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ON EXTREMAL k-GRAPHS WITHOUT REPEATED COPIES OF
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Abstract. The problem of determining extremal hypergraphs containing at most r isomorphic
copies of some element of a given hypergraph family was first studied by Boros et al. in 2001. There
are not many hypergraph families for which exact results are known concerning the size of the
corresponding extremal hypergraphs, except for those equivalent to the classical Turán numbers. In
this paper, we determine the size of extremal k-uniform hypergraphs containing at most one pair of
2-intersecting edges for k ∈ {3, 4}. We give a complete solution when k = 3 and an almost complete
solution (with eleven exceptions) when k = 4.
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1. Introduction. A set system is a pair G = (X,A), where X is a finite set and
A ⊆ 2X . The members of X are called vertices or points, and the members of A are
called edges or blocks. The order of G is the number of vertices |X|, and the size of G
is the number of edges |A|. The set K is called a set of block sizes for G if |A| ∈ K
for all A ∈ A. G is called a k-uniform hypergraph (or k-graph) if {k} is a set of block
sizes for G. A 2-graph is also known simply as a graph.

A pair of edges is said to be t-intersecting if they intersect in at least t points. The
k-graph of size two whose two edges intersect in exactly t points is denoted Λ(k, t).

Let F be a family of k-graphs. Boros et al. [2] introduced the function T (n,F , r),
which denotes the maximum number of edges in a k-graph of order n containing no r
isomorphic copies of a member of F . So T (n,F , 1) is just the classical Turán number
ex(n,F) [1]. A family of k-graphs F is said to grow polynomially if there exist c > 0
and a nonnegative integer s such that, for every m, there are at most cms members
in F having exactly m edges. The following theorem is established in [2].

Theorem 1.1 (Boros et al. [2]). Let F be a family of k-graphs which grows
polynomially with parameters c and s. Then, for n sufficiently large,

T (n,F , r) < ex(n,F) + (c · (r − 1) · s! + 1)ex(n, F )(s+1)/(s+2)

+ 2(c · (r − 1) · s! + 1)2ex(n,F)s/(s+2).

For k ≥ 3, let F(k) be the family of k-graphs of two 2-intersecting edges; that
is, F(k) = {Λ(k, t) : 2 ≤ t ≤ k − 1}. T (n,F(k), 1), which is the Turán number
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ex(n,F(k)), is equal to the following well studied parameters in design theory and
coding theory:

• D(n, k, 2), the maximum number of blocks in a 2-(n, k, 1) packing [11], and
• A(n, 2(k − 1), k), the maximum number of codewords in a binary code of

length n, minimum distance 2(k − 1), and constant weight k [10].
Despite much effort, the exact value of T (n,F(k), 1) is known for all n only when
k = 3 [14, 15] and k = 4 [3]. Even for k = 5, there are an infinite number of n for
which T (n,F(5), 1) is not yet determined. In this paper, we determine T (n,F(k), 2)
for all n when k = 3 and for all but 11 values of n when k = 4.

2. Design-theoretic preliminaries. Our determination of T (n,F(k), 2), k ∈
{3, 4}, makes extensive use of combinatorial designs. In this section, we review some
design-theoretic constructs and review some prior results that are needed in our
solution.

For positive integers i ≤ j, the set {i, i + 1, . . . , j} is denoted [i, j]. The set [1, j]
is further abbreviated as [j]. A k-graph (X,A) of order n is a packing of pairs by
k-tuples, or more commonly known as a 2-(n, k, 1) packing if every 2-subset of X is
contained in at most one block of A. The leave of (X,A) is the graph L = (X, E),
where E consists of all 2-subsets of X that are not contained in any blocks of A. We
also say that (X,A) is a 2-(n, k, 1) packing leaving L. Given a graph G, the maximum
size of a 2-(n, k, 1) packing whose leave contains G is denoted m(n, k, G). Note that
the maximum size of a 2-(n, k, 1) packing, D(n, k, 2), is the quantity m(n, k, G) when
G is the empty graph.

Theorem 2.1 (Schönheim [14], Spencer [15]). For all n ≥ 0, we have

D(n, 3, 2) =

{⌊
n
3

⌊
n−1

2

⌋⌋
− 1 if n ≡ 5 (mod 6),⌊

n
3

⌊
n−1

2

⌋⌋
otherwise.

Theorem 2.2 (Brouwer [3]). For all n ≥ 0, we have

D(n, 4, 2) =



⌊
n
4

⌊
n−1

3

⌋⌋
− 1 if n ≡ 7 or 10 (mod 12) and n /∈ {10, 19},⌊

n
4

⌊
n−1

3

⌋⌋
− 1 if n ∈ {9, 17},⌊

n
4

⌊
n−1

3

⌋⌋
− 2 if n ∈ {8, 10, 11},⌊

n
4

⌊
n−1

3

⌋⌋
− 3 if n = 19,⌊

n
4

⌊
n−1

3

⌋⌋
otherwise.

A pairwise balanced design (PBD) is a set system (X,A) such that every 2-subset
of X is contained in exactly one block of A. If a PBD is of order n and has a set
of block sizes K, we denote it by PBD(n, K). If a member k ∈ K is superscripted
with a “?” (written “k?”), it means that the PBD has exactly one block of size k. We
require the following result on the existence of PBDs.

Theorem 2.3 (Fort and Hedlund [5]). There exists a PBD(n, {3, 5?}) if and only
if n ≡ 5 (mod 6).

Theorem 2.4 (Rees and Stinson [13]). There exists a PBD(n, {4, f?}) if and
only if n ≥ 3f + 1, and

(i) n ≡ 1 or 4 (mod 12) and f ≡ 1 or 4 (mod 12) or
(ii) n ≡ 7 or 10 (mod 12) and f ≡ 7 or 10 (mod 12).
Let (X,A) be a set system, and let G = {G1, . . . , Gs} be a partition of X into

subsets, called groups. The triple (X,G,A) is a group divisible design (GDD) when
every 2-subset of X not contained in a group appears in exactly one block, and
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|A ∩ G| ≤ 1 for all A ∈ A and G ∈ G. We denote a GDD (X,G,A) by K-GDD if
K is a set of block sizes for (X,A). The type of a GDD (X,G,A) is the multiset
[|G| : G ∈ G]. When more convenient, we use the exponentiation notation to describe
the type of a GDD: A GDD of type gt1

1 . . . gts
s is a GDD where there are exactly ti

groups of size gi, i ∈ [s]. The following results on the existence of {4}-GDDs are useful.
Theorem 2.5 (Hanani [7]). There exists a {3}-GDD of type gt if and only if

t ≥ 3, g2
(

t
2

)
≡ 0 (mod 3), and g(t− 1) ≡ 0 (mod 2).

