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WHEN IS THE ADJOINT OF A MATRIX A LOW DEGREE
RATIONAL FUNCTION IN THE MATRIX?∗

JÖRG LIESEN†

Abstract. We show that the adjoint A+ of a matrix A with respect to a given inner product is
a rational function in A, if and only if A is normal with respect to the inner product. We consider
such matrices and analyze the McMillan degrees of the rational functions r such that A+ = r(A).
We introduce the McMillan degree of A as the smallest among these degrees, characterize this degree
in terms of the number and distribution of the eigenvalues of A, and compare the McMillan degree
with the normal degree of A, which is defined as the smallest degree of a polynomial p for which
A+ = p(A). We show that unless the eigenvalues of A lie on a single circle in the complex plane, the
ratio of the normal degree and the McMillan degree of A is bounded by a small constant that depends
neither on the number nor on the distribution of the eigenvalues of A. Our analysis is motivated by
applications in the area of short recurrence Krylov subspace methods.
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1. Introduction. Consider a unitary matrix A with n ≥ 2 distinct eigenvalues.
Since A is normal, its adjoint A∗ is a polynomial in A [9, condition 17],

(1.1) A∗ = p(A) .

It has been observed in several publications, e.g., [4, pp. 774–775], that for a unitary
matrix A, (1.1) does not hold for a polynomial p of “small” degree. In this paper we
strengthen this observation by showing that the smallest degree of such polynomial is
equal to n−1. On the other hand, the McMillan degree of a rational function r = p/q,
where p and q are relatively prime polynomials (i.e., their only common divisor is the
constant polynomial 1), is defined as

(1.2) deg r = max {deg p, deg q} .

Hence

(1.3) A∗ = r(A) ,

where, since A is unitary, r(z) = 1/z is a rational function of McMillan degree one.
In summary, the adjoint of a unitary matrix A is a large degree polynomial and a
small (McMillan) degree rational function in A. The observation that the adjoint of a
normal matrix may be represented as a polynomial as well as a rational function in the
matrix, and that the degrees of these representations may vastly differ, is more than
a curiosity. In fact, it is of great importance for the construction of short recurrence
Krylov subspace methods.
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On the one hand, the fundamental theorem of Faber and Manteuffel [6] shows that
if (1.1) holds for a matrix A and a polynomial of degree s, then orthogonal Krylov
subspace bases for A can be generated by an (s + 2)-term Arnoldi recurrence (this
condition is not only sufficient but also necessary; see [6] or [14] for more details).
For a unitary matrix A with n distinct eigenvalues, A∗ = p(A) with the smallest
possible degree of p being n− 1. Thus, generating orthogonal Krylov subspace bases
for unitary matrices via the Arnoldi process requires a full recurrence.

On the other hand, as shown by Barth and Manteuffel [3, 4], if (1.3) holds for a
matrix A and a rational function r = p/q, where p and q are relatively prime poly-
nomials of respective degrees � and m, then orthogonal Krylov subspace bases for A
can be generated by a recurrence containing � + m + 2 terms. The generic type of
this recurrence is displayed in [4, equation (4.1)], from which it is easily seen that this
recurrence is not of Arnoldi-type (partial necessary conditions for the existence of this
recurrence are given in the unpublished report [5]). For stability reasons this (single)
recurrence should be implemented in the form of coupled, or multiple recurrences
(see [4] for details), but the actual implementation is not important for us here. The
important point here is that when � and m are small, an orthogonal Krylov subspace
basis can be generated by a short recurrence. For a unitary matrix A, r(z) = 1/z,
hence � = 0 and m = 1, so that the length of this recurrence is three. In practical
applications one uses coupled two-term recurrences instead of the numerically unsta-
ble three-term version. The resulting algorithm, which originally was discovered by
Gragg in the context of orthogonal polynomials on the unit circle [8], is called the
isometric Arnoldi algorithm. This algorithm has been used for solving unitary eigen-
value problems (see [17] for a survey) as well as for constructing a minimal residual
method for solving linear systems with shifted unitary matrices [11].

