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NUMERICAL VARIATIONAL METHODS APPLIED TO CYLINDER
BUCKLING

JIŘÍ HORÁK∗, GABRIEL J. LORD† , AND MARK A. PELETIER‡

Abstract. We review and compare different computational variational methods applied to a system of fourth
order equations that arises as a model of cylinder buckling. We describe both the discretization and implementation,
in particular how to deal with a 1 dimensional null space. We show that we can construct many different solutions
from a complex energy surface. We examine numerically convergence in the spatial discretization and in the domain
size. Finally we give a physical interpretation of some of the solutions found.

1. Introduction. We describe complementary approaches to finding solutions of systems of
fourth order elliptic PDEs. The techniques are applied to a problem that arises in the classic
treatment of an isotropic cylindrical shell under axial compression but are also applicable to a
wide range of problems such as waves on a suspension bridge [4, 6], the Fuč́ık spectrum of the
Laplacian [7], or the formation of microstructure [12, 3].

The cylindrical shell offers a computationally challenging and physically relevant problem with
a complex energy surface. We take as our model for the shell the Von Kármán-Donnell equations
which can be rescaled [5] to the form

∆2w + λwxx − φxx − 2 [w, φ] = 0, (1.1)

∆2φ+ wxx + [w,w] = 0, (1.2)

where the bracket is defined as

[u, v] =
1

2
uxxvyy +

1

2
uyyvxx − uxyvxy. (1.3)

The function w is a scaled inward radial displacement measured from the unbuckled (fundamental)
state, φ is the Airy stress function, and λ ∈ (0, 2) is a load parameter. The unknowns w and φ
are defined on a two-dimensional spatial domain Ω = (−a, a) × (−b, b), where x ∈ (−a, a) is
the axial and y ∈ (−b, b) is the tangential coordinate. Since the y-domain (−b, b) represents the
circumference of the cylinder, the following boundary conditions are prescribed:

w is periodic in y, and wx = (∆w)x = 0 at x = ±a, (1.4a)

φ is periodic in y, and φx = (∆φ)x = 0 at x = ±a, (1.4b)

as shown in Fig. 1.1 (i), (ii).

1.1. Functional setting. We search for weak solutions w, φ of (1.1–1.4) in the space

X =

{

ψ ∈ H2(Ω) : ψx(±a, ·) = 0, ψ is periodic in y, and

∫

Ω

ψ = 0

}

with norm

‖w‖2X =

∫

Ω

(

∆w2 +∆φ21
)

,

where φ1 ∈ H2(Ω) is the unique solution of

∆2φ1 = −wxx, φ1 satisfies (1.4b), and

∫

Ω

φ1 = 0. (1.5)
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periodic boundary condition for w, φ

wν = (∆w)ν = φν = (∆φ)ν = 0
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Fig. 1.1. (i) The geometry of the cylinder, (ii) the computational domain and the boundary conditions, (iii)
one quarter of the domain and the corresponding boundary conditions.

This norm is equivalent to the H2-norm on X , and with the appropriate inner product 〈·, ·〉X the
space X is a Hilbert space. Alternatively, if the load parameter λ ∈ (0, 2) is fixed, another norm

‖w‖2X,λ =

∫

Ω

(

∆w2 +∆φ21 − λw2
x

)

can be used. Because of the estimate
∫

Ω

w2
x = −

∫

Ω

wwxx =

∫

Ω

w∆2φ1 =

∫

Ω

∆w∆φ1 ≤ 1

2

∫

Ω

∆w2 +
1

2

∫

Ω

∆φ21 =
1

2
‖w‖2X ,

it is equivalent to ‖·‖X and hence also to the H2-norm on X . The corresponding inner product
will be denoted 〈·, ·〉X,λ.

Equations (1.1–1.2) are related to the stored energy E, the average axial shortening S, and
the total potential given by

E(w) :=
1

2

∫

Ω

(

∆w2 +∆φ2
)

, S(w) :=
1

2

∫

Ω

w2
x, Fλ = E − λS. (1.6)

Note that the function φ in (1.6) is determined from w by solving (1.2) with boundary condi-
tions (1.4b). All the functionals E, S, and Fλ belong to C1(X), i.e., are continuously Fréchet
differentiable.

The fact that (1.1) is a reformulation of the stationarity condition F ′
λ = E′ − λS′ = 0 will be

important in Sec. 2, and we therefore briefly sketch the argument. It is easy to see that

S′(w) · h = −
∫

Ω

wxxh.

For E′(w) · h, let w, φ ∈ X solve (1.2) and h, ψ ∈ X solve ∆2ψ = −hxx − [h, h] − 2[w, h]. Then,
assuming sufficient regularity on w,

E(w + h)− E(w) =

∫

Ω

∆w∆h+
1

2

∫

Ω

(∆h)2 +

∫

Ω

∆φ∆ψ +
1

2

∫

Ω

(∆ψ)2

=

∫

Ω

(

h∆2w − hφxx − 2[w, h]φ
)

+
1

2

∫

Ω

(∆h)2 +
1

2

∫

Ω

(∆ψ)2 −
∫

Ω

[h, h]φ ,
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where we used integration by parts several times. The last three integrals are O(‖h‖2X) for ‖h‖X →
0 and it can be shown by integration by parts that

∫

Ω

[w, h]φ =

∫

Ω

h [w, φ] . (1.7)

Therefore

F ′
λ(w) · h = E′(w) · h− λS′(w) · h =

∫

Ω

h
(

∆2w + λwxx − φxx − 2 [w, φ]
)

.

1.2. Review of some variational numerical methods. We now describe the variational
methods used to find numerical approximations of critical points of the total potential Fλ. In our
numerical experiments these methods are accompanied by Newton’s method and continuation.
The advantage of this approach is that it combines the knowledge of global features of the energy
landscape with local ones of a neighborhood of a critical point. The details related to spatial
discretization will be discussed in Sec. 2, the Newton-based methods in Sec. 3.