Theorem 2.6 (Brouwer, Schrijver, and Hanani [4]). There exists a {4}-GDD of
type gt if and only if t ≥ 4 and

(i) g ≡ 1 or 5 (mod 6) and t ≡ 1 or 4 (mod 12) or
(ii) g ≡ 2 or 4 (mod 6) and t ≡ 1 (mod 3) or

(iii) g ≡ 3 (mod 6) and t ≡ 0 or 1 (mod 4) or
(iv) g ≡ 0 (mod 6),

with the two exceptions of types 24 and 64, for which {4}-GDDs do not exist.
Theorem 2.7 (Brouwer [3]). A {4}-GDD of type 2u51 exists if and only if u = 0,

or u ≡ 0 (mod 3) and u ≥ 9.
Theorem 2.8 (see [9]). There exists a {4}-GDD of type 3tu1 if and only if t = 0,

or t ≥ (2u + 3)/3 and
(i) t ≡ 0 or 1 (mod 4) and u ≡ 0 or 6 (mod 12) or
(ii) t ≡ 0 or 3 (mod 4) and u ≡ 3 or 9 (mod 12).
Theorem 2.9 (Ge and Ling [6]). There exists a {4}-GDD of type 2tu1 for t = 0

and for each t ≥ 6 with t ≡ 0 (mod 3), u ≡ 2 (mod 3), and 2 ≤ u ≤ t − 1, except
for (t, u) = (6, 5) and except possibly for (t, u) ∈ {(21, 17), (33, 23), (33, 29), (39, 35),
(57, 44)}.

Theorem 2.10 (Ge and Ling [6]). There exists a {4}-GDD of type 12tu1 for
t = 0 and for each t ≥ 4 and u ≡ 0 (mod 4) such that 0 ≤ u ≤ 6(t− 1).

An incomplete transversal design of group size n, block size k, and hole size h is
a quadruple (X,G, H,A) such that

(i) (X,A) is a k-graph of order nk;
(ii) G is a partition of X into k subsets (called groups), each of cardinality n;
(iii) H ⊆ X, with the property that, for each G ∈ G, |G ∩H| = h; and
(iv) every 2-subset of X is

• contained in the hole H and not contained in any blocks or
• contained in a group and not contained in any blocks or
• contained in neither a hole nor a group and contained in exactly one

block of A.
Such an incomplete transversal design is denoted TD(k, n)− TD(k, h).

Theorem 2.11 (Heinrich and Zhu [8]). For n > h > 0, a TD(4, n) − TD(4, h)
exists if and only if n ≥ 3h and (n, h) 6= (6, 1).

3. Packings with leaves containing specified graphs. In this section, we
relate the problem of determining T (n,F(k), 2) to that of determining m(n, k, G) for
G isomorphic to K4−e, K5−e, and 2◦K4 (edge-gluing of two K4’s) when k ∈ {3, 4}.
These graphs are shown in Figures 3.1–3.3, respectively.

Lemma 3.1. There exists a 3-graph of order n and size m containing exactly one
copy of an element of F(3) if and only if there exists a 2-(n, 3, 1) packing of size m−2
with a leave containing K4 − e as a subgraph.

Proof. F(3) contains only a single 3-graph, Λ(3, 2). Let (X,A) be a 3-graph of
order n and size m containing exactly one copy of Λ(3, 2). Then there exist exactly
two blocks A, B ∈ A, with |A ∩ B| = 2. Let P = (X,A \ {A, B}). Then P is a
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Fig. 3.1. K4 − e.

Fig. 3.2. K5 − e.

Fig. 3.3. 2 ◦K4.

2-(n, 3, 1) packing of size m−2 with a leave containing the 2-subsets in X that occurs
in A and B, which together form a K4 − e. This construction is reversible.

Corollary 3.2. The following holds:

T (n,F(3), 2) = max{T (n,F(3), 1), m(n, 3, K4 − e) + 2}.

Proof. If a 3-graph contains no two isomorphic copies of Λ(3, 2), then either it
contains no copies, in which case its maximum size is given by T (n,F(3), 1), or else
it contains exactly one copy, in which case its maximum size is given by m(n, 3, K4−
e) + 2.

The proofs for the following two lemmas are similar to that for Lemma 3.1 and
are thus omitted.

Lemma 3.3. There exists a 4-graph of order n and size m containing exactly one
copy of Λ(4, 2) if and only if there exists a 2-(n, 4, 1) packing of size m − 2 with a
leave containing 2 ◦K4 as a subgraph.

Lemma 3.4. There exists a 4-graph of order n and size m containing exactly one
copy of Λ(4, 3) if and only if there exists a 2-(n, 4, 1) packing of size m − 2 with a
leave containing K5 − e as a subgraph.

Corollary 3.5. The following holds:

T (n,F(4), 2) = max{T (n,F(4), 1), m(n, 4, 2 ◦K4) + 2, m(n, 4, K5 − e) + 2}.

Proof. F(4) contains the graphs Λ(4, 2) and Λ(4, 3). So if a 4-graph contains no
two isomorphic copies of an element of F(4), then either it contains none of them,
in which case its maximum size is given by T (n,F(4), 1), or else it contains exactly
one of Λ(4, 2) or Λ(4, 3). In the former case, its maximum size is m(n, 4, 2 ◦ K4) +
2 by Lemma 3.3, and, in the latter case, its maximum size is m(n, 4, K5 − e) by
Lemma 3.4.

4. Determining T (n,F(3), 2). When n ≡ 1 or 3 (mod 6), a 2-(n, 3, 1) packing
of size T (n,F(3), 1) has the property that every pair of distinct points is contained in
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exactly one block. Such a 2-(n, 3, 1) packing is called a Steiner triple system of order
n and is denoted STS(n).

Let P = (X,A) be a 2-(n, 3, 1) packing. When n ≡ 1 or 3 (mod 6), the leave
L = (X, E) of P must satisfy:

(i) |E| ≡ 0 (mod 3), and
(ii) the degree of every vertex in L is even.

Any L containing K4 − e as a subgraph and satisfying conditions (i) and (ii) above
has at least nine edges. Hence, the maximum size of a 2-(n, 3, 1) packing with a leave
containing K4− e is at most 1

3 (
(
n
2

)
− 9). We show below that there indeed exists such

a 2-(n, 3, 1) packing of size 1
3 (
(
n
2

)
− 9).

Lemma 4.1. There exists a 2-(n, 3, 1) packing of size 1
3 (
(
n
2

)
− 9), with a leave

containing K4 − e, for every n ≡ 1 or 3 (mod 6).
Proof. Let (X,A) be an STS(n). Suppose there exist three blocks in A of the form

{1, 2, 3}, {1, 4, 5}, and {3, 4, a}. Then deleting these three blocks gives a 2-(n, 3, 1)
packing of size 1

3 (
(
n
2

)
− 9) with a leave containing K4 − e. Hence, it suffices to show

that we can always find such a 3-block configuration in any STS(n). To see that this
is true, pick any two intersecting blocks in an STS(n), say, {1, 2, 3} and {1, 4, 5}. As
the third block, take the unique block containing the 2-subset {3, 4}.

Next, we consider n ≡ 5 (mod 6). In this case,
(
n
2

)
≡ 1 (mod 3). So if the leave

of a 2-(n, 3, 1) packing contains K4 − e, then it must contain at least seven edges.
Therefore, such a packing can have at most 1

3 (
(
n
2

)
− 7) blocks. We show below that

this upper bound can be met using pairwise balanced designs.
Lemma 4.2. There exists a 2-(n, 3, 1) packing of size 1

3 (
(
n
2

)
− 7), with a leave

containing K4 − e, for every n ≡ 5 (mod 6).
Proof. Let (X,A) be a PBD(n, {3, 5?}) with [5] as the block of size five. The ex-

istence of such a PBD is provided by Theorem 2.3. Deleting the block of size five from
this PBD and adding the block {1, 2, 3} yield the desired 2-(n, 3, 1)
packing.