For efficiency reasons we would like to use the shortest possible recurrence, and
thus we would like to characterize, for a given matrix A, the smallest degrees of p
and r (if any) such that (1.1) and (1.3), respectively, hold. While the smallest degree
of the representation (1.1) has been characterized in the literature (we give here
new proofs of some results), comparably little has been done to characterize (1.3).
The only related work we are aware of is in the aforementioned papers of Barth and
Manteuffel. There, for a given Hermitian positive definite (HPD) matrix B, a matrix A
is called B-normal(�,m), if A is normal with respect to the inner product generated
by B, and if its adjoint A+ with respect to this inner product satisfies A+ = r(A),
where r = p/q for relatively prime polynomials of respective degrees � and m, cf. [4,
Definition 3.1]. For a given representation A+ = r(A) with known degrees � and m,
Barth and Manteuffel derive bounds on the maximal number of distinct eigenvalues
of A in terms of � and m, cf. [4, Theorem 3.1], or [3, Theorem 4.1]. However, they
provide no characterization of how small or large � and m may be for a given matrix A,
which is the question of interest in this paper (see Remarks 2.4 and 3.7 for further
comments on the B-normal(�,m) matrices).

To allow a rigorous characterization of (1.3), we introduce here the concept of the
McMillan degree of A, which we define as the smallest McMillan degree of a rational
function r such that A+ = r(A) (section 2). In section 3 we then completely answer
the question raised in the title, which, as outlined above, has direct applications in the
area of short recurrence Krylov subspace methods. Moreover, we show that unless the
eigenvalues of A lie on a single circle in the complex plane, the ratio of the smallest
degree of a polynomial representation of A+ (called the normal degree of A) and the
McMillan degree of A is bounded from above by a small constant (less than five), that
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depends neither on the number nor on the distribution of the eigenvalues of A. In
our derivations we apply results from rational interpolation theory, which apparently
have not been used in this context before.

2. B-normal matrices. Suppose that A is a square matrix and B is an HPD
matrix. Throughout the paper we will assume that these matrices are of the same
size. The matrix B generates an inner product, 〈x, y〉B = y∗Bx, and the adjoint of A
with respect to this inner product, or, shortly, the B-adjoint of A, is A+ = B−1A∗B.
If A+ is a polynomial in A, then A is said to be B-normal. This is a straightforward
generalization of the common concept of normal matrices, which we here call I-normal.
Of particular interest is the degree of the polynomial representation of the adjoint.

Definition 2.1. Let A be a square matrix and let B be an HPD matrix. If

(2.1) A+ = p(A) ,

where p is a polynomial of the smallest possible degree s having this property, then A
is called normal of degree s with respect to B, or, shortly, B-normal(s).

The property that A is B-normal(s) is completely characterized in the following
result [14, Theorem 3.1].

Theorem 2.2. Let A be a square matrix and let B be an HPD matrix. Then the
following two assertions are equivalent:

1. A is B-normal(s).
2. (a) A is diagonalizable with the eigendecomposition A = WΛW−1 (without

loss of generality we consider the eigenvalues and eigenvectors of A ordered
so that equal eigenvalues form a single diagonal block in Λ),

and

(b) using the eigenvector matrix W of A, the matrix B−1 has the decompo-
sition B−1 = WDW ∗, where D is an HPD block diagonal matrix with block
sizes corresponding to those of Λ,

and

(c) there exists a polynomial p of degree s such that p(Λ) = Λ∗, and s is
the smallest degree of all polynomials with this property. The polynomial p is
uniquely determined.

In [14] this result is stated only for nonsingular matrices A, which is due to the
focus of the work in that paper. It is easy to see, however, that the assertion is true
also for singular matrices A. Using Theorem 2.2, we can characterize all A and B for
which A+ = r(A), where r is a rational function.

Lemma 2.3. Let A be a square matrix and let B be an HPD matrix. If there
exists a rational function r such that A+ = r(A), then r(λ) = λ for all eigenvalues
λ of A, and, moreover, A is B-normal(s), where s is the degree of the (uniquely
determined) interpolation polynomial p of smallest degree that satisfies p(λ) = λ for
all eigenvalues λ of A.