1.2.1. Steepest descent method (SDM). Let the load parameter λ ∈ (0, 2) be fixed;
we work in a discretized version of (X, 〈·, ·〉X,λ). We try to minimize the total potential Fλ by
following its gradient flow. We solve the initial value problem

d

dt
w(t) = −∇λFλ(w(t)) , w(0) = w0 ,

with a suitable starting point w0 on some interval (0, T ]. This problem is then discretized in t.
In [5] it was shown that w = 0 is a local minimizer of Fλ. Indeed, if ‖w0‖X,λ is small, the

numerical solution w(t) converges to zero as t tends to infinity. If, on the other hand, ‖w0‖X,λ

is large, the numerical solution w(t) stays bounded away from zero. In most of our experiments,
the numerical algorithm did not converge for t → ∞ in the large norm case. The only exception
for a relatively small value of λ will be mentioned later in Sec. 5.3. Nevertheless, for a sufficiently
large computational domain Ω and a sufficiently large t > 0 we obtain Fλ(w(t)) < 0. Such a state
w(t) is needed for the mountain pass algorithm as explained below. Existence of this state was
also proved in [5].

1.2.2. Mountain-pass algorithm (MPA). The algorithm was first proposed in [2] for a
second order elliptic problem in 1D and extended in [6] to a fourth-order problem in 2D. We give
a brief description of the algorithm here.

Let the load λ ∈ (0, 2) be fixed; we work again in a discretized version of (X, 〈·, ·〉X,λ). We
denote w1 = 0 the local minimum of Fλ and take a point w2 such that Fλ(w2) < 0 (in practice
this point is found using the SDM). We take a discretized path {zm}pm=0 connecting z0 = w1

with zp = w2. After finding the point zm at which Fλ is maximal along the path, this point is
moved a small distance in the direction of the steepest descent −∇λFλ(zm). Thus the path has
been deformed and the maximum of Fλ lowered. This deforming of the path is repeated until the
maximum along the path cannot be lowered any more: a critical point wMP has been reached.
Figure 1.2 illustrates the main idea of the method.

The mountain-pass algorithm is local in its nature. The numerical solution wMP it finds has
the mountain-pass property in a certain neighborhood only. The choice of the path endpoint w2

may influence to which critical point the algorithm converges. Different choices of w2 are in turn
achieved by choosing different initial points w0 in the SDM.

1.2.3. Constrained steepest descent method (CSDM). We fix the amount of shorten-
ing S of the cylinder. This is often considered as what actually occurs in experiments. We work
now in a discretized version of (X, 〈·, ·〉X). Let C > 0 be a fixed number and define a set of w
with constant shortening

M = {w ∈ X : S(w) = C} . (1.8)

3



w1

w2

zm

znewm −∇λFλ(zm)

wMP

X

Fig. 1.2. Deforming the path in the main loop of the mountain pass algorithm: point zm is moved a small
distance in the direction −∇λFλ(zm) and becomes znewm . This step is repeated until the mountain pass point w

MP

is reached.

Critical points of E under this constraint are critical points of Fλ, where λ is a Lagrange multiplier.
The simplest such points are local minima of the stored energy E on M . We need to follow the
gradient flow of E on M , hence we solve the initial value problem

d

dt
w(t) = −Pw(t)∇E(w(t)) , w(0) = w0 ∈ M ,

for t > 0. Pw denotes the orthogonal projection in X on the tangent space of M at w ∈ M :

Pwu = u− 〈∇S(w), u〉X
‖∇S(w)‖2X

∇S(w) .

The details of the algorithm can be found in [4]. The initial value problem is solved by repeating
the following two steps: given a point w ∈ M find w̄ = w −∆tPw∇E(w), where ∆t > 0 is small,
and define wnew = cw̄, where the scaling coefficient c is chosen so that wnew ∈ M . The algorithm
is stopped when ‖Pw∇E(w)‖X is smaller than a prescribed tolerance. The corresponding load is
given by

λ =
〈∇S(w),∇E(w)〉X

‖∇S(w)‖2X
.

1.2.4. Constrained mountain-pass algorithm (CMPA). Let C > 0 and M be the set
of w with constant shortening given in (1.8). We would like to find mountain-pass points of E
on M . The method has been described in [4] in detail. We need two local minima w1, w2 of E
on M which can be found using the CSDM. The algorithm is then similar to the MPA. We take
a discretized path {zm}pm=0 ⊂ M connecting z0 = w1 with zp = w2. After finding the point
zm at which E is maximal along the path, this point is moved a small distance in the tangent
space to M at zm in the direction of the steepest descent −Pzm∇E(zm) and than scaled (as in
the CSDM) to come back to M . Thus the path has been deformed on M and the maximum of
E lowered. This deforming of the path is repeated until the maximum along the path cannot be
lowered any more: a mountain-pass point of E on M has been reached. The load λ is computed
as in the CSDM.

The choice of the end points w1 and w2 will in general influence to which critical point the
algorithm converges.
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1.3. Computational Domains. We consider the problem on the domain Ω (Figure 1.1 (ii))
both without further restraints and under a symmetry assumption, which reduces the computa-
tional complexity. In the latter case we assume

w(x, y) = w(−x, y) = w(x,−y)
φ(x, y) = φ(−x, y) = φ(x,−y) for (x, y) ∈ Ω . (1.9)

By looking for solutions w, φ ∈ X that satisfy (1.9) the domain is effectively reduced to one
quarter: Ω 1

4

= (−a, 0)× (−b, 0) as shown in Figure 1.1 (iii). One needs to solve (1.1–1.2) only on
Ω 1

4

with the boundary conditions

wν = (∆w)ν = φν = (∆φ)ν = 0 on ∂Ω 1

4

, (1.10)

where ν denotes the outward normal direction to the boundary. Hence we search for weak solutions
of (1.1–1.2), (1.10) in the space

X 1

4

=







ψ ∈ H2(Ω 1

4

) : ψν = 0 on ∂Ω 1

4

, and

∫

Ω 1

4

ψ = 0







.

We can then use (1.9) to extend these functions to the whole Ω.
We have performed numerical experiments both with and without the symmetry assumption.

For the sake of simplicity we will give a detailed description of the numerical methods for the
second case only where the boundary conditions are the same on all sides of Ω 1

4

. The first case with
periodic conditions on two sides of Ω is very similar and will be briefly mentioned in Remark 2.1.

1.4. Solving the biharmonic equation. In order to obtain φ for a given w, one has to
solve (1.2); to compute the norm of w, one has to solve (1.5). Both problems are of the form

∆2ψ = f in Ω 1

4

, ψν = (∆ψ)ν = 0 on ∂Ω 1

4

,

∫

Ω 1

4

ψ = 0, (1.11)

where f ∈ L1(Ω 1

4

) is given. If
∫

Ω 1

4

f = 0, then (1.11) has a unique weak solution ψ in X 1

4

. It is a

straightforward calculation to verify that the right-hand sides of equations in (1.2) and (1.5) have
zero average.