For n ≡ 0, 2, or 4 (mod 6), every vertex in the leave L of a 2-(n, 3, 1) packing is
of odd degree. If L contains K4 − e, then L must have at least four vertices of degree
at least three. The minimum possible number of edges in L, if L contains K4 − e, is
therefore n/2 + 4. It follows that the number of blocks in a 2-(n, 3, 1) packing with a
leave containing K4 − e is at most

⌊
1
3 (
(
n
2

)
− n

2 − 4)
⌋
.

Lemma 4.3. There exists a 2-(n, 3, 1) packing of size 1
3 (
(
n
2

)
− n

2 −4), with a leave
containing K4 − e, for every n ≡ 4 (mod 6).

Proof. Let (X,A) be a PBD(n + 1, {3, 5?}) which exists by Theorem 2.3. Let x
be a point contained in the block of size five. Then (X \ {x},B), where

B = {A ∈ A : x 6∈ A and |A| = 3}

is the desired 2-(n, 3, 1) packing.
Lemma 4.4. There exists a 2-(n, 3, 1) packing of size 1

3 (
(
n
2

)
− n

2 −6), with a leave
containing K4 − e, for every n ≡ 0 or 2 (mod 6).

Proof. Consider a {3}-GDD of type 2n/2, which exists whenever n ≡ 0 or 2 (mod
6) by Theorem 2.5. Without loss of generality, we may assume {1, 2} is a group
and {1, 3, 4} is a block in this GDD. There is a unique block of the form {2, 3, a}.
Deleting the blocks {1, 3, 4} and {2, 3, a} from this GDD gives a 2-(n, 3, 1) packing of
size 1

3 (
(
n
2

)
− n

2 − 6), with a leave containing K4 − e.
This completes our determination of m(n, 3, K4 − e). We summarize our results
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above as follows.
Theorem 4.5. For all n ≥ 0, we have m(n, 3, K4 − e) = 1

3 (
(
n
2

)
− f(n)), where

f(n) =


n/2 + 6 if n ≡ 0 or 2 (mod 6),
9 if n ≡ 1 or 3 (mod 6),
n/2 + 4 if n ≡ 4 (mod 6),
7 if n ≡ 5 (mod 6).

5. Determining T (n,F(4), 2). We now determine T (n,F(4), 2).

5.1. The case n ≡ 1 or 4 (mod 12). The leave L = (X, E) of a 2-(n, 4, 1)
packing must satisfy:

(i) |E| ≡ 0 (mod 6), and
(ii) every vertex in L has degree ≡ 0 (mod 3).

Any leave of P containing K5−e or 2◦K4 as a subgraph and satisfying conditions (i)
and (ii) above has at least 18 edges. So m(n, 4, G) ≤ 1

6 (
(
n
2

)
− 18) for G ∈ {K5 − e, 2 ◦

K4}. We show below that this bound can be met with a finite number of possible
exceptions.

The cocktail party graph CP(n) is the unique (2n−2)-regular graph on 2n vertices.
We begin with an observation on CP(4) (shown in Figure 5.1).

Lemma 5.1. CP(4) contains an edge-disjoint union of a K5 − e and a K4.
Proof. Without loss of generality, we may take the vertex set and edge set of the

CP(4) as [8] and {A ⊂ [8] : |A| = 2} \ {{i, i + 4} : i ∈ [4]}, respectively. Consider
the subsets of edges E1 = {A ⊂ {1, 2, 3, 5, 8} : |A| = 2} \ {{1, 5}} and E2 = {A ⊂
{2, 4, 6, 7} : |A| = 2}. E1 is the edge set of a K5 − e, E2 is the edge set of a K4, and
they are disjoint.

Lemma 5.2. CP(4) contains an edge-disjoint union of a 2 ◦K4 and a K4.
Proof. Without loss of generality, we may take the vertex set and edge set of the

CP(4) as [8] and {A ⊂ [8] : |A| = 2} \ {{i, i + 4} : i ∈ [4]}, respectively. Consider the
subsets of edges E1 = {A ⊂ [4] : |A| = 2} ∪ ({A ⊂ [3, 6] : |A| = 2} \ {{3, 4}}) and
E2 = {A ⊂ {1, 6, 7, 8} : |A| = 2}. E1 is the edge set of a 2 ◦K4, E2 is the edge set of a
K4, and they are disjoint.

Lemma 5.3. Let G ∈ {K5 − e, 2 ◦ K4} and n ≡ 1 or 4 (mod 12). If there
exists a 2-(n, 4, 1) packing leaving CP(4), then there exists a 2-(n, 4, 1) packing of size
1
6 (
(
n
2

)
− 18) with a leave containing G.

Proof. A 2-(n, 4, 1) packing whose leave is CP(4) has size 1
6 (
(
n
2

)
− 24). We have

seen from Lemmas 5.1 and 5.2 that we can add one more block of size four to this
packing to give a 2-(n, 4, 1) packing with a leave containing G.

In view of the above lemma, we now focus on constructing 2-(n, 4, 1) packings
leaving CP(4).

Lemma 5.4. Let n ≥ 6. If there exists a PBD(n + f, {4, f?}), then there exists a
2-(4n + f, 4, 1) packing leaving CP(4).

Fig. 5.1. CP(4).
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Fig. 5.2. K3,4 + 3e.

Proof. Take a TD(4, n)−TD(4, 2) (X,G, H,A), which exists by Theorem 2.11, and
for each G ∈ G, let (G∪F,AG) be a PBD(n+f, {4, f?}), where F is the block of size f
in the PBD. Consider the set system (Y,B), where Y = X∪F , and B = A∪(∪G∈GAG)
(note that the block of size F is included only once). (Y,B) is a 4-graph of order 4n+f
having the property that every 2-subset of X ∪ F is contained in exactly one block
of B, except for those 2-subsets {a, b}, with a ∈ G ∩ H and b ∈ G′ ∩ H for distinct
G, G′ ∈ G, which are not contained in any blocks of B. (Y,B) therefore gives the
required 2-(4n + f, 4, 1) packing leaving CP(4).

Lemma 5.5. Let n ≡ 1 or 4 (mod 12) such that n ≥ 40 and n 6∈ {73, 76, 85}.
Then there exists a 2-(n, 4, 1) packing leaving CP(4).

Proof. Taking a PBD(n + f, {4, f?}), with (n, f) ∈ {(9,4), (12,1), (13,0), (15,1),
(16,0), (21,4), (24,1), (25,0), (27,1), (28,0)}, whose existence is provided by Theorem
2.4, and applying Lemma 5.4 give 2-(n, 4, 1) packings leaving CP(4) for n ∈ {40, 49,
52, 61, 64, 88, 97, 100, 109, 112}. By Theorem 2.4, there exists a PBD(n, {4, 40?})
for all n ≡ 1 or 4 (mod 12) and n ≥ 121. Break up the block of size 40 in this PBD
with the blocks of a 2-(40, 4, 1) packing leaving CP(4) to obtain a 2-(n, 4, 1) packing
leaving CP(4).

Corollary 5.6. Let n ≡ 1 or 4 (mod 12) such that n ≥ 40 and n 6∈ {73, 76, 85}.
Then m(n, 4, G) = 1

6 (
(
n
2

)
− 18) for G ∈ {K5 − e, 2 ◦K4}.

