1 [U ], (5)

where E∞
1 [U ] is the fundamental mode of the Schrödinger operator given by (33). The

limit problem (4) has a unique solution (U0, E1,0, ψ1,0), and U0 satisfies the following
minimization problem:

J0(U0) = inf
U∈Ḣ1

0 (R
+)
J0(U). (6)

The comparison of the systems presented above is established by our second main
theorem.

Theorem 1.2. Let Vε, Ṽε, and U0 be the potentials satisfying problems (1), (3), and (4),
respectively. Then the following estimates hold:

‖Vε − Ṽε‖H1(0,1) = O(e−
c

ε2 ) (7)

and ∥
∥
∥
∥
Ṽε −

1

ε2
U0

( .

ε

)
∥
∥
∥
∥
H1(0,1)

= O(e−
c
ε ), (8)

where c is a general strictly positive constant independent of ε.

The paper is organized as follows. In the next subsection, we present some remarks
on the scaling giving model (1), and we end this section by fixing some notation and
definitions. In section 2, we recall the spectral properties of the Schrödinger operator on
a bounded domain and state the optimization problems corresponding to (1) and (3) (or
more precisely to the intermediate systems (10) and (11)). Section 3 is devoted to the
analysis of the limit problem (4) posed on the half line (proof of Theorem 1.1). We will
first study the properties of the fundamental mode of the Schrödinger operator (Propo-
sition 3.1). The limit problem leads us to the study of a minimization problem posed
on an unbounded domain. This will be done by means of the concentration-compactness
principle introduced by Lions in [17]. Estimates (7) and (8) are proved in section 4. Some
comments concerning the Fermi–Dirac statistics, the choice of the boundary conditions,
and the problems of the multidimensional case are given in section 5. Finally, Appendix A
is devoted to the proof of Lemma 3.1.

First, let us make this remark.

Remark 1.1. To prove (7)–(8), we use the scaled versions of (1) and (3) when applying
the changes of variables (2) and

ϕ̃1(z) =
1√
ε
ψ̃1

(z

ε

)

, Ẽ1 =
1

ε2
Ẽ1, Ṽ (z) =

1

ε2
Ũ
(z

ε

)

, ξ =
z

ε
. (9)
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Then the intermediate Schrödinger–Poisson models write







−d
2ψp

dξ2
+ Uψp = Epψp, ξ ∈

[

0,
1

ε

]

,

ψp ∈ H1

(

0,
1

ε

)

, ψp(0) = 0, ψp

(
1

ε

)

= 0,

∫ 1
ε

0

ψpψq = δpq,

−d
2U

dξ2
=

1

Z̃

+∞∑

p=1

e
−Ep

ε2 |ψp|2, Z̃ =
+∞∑

p=1

e
−Ep

ε2 ,

U(0) = 0,
dU

dξ

(
1

ε

)

= 0

(10)

and 





−d
2ψ̃1

dξ2
+ Ũ ψ̃1 = Ẽ1ψ̃1, ξ ∈

[

0,
1

ε

]

,

Ẽ1 = inf
ψ∈H1

0 (0,
1
ε
), ‖ψ‖

L2=1

{
∫ 1

ε

0

|ψ′|2 +
∫ 1

ε

0

Ũψ2

}

,

−d
2Ũ

dξ2
= |ψ̃1|2,

Ũ(0) = 0,
dŨ

dξ

(
1

ε

)

= 0.

(11)

Remark that it is natural to expect (11) to be close, when ε goes to zero, to the limit
problem (4) posed on [0,+∞).

1.3 Remark on the scaling

Here we show how the system (1) can be obtained by a rescaling of the Schrödinger–
Poisson system written with the physical dimensional variables. Indeed, let (χp(Z),Λp)
be the eigenfunctions and the eigenenergies of the one dimensional Schrödinger operator
(the confinement operator) − ~2

2m
d2

dZ2 +W with homogeneous Dirichlet data:

− ~
2

2m

d2χp

dZ2
+Wχp = Λpχp, (12)

where ~ is the Planck constant and m denotes the effective mass of the electrons in the
crystal. The (χp)p is an orthonormal basis of L2(0, L). The variable Z belongs to [0, L],
where L is the typical length of the confinement. Denoting by n the electronic density,
this can be written

n(Z) =

+∞∑

p=1

np|χp(Z)|2. (13)

In this formula, |χp(Z)|2 is the probability of presence at point Z of an electron in the
pth state. Using Boltzmann statistics, the occupation factor np is given by

np =
Ns

Z exp

(

− Λp
kBT

)

, Z =
+∞∑

q=1

exp

(

− Λq
kBT

)

, (14)
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where kB is the Boltzmann constant, T denotes the temperature, and Ns is the surface
density assumed to be given. With this notation we have

∫ L

0
n(Z) dZ = Ns, which means

that the total number of electrons in the interval [0, L] (per unit surface in the two
remaining spatial directions) is given. The electrostatic potential W and the electron
density n are coupled through the Poisson equation:

− d2W

dZ2
=

q2

ε0εr
n (15)

with boundary conditions

W (0) = 0,
dW

dZ
(L) = 0. (16)

In (15), the constant q is the elementary electric charge and ε0, εr are, respectively, the
permittivity of the vacuum and the relative permittivity of the material.

Let us rescale the problem (12)–(16) by noticing that

z =
Z

L
∈ [0, 1], W (Z) = (kBT )V

(
Z

L

)

, Λp = (kBT )Ep, χp(Z) =
1√
L
ϕp

(
Z

L

)

.

(17)
We assume that ~2

2mL2 is of the same order of the thermal energy (kBT ). In order to
simplify the mathematical presentation, we suppose that

~
2

2mL2
= kBT. (18)

By inserting (17) into the system (12)–(16), we obtain, after straightforward computation,
the system (1) in which ε is related to the scaled Debye length:

ε3 =

(
λD

L

)2

, λD =

√

kBTε0εr

q2N
, (19)

where N = Ns

L
is the average volume density of electrons.

1.4 Notation and definitions

We summarize in this subsection the different variables and notation used in this paper.

• For the Schrödinger–Poisson problems posed on [0, 1], z denotes the space variable,
V denotes the potential variable, and (E , ϕ) represents any eigenvalue and the cor-
responding eigenfunction of the Schrödinger operator. For systems posed on [0, 1

ε
]

or on R
+, we use ξ, U , and (E, ψ) as variables. The same notation with ,̃ i.e.,

(Ṽ , Ẽ , ϕ̃) or (Ũ , Ẽ, ψ̃), is used for the variables of Schrödinger–Poisson systems in
which only the first eigenstate is taken into account.

• For any real valued function V ∈ L2(0, L), where L > 0 is given (L = 1 or 1
ε
here),

we denote by H [V ] the Dirichlet–Schrödinger operator

H [V ] = − d2

dx2
+ V (x) (x = z or ξ here) (20)
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defined on the domain D(H [V ]) = H2(0, L)∩H1
0 (0, L). In addition, the sequence of

eigenenergies and eigenfunctions of H [V ] will be denoted by (Ep[V ], ψp[V ])p∈N∗ . We
give in the next section the main properties satisfied by the functions V 7→ Ep[V ]
and V 7→ ψp[V ] for any p ∈ N

∗.