In the discretization described below the problem (1.11) is treated as a system:

−∆u = f
−∆v = u

in Ω 1

4

, uν = vν = 0 on ∂Ω 1

4

,

∫

Ω 1

4

u =

∫

Ω 1

4

v = 0. (1.12)

The system has a unique weak solution (u, v) ∈ (H1(Ω 1

4

))2. Since the domain Ω 1

4

has no reentrant

corners, Theorem 1.4.5 of [9] guarantees that v ∈ H2(Ω 1

4

) and therefore that the two formulations
are equivalent.

2. Finite difference discretization. We discretize the domain Ω 1

4

by a uniform mesh

(xm, yn) ∈ Ω 1

4

with M points in the x-direction and N points in the y-direction:

xm = −a+ (m− 1
2 )∆x, m ∈ {1 . . . ,M},

yn = −b+ (n− 1
2 )∆y, n ∈ {1 . . . , N},

where ∆x = a/M , ∆y = b/N . We represent the values of some function w on Ω 1

4

at these points

by a vector w = (wi)
MN
i=1 , where wi = w(xm, yn) and i = (n− 1)M +m. In our notation we will

not distinguish between w as a function and w as a corresponding vector. The vector w can also
be interpreted as a block vector with N blocks, each containing M values of a single row of the
mesh. We introduce the following conventions for notation:

5



• For two matrices AM = (aij)
M
i,j=1, B

N = (bkℓ)
N
k,ℓ=1 we define AM ⊗BN := (bkℓA

M )Nk,ℓ=1,
which is an N ×N block matrix, each block is an M ×M matrix.

• For two vectors u = (ui)
MN
i=1 , v = (vi)

MN
i=1 we define u ⊙ v = (uivi)

MN
i=1 , i.e., a product of

the components.
To discretize second derivatives we use the standard central finite differences (with Neumann

boundary conditions [10]). Let IdM denote theM ×M identity matrix and define anotherM ×M
matrix

AM
2 =















1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1















.

The second derivatives−∂xx, −∂yy and the biharmonic operator ∆2 with the appropriate boundary
conditions are approximated by

Axx =
1

∆x2
AM

2 ⊗ IdN , Ayy =
1

∆y2
IdM ⊗AN

2 , A∆2 = (Axx +Ayy)
2,

respectively.

2.1. Discretization of E, S, and the bracket [·, ·]. Supposing that we can solve the
discretized version of (1.2)

A∆2φ−Axxw + [w,w]2 = 0 , (2.1)

we can also evaluate the energy E and the shortening S:

E(w) = 2
(

wT
A∆2 w + φTA∆2 φ

)

∆x∆y, S(w) = 2
(

wT
Axxw

)

∆x∆y. (2.2)

In order to solve (2.1) we need to be able to solve the biharmonic equation and we need to
choose a discretization of the bracket [·, ·]. This bracket appears in the equations in two different
roles: in equation (1.2) the bracket is part of the mapping w 7→ φ, and therefore of the definition
of the energy E; in equation (1.1), which represents the stationarity condition E′ − λS′ = 0, the
bracket appears as a result of differentiating E with respect to w and applying partial integration.
As a result, we need to use two different forms of discretization for the two cases.

In both cases the bracket requires a discretization of the mixed derivative ∂xy. One choice is
to use one-sided finite differences. Define M ×M matrices

AM
1L =











0
−1 1

. . .
. . .

−1 1











, AM
1R =











−1 1
. . .

. . .

−1 1
0











. (2.3)

We choose either left or right-sided differences represented by these matrices, respectively, let AM
1

denote our choice (cf. Sec. 5.1). The derivatives ∂x, ∂y, and −∂xy are approximated by

Ax = 1
∆x

AM
1 ⊗ IdN , Ay = 1

∆y
IdM ⊗AN

1 , Axy = −AxAy . (2.4)

For the definition of φ in terms of w (equation (1.2)) we choose

[w,w]2 = (Axxw)⊙ (Ayyw)− (Axyw)⊙ (Axyw) , (2.5)

and the corresponding choice for equation (1.1) is

[w, φ]1 = 1
2Ayy {(Axxw)⊙ φ} + 1

2Axx

{

(Ayyw)⊙ φ
}

−A
T
xy

{

(Axyw) ⊙ φ
}

. (2.6)

These two definitions are related in the sense given in (1.7): [w, h]T2 φ = hT [w, φ]1 for all h.
With these definitions the partial derivatives of discretized E and S with respect to the

components of w are given by

E′(w) = A∆2w +Axxφ− 2[w, φ]1 , S′(w) = Axxw . (2.7)

6



2.2. Solving the discretized biharmonic equation. Matrix A∆2 is symmetric and has
a one-dimensional nullspace: A∆21 = 0, where 1 and 0 are vectors with MN -components which
are all one and all zero, respectively. The same is true for Axx and Ayy. For a given vector f we
would like to solve

A∆2ψ = f , 1Tψ = 0 . (2.8)

A unique solution exists if and only if f has zero average, i.e., 1T f = 0. So we must verify that
the discretized versions of the right-hand sides in (1.2), (1.5) satisfy this condition. Let w ∈ R

MN ,
then

1T
Axxw = 0 ,

1T [w,w]2 = (Axxw)
T (Ayyw)− (Axyw)

T (Axyw) = wT
AxxAyyw − wT

A
T
xyAxyw = 0 , (2.9)

where the last equality holds because A
T
xAx = Axx and A

T
y Ay = Ayy, and because the x- and

y-matrices commute. We have, in fact, shown that the integration by parts formula from the
continuous case holds for our choice of spatial discretization. This is not true for an arbitrary
discretization but is key for a successful scheme.

The inverse of matrix A∆2 on the subspace of vectors with zero average, denoted with a slight
abuse of notation by A

−1
∆2 , can be found, for example, using the fast cosine transform described

below in Sec. 2.4.

2.3. Computing the gradient. The variational methods of this paper are based on a steep-
est descent flow and modifications of this algorithm. The direction of the steepest descent of E at
a point w ∈ X is opposite to the gradient of E at w. The gradient is the Riesz representative of
the Fréchet derivative and hence we need to find a vector u ∈ X , such that E′(w) · v = 〈u, v〉 for
all v ∈ X . The inner product is either 〈·, ·〉X or 〈·, ·〉X,λ and hence the gradient depends on the
choice of the inner product. We use the notation u = ∇E(w) for the gradient in (X, 〈·, ·〉X) and
u = ∇λE(w) for the gradient in (X, 〈·, ·〉X,λ). To find the discretized version of the gradient, we
first need to discretize the inner product.