Proof. We adopt the strategy of the proof of [6, Lemma 2]. Let (λ, x) be an
eigenpair of A, Ax = λx. Then A+x = r(A)x = r(λ)x, so that

r(λ) 〈x, x〉B = 〈r(λ)x, x〉B = 〈A+x, x〉B = 〈x,Ax〉B = 〈x, λx〉B = λ 〈x, x〉B ,

from which we receive r(λ) = λ.
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Now suppose that there is a nontrivial Jordan block associated with λ. Then
there exists a nonzero vector y such that (A− λI)y = x. But then

〈Ay, x〉B = 〈λy + x, x〉B = λ 〈y, x〉B + 〈x, x〉B ,

〈Ay, x〉B = 〈y,A+x〉B = 〈y, λx〉B = λ 〈y, x〉B ,

which means that 〈x, x〉B = 0. This contradiction shows that A is diagonalizable, i.e.,
that (2a) of Theorem 2.2 holds.

If (η, y) is another eigenpair of A with η �= λ, then

λ 〈x, y〉B = 〈λx, y〉B = 〈Ax, y〉B = 〈x,A+y〉B = 〈x, ηy〉B = η 〈x, y〉B .

Since λ �= η we must have 〈x, y〉B = 0, which shows that the eigenvectors of A
form a complete B-orthogonal set. In particular, when we consider the diagonalizable
matrix A as in (2a) of Theorem 2.2, then W ∗BW = D, where D is HPD and block
diagonal, showing that B is as stated in (2b) of Theorem 2.2.

Finally, the polynomial p in (2c) of Theorem 2.2 is the uniquely determined
interpolation polynomial of smallest degree that satisfies p(λ) = λ for all eigenvalues
λ of A.

Remark 2.4. According to Lemma 2.3, the existence of a representation of the
form A+ = r(A), where r is a rational function, implies that A is B-normal(s).
Therefore the assumption that A be B-normal in the definition of the B-normal(�,m)
matrices of Barth and Manteuffel, cf. [3, Definition 4.2] or [4, Definition 3.1], is re-
dundant.

The converse of Lemma 2.3 is obviously true as well: If A is B-normal(s), then
there exists a rational function, namely r = p from (2c) in Theorem 2.2, such that
A+ = r(A). We therefore have the following corollary.

Corollary 2.5. For a square matrix A there exists an HPD matrix B such that
A+ is a rational function in A, if and only if A is diagonalizable.

If A is diagonalizable, A = WΛW−1, then the HPD matrices B for which A+ is a
rational function in A are completely characterized in (2b) of Theorem 2.2. Moreover,
if B is any such matrix, then A+ = r(A) holds for a rational function r, if and only
if r(Λ) = Λ∗.

Proof. Only the necessity part in the last sentence remains to be shown. Let B
be any matrix as characterized in (2b) of Theorem 2.2, i.e., B = W−∗DW−1. Then

A+ = B−1A∗B = (WD−1W ∗)(W−∗Λ∗W ∗)(W−∗DW−1) = WΛ∗W−1 = r(A) ,

where in the last equation we have used that r(Λ) = Λ∗.
By Corollary 2.5, for a nondiagonalizable matrix A there exists no HPD matrix B

such that the corresponding A+ is a rational function in A. We therefore can restrict
our attention to diagonalizable matrices. The last part of the corollary shows that
if, for some HPD matrix B, A+ is a rational function in A, A+ = r(A), then r is
completely determined by the eigenvalues of A. We use the following concepts in our
further development.

Definition 2.6. Let A be a diagonalizable matrix.
1. The (uniquely determined) smallest degree of a polynomial p that satisfies

p(λ) = λ for all eigenvalues λ of A is called the normal degree of A, and is
denoted by dp(A).