• The potentials satisfying (1) and (3) are denoted by Vε and Ṽε. In addition,
(Ep,ε, ϕp,ε) and (Ẽp,ε, ϕ̃p,ε), with p ∈ N

∗, represent the corresponding energy couples of
H [Vε] and H [Ṽε], respectively. In other words, Ep,ε := Ep[Vε], ϕp,ε := ψp[Vε], Ẽp,ε :=
Ep[Ṽε], and ϕ̃p,ε := ψp[Ṽε]. Similarly, the solutions of (10) and (11) will be denoted,
respectively, by (Uε, Ep,ε, ψp,ε) and (Ũε, Ẽp,ε, ψ̃p,ε). Finally, we fix (U0, E1,0, ψ1,0) to
denote the solution of the limit problem (4).

Let us now define some spaces which will be used throughout this paper.

Definition 1.1. (i) For L > 0, we define

H1,0(0, L) =
{
U ∈ H1(0, L), U(0) = 0

}
. (21)

(ii) The space Ḣ1
0 (R

+) is defined as follows:

Ḣ1
0 (R

+) =
{
U ∈ L2

loc(R
+), U ′ ∈ L2(R+), U(0) = 0, and U ≥ 0

}
. (22)

(iii) For any 0 < L ≤ +∞, we shall denote by SL the set of normalized functions of
H1

0 (0, L) with respect to the L2-norm

SL =

{

ϕ ∈ H1
0 (0, L),

∫ L

0

ϕ2 = 1

}

. (23)

Here H1
0 (0, L) is the space of H1-functions vanishing on 0 and L, and when L = +∞

H1
0 (R

+) =
{
ψ ∈ H1(R+), ψ(0) = 0

}
.

2 Schrödinger–Poisson system on a bounded domain

We begin this part by recalling some basic properties satisfied by the eigenvalues and
the eigenfunctions of the one dimensional Schrödinger operator (20). These properties
are standard and can be found in [16, 20, 28, 29]. The operator H [V ] is self-adjoint,
is bounded from below, and has compact resolvent. There exists a strictly increasing
sequence (Ep[V ])p of real numbers tending to +∞ and an orthonormal basis of L2(0, L),
(ψp[V ])p, such that ψp[V ] ∈ D(H [V ]) and

H [V ]ψp[V ] = Ep[V ]ψp[V ]. (24)

For V = 0, we have by a simple calculation

Ep[0] =
π2p2

L2
, ψp[0](x) =

√

2

L
sin
(pπx

L

)

. (25)

The eigenvalues Ep[V ] are simple and satisfy the following characterization (min-max
principle) [29]:

Ep[V ] = min
Vp∈Vp(D(H[V ]))

max
ϕ∈Vp, ϕ 6=0

(H [V ]ϕ, ϕ)L2

‖ϕ‖2
L2

, (26)
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where Vp (D(H [V ])) is the set of the subspaces of D(H [V ]) with dimension equal to p,
and (., .) denotes the scalar product in L2. In view of the min-max formula (26), one can
verify that for any p ∈ N

∗, Ep[.] is an increasing function, which means that

Ep[V ] ≤ Ep[W ] if V ≤W a.e.

Moreover, we have the Lipschitz property, for any real valued functions V,W in L∞(0, L),

|Ep[V ]− Ep[W ]| ≤ ‖V −W‖L∞(0,L). (27)

Besides, one can prove the following lemma [20].

Lemma 2.1. For any p ∈ N
∗, the maps

Ep[.] : L
2(0, L) −→ R, ψp[.] : L

∞(0, L) −→ L1(0, L)

are Gâteaux differentiable, and their derivatives are given, respectively, by

dEp[V ].W =

∫ L

0

|ψp[V ]|2Wdx and

dψp[V ].W =
∑

q 6=p

1

Ep[V ]−Eq[V ]

(∫ L

0

Wψpψqdx

)

ψq

(28)

for any V,W ∈ L∞(0, L).

Using the spectral properties of the Schrödinger operator, one can prove the following
proposition. For details on the proof see [20].

Proposition 2.1. The systems (10) and (11) are well posed. They are equivalent, re-
spectively, to the following minimization problems:

Jε(Uε) = inf
U∈H1,0(0,Mε)

Jε(U) (29)

and
J̃ε(Ũε) = inf

U∈H1,0(0,Mε)
J̃ε(U), (30)

where Mε =
1
ε
. The energy functionals Jε and J̃ε are given by

Jε(U) =
1

2

∫ Mε

0

|U ′|2 + ε2 log

(
+∞∑

p=1

e−
Ep[U ]

ε2

)

(31)

and

J̃ε(U) =
1

2

∫ Mε

0

|U ′|2 − E1[U ]. (32)

Each one of problems (29) and (30) admits a unique solution.

Remark 2.1. One can similarly study the systems (1) and (3) and prove that each one
is equivalent to an optimization problem.

8



3 Analysis of the limit problem (4)

The aim of this part is to study the well-posedness of the limit problem (4) posed on
the half line. Namely, this part is concerned with the proof of Theorem 1.1. We begin
with the study of the fundamental mode, E∞

1 [.], of the Schrödinger operator. Its main
properties are listed in Proposition 3.1.

3.1 Properties of the fundamental mode of the Schrödinger op-

erator on [0,+∞)

We begin by defining the fundamental mode.

Definition 3.1. For any real and positive function U ∈ L1
loc(R

+), the fundamental mode
of the Schrödinger operator is

E∞
1 [U ] = inf

ψ∈S∞

JU(ψ), (33)

where for any ψ ∈ S∞ (defined by (23)) we have

JU(ψ) =

∫ +∞

0

|ψ′|2 +
∫ +∞

0

Uψ2. (34)

One difficulty due to the unboundedness of the interval [0,+∞) is that E∞
1 [.] might

not be an eigenvalue but only the lower bound of the essential spectrum. The following
proposition gives some properties of E∞

1 [.] and some sufficient conditions on the potential
for which E∞

1 [.] is an eigenvalue.

Proposition 3.1. 1. The map U 7→ E∞
1 [U ] is a continuous, concave, and increasing

function with values in R+ := [0,+∞] satisfying

E∞
1 [U ] ≤ lim sup

ξ→+∞
U(ξ). (35)

2. If U ∈ L1
loc(R

+), U ≥ 0 such that E∞
1 [U ] < lim infξ→+∞ U(ξ), then E∞

1 [U ] is reached
by a unique positive function ψ1[U ], which means that there exists a unique positive
function ψ1[U ] ∈ S∞ such that E∞

1 [U ] = JU(ψ1[U ]). In addition, we have

dE∞
1

dU
[U ].W =

∫ +∞

0

|ψ1[U ]|2Wdξ (36)

for any function W in L∞
0 (R+), the space of bounded functions with compact support

on R
+.