Let u, v ∈ R
MN , 1Tu = 1T v = 0. The inner product is evaluated in the following way:

〈u, v〉X,λ = 4
(

uTA∆2v + φu1
T
A∆2φv1 − λuTAxxv

)

∆x∆y

= 4
(

uT
(

A∆2 +AxxA
−1
∆2Axx − λAxx

)

v
)

∆x∆y ,

where φu1 , φ
v
1 are solutions of the discretized version of (1.5) with w replaced by u and v, respec-

tively, and we assume that we work on Ω 1

4

. For w ∈ R
MN , 1Tw = 0 the Riesz representative of

E′(w) given in (2.7) is computed as

∇λE(w) =
(

A∆2 +AxxA
−1
∆2Axx − λAxx

)−1
E′(w) . (2.10)

As in the case of A−1
∆2 we abused notation here since the inverse only makes sense on a subspace of

vectors with zero average. It can be easily verified that 1TE′(w) = 0. The numerical evaluation
of ∇λS and of the 〈·, ·〉X -gradients is similar.

2.4. Fourier coordinates. In Fourier coordinates most of the finite difference operators
become diagonal matrices. This increases the efficiency of the numerical algorithm and makes it
possible to easily find the inverse of matrices like A∆2 . See for example [1].

On a uniform grid, it is a standard procedure to apply some form of the fast Fourier transform
to diagonalize finite difference matrices like AM

2 (see, e.g., [11]). Due to the Neumann boundary
conditions (1.10) we need to employ the fast cosine transform. We define M ×M matrices

CM
f = 1√

2M

(

2 cos (i−1)(2j−1)π
2M

)M

i,j=1
, CM

b = 1√
2M







1
...
1

∣

∣

∣

∣

∣

∣

∣

(

2 cos (2i−1)(j−1)π
2M

)M,M

i=1,j=2






,
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which have the following properties:

CM
f CM

b = IdM , CM
f AM

2 C
M
b = ΛM ,

where ΛM = diag(2 − 2 cos (m−1)π
M

)Mm=1. Hence they are inverses of each other and diagonalize
AM

2 .
We further define matrices

C f = CM
f ⊗ CN

f , Cb = CM
b ⊗ CN

b ,

which diagonalize Axx, Ayy, and A∆2 :

C fAxxCb = Λxx, C fAyyCb = Λyy, CfA∆2Cb = Λ∆2 , (2.11)

where the diagonal matrices are given by

Λxx = 1
∆x2Λ

M ⊗ IdN , Λyy = 1
∆y2 Id

M ⊗ ΛN , Λ∆2 = (Λxx +Λyy)
2. (2.12)

For a vector w ∈ R
MN we introduce its Fourier coordinates ŵ by

ŵ = Cfw w = Cbŵ .

We note that 1Tw = 0 if and only if the first component of ŵ is zero.
Most of the computations involved in the variational methods described in Sec. 1.2 can be done

in the Fourier coordinates. The only time one needs to go back to the original coordinates is when
evaluating the brackets (2.5) and (2.6), because they are nonlinear and involve the discretized
mixed derivative operator Axy.

2.5. Alternative discretization of −∂xy. The fast Fourier transform provides us with
another discretization of the mixed derivative which is not biased to the left or right. In an
analogy to (2.12) and (2.11) we define

Λxy = 1
∆x∆y

√
ΛM ⊗

√
ΛN , Ãxy = SΛxyCf ,

where S is the fast sine transform matrix

S = SM ⊗ SN , SM = 1√
2M







0
...
0

∣

∣

∣

∣

∣

∣

∣

(

2 sin (2i−1)(j−1)π
2M

)M,M

i=1,j=2






.

Property (2.9) also holds with Axy replaced by Ãxy.

Remark 2.1. When discretizing the problem on the full domain Ω with boundary conditions (1.4),
we need to use different matrices in the x and y-directions. In the x-direction we use the matrices
described above, in the y-direction to discretize the second derivatives, for example, we use

A2 =















2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2















.

In this direction the fast Fourier transform is used instead of the fast cosine/sine transform.

3. Newton’s method. We use Newton’s method in two different ways. The first is to
improve the numerical approximations obtained by the variational numerical methods. Since
these are sometimes slow to converge, it is often faster to stop such an algorithm early and use its
result as an initial guess for Newton’s method. The second use for Newton’s method is as part of
a numerical continuation algorithm (see Sec. 3.3).
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3.1. Newton’s method for given load parameter λ. This method can be used to improve
solutions obtained by the MPA. Let λ ∈ (0, 2) be given. We are solving

G (w, φ) =





G1

G2



 =





A∆2w − λAxxw +Axxφ− 2[w, φ]1

−A∆2φ+Axxw − [w,w]2



 =





0

0



 (3.1)

for w and φ with zero average using Newton’s method. The matrix we need to invert is

G
′(w, φ) =





∂G1

∂w
∂G1

∂φ

∂G2

∂w
∂G2

∂φ



 =





A∆2 − λAxx − 2B1 Axx − 2B2

Axx − 2BT
2 −A∆2



 , (3.2)

where

B1 =
∂

∂w
[w, φ]1 =

1

2
Axx(diagφ)Ayy +

1

2
Ayy(diagφ)Axx −A

T
xy(diagφ)Axy ,

B2 =
∂

∂φ
[w, φ]1 =

1

2

(

∂

∂w
[w,w]2

)T

=
1

2
Axx(diagAyyw) +

1

2
Ayy(diagAxxw) −A

T
xy(diagAxyw) .

From the properties of Axx,Ayy,Axy,A∆2 it follows that matrix G ′(w, φ) is symmetric and sin-

gular, its nullspace is spanned by

[

1
0

]

,

[

0
1

]

.

To describe how to find the inverse of G ′(w, φ) on a subspace orthogonal to its nullspace, we
introduce a new notation for the four blocks of G ′(w, φ) from (3.2):

G
′(w, φ) =

[

G11 G12

G
T
12 G22

]

For given vectors u, η with zero average we need to find vectors v, ζ with zero average such that
[

G11 G12

G
T
12 G22

] [

v
ζ

]

=

[

u
η

]

. (3.3)

Let the tilde denote the block of the first MN − 1 rows and columns of a matrix and MN − 1

components of a vector. The matrix

[

G̃11 G̃12

G̃
T

12 G̃22

]

is symmetric, nonsingular, and sparse. It can

be inverted by a linear sparse solver. System (3.3) is then solved in the following steps:

[

r
ρ

]

:=

[

G̃11 G̃12

G̃
T

12 G̃22

]−1
[

ũ
η̃

]

,

s := − 1
MN

1̃
T
r , v =

[

r + s1̃
s

]

,

σ := − 1
MN

1̃
T
ρ , η =

[

ρ+ σ1̃
σ

]

.