2. The (uniquely determined) smallest McMillan degree of a rational function r
that satisfies r(λ) = λ for all eigenvalues λ of A is called the McMillan degree
of A, and is denoted by dr(A).
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We immediately observe that dr(A) ≤ dp(A) ≤ n − 1, where n is the number of
distinct eigenvalues of A.

Let us put the degrees dp(A) and dr(A) into the picture of short recurrence Krylov
subspace methods that is described in the introduction: On the one hand, if A is
normal with respect to an HPD matrix B and dp(A) = s, then B-orthogonal Krylov
subspace bases for A can be generated with an (s + 2)-term Arnoldi recurrence [6].
On the other hand, if for an HPD matrix B the B-adjoint of A satisfies A+ = r(A),
where r = p/q for relatively prime polynomials p and q of respective degrees � and m,
so that dr(A) = deg r = max{�,m}, then B-orthogonal Krylov subspace bases for A
can be generated using a nonstandard recurrence containing � + m + 2 ≤ 2dr(A) + 2
terms [4]. If dr(A) � dp(A), then the nonstandard recurrence is significantly more
efficient than the standard Arnoldi recurrence. It is therefore of great practical interest
to characterize the (diagonalizable) matrices A for which dr(A) � dp(A).

3. Characterization of the McMillan degree of A. We will study the
McMillan degree of a diagonalizable matrix A using results from rational interpo-
lation theory. The results we employ were originally developed by Antoulas and
Anderson [2] and are summarized in Antoulas’ book [1, Chapter 4.5].

Let λ1, . . . , λn be the distinct eigenvalues of A. We want to determine a rational
function r = p/q, where p and q are relatively prime polynomials, such that r(λj) = λj ,
j = 1, . . . , n. We assume n ≥ 2, as otherwise the problem is trivial. If there exists such
a rational function of McMillan degree m, then m is called an admissible McMillan
degree. By definition, the smallest admissible McMillan degree is equal to dr(A).

Consider the array P containing the interpolation points (λj , λj), j = 1, . . . , n,

(3.1) P = {(λj , λj) : j = 1, . . . , n} .

We choose an integer n1, 1 ≤ n1 < n, and partition P into two disjoint subarrays J

and I,

J = {(λj , λj) : j = 1, . . . , n1} , I = {(λj , λj) : j = n1 + 1, . . . , n} .

For notational convenience, we now write μj ≡ λj+n1 for j = 1, . . . , n− n1. Then the
Löwner matrix L corresponding to the arrays J and I is defined by

(3.2) L = [li,j ]i=1,...,n−n1, j=1,...,n1
, where li,j =

μi − λj

μi − λj
.

Note that L is of size (n− n1) × n1. Moreover, the rank of the array P is defined as

(3.3) rank P = max
L

{ rank L } ,

where the maximum is taken over all possible Löwner matrices, which can be formed
from P by partitioning into two subarrays as described above, cf. [1, Definition 4.51].

A similar construction can be made for any subarray of interpolation points. More
precisely, we may take any Q ⊂ P containing at least two points, partition Q into two
disjoint subarrays, and form the corresponding Löwner matrix according to (3.2). In
this way we can form Löwner matrices from P that are of size k1×k2 with k1+k2 < n.

Theorem 3.1 (cf. [1, Theorem 4.55 and Corollary 4.56]). Suppose that the rank
of the array P in (3.1) is equal to m.
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(1) If 2m < n, and all m × m Löwner matrices that can be formed from P are
nonsingular, then there exists a uniquely determined rational function r = p/q
(with p and q relatively prime) of McMillan degree m with r(λj) = λj, j =
1, . . . , n. Moreover, the admissible McMillan degrees are m and all integers
greater than or equal to n−m.

(2) Otherwise, the admissible McMillan degrees are all integers greater than or
equal to n − m, and there exists no uniquely determined rational function
r = p/q (with p and q relatively prime) of McMillan degree n − m with
r(λj) = λj, j = 1, . . . , n.