3. Let U ∈ L1
loc(R

+) be a positive function such that limξ→+∞U(ξ) exists, U ≤ limξ→+∞ U(ξ),
and E∞

1 [U ] = limξ→+∞U(ξ). Then we have

dE∞
1

dU
[U ].W = 0

for any W ∈ L∞
0 (R+).
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4. Let α be an arbitrary positive constant. Then we have

E∞
1 [α

√

ξ] = α
4
5E∞

1 [
√

ξ]. (37)

Remark 3.1. There is quite a difference between the third case of this proposition, where
E∞

1 [U ] = limξ→+∞U(ξ), and the second case, which includes E∞
1 [U ] < limξ→+∞ U(ξ).

This result is natural and can be interpreted as follows. The classically allowed region for
a particle with energy E is the set A = {ξ ∈ [0,+∞); U(ξ) ≤ E}. In the case E ≥ U(ξ)
on [0,+∞), the set A extends to +∞ so that there is no bound state, while in the case
E < limξ→+∞U(ξ) the set A is bounded and E is a bounded state energy.

Lemma 3.1. Let U ∈ Ḣ1
0 (R

+) such that E∞
1 [U ] < lim inf+∞ U . Then all minimizing

sequences (ψn)n of problem (33) are relatively compact in L2(R+).

This lemma is needed for the proof of the second point of Proposition 3.1. It is proved
in Appendix A. The proof is based on the concentration-compactness principle.

Proof of Proposition 3.1. 1. Remark first that for any positive function U , E∞
1 [U ]

exists and belongs to R+. It is easy to check, from the definition of E∞
1 [.], that it is a

continuous, concave, and increasing function. To prove inequality (35), let ψ ∈ S∞ be
fixed and set ψδ =

√
δψ(δξ) for any real positive δ. Then ψδ ∈ S∞, and since E∞

1 [U ]
verifies (33), we have

E∞
1 [U ] ≤ JU(ψδ). (38)

Moreover, we have JU(ψδ) = δ2
∫ +∞
0

|ψ′(ξ)|2dξ +
∫ +∞
0

U( ξ
δ
)ψ2(ξ)dξ. Then

lim sup
δ→0

JU(ψδ) ≤
∫ +∞

0

lim sup
δ→0

U

(
ξ

δ

)

ψ2(ξ)dξ ≤ lim sup
ξ→+∞

U(ξ).

Taking the lim supδ→0 of (38), one obtains inequality (35).
2. Let (ψn)n be a minimizing sequence of E∞

1 [U ]; i.e., ψn ∈ S∞ for any n ∈ N
∗ and

JU(ψn) →n→+∞ E∞
1 [U ]. The sequence (ψn)n is bounded in H1

0 (R
+), there exist a function

ψ ∈ H1
0 (R

+) and a subsequence also denoted (ψn) such that (ψn) converges weakly to ψ
in H1

0 (R
+), and since JU(.) is weakly lower semicontinuous (it is strictly convex and lower

semicontinuous) we have JU(ψ) ≤ lim infn→+∞ JU(ψn). Then

JU(ψ) ≤ E∞
1 [U ]. (39)

Besides, the hypothesis E∞
1 [U ] < lim inf+∞ U implies that the sequence (ψn)n is relatively

compact in L2(R+) (see Lemma 3.1). Then, up to an extraction of subsequence, (ψn)n
converges strongly to ψ in L2(R+). Since ‖ψn‖2L2(R+) = 1, for all n, we have ‖ψ‖2

L2(R+) = 1,

and then ψ belongs to S∞. Therefore, in view of the definition of E∞
1 [U ] (33), E∞

1 [U ] ≤
JU(ψ) and with (39) we have E∞

1 [U ] = JU(ψ). Let us now show that E∞
1 [U ] is a simple

eigenvalue and the corresponding eigenfunction has a constant sign. Indeed, let ψ1 and ψ2

be two minimizers of JU(.) on S∞, i.e., ψ1, ψ2 ∈ S∞, such that E∞
1 [U ] = JU(ψ1) = JU(ψ2),

and let φ =

√
ψ2
1

2
+

ψ2
2

2
. The function φ belongs to S∞, and we have

JU(φ) =
1

2
JU(ψ1) +

1

2
JU(ψ2)−

∫ +∞

0

∣
∣
∣
∣

ψ1ψ
′
2 − ψ2ψ

′
1

2φ

∣
∣
∣
∣

2

= E∞
1 [U ]−

∫ +∞

0

∣
∣
∣
∣

ψ1ψ
′
2 − ψ2ψ

′
1

2φ

∣
∣
∣
∣

2

.
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Since E∞
1 [U ] ≤ JU(φ) (φ ∈ S∞), we get

∫ +∞
0

∣
∣ψ1ψ

′

2−ψ2ψ
′

1

2φ

∣
∣2 = 0, which implies that ψ1 and

ψ2 are proportional, and so E∞
1 [U ] is simple. In particular, ψ and |ψ| are two minimizers

of E∞
1 [U ]; they are then proportional, and since

∫ +∞
0

|ψ|2 = 1 we conclude that ψ = ±|ψ|.
We then choose ψ1[U ] = |ψ|, which is positive. This is the unique positive eigenfunction
corresponding to E∞

1 [U ]. To end the proof of the second point of Proposition 3.1, let W
be a compactly supported bounded function (W ∈ L∞

0 (R+)) and remark that for a small
real t we have E∞

1 [U + tW ] ≤ E∞
1 [U ] + |t|‖W‖∞ < lim infξ→+∞U(ξ). In addition, since

W ∈ L∞
0 , we have lim infξ→+∞U = lim infξ→+∞(U(ξ) + tW (ξ)). Then, for any small

real t, we have E∞
1 [U + tW ] < limξ→+∞(U(ξ) + tW (ξ)). Therefore, for all bounded and

compactly supported functions W and for all t ∈ R small, E∞
1 [U + tW ] is an eigenvalue.

Let ψt be the corresponding positive eigenfunction. We have

E∞
1 [U + tW ] =

∫ +∞

0

|ψ′
t|2dξ +

∫ +∞

0

(U + tW )|ψt|2dξ ≥ E∞
1 [U ] + t

∫ +∞

0

W |ψt|2dξ.

Similarly, one has

E∞
1 [U ] ≥ E∞

1 [U + tW ]− t

∫ +∞

0

W |ψ1[U ]|2dξ.

Then, if t is a small nonnegative real (without loss of generality), one can write
∫ +∞

0

W |ψt|2dξ ≤
E∞

1 [U + tW ]− E∞
1 [U ]

t
≤
∫ +∞

0

W |ψ1[U ]|2dξ. (40)

Besides, since (ψt)t is bounded in H1
0 (R

+), there exists a positive function ψ0 ∈ H1
0 such

that ψt converges weakly to ψ0, when t → 0+, in H1
loc(R

+) and strongly in L2
loc(R

+). By
passing to the limit t→ 0+ in

−ψ′′
t + (U + tW )ψt = E∞

1 [U + tW ]ψt

we obtain
−ψ′′

0 + Uψ0 = E∞
1 [U ]ψ0 in D′(0,+∞).

Since ψ0 is positive, we deduce that ψ0 = ψ1[U ]. Finally, to obtain (36) we just have to
take the limit t→ 0+ of (40).

3. Remark first that, since E∞
1 [.] is a nondecreasing real function, we have for t ≥ 0

E∞
1 [U − t|W |]− E∞

1 [U ]

t
≤ E∞

1 [U + tW ]− E∞
1 [U ]

t
≤ E∞

1 [U + t|W |]− E∞
1 [U ]

t
.