5.2. The case n ≡ 7 or 10 (mod 12). The leave L = (X, E) must satisfy:
(i) |E| ≡ 3 (mod 6), and
(ii) every vertex in L has degree ≡ 0 (mod 3).
We first consider the case when L contains K5 − e. Any such L satisfying the

conditions (i) and (ii) above must have at least 15 edges. So m(n, 4, K5 − e) ≤
1
6 (
(
n
2

)
− 15).

When L contains 2 ◦K4, L must also have at least 15 edges. Suppose L contains
2 ◦K4 and has 15 edges. Then L must have at least two vertices, each of degree at
least six. Let a be the number of degree three vertices, and let b be the number of
vertices with degree greater than three in L. Then we have 3a + 6b ≤ 30 (counting
the edges), b ≥ 2 (considering the two vertices of degree five in 2 ◦K4), and a + b ≥ 7
(considering the presence of vertices with degree at least six). These inequalities
imply that 2 ≤ b ≤ 3 and a + b ≤ 8. So the possible degree sequences for L are
D1 = (6, 6, 6, 3, 3, 3, 3) and D2 = (6, 6, 3, 3, 3, 3, 3, 3). Note that we suppress including
vertices of degree zero in the degree sequence of L. There is a unique graph with
degree sequence D1, namely, the graph in Figure 5.2, obtained by adding to K3,4

three edges connecting the vertices in the part of the bipartition with three vertices.
This graph does not contain 2 ◦K4. Hence, L cannot have degree sequence D1. If L
contains 2 ◦K4 and has degree sequence D2, then since 2 ◦K4 has degree sequence
(5, 5, 3, 3, 3, 3), the two vertices of nonzero degree not in 2◦K4 cannot both be adjacent
to the two vertices of degree five in 2◦K4. But this prevents these two vertices having
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degree three, a contradiction. Hence L cannot have degree sequence D2. It follows
that the leave of any 2-(n, 4, 1) packing containing 2◦K4 must have at least 21 edges,
and we have m(n, 4, 2 ◦K4) ≤ 1

6 (
(
n
2

)
− 21).

The following shows that these bounds can be met.
Lemma 5.7. K7 contains an edge-disjoint union of a K5 − e and a K4.
Proof. Take the vertex set of the K7 as [7]. Consider the subsets of edges E1 =

{A ⊂ [5] : |A| = 2} \ {{4, 5}} and E2 = {A ⊂ [4, 7] : |A| = 2}. Then E1 is the edge set
of a K5 − e, E2 is the edge set of a K4, and they are disjoint.

Lemma 5.8. Let n ≡ 7 or 10 (mod 12) such that n ≥ 7 and n 6∈ {10, 19}. Then
m(n, 4, K5 − e) = 1

6 (
(
n
2

)
− 15).

Proof. Let (X,A) be a PBD(n, {4, 7?}) with F as the block of size seven, whose
existence is provided by Theorem 2.4, and let B be any 4-subset of F . Then (X, (A∪
{B})\{F}) is a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
−15) leaving K7−K4, which contains

K5 − e by Lemma 5.7.
Lemma 5.9. Let n ≡ 7 or 10 (mod 12) such that n ≥ 7 and n 6∈ {10, 19}. Then

m(n, 4, 2 ◦K4) = 1
6 (
(
n
2

)
− 21).

Proof. Observe that any 2-(n, 4, 1) packing leaving K7 has size 1
6 (
(
n
2

)
− 21). The

theorem now follows for n = 7 trivially and for n ≥ 22 from the existence of a
PBD(n, {4, 7?}) provided by Theorem 2.4.

5.3. The case n ≡ 2, 5, 8, or 11 (mod 12). The leave L = (X, E) must have
vertices all of degree 1 (mod 3). Furthermore, |E| ≡ 1 (mod 6) when n ≡ 2 or 11
(mod 12), and |E| ≡ 4 (mod 6) when n ≡ 5 or 8 (mod 12).

If L contains K5 − e, then L must have at least five vertices, each of degree at
least four and the remaining vertices each of degree at least one. Hence, L must have
at least 1

2 (n+15) edges when n ≡ 5 or 11 (mod 12) and at least 1
2 (n+24) edges when

n ≡ 2 or 8 (mod 12). Consequently,

m(n, 4, K5 − e) ≤

{
1
6 (
(
n
2

)
− n+15

2 ) if n ≡ 5 or 11 (mod 12),
1
6 (
(
n
2

)
− n+24

2 ) if n ≡ 2 or 8 (mod 12).

If L contains 2◦K4, then L must have at least two vertices, each of degree at least
seven, at least four vertices each of degree at least four, and the rest of the vertices
each of degree one. Hence, L must have at least 1

2 (n + 24) edges when n ≡ 2 or 8
(mod 12) and at least 1

2 (n + 27) edges when n ≡ 5 or 11 (mod 12). Consequently,

m(n, 4, 2 ◦K4) ≤

{
1
6 (
(
n
2

)
− n+24

2 ) if n ≡ 2 or 8 (mod 12),
1
6 (
(
n
2

)
− n+27

2 ) if n ≡ 5 or 11 (mod 12).

These bounds can be met with the following constructions.

5.3.1. The value of m(n, 4, K5 − e).
Lemma 5.10. Let n ≡ 5 or 11 (mod 12) such that n = 5 or n ≥ 23. Then we

have m(n, 4, K5 − e) = 1
6 (
(
n
2

)
− 1

2 (n + 15)).
Proof. Let (X,G,A) be a {4}-GDD of type 2(n−5)/251, which exists by Theorem

2.7. Then (X,A) is a 2-(n, 4, 1) packing of size 1
6 (
(
n
2

)
− 1

2 (n + 15)) with a leave
containing K5, and hence K5 − e.

Lemma 5.11. There exists a 2-(14, 4, 1) packing of size 12 having a leave con-
taining K5 − e.
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Proof. Let (X,A) be a maximum 2-(13, 4, 1) packing, which has size 13 by Theo-
rem 2.2. Let ∞ 6∈ X and A ∈ A. Then (X ∪{∞},A\{A}) is a 2-(14, 4, 1) packing of
size 12 with a leave containing K5 (whose edges are the 2-subsets of A ∪ {∞}).

Lemma 5.12. Let n ≡ 2 or 8 (mod 12) such that n = 14 or n ≥ 44. Then we
have m(n, 4, K5 − e) = 1

6 (
(
n
2

)
− 1

2 (n + 24)).
Proof. Let (X,G,A) be a {4}-GDD of type 2(n−14)/2141, which exists by Theorem

2.9. Let G ∈ G be the group of cardinality 14, and let (G,B) be a 2-(14, 4, 1) packing
of size 12 having a leave containing K5 − e, whose existence is provided by Theorem
5.11. Then (X,A ∪ B) is a 2-(n, 4, 1) packing having a leave containing K5 − e. The
size of this packing is 1

6 (
(
n
2

)
− 1

2 (n− 14)−
(
14
2

)
) + 12 = 1

6 (
(
n
2

)
− 1

2 (n + 24)).

5.3.2. The value of m(n, 4, 2 ◦K4).
Lemma 5.13. If there exists a {4}-GDD of type [g1, . . . , gs] with s ≥ 3 and a

{4}-GDD of type 2gi/2+1 for each i ∈ [s], then there exists a 2-(n, 4, 1) packing of size
1
6 (
(
n
2

)
− 1

2 (n + 24)) with a leave contaning 2 ◦K4, where n = 2 +
∑s

i=1 gi.
Proof. Suppose that (X,G,A) is a {4}-GDD of type [g1, . . . , gs], where G =

{G1, . . . , Gs} and |Gi| = gi for i ∈ [s]. Let Y = {∞1,∞2}, where ∞1,∞2 6∈ X, and
let (Gi ∪ Y,HGi

,AGi
) be a {4}-GDD of type 2gi/2+1 such that{

Y ∈ HGi
if i ∈ [s− 2],

Y is contained in a block AGi
∈ AGi

if i ∈ {s− 1, s}.