3.2. Newton’s method for given S. This method can be used to improve solutions ob-
tained by the CSDM and the CMPA. Let C > 0 be given. We are looking for numerical solutions
of (1.1–1.2) in the set M defined by (1.8). Hence we are solving













A∆2w − λAxxw +Axxφ− 2[w, φ]1

−A∆2φ+Axxw − [w,w]2

− 1
2w

TAxxw + C/(4∆x∆y)













=













0

0

0













(3.4)

for w and φ with zero average and λ using Newton’s method. The approach is very similar to that
described in the previous section, the resulting matrix is symmetric, has just one more row and
column than the matrix in (3.2).
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3.3. Continuation. To follow branches of solutions (λ,w) of (3.1) we adopt a continuation
method described in [8]. We introduce a parameter s ∈ R by adding a constraint—pseudo-
arclength normalization (in the (λ, ‖w‖X)-plane). For a given value of s we are solving

Ḡ (w, φ, λ) =













G1

G2

G3













=













A∆2w − λAxxw +Axxφ− 2[w, φ]1

−A∆2φ+Axxw − [w,w]2

θ〈ẇ0, w − w0〉X + (1 − θ)λ̇0(λ− λ0)− (s− s0)













=













0

0

0













(3.5)

for w, φ with zero average, and the load λ, where the value of θ ∈ (0, 1) is fixed (e.g., θ =
1
2 ). We assume that we are given a value s0, an initial point (λ0, w0) on the branch, and an

approximate direction (λ̇0, ẇ0) of the branch at this point (an approximation of the derivative
d
ds
(λ(s), w(s))|s=s0 ).

System (3.5) is solved for a discrete set of values of s in some interval (s0, s1) by Newton’s
method. Then, a new initial point on the branch is defined by setting w0 = w(s1), λ0 = λ(s1),
s0 = s1, a new direction (λ̇0, ẇ0) at this point is computed and the process is repeated. The
matrix we need to invert in Newton’s method is

Ḡ
′(w, φ, λ) =

[

G ′(w, φ, λ) g
hT d

]

, g =

[

−Axxw
0

]

, h =

[

4θA〈,〉ẇ0 ∆x∆y

0

]

, d = (1− θ)λ̇0,

(3.6)
where A〈,〉 = A∆2 +AxxA

−1
∆2Axx.

Solving a linear system with this matrix amounts to solving system (3.3) for two right-hand
sides. For a given u ∈ R

2MN with [1T 1T ]u = 0 and a given η ∈ R we want to solve

[

G ′(w, φ, λ) g
hT d

] [

v
ζ

]

=

[

u
η

]

. (3.7)

for v with [1T 1T ]v = 0 and ζ. System (3.7) is solved in the following steps:

solve : G ′(w, φ, λ)v1 = g ,
G ′(w, φ, λ)v2 = u ,

ζ =
η − hT v2
d− hT v1

, v = v2 − ζv1 .

Remark 3.1. Note that in this implementation we simply follow a solution of the equation, there
is no guarantee that this remains a local minimum, a MP-solution or constrained MP-solution
(cf. Fig. 5.6).

Remark 3.2. Newton’s method and continuation have been implemented only using a one-sided
discretization of the mixed derivative ∂xy and only on the domain Ω 1

4

assuming symmetry (1.9).

The alternative discretization of ∂xy described in Sec. 2.5 uses the fast cosine/sine transform. The

resulting matrix Ãxy is not sparse and therefore we would obtain a dense block G12 in system (3.3)
which would prevent us from using a sparse solver.

On the full domain Ω we assume periodicity of w and φ in the y-direction. Hence for a
discretization with a small step ∆y the matrix we invert when solving (3.3) would become close to
singular. The shift in the y direction is prevented by assuming the symmetry w(x, y) = w(x,−y),
φ(x, y) = φ(x,−y).

4. Numerical solutions. We fix the size of the domain and the size of the space step for the
following numerical computations: a = b = 100, ∆x = ∆y = 0.5. We obtain solutions using the
variational techniques SDM, MPA, CSDM, and CMPA. Table 4.1 provides a summary of which
discretization was used in which algorithm.
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mixed derivative ∂xy computational domain

one-sided Fourier full 1/4

variational methods
√ √ √ √

Newton/continuation
√ √

Table 4.1

Summary of which spatial discretization was used in the different numerical methods.

4.1. A mountain-pass solution on the full domain Ω. The first numerical experiments
are done on the full domain Ω, without symmetry restrictions, and with the unbiased (Fourier)
discretization of ∂xy (Sec. 2.5). For a fixed load λ = 1.4 we computed a mountain-pass solution
using the MPA (Sec. 1.2.2). As end points were taken w1 = 0 and a second point w2 obtained
by the SDM (here the initial point for the SDM was chosen to have a single peak centered at
x = y = 0). The graph of the solution wMP is shown in Fig. 4.1 (left). The figure on the right
shows wMP rendered on a cylinder and we see it has the form of a single dimple. The value of
shortening for this solution is S(wMP) = 14.93529.

Alternatively, if we apply the CSDM with S = 14.93529 and use a function with a single peak
in the center of the domain as the initial condition w0 we also obtain the same solution wMP, this
time as a local minimizer of E under constrained S.

We remark that although the MPA and the CSDM have a local character we have not found any
numerical mountain-pass solution with the total potential Fλ smaller than Fλ(wMP) for λ = 1.4.
Similarly, using the CSDM we have not found any solution with energy E smaller than E(wMP)
under the constraint S = 14.93529. We briefly discuss the physical relevance of this solution
in Sec. 6.

Fig. 4.1. Mountain-pass solution for λ = 1.4 found using the MPA on the full domain Ω with ∂xy discretized
using the fast Fourier transform.

4.2. Solutions under symmetry restrictions. The solution wMP of Fig. 4.1 satisfies the
symmetry property (1.9). In the computations described below we enforced this symmetry and
worked on the quarter domain Ω 1

4

, thus reducing the complexity of the problem. In order to
improve the variational methods by combining them with Newton’s method we also discretized
the mixed derivative ∂xy using left-sided finite differences. The influence of this choice on the
numerical solution is described in Sec. 5.1.