Therefore, it is sufficient to prove
dE∞

1

dU
[U ].W = 0 for W ≥ 0 and W ≤ 0 (the general case

can be deduced by passing to the limit t→ 0+ in the above inequalities).
(i) Let W ∈ L∞

0 (R+) and W ≥ 0. Then we have E∞
1 [U ] ≤ E∞

1 [U + tW ]. Besides, by
(35), we have E∞

1 [U + tW ] ≤ limξ→+∞(U(ξ) + tW (ξ)) = limξ→+∞ U(ξ) = E∞
1 [U ]. Then,

for all W ≥ 0 in L∞
0 , E∞

1 [U + tW ] = E∞
1 [U ], and the result is proved in this case.

(ii) LetW ∈ L∞
0 (R+), letW ≤ 0, and let (tn)n∈N be a sequence decreasing towards 0+.

The sequence (E∞
1 [U + tnW ])n is increasing and satisfies E∞

1 [U + tnW ] ≤ lim+∞ U =
E∞

1 [U ] for all n ∈ N. Therefore, either it is stationary in the vicinity of +∞ and in that

case
dE∞

1

dU
[U ].W = 0, or it satisfies

E∞
1 [U + tnW ] < lim

+∞
U ∀n ∈ N. (41)
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In the latter case, E∞
1 [U + tnW ] is an eigenvalue and there exists a sequence (ψn) ∈ S∞,

ψn ≥ 0, such that

E∞
1 [U + tnW ] = JU+tnW (ψn) = inf

ψ∈S∞

JU+tnW (ψ).

Besides, we have E∞
1 [U + tnW ] ≥ E∞

1 [U ] + tn
∫ +∞
0

Wψ2
ndξ and

∣
∣
∣
∣

E∞
1 [U + tnW ]− E∞

1 [U ]

tn

∣
∣
∣
∣
≤ −

∫ +∞

0

Wψ2
ndξ. (42)

The sequence (ψn)n being bounded in H1
0 (R

+), one can find a positive function ψ ∈
H1

0 (R
+) and a subsequence of (ψn)n also denoted by (ψn)n such that ψn converges weakly

to ψ in H1
loc(R

+) and strongly in L2
loc(R

+). In addition ψ satisfies, in the sense of distri-
butions,

−ψ′′ + Uψ = E∞
1 [U ]ψ = lim

+∞
(U)ψ.

This implies that ψ′′ = (U − lim+∞ U)ψ ≤ 0 with ψ ∈ H1
0 (R

+). We deduce that ψ = 0
a.e., and we get the result by passing to the limit in (42), W being compactly supported.

4. Let us now verify the identity (37). Since the potential (α
√
ξ) tends to +∞ when

ξ goes to +∞, E∞
1 [α

√
ξ] is reached by a positive function ψ ∈ S∞:

−ψ′′(ξ) + (α
√

ξ)ψ = E∞
1 [α

√

ξ]ψ.

Setting ξ = αβζ and ψ(ζ) =
√
αβψ(αβζ) for an arbitrary constant β, we get

− 1

α2β
ψ

′′
(ζ) + α1+β

2

√

ζψ(ζ) = E∞
1 [α

√

ξ]ψ(ζ).

By choosing β such that −2β = 1 + β

2
, so that β = −2

5
, we obtain

−ψ′′
(ζ) +

√

ζψ(ζ) = α
−4
5 E∞

1 [α
√

ξ]ψ(ζ),

which implies that E∞
1 [α

√
ξ] = α

4
5E∞

1 [
√
ξ]. The proof of Proposition 3.1 is achieved.

3.2 Proof of Theorem 1.1

In what follows, we will show that (6) admits a unique solution verifying (4). Indeed,
the functional J0(.) is obviously continuous and strictly convex on Ḣ1

0 (R
+). To prove

the existence of a unique U0 ∈ Ḣ1
0 (R

+) satisfying (6), it remains to verify that J0(.) is

coercive on Ḣ1
0 (R

+). For this let U ∈ Ḣ1
0 (R

+) and write U(ξ) =
∫ ξ

0
U ′(t)dt. This implies

that U(ξ) ≤ ‖U ′‖L2

√
ξ, and since E∞

1 [.] is an increasing function one has E∞
1 [U ] ≤

E∞
1 [‖U ′‖L2

√
ξ]. Applying (37) with α = ‖U ′‖L2 we get E∞

1 [U ] ≤ ‖U ′‖
4
5

L2E
∞
1 [

√
ξ], and

finally we have

J0(U) ≥
1

2
‖U ′‖2L2 − E∞

1 [
√

ξ].‖U ′‖
4
5

L2 −−−−−−−→
‖U‖

H1→+∞
+∞.

Let us now prove that U0 is a solution of the limit problem (4). Namely, we have to check
that E∞

1 [U0] is an eigenvalue. To this aim, we first write the Euler–Lagrange equation
for U0:

− U ′′
0 =

dE∞
1

dU
[U0] ≥ 0. (43)
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Therefore, U0 is a concave function belonging to Ḣ1
0 (R

+). It is thus a continuous, in-
creasing, and positive function on R

+, and lim+∞ U0 exists in R. It now remains to check
that E∞

1 [U0] < lim+∞ U0, which will ensure that E∞
1 [U0] := E1,0 is an eigenvalue with

unique positive eigenfunction ψ1,0 ∈ S∞ (see point two of Proposition 3.1). We proceed
by contradiction and assume that E∞

1 [U0] = lim+∞ U0. Applying the third point of Propo-

sition 3.1, one obtains
dE∞

1

dU
[U0] = 0. In view of (43) and the fact that U0 is a concave

positive function in Ḣ1
0 (R

+), we deduce that U0 = 0 and minU∈Ḣ1
0 (R

+) J0(U) = 0. But
a simple rescaling argument shows that J0 takes negative values, and so its minimum is
negative. To prove this claim, we fix a potential U in Ḣ1

0 (R
+) such that

∫ +∞
0

|U ′|2 = 1,
lim+∞ U = +∞ and let ψ1 ∈ S∞ be the eigenfunction corresponding to E∞

1 [U ]. For ε > 0,
setting Uε(ξ) = ε2U(εξ) and ψε1(ξ) =

√
εψ1(εξ), we have

−d
2ψε1
dξ2

+ Uεψε1(ξ) = ε2E∞
1 [U ]ψε1(ξ),

which implies that E∞
1 [Uε] = ε2E∞

1 [U ]. After straightforward computations, we finally
obtain

J0(U
ε) =

1

2

∫ +∞

0

∣
∣
∣
∣

dUε

dξ

∣
∣
∣
∣

2

dξ − E∞
1 [Uε] =

ε5

2

∫ +∞

0

|U ′|2dξ − ε2E∞
1 [U ]

= −ε2E∞
1 [U ]

(

1− ε3

2E∞
1 [U ]

)

,

which is negative for ε small enough. The proof of Theorem 1.1 is complete.

4 Convergence analysis

The various models presented in the first section of this work are all well posed. In this
section, we shall estimate the difference between their solutions in terms of ε. Namely,
we have to prove estimates (7) and (8). The following lemma will be useful.