The following is a straightforward consequence.
Corollary 3.2. For any diagonalizable matrix A with n distinct eigenvalues,

dr(A) ≤ 
n/2�. In particular, if n ∈ {2, 3}, then dr(A) = 1.
Having characterized the cases n = 2 and n = 3, we will now focus on matrices

with at least four distinct eigenvalues.
Lemma 3.3. Let λ1, . . . , λ4 be any four distinct complex numbers, and consider

the corresponding array P of the form (3.1). Then rank P = 1, if and only if λ1, . . . , λ4

are either collinear (i.e., they lie on a single line in the complex plane) or concyclic
(i.e., they lie on a single circle in the complex plane).

Proof. We partition P into two subarrays J and I containing two interpolation
points each. The corresponding Löwner matrix is

L =

[
μi − λj

μi − λj

]
i,j=1,2

,

giving

detL =
μ1 − λ1

μ1 − λ1

μ2 − λ2

μ2 − λ2
− μ2 − λ1

μ2 − λ1

μ1 − λ2

μ1 − λ2
.

Hence detL = 0, if and only if

(3.4)
(μ1 − λ1) (μ2 − λ2)

(μ1 − λ2) (μ2 − λ1)
∈ R .

We denote by Ĉ the extended complex plane. Recall that a circle in Ĉ is either a true
circle in the complex plane or a line in the complex plane with the point at infinity
adjoined. In (3.4) we replace μ2 by a variable z, and consider the function

f(z) =
(μ1 − λ1) (z − λ2)

(μ1 − λ2) (z − λ1)
.

The function f(z) is the unique Moebius transformation satisfying

f(λ1) = ∞ , f(λ2) = 0 , f(μ1) = 1 .

Now realize that through the points λ1, λ2, μ1 passes one and only one circle C in Ĉ.
Since the Moebius transformation f conformally maps circles in Ĉ onto circles in Ĉ,
we see that f(C) = R ∪ {∞}, and, in particular, f(μ2) ∈ R, if and only if μ2 ∈ C
(see, e.g., [15, Chapter 3] for more on Moebius transformations). Consequently, L

is singular if and only if λ1, λ2, μ1, μ2 lie on the same circle in Ĉ, i.e., if and only if
these points in the complex plane are either collinear or concyclic, which completes
the proof.
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Using this lemma we can characterize the diagonalizable matrices of McMillan
degree one. To do so, we recall that a matrix has rank k if and only if it has a
nonsingular k×k submatrix and all its (k+1)× (k+1) submatrices are singular (see,
e.g., [10, pp. 12–13]).

Lemma 3.4. Let A be a diagonalizable matrix with at least four distinct eigen-
values. Then dr(A) = 1 if and only if the eigenvalues of A are either collinear or
concyclic.

Proof. Let L be any Löwner matrix with at least two rows and columns formed
from the array P corresponding to the n ≥ 4 distinct eigenvalues of A. Clearly,
rankL ≥ 1.

If the eigenvalues of A are either collinear or concyclic, then Lemma 3.3 shows
that every 2 × 2 submatrix of L is singular. Therefore, rankL = 1, which shows that
rank P = 1. Since 2 < n, and every 1 × 1 Löwner matrix that can be formed from P

is nonsingular, case (1) in Theorem 3.1 applies, showing that dr(A) = 1.
On the other hand, if the eigenvalues of A are neither collinear nor concyclic,

then by Lemma 3.3 there exists a 2 × 2 submatrix of L that is nonsingular. Hence
rankL ≥ 2, which implies that rank P ≥ 2, and hence dr(A) ≥ 2.

If A is any diagonalizable matrix with n ≥ 2 distinct eigenvalues that all are
collinear, then Corollary 3.2 and Lemma 3.4 show that dr(A) = 1. These matrices
are also known to be B-normal(1) for some HPD matrix B (cf. [14, Theorem 3.3] and
the references given there), and thus they satisfy dp(A) = 1.