4.2.1. Constrained steepest descent method. We first fixed S = 40 and used the CSDM
to obtain constrained local minimizers of E described in Table 4.2. They are ordered according
to the increasing value of stored energy E. Their graphs and renderings on a cylinder are shown
in Fig. 4.2. Solution 1.1 is similar to the single dimple solution wMP described above and according
to Table 4.2 it has, indeed, the smallest value of E.
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CSDM λ S E Fλ same shape as MPA
1.1 1.108121 40 56.85636 12.53151 2.1
1.2 1.299143 40 62.76150 10.79577 2.2
1.3 1.316146 40 63.21646 10.57063 2.3
1.4 1.311687 40 63.64083 11.17334 2.4
1.5 1.309586 40 63.70623 11.32278 2.5
1.6 1.328997 40 64.00875 10.84889 2.6
1.7 1.344898 40 64.52244 10.72651 2.7

Table 4.2

Numerical solutions obtained by the CSDM on Ω 1

4

with ∂xy discretized using left-sided finite differences.

Graphs are shown in Fig. 4.2.
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(1.1) (1.2) (1.3) (1.4)

(1.5) (1.6) (1.7)

Fig. 4.2. Numerical solutions found using the CSDM with axial end shortening S = 40. More details are in Table 4.2.
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4.2.2. Mountain-pass algorithm. We then used the MPA for fixed λ = 1.4 and various
choices of w2 to obtain the local mountain-pass points of Fλ described in Table 4.3. They are
ordered according to the increasing value of the total potential Fλ. The shape of their graph is
very similar to that of the CSDM solutions discussed above and depicted in Fig. 4.2 and we do
not show their graphs here. Solution 2.1 is again the single dimple solution and the table shows
that it has the smallest value of Fλ.

MPA λ S E Fλ same shape as CSDM
2.1 1.4 17.73822 29.42997 4.596460 1.1
2.2 1.4 29.85121 49.08882 7.297132 1.2
2.3 1.4 31.28849 51.39952 7.595635 1.3
2.4 1.4 31.41723 52.01893 8.034809 1.4
2.5 1.4 31.22992 51.84074 8.118852 1.5
2.6 1.4 32.77491 54.15818 8.273314 1.6
2.7 1.4 34.19888 56.56472 8.686284 1.7

Table 4.3

Numerical solutions obtained by the MPA on Ω 1

4

with ∂xy discretized using left-sided finite differences.

4.2.3. Constrained mountain-pass algorithm. We then fixed S = 40 and applied the
CMPA to obtain constrained local mountain passes of E described in Table 4.4. They are again
ordered according to the increasing value of stored energy E. Their graphs and renderings on a
cylinder are shown in Figs. 4.3 and 4.4. As endpoints w1, w2 of the path in the CMPA we used
the constrained local minimizers 1.1–1.7.

There are 21 possible pairs (w1, w2) to be used but only 19 solutions in Table 4.4. The
algorithm did not converge for the following three pairs: (1.1, 1.3), (1.5, 1.6), and (1.4, 1.6),
most likely due to the complicated nature of the energy landscape between these endpoints. On
the other hand, two choices of pairs denoted by ∗ and † in the Table yielded two solutions each.
When the path is deformed it sometimes comes close to another critical point of E which is not a
constrained mountain pass. In that case the algorithm slows down and one can apply Newton’s
method to such a point. It is a matter of luck whether Newton’s method converges. The CMPA
then runs further and might converge to another point, this time a constrained mountain-pass
point. And finally, two choices of (w1, w2) yielded the same solution 3.3.
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CMPA λ S E Fλ end points
3.1 1.310815 40 63.98996 11.55737 1.2, 1.4
3.2 1.332112 40 64.38609 11.10161 1.3, 1.6
3.3 1.447626 40 66.49032 8.585294 1.2, 1.3 or 1.3, 1.4
3.4 1.440841 40 66.72079 9.087129 1.1, 1.4
3.5 1.447594 40 66.97057 9.066810 1.1, 1.6
3.6 1.484790 40 68.20637 8.814758 1.3, 1.5
3.7 1.477769 40 68.23274 9.121955 1.1, 1.5∗

3.8 1.482261 40 68.41086 9.120428 1.1, 1.7
3.9 1.413917 40 68.56697 12.01028 1.1, 1.2
3.10 1.520975 40 68.83818 7.999162 1.2, 1.5
3.11 1.475705 40 69.00087 9.972652 1.1, 1.5∗

3.12 1.532000 40 69.27379 7.993781 1.4, 1.5†

3.13 1.527108 40 69.35834 8.274019 1.2, 1.6
3.14 1.551762 40 69.47838 7.407904 1.4, 1.5†

3.15 1.547955 40 69.68292 7.764712 1.6, 1.7
3.16 1.539785 40 69.78487 8.193480 1.5, 1.7
3.17 1.546480 40 69.85900 7.999795 1.3, 1.7
3.18 1.549780 40 70.16253 8.171339 1.2, 1.7
3.19 1.561117 40 70.74117 8.296474 1.4, 1.7

Table 4.4

Numerical solutions obtained by the CMPA/Newton on Ω 1

4

with ∂xy discretized using left-sided finite differ-

ences. Graphs are shown in Figs. 4.3, 4.4.
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(3.1) (3.2) (3.3) (3.4) (3.5)

(3.6) (3.7) (3.8) (3.9) (3.10)

Fig. 4.3. Numerical solutions found using the CMPA/Newton with S = 40. More details are in Table 4.4.
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(3.11) (3.12) (3.13) (3.14) (3.15)

(3.16) (3.17) (3.18) (3.19)

Fig. 4.4. Numerical solutions found using the CMPA/Newton with S = 40. More details are in Table 4.4.
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5. Remarks on the numerics.

5.1. Bias in the discretization of ∂xy. In this section we examine the influence of the
discretization of the mixed derivative ∂xy on the numerical solution. We recall that the mixed
derivative ∂xy can be discretized using left/right-sided finite differences (2.3), (2.4) or using the
fast Fourier transform (Section 2.5). For comparison we use the single-dimple solution on Ω =
(−100, 100)2 at load λ = 1.4 obtained by the MPA.