Construct a 4-graph (X ∪ Y,B) of order 2 +
∑s

i=1 gi, where

B = A ∪

(
s⋃

i=1

AGi

)
\ {AGs−1 , AGs

}.

It is easy to see that (X ∪ Y,B) is a 2-(2 +
∑s

i=1 gi, 4, 1) packing. Also, the 2-subsets
of AGs−1 and AGs

are not contained in any blocks of B. So the leave of (X ∪ Y,B)
contains 2 ◦ K4 as a subgraph. It remains to compute the size of (X ∪ Y,B). The
2-subsets of X∪Y that are not contained in any blocks of B are precisely the elements
of HGi for i ∈ [s] and the 2-subsets of AGs−1 and AGs . Since Y appears precisely s
times among these 2-subsets, the total number of distinct 2-subsets of X ∪Y that are
not contained in any blocks of B is

∑s
i=1(gi/2 + 1) + 12− (s− 1) = n/2 + 12, where

n = 2 +
∑s

i=1 gi. Hence |B| = 1
6 (
(
n
2

)
− 1

2 (n + 24)), as required.
Lemma 5.14. If there exists a {4}-GDD of type [g1, . . . , gs] with s ≥ 3, a {4}-

GDD of type 2gi/2+1 for each i ∈ [s − 1], and a {4}-GDD of type 2(gs−3)/251, then
there exists a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
− 1

2 (n + 27)) with a leave containing
2 ◦K4, where n = 2 +

∑s
i=1 gi.

Proof. Suppose that (X,G,A) is a {4}-GDD of type [g1, . . . , gs], where G =
{G1, . . . , Gs} and |Gi| = gi for i ∈ [s]. Let Y = {∞1,∞2}, where ∞1,∞2 6∈ X, and
let (Gi ∪ Y,HGi

,AGi
) be a {4}-GDD of type 2gi/2+1 such that{

Y ∈ HGi
if i ∈ [s− 3],

Y is contained in a block AGi
∈ AGi

if i ∈ {s− 2, s− 1}.

Further, let (Gs ∪ Y,HGs
,AGs

) be a {4}-GDD of type 2(gs−3)/251 such that Y is
contained in the group H ∈ HGs

of cardinality five. Now form the 4-graph (X ∪Y,B)
of order 2 +

∑s
i=1 gi, where

B = A ∪

(
s⋃

i=1

AGi

)
∪ {H \ {∞1}} \ {AGs−2 , AGs−1}.
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It is easy to see that (X ∪ Y,B) is a 2-(2 +
∑s

i=1 gi, 4, 1) packing. Also, the 2-subsets
of AGs−1 and AGs

are not contained in any blocks of B. So the leave of (X ∪ Y,B)
contains 2 ◦ K4 as a subgraph. It remains to compute the size of (X ∪ Y,B). The
2-subsets of X∪Y that are not contained in any blocks of B are precisely the 2-subsets
of AGs−2 and AGs−1 and the 2-subsets of elements of HGi for i ∈ [s], except for the
2-subsets of H \ {∞1}. Since Y appears precisely s times among these 2-subsets, the
total number of distinct 2-subsets of X ∪ Y that are not contained in any blocks of
B is

∑s−1
i=1 (gi/2 + 1) + (gs − 3)/2 + (10 − 6) − 1 + 12 − (s − 1) = 1

2 (n + 27), where
n = 2 +

∑s
i=1 gi. Hence |B| = 1

6 (
(
n
2

)
− 1

2 (n + 27)), as required.
Corollary 5.15. For all n ≡ 2 (mod 12), n ≥ 50, there exists a 2-(n, 4, 1)

packing of size 1
6 (
(
n
2

)
− 1

2 (n + 24)) with a leave containing 2 ◦K4.
Proof. Apply Lemma 5.13 with {4}-GDDs of type 12(n−2)/12 and type 27, which

exist by Theorem 2.6.
Corollary 5.16. For n = 29 and for all n ≡ 5 (mod 12), n ≥ 101, there exists

a 2-(n, 4, 1) packing of size 1
6 (
(
n
2

)
− 1

2 (n + 27)) with a leave containing 2 ◦K4.
Proof. Apply Lemma 5.14 with {4}-GDDs of type 12(n−29)/12271, which exists

by Theorem 2.10, {4}-GDDs of type 27, which exists by Theorem 2.6, and {4}-GDDs
of type 21251, which exists by Theorem 2.7.

Corollary 5.17. For n = 20 and for all n ≡ 8 (mod 12), n ≥ 68, there exists
a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
− 1

2 (n + 24)) with a leave containing 2 ◦K4.
Proof. Apply Lemma 5.13 with {4}-GDDs of type 12(n−20)/12181, which exists

by Theorem 2.10, and {4}-GDDs of types 27 and 210, which exists by
Theorem 2.6.

Corollary 5.18. For n = 23 and for all n ≡ 11 (mod 12), n ≥ 83, there exists
a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
− 1

2 (n + 27)) with a leave containing 2 ◦K4.
Proof. Apply Lemma 5.14 with {4}-GDDs of type 12(n−23)/12211, which exists

by Theorem 2.10, {4}-GDDs of type 27, which exists by Theorem 2.6, and {4}-GDDs
of type 2951, which exists by Theorem 2.7.

5.4. The case n ≡ 0, 3, 6, or 9 (mod 12). The leave L = (X, E) must have
vertices all of degree 2 (mod 3). Furthermore, |E| ≡ 0 (mod 6) when n ≡ 0 or 9 (mod
12), and |E| ≡ 3 (mod 6) when n ≡ 3 or 6 (mod 12).

If L contains K5 − e or 2 ◦ K4, then L must have at least six vertices each of
degree at least five and the remaining vertices each of degree at least two. Hence, L
must have at least n + 9 edges when n ≡ 6 or 9 (mod 12) and at least n + 12 edges
when n ≡ 0 or 3 (mod 12). Consequently, for G ∈ {K5 − e, 2 ◦K4}, we have

m(n, 4, G) ≤


1
6 (
(
n
2

)
− (n + 9)) if n ≡ 6 or 9 (mod 12),

1
6 (
(
n
2

)
− (n + 12)) if n ≡ 0 or 3 (mod 12).

These bounds can again be met with the following constructions.
Lemma 5.19. For n = 6 and for all n ≡ 6 or 9 (mod 12), n ≥ 21 there

exists a 2-(n, 4, 1) packing of size 1
6 (
(
n
2

)
− (n + 9)) with a leave containing G, where

G ∈ {K5 − e, 2 ◦K4}.
Proof. Let (X,G,A) be a {4}-GDD of type 3(n−6)/361, which exists by Theorem

2.8. Then (X,A) is a 2-(n, 4, 1) packing with a leave containing K6, and hence K5−e
and 2 ◦ K4. The size of (X,A) is easily verified: |A| = 1

6 (
(
n
2

)
− n−6

3

(
3
2

)
−
(
6
2

)
) =

1
6 (
(
n
2

)
− (n + 9)).