Lemma 4.1. Let (U0, E1,0, ψ1,0) be the solution of the limit problem (4). There exist
a, b ∈ R

+ independent of ε such that for all ε small we have

‖ψ1,0‖L2(Mε,+∞) ≤ ae−bMε (44)

with Mε =
1
ε
.

Proof. We have −ψ′′
1,0 + U0ψ1,0 = E1,0ψ1,0 such that ψ1,0 ≥ 0, ψ1,0(ξ) →ξ→+∞ 0 (ψ1,0 ∈

H1
0 (R

+)), E1,0 < lim+∞ U0, and U0 increases to its limit at +∞. Then one can find two
nonnegative constants c and δ independent of ε such that for all ε small enough we have

−ψ′′
1,0(ξ) ≤ −δψ1,0(ξ) for ξ ∈ [Mε,+∞[

and ψ1,0(Mε) ≤ ce−
√
δMε. Let S(ξ) = ce−

√
δξ and ψ = ψ1,0 − S. Then we have S ′′ = δS

and
− ψ′′(ξ) + δψ(ξ) ≤ 0, ξ ∈ [Mε,+∞[ (45)

with
ψ(Mε) ≤ 0 and ψ(+∞) = 0.
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By the maximum principle, one deduces that ψ ≤ 0 on [Mε,+∞[. Thus

ψ1,0(ξ) ≤ ce−
√
δξ on [Mε,+∞[,

which yields estimate (44).

We begin by proving the second estimate (8) of Theorem 1.2. For this we will compare
(see Proposition 4.1) the potentials U0 and Ũε solutions of (6) and (30), respectively. This
will be done thanks to an idea consisting of the reformulation of the problems (4) and (11)
as minimization problems whose unknown is the first eigenfunction. This is the subject
of the following remark.

Remark 4.1. For φ ∈ SMε
(see Definition 1.1), where Mε =

1
ε
, let us set

Aε(φ) =

∫ Mε

0

|φ′(ξ)|2dξ + 1

2

∫ Mε

0

∫ Mε

0

φ2(ξ)φ2(ζ)min(ξ, ζ)dξdζ (46)

and for φ ∈ S∞

A0(φ) =

∫ +∞

0

|φ′(ξ)|2dξ + 1

2

∫ +∞

0

∫ +∞

0

φ2(ξ)φ2(ζ)min(ξ, ζ)dξdζ. (47)

The functional Aε satisfies Aε(|φ|) = Aε(φ) and the convexity property

Aε

(√

tφ2
1 + (1− t)φ2

2

)

≤ tAε(φ1) + (1− t)Aε(φ2)

for t ∈ (0, 1), the inequality being strict if |φ1| and |φ2| are not proportional (these prop-
erties are also satisfied by A0). The functionals are obvious weakly lower semicontinuous
on their domain of definition, in such a way that the minimization problems

Aε(φε) = min
φ∈H1

0 (0,Mε), ‖φ‖L2=1
Aε(φ) (48)

and
A0(φ0) = min

φ∈H1
0 (R

+), ‖φ‖
L2=1

A0(φ) (49)

have unique positive solutions. The problems (48) and (49) are equivalent, respectively,
to (11) and (4). Indeed, the functions φε and φ0 satisfy

−φ′′
ε + U(φε)φε = µεφε on [0,Mε],

−φ′′
0 + U(φ0)φ0 = µ0φ0 on R

+,

where µε (respectively, µ0) is the Lagrange multiplicator associated with the constraint
‖φ‖L2 = 1 and U(φε), U(φ0) denote, respectively,

U(φε)(ξ) =

∫ Mε

0

|φε(ζ)|2min(ξ, ζ)dζ, U(φ0)(ξ) =

∫ +∞

0

|φ0(ζ)|2min(ξ, ζ)dζ.

In addition, since φε and φ0 are positive and the function K(ξ, ζ) = min(ξ, ζ) is the kernel
corresponding to the Laplacian in dimension one, we have

(U(φε), µε, φε) = (Ũε, Ẽ1,ε, ψ̃1,ε) and (U(φ0), µ0, φ0) = (U0, E1,0, ψ1,0).
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Proposition 4.1. The solutions U0 and Ũε of (6) and (30), respectively, verify the fol-
lowing estimate:

∥
∥
∥
∥

d

dξ
(Ũε − U0)

∥
∥
∥
∥

2

L2(0,Mε)

= O(e−
c
ε ), (50)

where c is a strictly positive constant independent of ε and Mε =
1
ε
. This yields estimate

(8).

Proof. We start by comparing A0(ψ1,0) and Aε(ψ̃1,ε). Let χε ∈ D(0,+∞) be such that
χε(ξ) = 1 on [0,Mε − 1], χε(ξ) = 0 on [Mε,+∞[, and 0 ≤ χε ≤ 1. The function
χε.ψ1,0|(0,Mε) belongs to H1

0 (0,Mε), and for ε small we have ‖χε.ψ1,0‖L2(0,Mε) 6= 0. Let
βε = ‖χε.ψ1,0‖L2(0,Mε). Then we have 1

βε
χε.ψ1,0 ∈ SMε

and, with (44), βε = 1 + O(e−
c
ε ).

Then, in view of Remark 4.1, the following inequalities can be straightforwardly justified:

Aε(ψ̃1,ε) ≤ Aε

(
1

βε
χε.ψ1,0

)

≤ Aε(ψ1,0) +O(e−
c
ε ) ≤ A0(ψ1,0) +O(e−

c
ε ),

where c is a strictly positive constant independent of ε. Besides, we have

A0(ψ1,0) ≤ A0(ψ̃1,ε) = Aε(ψ̃1,ε).

Here and in what follows, we still denote by ψ̃1,ε the extension of ψ̃1,ε by zero on [Mε,+∞[
when it is taken as a function on R

+. Consequently, we have

|Aε(ψ̃1,ε)−A0(ψ1,0)| = Aε(ψ̃1,ε)− A0(ψ1,0) = O(e−
c
ε ). (51)

Furthermore, A0 is uniformly convex on S∞ and ψ1,0 realizes its minimum. Then one can
find a constant c0 > 0 independent of ε such that

‖ψ1,0 − ψ̃1,ε‖2H1(R+) ≤ c0|A0(ψ1,0)− A0(ψ̃1,ε)|.

In addition, since A0(ψ̃1,ε) = Aε(ψ̃1,ε) and with (51), one deduces that

‖ψ1,0 − ψ̃1,ε‖2H1(R+) = O(e−
c
ε ). (52)

The potential U0 − Ũε satisfies

− d2

dξ2
(U0 − Ũε)(ξ) = |ψ1,0(ξ)|2 − |ψ̃1,ε(ξ)|2 on [0,Mε].

Then, multiplying this equation by U0 − Ũε, one obtains after integration by parts
∥
∥
∥
∥

d

dξ
(U0 − Ũε)

∥
∥
∥
∥

2

L2(0,Mε)

≤ dU0

dξ
(Mε)(U0(Mε)− Ũε(Mε))

+ sup
ξ∈[0,Mε]

(|U0(ξ)− Ũε(ξ)|)
∫ Mε

0

(|ψ1,0|2 − |ψ̃1,ε|2)dξ.