More interesting is the class of the diagonalizable matrices with n ≥ 3 distinct
eigenvalues that all are concyclic. For such matrices A, Corollary 3.2 and Lemma 3.4
show that dr(A) = 1. Moreover, case (1) in Theorem 3.1 shows that the rational
function r of McMillan degree one that satisfies r(λ) = λ for all eigenvalues λ is
uniquely determined. In fact, this function can be easily computed. Suppose that the
eigenvalues of A are given by

λj = ρeiϕj + ζ , j = 1, . . . , n ,

where ρ ∈ R \ {0} and ζ ∈ C do not depend on j, while ϕj ∈ [0, 2π). Then

r(z) =
ζz + (ρ2 − |ζ|2)

z − ζ

satisfies r(λj) = λj , j = 1, . . . , n. Clearly, r is not a polynomial. Case (1) in The-
orem 3.1 also shows that the next smallest admissible McMillan degree is n − 1.
Apparently, a corresponding rational function is the uniquely determined (Lagrange)
interpolation polynomial p that satisfies p(λ) = λ for all eigenvalues λ. This means
that dp(A) = n− 1.

It is easy to see that, for a diagonalizable matrix A, dr(A) is equal to the smallest
possible McMillan degree of a rational function r such that the eigenvalues of A are
zeros of the function r(z) − z. When n ≥ 4 and the eigenvalues of A are neither
collinear nor concyclic, Lemma 3.4 implies that dr(A) ≥ 2. Hence in this case we
search for a rational function r of (smallest possible) deg r ≥ 2, such that the eigen-
values of A are zeros of r(z) − z. The following result summarizes what is known
about the zeros of such functions.

Theorem 3.5.

(1) A function of the form p(z)− z, where p is a polynomial of degree s ≥ 2, has
at most 3s − 2 zeros. For any s ≥ 2 there exists a polynomial p of degree s,
such that p(z) − z has 3s− 2 zeros.
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(2) A function of the form r(z) − z, where r is a rational function of McMillan
degree s ≥ 2, has at most 5s− 5 zeros. For any s ≥ 2 there exists a rational
function r of McMillan degree s, such that r(z) − z has 5s− 5 zeros.

The bounds in (1) and (2) have been shown in [13] and [12], respectively. The
corresponding sharpness results have been shown in [7] and [16]. Using these bounds
we can prove the following result.

Theorem 3.6. Let A be a diagonalizable matrix with n ≥ 4 distinct eigenvalues.
(1) If the eigenvalues are collinear, then dr(A) = dp(A) = 1.
(2) If the eigenvalues are concyclic, then dr(A) = 1 and dp(A) = n− 1.
(3) In all other cases, dr(A) ≥ �n/5 + 1�, dp(A) ≥ �(n + 2)/3�, and

(3.5) 1 ≤ dp(A)

dr(A)
≤ 5

n− 1

n + 5
< 5 .

Proof. Cases (1) and (2) were shown above, so only case (3) needs to be proven.
Here the eigenvalues are neither collinear nor concyclic, and thus by Lemma 3.4 we
must have dr(A) ≥ 2. From case (2) in Theorem 3.5 we know that any function of the
form r(z)−z, where r is a rational function of deg r ≥ 2, may have at most 5 deg r−5
zeros. Since any function for which the McMillan degree of A is attained must have
(at least) n distinct zeros, we must have n ≤ 5dr(A)− 5, and thus dr(A) ≥ �n/5+1�.
The lower bound on dp(A) follows in a similar way from case (1) in Theorem 3.5.
Finally, the leftmost and rightmost inequalities in (3.5) are straightforward, while
the middle inequality follows from the lower bound on dr(A) and from noting that
dp(A) ≤ n− 1.

Using Theorem 2.2, Corollary 3.2, and Theorem 3.6 we can derive the following
well-known result: There exists an HPD matrix B with respect to which a matrix A,
with at least two distinct eigenvalues is normal of degree one, if and only if A is
diagonalizable and has collinear eigenvalues (cf. [14, Theorem 3.3] and the references
given there). Here we have given a new proof of this result using rational interpolation
theory and conformal mappings.