Lemma 5.20. There exists a 2-(15, 4, 1) packing of size 13 with a leave containing
G, where G ∈ {K5 − e, 2 ◦K4}.
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Proof. The 13 blocks of a 2-(15, 4, 1) packing with a leave containing K5 − e are

{2,6,13,14}, {3,6,9,10}, {4,7,9,13}, {4,5,6,12}, {1,6,11,15},
{3,7,11,14}, {2,7,8,15}, {1,8,9,14}, {3,12,13,15}, {2,9,11,12},
{1,7,10,12}, {5,10,14,15}, {5,8,11,13}.

The 13 blocks of a 2-(15, 4, 1) packing with a leave containing 2 ◦K4 are

{1,8,12,13}, {6,8,11,14}, {4,6,9,15}, {3,7,8,9}, {2,8,10,15},
{2,9,13,14}, {4,5,7,14}, {1,6,7,10}, {1,5,11,15}, {2,7,11,12},
{4,10,11,13}, {3,12,14,15}, {5,9,10,12}.

Lemma 5.21. For all n ≡ 0 or 3 (mod 12), n ≥ 48, there exists a 2-(n, 4, 1)
packing of size 1

6 (
(
n
2

)
−(n+12)) with a leave containing G, where G ∈ {K5−e, 2◦K4}.

Proof. Let (X,G,A) be a {4}-GDD of type 3(n−15)/3151, which exists by Theorem
2.8. Let Y be the group of cardinality 15 in G and (Y,B) be a 2-(15, 4, 1) packing of
size 13 with a leave containing G, which exists by Lemma 5.20. Then (X,A∪B) is a
2-(n, 4, 1) packing with a leave containing G. The size of (X,A∪B) is easily verified:
|A ∪ B| = 1

6 (
(
n
2

)
− n−12

3

(
3
2

)
− 2
(
6
2

)
) + 13 = 1

6 (
(
n
2

)
− (n + 12)).

5.5. Remaining small orders. The values of n for which m(n, 4, K5 − e) and
m(n, 4, 2 ◦K4) remain undetermined are as follows:

Unsettled n
m(n, 4, K5 − e) 8 9 10 11 12 13 16 17 18 19 20 24 25

26 27 28 32 36 37 38 39 73 76 85
m(n, 4, 2 ◦K4) 8 9 10 11 12 13 14 16 17 18 19 24 25

26 27 28 32 35 36 37 38 39 41 44 47 53
56 59 65 71 73 76 77 85 89

For n = 19, we have the following tighter upper bound.
Lemma 5.22. For G ∈ {K5 − e, 2 ◦K4}, we have m(19, 4, G) ≤ 24.
Proof. Suppose we have a 2-(19, 4, 1) packing of size 25 with a leave containing

G, and then we can add a K4 in G to this packing, giving a 2-(19, 4, 1) packing of size
26. This is a contradiction, since D(19, 4, 2) = 25.

For values of n < 16, it is possible to determine m(n, 4, G), G ∈ {K5− e, 2 ◦K4},
via exhaustive search. Let H be a specific subgraph of Kn isomorphic to G. We form
a graph Γn whose vertex set is the set of all K4’s of Kn −H, and two vertices in Γn

are adjacent if and only if the corresponding K4’s are edge-disjoint. Then m(n, 4, G)
is equal to the size of a maximum clique in Γn. We used Cliquer, an implementation
of Österg̊ard’s exact algorithm for maximum cliques [12], to determine the size of
maximum cliques in Γn, for n ≤ 15.

When n ≥ 16, it is infeasible to use Cliquer, so we resort to a stochastic local
search heuristic to construct packings of the required size directly. The results of our
computation are summarized in Table 5.1, while the blocks of the actual packings are
listed in Appendices A and B.
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Table 5.1
Values of m(n, 4, K5−e) and m(n, 4, 2◦K4) for some small values of n. A blank entry indicates

an unknown value.

n
n 8 9 10 11 12 13 16 17 18 19 20 24 25

m(n, 4, K5 − e) 1 2 3 4 6 9 21 24 28 40
n 26 27 28 32 36 37 38 39 73 76 85

m(n, 4, K5 − e) 50 52 97

n 8 9 10 11 12 13 14 16 17 18 19 24 25
m(n, 4, 2 ◦K4) 1 2 3 4 6 9 11 21 24 40

n 26 27 28 32 35 36 37 38 39 41 44 47 53
m(n, 4, 2 ◦K4) 52

n 56 59 65 71 73 76 77 85 89
m(n, 4, 2 ◦K4)

5.6. Piecing things together. The results in previous subsections can be sum-
marized as follows.

Theorem 5.23. For all n ≥ 5, we have m(n, 4, K5 − e) = 1
6 (
(
n
2

)
− f(n)), where

f(n) =



18 if n ≡ 1 or 4 (mod 12), n 6= 13,
15 if n ≡ 7 or 10 (mod 12), n 6∈ {10, 19},
(n + 24)/2 if n ≡ 2 or 8 (mod 12), n 6= 8,
(n + 15)/2 if n ≡ 5 or 11 (mod 12), n 6= 11,
n + 9 if n ≡ 6 or 9 (mod 12), n 6= 9,
n + 12 if n ≡ 0 or 3 (mod 12), n 6= 12,
22 if n = 8,
24 if n = 9,
27 if n = 10,
31 if n = 11,
30 if n = 12,
24 if n = 13,
27 if n = 19,
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except possibly for n ∈ {16, 17, 25, 28, 32, 37, 38, 39, 73, 76, 85}.
Theorem 5.24. For all n ≥ 6, we have m(n, 4, 2 ◦K4) = 1

6 (
(
n
2

)
− f(n)), where

f(n) =



18 if n ≡ 1 or 4 (mod 12), n 6= 13,
21 if n ≡ 7 or 10 (mod 12), n 6∈ {10, 19},
(n + 24)/2 if n ≡ 2 or 8 (mod 12), n 6∈ {8, 14},
(n + 27)/2 if n ≡ 5 or 11 (mod 12), n 6= 11,
n + 9 if n ≡ 6 or 9 (mod 12), n 6= 9,
n + 12 if n ≡ 0 or 3 (mod 12), n 6= 12,
22 if n = 8,
24 if n = 9,
27 if n = 10,
31 if n = 11,
30 if n = 12,
24 if n = 13,
25 if n = 14,
27 if n = 19,

except possibly for n ∈ {16, 17, 25, 26, 28, 32, 35, 36, 37, 38, 39, 41, 44, 47, 53, 56,
59, 65, 71, 73, 76, 77, 85, 89}.

6. Conclusion. Theorems 4.5, 5.23, and 5.24 can be expressed more succinctly
in terms of D(n, 3, 2) and D(n, 4, 2) as follows.

Theorem 6.1. For all n ≥ 4,

m(n, 3, K4 − e) + 2 =

{
D(n, 3, 2) if n ≡ 0, 2, or 5 (mod 6),
D(n, 3, 2)− 1 if n ≡ 1, 3, or 4 (mod 6).