Moreover, in view of Remark 4.1, we have, for every ξ ∈ [0,Mε],

(U0 − Ũε)(ξ) =

∫ Mε

0

(|ψ1,0|2 − |ψ̃1,ε|2)(ζ)min(ξ, ζ)dζ +

∫ +∞

Mε

|ψ1,0|2min(ξ, ζ)dζ

≤Mε

(∫ Mε

0

(|ψ1,0|2 − |ψ̃1,ε|2)(ζ)dζ +
∫ +∞

Mε

|ψ1,0|2(ζ)dζ
)
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and dU0

dξ
(Mε) = −

∫ +∞
Mε

d2U0

dξ2
(ξ)dξ =

∫ +∞
Mε

|ψ1,0|2dξ. Then
∥
∥
∥
∥

d

dξ
(U0 − Ũε)

∥
∥
∥
∥

2

L2(0,Mε)

≤Mε

(∫ Mε

0

(|ψ1,0|2 − |ψ̃1,ε|2)(ζ)dζ +
∫ +∞

Mε

|ψ1,0|2(ζ)dζ
)2

≤ 2Mε

(

‖ψ1,0 − ψ̃1,ε‖2L2(0,Mε)
+ ‖ψ1,0‖4L2(Mε,+∞)

)

,

and with (52) and (44) one obtains (50). Moreover, with the change of variable Ṽε(.) =
1
ε2
Ũε(

.
ε
) one deduces that
∥
∥
∥
∥

d

dξ

(

Ṽε −
1

ε2
Ũ0

( .

ε

))
∥
∥
∥
∥

2

L2(0,1)

=
1

ε5

∥
∥
∥
∥

d

dξ
(Ũε − U0)

∥
∥
∥
∥

2

L2(0,Mε)

= O(e−
c
ε ),

and then estimate (8) holds.

Let us now give the following result, which shows the existence of a uniform gap
between the first eigenvalue Ẽ1,ε := E1[Ũε] and the others Ep[Ũε].

Lemma 4.2. There exists a constant G > 0, independent of ε, such that

Ep[Ũε]− Ẽ1,ε ≥ G ∀p ≥ 2. (53)

Proof. Since (Ep[Ũε])p≥1 is an increasing sequence, it is sufficient to show (53) only for
p = 2. We argue by contradiction and suppose that |E2[Ũε]− Ẽ1,ε| → 0 as ε goes to zero.
In view of Remark 4.1, we have Ẽ1,ε = Aε(ψ̃1,ε) and E1,0 = A0(ψ1,0). Then, with (51),
|Ẽ1,ε − E1,0| = O(e−

c
ε ). We deduce that E2[Ũε] and Ẽ1,ε converge to E1,0 when ε → 0.

Then the eigenfunctions ψ2[Ũε] and ψ̃1,ε, corresponding, respectively, to E2[Ũε] and Ẽ1,ε,
prolonged by zero on [1

ε
,+∞), are bounded in H1

0 (R
+) with respect to ε. There exists

ψ1 (respectively, ψ2) ∈ H1
0 (R

+) such that ψ̃1,ε (respectively, ψ2[Ũε]) converges weakly in
H1
loc(R

+) to ψ1 (respectively, ψ2). By passing to the limit ε → 0+ in D′(0,+∞), in the
equations

−ψ̃′′
1,ε + Ũεψ̃1,ε = Ẽ1,εψ̃1,ε,

−(ψ2[Ũε])
′′ + Ũεψ2[Ũε] = E2[Ũε]ψ2[Ũε]

one deduces that ψ1 and ψ2 are two eigenfunctions corresponding to E1,0. In addition, we
have

|JU0(ψ̃1,ε)−E1,0| =
∣
∣
∣
∣

∫ +∞

0

|ψ̃′
1,ε|2 +

∫ +∞

0

U0|ψ̃1,ε|2 − E1,0

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ Mε

0

|ψ̃′
1,ε|2 +

∫ Mε

0

Ũε|ψ̃1,ε|2 −E1,0 +

∫ +∞

0

(U0 − Ũε)|ψ̃1,ε|2
∣
∣
∣
∣

≤ |Ẽ1,ε − E1,0|+ sup
[0,Mε]

(|U0 − Ũε|) −−→
ε→0

0.

Then (ψ̃1,ε) (and similarly (ψ2[Ũε])) is a minimizing sequence of “E1,0 = infψ∈S∞
JU0(ψ).”

Moreover, since E1,0 < lim+∞ U0 (see the proof of Theorem 1.1) and applying Lemma
3.1, (ψ̃1,ε) and (ψ2[Ũε]) (up to extraction of subsequences) converge strongly in L2(R+).
Thus, since ψ̃1,ε and ψ2[Ũε] are two normalized and orthogonal functions in L2(R+) for any
ε > 0, we deduce that their limits when ε → 0, ψ1 and ψ2, which are two eigenfunctions
of E1,0, are also normalized and orthogonal in L2(R+). This contradicts the fact that E1,0

is a simple eigenvalue.
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Proposition 4.2. The potentials Uε and Ũε solutions of (10) and (11) verify that

‖Uε − Ũε‖H1(0,Mε) = O(e−
c

ε2 ), (54)

where c is a strictly positive constant independent of ε. This gives estimate (7).

Proof. Recall first that Uε and Ũε verify, respectively, (29) and (30). To prove estimate
(54), it is sufficient to compare the energies Jε(Uε) and Jε(Ũε) because we have

‖Uε − Ũε‖2H1(0,Mε)
≤ c0|Jε(Uε)− Jε(Ũε)|, (55)

where c0 is independent of ε. A straightforward comparison gives the following inequali-
ties:

J̃ε(Ũε) ≤ J̃ε(Uε) ≤ Jε(Uε) ≤ Jε(Ũε). (56)

Besides, we have Ũε ≥ 0, and Ep[.] is an increasing function; then Ep[Ũε] ≥ Ep[0] = ε2p2π2.
Moreover, since Ẽ1,ε converges to E1,0, which is then finite, there exists a constant c1 > 0
independent of ε such that

Ep[Ũε]− Ẽ1,ε ≥ ε2p2π2 − c1. (57)

Combining (53) and (57), one finds c2 > 0 and c3 > 0 independent of ε such that

Ep[Ũε]− Ẽ1,ε ≥ c2ε
2p2π2 + c3 ∀p ≥ 2.

This implies that
∑

p≥2

e−
Ep[Ũε]−E1[Ũε]

ε2 = O(e−
c3
ε2 ),

and since

Jε(Ũε) = J̃ε(Ũε) + ε2 log

(

1 +
∑

p≥2

e−
Ep[Ũε]−E1[Ũε]

ε2

)

,

we obtain
Jε(Ũε) = J̃ε(Ũε) +O(ε2e−

c3
ε2 ),

which leads to (54) in view of (55) and (56).