Let ∆x = ∆y = 0.5. Table 5.1 gives a list of numerical experiments together with the values of
shortening and energy. Figure 5.1 shows a profile of the numerical solutions in the circumferential
direction at x = 0.

domain discretization of ∂xy λ S E Fλ Figure 5.1
Ω or Ω 1

4

Fourier 1.4 14.93529 24.71825 3.808850

Ω left/right-sided 1.4 14.93617 24.70828 3.797636
Ω 1

4

left-sided 1.4 17.73822 29.42997 4.596460

Ω 1

4

right-sided 1.4 12.81205 21.16342 3.226549

Table 5.1

Single-dimple numerical solution obtained by the MPA with and without the symmetry assumption (1.9) and
with various kinds of discretization of ∂xy.

Fourier ∂xy

Ω, left-sided ∂xy

Ω 1

4

, left-sided ∂xy

Ω 1

4

, right-sided ∂xy

Fig. 5.1. Profile of the single-dimple numerical solution wMP at x = 0 obtained by the MPA with and without
the symmetry assumption (1.9) and with various kinds of discretization of ∂xy.

On the full domain Ω with no assumption on symmetry of solutions the discretization of ∂xy
using the left/right-sided finite differences (2.3) provides a numerical solution that is slightly asym-
metric (Fig. 5.1, thin solid line). The Fourier transform provides a symmetric solution (Fig. 5.1,
thick solid line). The same numerical solution can be obtained on Ω 1

4

under the symmetry as-

sumption (1.9) with ∂xy discretized using the fast cosine/sine transform.
On Ω 1

4

the symmetry of numerical solutions is guaranteed by assumption (1.9). The use of

left/right-sided discretization of ∂xy does, however, have an influence on the shape of the numerical
solution, as Fig. 5.1 shows (the dotted and the dashed line).

5.2. Convergence. We now turn to the influence of the size of the space step ∆x, ∆y on
the numerical solution. We run the MPA on Ω 1

4

under the symmetry assumption (1.9) with ∂xy
discretized using (a) the fast cosine/sine transform, (b) left-sided finite differences, (c) right-sided
finite differences. We consider ∆x = ∆y = 0.5, 0.4, 0.3, 0.2, 0.1, i.e., we take 200, 250, 333, 500, and
1000 points in both axis directions, respectively. Figure 5.2 illustrates convergence as ∆x,∆y → 0
of the numerical solutions obtained by various types of discretization of ∂xy.
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0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

∆ x=∆ y
0.1 0.2 0.3 0.4 0.5

12

13

14

15

16

17

18

∆ x=∆ y

‖wL − wCS‖
∞

‖wR − wCS‖
∞

S(wL)

S(wR)

S(wCS)

Fig. 5.2. Influence of the size of the space step ∆x, ∆y on the numerical solution wMP obtained by the MPA
for three different kinds of discretization of ∂xy. Let w

L
, w

R
denote the numerical solutions obtained using the

left and right-sided discretization of ∂xy, respectively, wCS
using the fast cosine/sine transform. Left: comparison

of the solutions in the maximum norm; right: the value of shortening S.

5.3. Dependence on the size of the domain. As observed in [5], the localized nature
of the solutions suggests that they should be independent of domain size, in the sense that for a
sequence of domains of increasing size the solutions converge (for instance uniformly on compact
subsets). Such a convergence would also imply convergence of the associated energy levels. Sim-
ilarly, we would expect that the aspect ratio of the domain is of little importance in the limit of
large domains.

We tested these hypotheses by computing the single-dimple solution on domains of different
sizes and aspect ratios. In all the computations the space step ∆x = ∆y = 0.5 is fixed. In order to
use the continuation method of Sec. 3.3, we discretized ∂xy using the left-sided finite differences.
We also assumed symmetry of solutions given by (1.9) and worked on Ω 1

4

. We recall the notation

of computational domains, Ω = (−a, a)× (−b, b), Ω 1

4

= (−a, 0)× (−b, 0).
Figure 5.3 shows the results for load λ = 1.4. First we notice that the central dimple has

almost the same shape in all the shown cases. But there seems to be a difference in the slope of
the “flat” part leading to this dimple. On domains with small a (short cylinder) the derivative
in the circumferential y-direction in this part is larger than on domains with larger a (longer
cylinder). The circumferential length b seems to be less important for the shape of the solution:
for example, the cases (200,50) and (200,100) look like restrictions of the case (200,200) to smaller
domains.

We take a closer look at domains of sizes (a, b) = (100, 100), (100, 200), (200, 100), and
(200, 200) and the corresponding solutions w100,100, w100,200, w200,100, and w200,200 shown in the
figure. We compare the first three with the last one, respectively. It does not make sense to
compare the values of w itself since the energy functional Fλ depends on derivatives of w only.
We choose to compare wxx and wyy. Table 5.2 gives the infinity norm of the relative differ-
ences. Fig. 5.4 shows graphs of the difference w100,100 − w200,200 and of the second derivatives
(w200,200 − w100,100)xx, (w200,200 − w100,100)yy on the subdomain (−100, 0)2.

We conclude that solutions on different domains compare well; the maximal difference in
the second derivatives of w is three orders of magnitude smaller than the supremum norm of
the same derivative. We also observe that varying the length parameter a while keeping the
circumference parameter b fixed causes larger changes in the numerical solution than varying the
cylinder circumference while keeping the length fixed.

Another way of studying the influence of the domain size on the numerical solution is com-
paring solution branches obtained by continuation as described in Sec. 3.3. We start with the
mountain-pass solution for λ = 1.4 shown in Fig. 5.3 and continue it for both λ > 1.4 and λ < 1.4.
The results are presented in Fig. 5.5. We observe that the branches corresponding to the con-
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(a, b) = (50, 50) (a, b) = (50, 100) (a, b) = (50, 200)

(a, b) = (100, 50) (a, b) = (100, 100) (a, b) = (100, 200)

(a, b) = (200, 50) (a, b) = (200, 100) (a, b) = (200, 200)

Fig. 5.3. The single-dimple mountain-pass solution with λ = 1.4 computed under the assumption of symme-
try (1.9) with left-sided discretization of ∂xy for various domain sizes.

w100,100 − w200,200 (w200,200 − w100,100)xx (w200,200 − w100,100)yy

Fig. 5.4. Comparison of solutions w100,100, w200,200 from Fig. 5.3 obtained on square domains with a = b =
100 and a = b = 200, respectively, and their second derivatives. For a reference, we note that ‖(w200,200)xx‖∞ =
1.064522 and ‖(w200,200)yy‖∞ = 0.8242491.