Theorem 6.2. For all n ≥ 5,

m(n, 4, K5 − e) + 2 =



D(n, 4, 2) + 1 if n ≡ 5, 6, 7, 9, 10, or 11 (mod 12),
n 6∈ {9, 10, 11},

D(n, 4, 2) if n ≡ 0, 2, 3, or 8 (mod 12), n 6∈ {8, 12},
D(n, 4, 2)− 1 if n ≡ 1 or 4 (mod 12), n 6= 13,
n− 5 if n ∈ {8, 9, 10, 11},
8 if n = 12,
11 if n = 13,
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except possibly for n ∈ {16, 17, 25, 28, 32, 37, 38, 39, 73, 76, 85}.
Theorem 6.3. For all n ≥ 6,

m(n, 4, 2 ◦K4) + 2 =



D(n, 4, 2) + 1 if n ≡ 6 or 9 (mod 12), n 6= 9,
D(n, 4, 2) if n ≡ 0, 2, 3, 5, 7, 8, 10, or 11 (mod 12),

n 6∈ {8, 10, 11, 12, 14},
D(n, 4, 2)− 1 if n ≡ 1 or 4 (mod 12), n 6= 13,
n− 5 if n ∈ {8, 9, 10, 11},
8 if n = 12,
11 if n = 13,
13 if n = 14,

except possibly for n ∈ {16, 17, 25, 26, 28, 32, 35, 36, 37, 38, 39, 41, 44, 47, 53, 56,
59, 65, 71, 73, 76, 77, 85, 89}.

These have the following consequences.
Corollary 6.4. For all n ≥ 4, T (n,F(3), 2) = D(n, 3, 2).
Corollary 6.5. For all n ≥ 6,

T (n,F(4), 2) =



D(n, 4, 2) + 1 if n ≡ 5, 6, 7, 9, 10, or 11 (mod 12),
n 6∈ {9, 10, 11},

D(n, 4, 2) if n ≡ 0, 1, 2, 3, 4, or 8 (mod 12),
n 6∈ {8, 12, 13},

n− 5 if n ∈ {8, 9, 10, 11},
8 if n = 12,
11 if n = 13,

except possibly for n ∈ {16, 17, 25, 28, 32, 37, 38, 39, 73, 76, 85}.
Appendix A. Some maximum 2-(n, 4, 1) packings with a leave contain-

ing K5 − e.
In each case, the edges of the K5 − e in the leave are

(
[5]
2

)
\ {{4, 5}}.

A.1. The blocks of a maximum 2-(10, 4, 1) packing with a leave con-
taining K5 − e. {4, 5, 6, 7}, {3, 7, 8, 9}, {1, 6, 8, 10}.

A.2. The blocks of a maximum 2-(18, 4, 1) packing with a leave con-
taining K5 − e.

{4,8,12,16}, {3,6,7,8}, {3,11,13,16}, {2,9,15,16}, {10,11,12,14},
{2,7,11,17}, {4,9,13,14}, {1,6,9,17}, {5,13,17,18}, {3,14,15,17},
{2,8,14,18}, {4,7,10,15}, {2,6,10,13}, {1,8,11,15}, {4,6,11,18},
{5,8,9,10}, {1,10,16,18}, {5,7,14,16}, {3,9,12,18}, {1,7,12,13},
{5,6,12,15}.

A.3. The blocks of a maximum 2-(19, 4, 1) packing with a leave con-
taining K5 − e.

{8,14,17,18}, {2,9,13,14}, {3,7,12,14}, {1,10,14,19}, {4,5,10,18},
{4,6,14,16}, {6,11,18,19}, {4,11,13,17}, {3,8,15,19}, {5,12,13,19},
{1,9,12,18}, {3,13,16,18}, {2,7,15,18}, {3,9,10,17}, {4,7,9,19},
{2,16,17,19}, {5,6,7,17}, {2,6,8,12}, {10,12,15,16}, {7,8,10,13},
{5,8,9,16}, {5,11,14,15}, {1,7,11,16}, {1,6,13,15}.
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A.4. The blocks of a maximum 2-(20, 4, 1) packing with a leave con-
taining K5 − e.

{4,6,16,18}, {3,12,16,20}, {1,10,11,15}, {9,12,14,19}, {2,7,10,12},
{6,7,15,19}, {9,10,17,18}, {4,9,11,13}, {4,12,15,17}, {4,5,10,19},
{1,8,12,18}, {3,13,18,19}, {5,8,14,17}, {1,16,17,19}, {1,7,13,14},
{2,6,13,17}, {11,14,18,20}, {2,8,11,19}, {5,6,11,12}, {5,13,15,20},
{3,8,9,15}, {8,10,13,16}, {3,7,11,17}, {2,14,15,16}, {3,6,10,14},
{5,7,9,16}, {4,7,8,20}, {1,6,9,20}.

A.5. The blocks of a maximum 2-(24, 4, 1) packing with a leave con-
taining K5 − e.

{12,14,15,18}, {3,6,16,18}, {6,9,10,13}, {5,9,15,22}, {3,9,11,21},
{4,8,15,19}, {1,18,21,22}, {12,16,17,19}, {11,12,22,23}, {4,9,23,24},
{4,5,6,12}, {3,10,12,24}, {5,8,21,24}, {6,14,17,21}, {1,8,12,13},
{6,19,22,24}, {4,16,20,21}, {2,18,19,23}, {1,7,17,23}, {3,17,20,22},
{1,11,16,24}, {2,13,14,16}, {2,7,10,21}, {5,7,14,20}, {8,10,17,18},
{13,18,20,24}, {2,9,12,20}, {7,8,16,22}, {3,7,13,19}, {2,15,17,24},
{5,11,13,17}, {13,15,21,23}, {10,11,19,20}, {1,9,14,19}, {4,7,11,18},
{1,6,15,20}, {3,8,14,23}, {2,6,8,11}, {5,10,16,23}, {4,10,14,22}.

A.6. The blocks of a maximum 2-(26, 4, 1) packing with a leave con-
taining K5 − e.

{4,17,22,24}, {3,11,17,20}, {5,7,18,22}, {4,16,18,23}, {1,7,19,25},
{14,21,22,23}, {1,10,18,26}, {2,11,21,26}, {3,6,7,23}, {11,14,16,19},
{12,20,24,26}, {4,7,14,26}, {3,9,16,22}, {6,10,15,16}, {3,10,12,19},
{7,8,15,17}, {4,9,13,19}, {5,12,13,21}, {15,19,22,26}, {5,19,23,24},
{4,12,15,25}, {3,15,18,21}, {8,9,21,25}, {6,12,17,18}, {5,8,16,26},
{2,7,9,12}, {9,17,23,26}, {1,8,20,22}, {5,9,11,15}, {7,10,21,24},
{1,13,14,15}, {6,19,20,21}, {7,13,16,20}, {10,11,22,25}, {2,6,13,22},
{2,16,24,25}, {9,14,18,20}, {2,8,18,19}, {1,6,9,24}, {4,6,8,11},
{5,6,14,25}, {8,10,13,23}, {11,13,18,24}, {2,10,14,17}, {3,13,25,26},
{3,8,14,24}, {2,15,20,23}, {1,11,12,23}, {4,5,10,20}, {1,16,17,21}.

A.7. The blocks of a maximum 2-(27, 4, 1) packing with a leave con-
taining K5 − e.