5 Comments

5.1 Fermi–Dirac statistics

It is more natural to consider Fermi–Dirac statistics in the high density limit (ε → 0).
Here we give some remarks and elements on the limit in this case. The scaled occupation
factor of the pth state with Fermi–Dirac statistics is given by

nFDp = fFD(Ep − EF ),

where EF is the Fermi level and fFD is the Fermi–Dirac distribution

fFD(u) = log(1 + e−u), (58)
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The scaled Boltzmann distribution function, however, is given by fB(u) = e−u. The
Poisson equation in model (1) can be written as follows:

−d
2V

dξ2
=

+∞∑

p=1

fB(FD)(Ep − EF )|ϕp|2

under the following constraint on the Fermi energy:

+∞∑

p=1

fB(FD)(Ep − EF ) =
1

ε3
. (59)

In the Boltzmann case, one can explicitly solve (59) with respect to EF , and we have

eEF =
1

ε3
∑+∞

p=1 e
−Ep

,

which yields (1). The first remark we give in the Fermi–Dirac case is that eEF cannot be
expressed explicitly in terms of e−Ep . The analysis of the limit can, however, be extended
to this case but with technical complications that we have avoided in the Boltzmann
statistics case. When applying the change of variables (2) and EF = 1

ε2
ǫF the intermediate

problem (10) becomes in the Fermi–Dirac statistics case







−d
2ψp

dξ2
+ Uψp = Epψp, ξ ∈

[

0,
1

ε

]

,

ψp ∈ H1

(

0,
1

ε

)

, ψp(0) = 0, ψp

(
1

ε

)

= 0,

∫ 1
ε

0

ψpψq = δpq,

−d
2U

dξ2
= ε3

+∞∑

p=1

fFD

(
Ep − ǫF

ε2

)

|ψp|2,
+∞∑

p=1

fFD

(
Ep − ǫF

ε2

)

=
1

ε3
,

U(0) = 0,
dU

dξ

(
1

ε

)

= 0.

(60)

Since fFD is a regular, positive, and decreasing function on R, the Schrödinger–Poisson
system in a bounded domain in the Fermi–Dirac case is well posed and can also be
expressed as an optimization problem; see the work of Nier [20] in the unidimensional
case and [22] in higher dimensions. More precisely, (60) is equivalent to

Jε(Uε) = inf
U∈H1,0(0, 1

ε
)
Jε(U), (61)

where

Jε(U) =
1

2

∫ 1
ε

0

|U ′|2 − ε3
+∞∑

p=1

[

fFD

(
Ep[U ]− ǫF [U ]

ε2

)

ǫF [U ]− ε2
∫ +∞

Ep[U ]−ǫF [U ]

ε2

fFD(u)du

]

.

(62)
Replacing fFD(.) by fB(u) = e−u, Jε(.) is nothing else but the functional (31) modulo a
constant independent of the variable U . The uniform gap showed in Lemma 4.2 remains
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correct. Then, as in the proof of Proposition 4.2, there are two constants c1 > 0 and
c2 > 0 such that

(Ep − ǫF )− (E1 − ǫF ) ≥ c1ε
2p2π2 + c2 ∀p ≥ 2.

Since fFD is a decreasing function and log(1 + u) ∼ u when u→ 0+, then for all p ≥ 2

log
(

1 + e−
Ep−ǫF

ε2

)

≤ log
(

1 + e−
c2
ε2 e−c1p

2π2

e−
E1−ǫF

ε2

)

≤ ce−
c2
ε2 e−c1p

2π2

e−
E1−ǫF

ε2

≤ ce−
c2
ε2 e−c1p

2π2

log
(

1 + e−
E1−ǫF

ε2

)

,

where c > 0 is a general constant independent of ε. This implies that

∑

p≥2 log
(

1 + e−
Ep−ǫF

ε2

)

log
(

1 + e−
E1−ǫF

ε2

) ≤ c

(
∑

p≥2

e−c1p
2π2

)

e−
c2
ε2 .

Thus, a formal analysis shows that, asymptotically when ε → 0, (60) is close to a
Schrödinger–Poisson system with only the first energy level. However, the rigorous anal-
ysis of the limit, ε→ 0, of (61)–(62) is more technically complicated than the Boltzmann
case for which the functional Jε has an explicit expression given by (31).

5.2 Boundary conditions and higher dimension

The choice of Neumann boundary condition at z = 1 can be justified for modulation dop-
ing devices (see [2]) for which z = 1 is in the bulk of the semiconductor and the hypothesis
of a vanishing electric field is justified. This hypothesis also makes the analysis simple
because the boundary layer in the limit ε→ 0+ is located at z = 0. If V satisfies Dirichlet
boundary conditions, then another boundary layer takes place at z = 1. The analysis
can probably be extended to this case, but the first eigenvalue will have asymptotically a
multiplicity 2. The multidimensional problem is more complicated, where the location of
the electrons in the boundary layer may depend on the geometry of the boundary. Such
problems have been noticed for the Schrödinger equation with a magnetic field by [7, 12]
and are beyond the scope of our work.

A Proof of Lemma 3.1

This appendix is devoted to the proof of Lemma 3.1. We will use the concentration-
compactness principle. This principle is a general method introduced by Lions [17] to
solve various minimizing problems posed on unbounded domains. It is shown that all
minimizing sequences are relatively compact if and only if some strict subadditivity in-
equalities hold. The proof is based upon a lemma called the concentration-compactness
lemma. For more details on the principle, we refer the reader to [17]. Let us begin by
recalling the concentration-compactness lemma.

Lemma A.1 (concentration-compactness lemma). 1. Let (ρn)n≥1 be a sequence in L
1(R)

satisfying ρn ≥ 0 in R and
∫

R
ρndx = λ for a fixed λ > 0. Then there exists a sub-

sequence (ρnk
)k≥1 satisfying one of the three following possibilities:
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(i) (Compactness): there exists yk ∈ R such that

∀ε > 0, ∃R < +∞,

∫

yk+BR

ρnk
(x)dx ≥ λ− ε,

where BR = {x ∈ R; |x| ≤ R}.
(ii) (Vanishing):

lim
k→+∞

sup
y∈R

∫

y+BR

ρnk
(x)dx = 0.

(iii) (Dichotomy): There exists α ∈ ]0, λ[ such that for all ε > 0, there exist k0 ≥ 1
and ρ1k, ρ

2
k ∈ L1

+(R) such that for k ≥ k0

‖ρnk
− (ρ1k + ρ2k)‖L1 ≤ ε,

∣
∣
∣
∣

∫

R

ρ1kdx− α

∣
∣
∣
∣
≤ ε,

∣
∣
∣
∣

∫

R

ρ2kdx− (λ− α)

∣
∣
∣
∣
≤ ε,

where ρ1k has compact support and dist(supp(ρ1k), supp(ρ
2
k)) →k +∞.

2. If ρn = |un|2 with un bounded in H1(R), there exists a subsequence (ρnk
) such that

either compactness (i), vanishing (ii), or dichotomy (iii) occurs as follows: there
exists α ∈ ]0, λ[ such that for all ε > 0 there exist k0 ≥ 1, u1k, u

2
k bounded in H1(R)

satisfying for k ≥ k0







‖unk
− (u1k + u2k)‖L2 ≤ δ(ε) −−→

ε→0
0,

∣
∣
∣
∣

∫

R

|u1k|2dx− α

∣
∣
∣
∣
≤ ε,

∣
∣
∣
∣

∫

R

|u2k|2dx− (λ− α)

∣
∣
∣
∣
≤ ε,

dist
(
supp(u1k), supp(u

2
k)
)
−−−−→
k→+∞

+∞,

lim inf
k

∫

R

{|∇unk
|2 − |∇u1k|2 − |∇u2k|2}dx ≥ 0.