A surprising fact shown by Theorem 3.6 is that the ratio dp(A)/dr(A) is bounded
from above by five, unless the eigenvalues of A are concyclic, in which case the ratio
is equal to n− 1. In this sense, the diagonalizable matrices with concyclic eigenvalues
form a very special class.

Theorem 3.6 also shows that if the eigenvalues of a diagonalizable matrix A are
neither collinear nor concyclic, then dr(A) is small, if and only if A has only a small
number (at most 5dr(A) − 5) of distinct eigenvalues.

Remark 3.7. A related observation is made after the statement of [4, Theo-
rem 3.1], but it is not fully justified from the theory presented there. According to
Barth and Manteuffel, their result “says that if A is B-normal(�,m) and either � or m
greater than 1, then A has a relatively small number of distinct eigenvalues” [4, p. 775].
However, in terms of [4, Definition 3.1], any unitary matrix A with n ≥ 3 distinct
eigenvalues is I-normal(0,1) and I-normal(n − 1,0). Hence, for � = n − 1 > 1 and
m = 0, A is B-normal(�,m), but A may have arbitrarily many distinct eigenvalues.
The confusion is caused by the lack of uniqueness of the “smallest degrees” � and m.
In general, there exist no “simultaneously smallest” � and m for which A+ = r(A)
with r = p/q for relatively prime polynomials of respective degrees � and m.

We next show by examples that the two weak inequalities in (3.5) cannot be
improved in general. First, consider the lower bound on dp(A)/dr(A). This bound is
attained if and only if a rational function r of smallest possible McMillan degree, which
satisfies r(λ) = λ for all eigenvalues λ of A, is a polynomial (this always holds when the
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eigenvalues of A are collinear, cf. case (1) in Theorem 3.6, where dr(A) = dp(A) = 1).
Consider a diagonalizable matrix A with n = 4 distinct eigenvalues given by

λ1 = 1 +
√

1/2, λ2 = 1 −
√

1/2, λ3 = i
√

1/2, λ4 = −i
√

1/2.

The polynomial

p(z) = z2 − z +
1

2

is the unique polynomial of smallest possible degree that satisfies p(λj) = λj , j =
1, . . . , 4, so that dp(A) = 2. On the other hand, dr(A) ≤ 2 by Corollary 3.2, and
since the four eigenvalues are neither collinear nor concyclic, Lemma 3.4 implies that
dr(A) = 2, showing that the lower bound in (3.5) is attained.

To give an example that the upper bound is attained, consider any diagonalizable
matrix A with n = 5 distinct eigenvalues that are neither collinear nor concyclic.
By Corollary 3.2, dr(A) ≤ 
5/2� = 2, and by Lemma 3.4, dr(A) > 1, showing that
dr(A) = 2. Suppose that the five eigenvalues are

λ1 = 0, λ2 = 1, λ3 = 2, λ4 = i, λ5 = −i.

Obviously, these are neither collinear nor concyclic. An elementary computation
(that may be performed by any computer algebra package) shows that the unique
polynomial p of smallest possible degree that satisfies p(λj) = λj , j = 1, . . . , 5, is
given by

p(z) =
3

5
z − 3

5
z2 +

8

5
z3 − 3

5
z4 ,

so that dp(A) = 4. Therefore, dp(A)/dr(A) = 2, showing that the weak upper bound
in (3.5) is attained.

Finally, we remark that it may be possible to extend our approach to give an
alternative proof of the sharpness of the bound of [12] on the maximal number of
zeros of r(z) − z, where r is rational with deg r ≥ 2 (cf. case (2) in Theorem 3.5).
For example, let five distinct complex numbers be given, such that any four of them
are neither collinear nor concyclic. Then, by case (1) in Theorem 3.1, there exists a
unique rational function r of deg r = 2, so that the five complex numbers are zeros of
r(z)−z. This function r can be explicitly computed along the lines of [1, pp. 105–107],
and it attains the bound of [12].

Acknowledgments. Thanks to Jurjen Duintjer Tebbens, Daniel Szyld, and Petr
Tichý for comments that helped to improve the presentation of this paper.
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