{2,7,16,21}, {7,20,26,27}, {5,17,25,27}, {5,15,21,23}, {5,6,11,22},
{13,21,22,27}, {3,8,11,26}, {6,15,17,24}, {4,5,7,19}, {1,6,18,27},
{3,18,21,24}, {2,11,12,13}, {9,13,16,23}, {10,11,14,15}, {3,14,23,27},
{4,8,15,18}, {14,19,22,24}, {1,10,19,23}, {3,12,16,20}, {2,8,23,24},
{5,8,9,20}, {4,12,14,21}, {4,9,11,27}, {3,6,10,25}, {8,14,16,17},
{2,15,19,27}, {9,12,15,22}, {3,7,13,15}, {1,8,12,25}, {3,9,17,19},
{19,20,21,25}, {2,6,14,20}, {6,8,13,19}, {7,11,24,25}, {1,11,17,21},
{4,10,17,20}, {9,10,21,26}, {10,16,24,27}, {4,16,22,25}, {7,12,17,18},
{1,7,9,14}, {2,17,22,26}, {11,16,18,19}, {5,12,24,26}, {1,15,16,26},
{5,10,13,18}, {1,13,20,24}, {18,20,22,23}, {2,9,18,25}, {4,6,23,26},
{13,14,25,26}, {7,8,10,22}.
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A.8. The blocks of a maximum 2-(36, 4, 1) packing with a leave con-
taining K5 − e.

{7,10,17,35}, {11,15,26,36}, {6,16,25,29}, {1,12,24,28}, {3,13,34,35},
{30,31,35,36}, {21,23,28,34}, {1,14,19,35}, {8,9,28,32}, {15,18,21,25},
{3,18,26,27}, {1,8,25,30}, {3,10,23,29}, {6,28,30,33}, {15,19,23,24},
{4,14,17,34}, {7,13,26,28}, {10,19,22,36}, {6,11,12,34}, {1,7,11,29},
{5,13,17,25}, {14,24,26,31}, {13,19,27,29}, {1,20,23,26}, {2,22,31,34},
{14,23,25,36}, {5,16,24,33}, {4,18,29,33}, {4,21,26,32}, {8,22,26,29},
{9,11,22,25}, {12,18,20,32}, {2,11,20,21}, {11,13,31,32}, {10,14,30,32},
{3,9,33,36}, {3,11,24,30}, {24,29,32,36}, {7,18,24,34}, {7,19,21,31},
{3,7,12,25}, {2,8,13,24}, {2,7,14,16}, {5,7,8,20}, {10,11,16,28},
{5,6,18,31}, {8,11,14,18}, {3,17,19,32}, {10,20,25,31}, {4,5,11,19},
{16,18,19,30}, {16,20,34,36}, {3,6,15,20}, {4,8,10,12}, {6,9,13,14},
{9,17,20,24}, {13,20,22,33}, {4,6,7,36}, {1,13,18,36}, {5,26,30,34},
{1,6,22,32}, {16,21,27,35}, {12,13,21,30}, {2,9,18,35}, {12,17,29,31},
{8,17,21,36}, {7,9,23,30}, {20,28,29,35}, {2,15,29,30}, {4,20,27,30},
{1,15,16,17}, {1,9,27,31}, {4,15,28,31}, {12,14,15,33}, {9,12,19,26},
{25,26,33,35}, {6,10,24,27}, {3,14,21,22}, {2,23,32,33}, {5,14,27,28},
{5,12,22,23}, {25,27,32,34}, {3,8,16,31}, {4,13,16,23}, {8,19,33,34},
{2,6,17,26}, {5,15,32,35}, {2,19,25,28}, {9,10,15,34}, {6,8,23,35},
{1,10,21,33}, {7,15,22,27}, {4,22,24,35}, {11,17,27,33}, {2,12,27,36},
{5,9,21,29}, {17,18,22,28}.

Appendix B. Some maximum 2-(n, 4, 1) packings with a leave contain-
ing 2 ◦K4.

B.1. The blocks of a maximum 2-(18, 4, 1) packing with a leave con-
taining 2 ◦K4.

{3,9,10,12}, {1,7,9,16}, {4,7,17,18}, {1,5,13,17}, {5,9,11,14},
{1,6,14,18}, {4,6,8,9}, {2,7,10,14}, {3,14,16,17}, {5,8,10,18},
{1,8,12,15}, {6,10,15,17}, {3,7,8,13}, {3,11,15,18}, {6,7,11,12},
{2,12,16,18}, {10,11,13,16}, {2,8,11,17}, {2,9,13,15}, {4,5,15,16},
{4,12,13,14}.

B.2. The blocks of a maximum 2-(19, 4, 1) packing with a leave con-
taining 2 ◦K4.

{3,8,9,16}, {5,12,16,18}, {11,13,15,16}, {1,12,13,19}, {6,8,10,11},
{1,10,14,16}, {6,12,15,17}, {6,7,9,13}, {4,13,14,18}, {1,9,15,18},
{5,9,14,19}, {4,6,16,19}, {4,7,8,12}, {5,8,13,17}, {2,8,14,15},
{3,10,17,18}, {4,5,10,15}, {2,9,10,12}, {1,5,7,11}, {2,7,16,17},
{4,9,11,17}, {3,7,15,19}, {3,11,12,14}, {2,11,18,19}.
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B.3. The blocks of a maximum 2-(24, 4, 1) packing with a leave con-
taining 2 ◦K4.

{4,13,14,21}, {3,12,16,20}, {3,15,21,22}, {3,17,18,23}, {7,13,15,23},
{4,12,19,22}, {1,9,15,19}, {4,7,8,18}, {6,10,15,18}, {9,11,17,21},
{3,10,11,13}, {5,9,14,22}, {1,11,14,18}, {1,6,8,21}, {6,7,14,20},
{2,13,19,24}, {10,19,20,21}, {5,11,12,15}, {8,11,16,24}, {2,8,10,17},
{2,16,21,23}, {5,8,13,20}, {4,6,9,16}, {1,7,10,16}, {2,7,11,22},
{2,9,18,20}, {14,15,16,17}, {8,9,12,23}, {10,12,14,24}, {3,7,9,24},
{13,16,18,22}, {6,17,22,24}, {1,12,13,17}, {5,7,17,19}, {3,8,14,19},
{4,15,20,24}, {1,20,22,23}, {4,5,10,23}, {6,11,19,23}, {5,18,21,24}.

B.4. The blocks of a maximum 2-(27, 4, 1) packing with a leave con-
taining 2 ◦K4.

{6,12,17,21}, {1,5,10,19}, {4,8,10,27}, {4,14,21,22}, {19,21,24,25},
{2,11,23,26}, {3,10,20,24}, {3,9,15,21}, {12,20,26,27}, {8,11,12,25},
{10,15,18,26}, {3,8,19,26}, {4,11,13,20}, {9,22,24,26}, {3,7,22,27},
{1,15,22,23}, {5,14,24,27}, {3,12,14,23}, {9,12,13,19}, {2,9,17,27},
{3,13,18,25}, {4,7,12,15}, {6,14,16,20}, {5,7,9,11}, {6,15,25,27},
{10,17,22,25}, {5,20,23,25}, {2,10,12,16}, {4,6,18,19}, {5,12,18,22},
{3,11,16,17}, {6,8,13,22}, {1,13,16,27}, {2,13,15,24}, {5,8,15,17},
{5,16,21,26}, {13,14,17,26}, {7,10,13,21}, {2,19,20,22}, {1,6,11,24},
{7,17,18,20}, {1,8,20,21}, {1,7,25,26}, {11,14,15,19}, {4,9,16,25},
{7,16,19,23}, {8,16,18,24}, {11,18,21,27}, {4,17,23,24}, {1,9,14,18},
{2,7,8,14}, {6,9,10,23}.
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