First, we need to give some notation. For V ∈ Ḣ1
0 (R

+) and ε ∈ R
+, we define

Iε = inf

{

JV (ϕ), ϕ ∈ H1
0 (R

+),

∫ +∞

0

ϕ2 = ε

}

, (63)

where JV (ϕ) =
∫ +∞
0

|ϕ′|2 +
∫ +∞
0

V ϕ2, and

I∞ε = inf

{

J∞(ϕ), ϕ ∈ H1
0 (R

+),

∫ +∞

0

ϕ2 = ε

}

, (64)

where J∞(ϕ) =
∫ +∞
0

|ϕ′|2 + V ∞ ∫ +∞
0

ϕ2 and V ∞ = lim inf+∞ V .

Lemma A.2. Let V ∈ Ḣ1
0 (R

+) such that E∞
1 [V ] < lim inf+∞ V . Then the following strict

subadditivity inequality holds:

Iε < Iα + I∞ε−α ∀ 0 < α < ε. (65)
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Proof. Take ϕ ∈ H1
0 (R

+) such that
∫ +∞
0

ϕ2 = ε and let ψ =
√
α√
ε
ϕ. Then ψ ∈ H1

0 (R
+),

∫ +∞
0

ψ2 = α, and JV (ψ) =
α
ε
JV (ϕ). This implies that εIα ≤ αIε for any arbitrary α > 0

and ε > 0. We also deduce that εIα = αIε (and similarly εI∞α = αI∞ε ) for any ε, α > 0.
In particular, if α = 1, εI1 = Iε (or εI∞1 = I∞ε ) for any ε > 0. Moreover, by definition
we have I1 = E∞

1 [V ] < V ∞. Then, for all ϕ ∈ H1
0 (R

+) such that
∫ +∞
0

ϕ2 = 1, we have

I1 <
∫ +∞
0

|ϕ′|2 + V ∞. This implies that I1 < I∞1 , and by multiplying by (ε− α), which is
positive if 0 < α < ε, one obtains εI1 − αI1 < (ε− α)I∞1 and inequality (65) holds.

Proof of Lemma 3.1. Applying the concentration-compactness lemma for (ρn)n: ρn(x) =
|ψn(x)|2 on R

+ and zero elsewhere, there exists a subsequence (ρnk
)k satisfying one of the

three cases given by Lemma A.1. If vanishing (ii) occurs, i.e., if

lim
k→+∞

sup
y∈R

∫

y+BR

ρnk
(x)dx = 0 ∀R ≥ 0,

which implies that

lim
k→+∞

sup
y∈R+

∫ y+R

y

|ψnk
(x)|2dx = 0 ∀R ≥ 0,

then, for all ε > 0 small enough, one can find a sequence (Rk)k of increasing positive real

such that
∫ Rk

0
|ψnk

(x)|2dx ≤ ε for all k. We have

∫ +∞

0

|ψ′
nk
|2dx+

∫ +∞

0

V ψ2
nk
dx =

∫ +∞

0

|ψ′
nk
|2dx+

∫ Rk

0

V ψ2
nk
dx+

∫ +∞

Rk

V ψ2
nk
dx

≥
∫ +∞

0

|ψ′
nk
|2dx− ‖V ‖∞.ε+ (V ∞ − ε)

∫ +∞

Rk

ψ2
nk
dx.

This implies that there exists δ(ε), tending to zero when ε → 0, such that

JV (ψnk
) ≥ J∞(ψnk

)− δ(ε) ≥ I∞1 − δ(ε).

Now let k go to +∞ and ε to zero. Then we obtain

I1 ≥ I∞1 ,

which contradicts the strict subadditivity inequality (65).
Now we assume that (ρnk

)k verifies the dichotomy case; i.e., there exists α ∈ ]0, 1[ such
that for all ε > 0 there exist k0 ≥ 1, ψ1

k, ψ
2
k bounded in H1(R+) satisfying for k ≥ k0







‖ψnk
− (ψ1

k + ψ2
k)‖L2 ≤ δ(ε) −−→

ε→0
0,

∣
∣
∣
∣

∫ +∞

0

|ψ1
k(x)|2dx− α

∣
∣
∣
∣
≤ ε,

∣
∣
∣
∣

∫ +∞

0

|ψ2
k(x)|2dx− (1− α)

∣
∣
∣
∣
≤ ε,

dist
(
supp(ψ1

k), supp(ψ
2
k)
)
−−−−→
k→+∞

+∞,

lim inf
k

∫

R+

{|∇ψnk
|2 − |∇ψ1

k|2 − |∇ψ2
k|2}dx

︸ ︷︷ ︸

γk

≥ 0.
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One can write (see [17])

ψnk
= ψ1

k + ψ2
k + ϕk, where ψ1

kψ
2
k = ψ1

kϕk = ψ2
kϕk = 0 a.e.,

and without loss of generality, we suppose that supp(ψ2
k) ⊂ [Rk,+∞[, where Rk tends to

+∞ with k. This implies that

∫ +∞

0

V ψ2
nk

=

∫ +∞

0

V |ψ1
k|2 +

∫ +∞

0

V |ψ2
k|2 +

∫ +∞

0

V |ϕk|2

≥
∫ +∞

0

V |ψ1
k|2 + (V ∞ − ε)

∫ +∞

0

|ψ2
k|2 − ‖V ‖∞.δ(ε)

and
∫ +∞

0

|ψ′
nk
|2 +

∫ +∞

0

V ψ2
nk

≥
∫ +∞

0

|ψ′
nk
|2 +

∫ +∞

0

V |ψ1
k|2 + V ∞

∫ +∞

0

|ψ2
k|2 − δ(ε).

Hence,
JV (ψnk

) ≥ γk + JV (ψ
1
k) + J∞(ψ2

k)− δ(ε). (66)

Besides, let αk =
∫ +∞
0

|ψ1
k(x)|2dx, βk =

∫ +∞
0

|ψ2
k(x)|2dx. For all fixed ε > 0, the sequences

(αk)k and (βk)k are bounded in R
+. There are subsequences, still denoted by (αk)k and

(βk)k, which converge in R
+ to αε and βε, respectively, where αε and βε belong to R

+

such that
|αε − α| ≤ ε and |βε − (1− α)| ≤ ε. (67)

Inequality (66) yields
JV (ψnk

) ≥ γk + Iαk
+ I∞βk − δ(ε).

Taking the lim infk of the last inequality and letting ε tend to zero, we obtain in view of
(67) and the fact that lim infk γk ≥ 0

I1 ≥ Iα + I∞1−α,

which contradicts the strict subadditivity inequality (65).
Consequently, the sequence (ρnk

)k verifies the compactness case of the concentration-
compactness lemma which yields straightforwardly that the minimizing sequence (ψn)n is
relatively compact in L2(R+).
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