‖(w−w200,200)xx‖
∞

‖(w200,200)xx‖
∞

‖(w−w200,200)yy‖
∞

‖(w200,200)yy‖
∞

w = w100,100 2.835 · 10−3 5.313 · 10−3

w = w100,200 1.943 · 10−3 4.917 · 10−3

w = w200,100 1.827 · 10−4 9.638 · 10−4

Table 5.2

Comparison of the second derivatives of solutions from Fig. 5.3 computed on domains with (a, b) = (100, 100),
(100, 200), (200, 100), and (200, 200).
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sidered domains do not differ much for the range of λ between approximately 0.71 and 2. Below
λ ≈ 0.71 the size of the domain, particularly the length of the cylinder described by a, has a strong
influence. The graph on the right shows that the larger (longer) the domain Ω the smaller the
value of λ at which the norm ‖w‖X starts to rapidly increase for decreasing λ. The graph on the
left shows the energy Fλ(w) along a solution branch. The data shown here correspond to the ones
in the graph on the right marked by a solid line. The dashed line in the right graph shows also
some data after the first limit point is passed.

‖w
‖2 X

λ

a = 200

b = 50

b = 100

b = 200

a = 100
b = 50

b = 100
b = 200

a = 50

b = 50, 100, 200

F
λ
(w

)

λ

a = 200

b = 50

b = 100
b = 200

a = 100
b = 50
b = 100
b = 200

b = 50, 100, 200, a = 50

Fig. 5.5. Continuation of the single-dimple solution found as a numerical mountain pass for λ = 1.4 on
domains of various sizes for a range of values λ. Left: Fλ(w) as a function of λ, right: ‖w‖X as a function of λ.

Figure 5.6 shows how the graph of w(x, y) changes as a solution branch is followed. Here we
chose a square domain with a = b = 100 and plotted the solution for four values of λ (note that
Figs. 5.6(c), 5.3(100,100), and 5.1(dotted line) show the same numerical solution). We observe
that with decreasing λ the height of the central dimple increases, the dimple becomes wider, and
the ripples (present at λ close to 2) disappear. In Fig. 5.6(a) we observe that new dimples are
being formed next to the central dimple.

(a) λ ≈ 0.593 (b) λ = 0.61 (mountain pass) (c) λ = 1.4 (mountain pass)

0.5 0.61 1 1.5 2
0

0.5

1

1.5

2

2.5
x 10

5

(d) λ = 1.95 (mountain pass)

λ

‖w
‖2 X

a = b = 100

mountain pass
local minimizer
(of Fλ)

(a)

(b) (c) (d)

Fig. 5.6. A detailed look at the continuation of the single-dimple solution on the domain with a = b = 100.

It should be remarked that although we started the continuation at λ = 1.4 at a mountain-pass
point, not all the points along a continuation branch are mountain passes. Since it is not feasible
to use the MPA to verify this for each point, we chose just a few. Still on the example of the
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domain with a = b = 100 in Fig. 5.6, the circles on the continuation branch mark those points that
have also been found by the MPA (for λ = 0.61, 0.65, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 1.95). As described
in Sec. 1.2.2, in order to start the MP-algorithm a point w2 is needed such that Fλ(w2) < 0. The
analysis in [5] shows that for a given λ such a point exists provided the domain Ω is large enough
and in practice it is found by the SDM of Sec. 1.2.1. This was, indeed, the case for all the chosen
values of λ except for λ = 0.61. In this case, starting from some w0 with a large norm, the SDM
provides a trajectory w(t) such that Fλ(w(t)) > 0 for all t > 0. In fact, the steepest descent
method converges to a local minimizer wM with Fλ(wM) ≈ 76.1. This is hence no mountain pass
but, nevertheless, lies on the same continuation branch and is marked by a triangle in the figure.
Despite Fλ(wM) > 0 we can still try to run the MPA with w2 = wM. It converges and yields wMP

with Fλ(wMP) ≈ 94.8 (marked by a circle at λ = 0.61 and shown in graph (b)).
The comparison of solutions computed on different domains and their respective energies

suggests that for each λ we are indeed dealing with a single, localized function defined on R
2,

of which our computed solutions are finite-domain adaptations. Based on this suggestion and
the above discussion of the mountain-pass solutions we could, for example, conclude that the
mountain-pass energy

V (λ,Ω) := inf
w2

{

Fλ

(

wMP(λ,Ω, w2)
)

: Fλ(w2) < 0
}

is a finite-domain approximation of a function V (λ), whose graph almost coincides with that of
V (λ,Ω) for λ not too small (cf. Fig. 5.5 left).

6. Discussion.

6.1. Variational numerical methods. We have seen that given a complex energy surface
many solutions may be found using these variational techniques. For example, for a fixed end
shortening of S = 40, Fig. 4.2, Fig. 4.3 and Fig. 4.4 are all solutions. Which of these solutions is
of greatest relevance depends on the question that is being asked.

In the context of the cylinder (and similar structural applications) the mountain-pass solution
from the unbuckled state (w1 = 0) with minimal energy is of physical interest. Often the experi-
mental buckling load may be at 20–30% of the linear prediction from a bifucation analysis (in our
scaling this corresponds to λ = 2). This uncertainty in the buckling load is a drawback for design
and so “knockdown” factors have been introduced, based on experimental data. It was argued
in [5] that the energy of the mountain-pass solution wMP in fact provides a lower bound on the
energy required to buckle the cylinder and so these solutions provide bounds on the (observed)
buckling load of the cylinder.

This example illustrates an important aspect of the (constrained) mountain-pass algorithm:
its explicit non-locality. The algorithm produces a saddle point which has an additional property:
it is the separating point (and level) between the basins of attraction of the end points w1 and w2.

Another technique to investigate a complex energy surface is to perform a simulated annealing
computation, essentially to solve the SDM (or the CSDM) problem with additive stochastic forcing.
The aim in these techniques is often to find a global minimizer (if it exists) where there are a large
number of local minimizers. Here by either the MPA or the CMPA we find the solution between
two such minima and so get an estimate on the surplus energy needed to change between local
minima.

6.2. Numerical issues. The numerical issues that we encountered are of two types. First
there are the requirements that are related to the specific problem of the Von Kármán-Donnell
equations, such as the discretization of the mixed derivative and the bracket, and the fact that
the solutions are symmetric and highly localized.

For other difficulties it is less clear. For smaller values of λ each of the variational methods
converged remarkably slowly. Newton’s method provides a way of improving the convergence, but
the question is relevant whether this slow convergence is typical for a whole class of variational
problems. It would be interesting to connect the rate of convergence of, for instance, the SDM to
certain easily measurable features of the energy landscape.
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