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Abstract
We develop a new sparse spectral method, in which the Fast Fourier Transform (FFT) is

replaced by RA`SFA (Randomized Algorithm of Sparse Fourier Analysis); this is a sublinear
randomized algorithm that takes time O(B log N) to recover a B-term Fourier representation
for a signal of length N , where we assume B � N . To illustrate its potential, we consider the
parabolic homogenization problem with a characteristic fine scale size ε. For fixed tolerance
the sparse method has a computational cost of O(| log ε|) per time step, whereas standard
methods cost at least O(ε−d). We present a theoretical analysis as well as numerical results;
they show the advantage of the new method in speed over the traditional spectral methods
when ε is very small. We also show some ways to extend the methods to hyperbolic and
elliptic problems.

1 Introduction
Multiscale modeling and computation have attracted a huge amount of attention in recent years,
with the interest stemming mainly from multiscale problems in applied fields like materials sci-
ence, chemistry, complex fluids and biology. Multiscale problem involves phenomena taking place
on vastly different time and/or spatial scales. The influence of the small scales are important for
the large scale behaviour but they are very expensive to simulate directly with numerical methods.
For many practical problems, traditional computational methods are prohibitively expensive.

The goal of multiscale methods is to find an efficient way to incorporate the fine scales’ effect
in the numerical solution of the coarse dynamics. One way to do this is to analytically derive
“effective” equations, which model the fine scale effects. This is done for instance in averaging [2],
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homogenization [4], and boundary-layer analysis [22]. These techniques are very useful when they
are applicable. For general problems, however, there is typically no simple way to derive closed
effective models. Another approach is taken by a new class of numerical methods, which model the
fine scale effect numerically; in a sense they replace the manual derivation of effective equations
by direct numerical simulation of the fine scale equations in small domains over short time. Some
early examples of this type of methods are the Car-Parrinello method in quantum chemistry [8],
the Kinetic-Hydrodynamic Models of complex fluids [5] and the Quasi-Continuum method in
solid mechanics [29]. Recently a more comprehensive view of these approaches has been taken
and put in frameworks which more systematically exploit this idea. The “equation free” methods
of Kevrekidis et al. [30, 23] and the heterogeneous multiscale method [11, 12] are examples of
this. An overview listing more multiscale approaches is given in [10].

In this paper we will study the use of sublinear Fourier algorithms in the context of multiscale
problems. This is a recently developed type of discrete Fourier transform methods with a time
complexity significantly smaller than O(N) for an N -length signal, in particular much faster than
the standard fast Fourier transform (FFT); in the sublinear methods, not all modes are computed,
however. We focus here on the RA`SFA (Randomized Algorithm of Sparse Fourier Analysis)
algorithm, [15, 33, 16, 34]. RA`SFA computes a (near-)optimal B-term Fourier representation R
in time and space poly(B, | log δ|, log N, log M, 1/α), such that ||S−R||22 ≤ (1+α)‖S−PB(S)‖2

2,
with success probability at least 1−δ, where M is related to the machine precision of the computer,
and PB(S) is the optimal B-term Fourier representation of S (obtained by retaining only the B
frequency modes of S that have the largest amplitudes). The algorithm contains some random
elements (which do not depend on the signal); the approach guarantees that the error of estimation
is of order α‖S‖2

2 with probability exceeding 1− δ. The empirical experiments in [33, 34] presents
a practical (and improved) implementation of the algorithm, showing that it is of interest, i.e. it
outperforms the FFT for reasonably large N . It convincingly beats the FFT when the number of
grid points N is reasonably large. For an eight-mode signal (B = 8), the crossover point lies at
N ' 70, 000 in one dimension, and at N ' 900 for data on a N × N grid in two dimensions.
When B = 64, RA`SFA surpasses the FFT, in one dimension, at 3 × 107.

Our study will focus on a model multiscale problem in the form of the parabolic PDE

∂tu − ∂xa
ε(t, x)∂xu = 0, u(0, x) = f(x), (1)

with periodic boundary conditions, x ∈ [0, 2π) and aε(t, x + 2π) = aε(t, x). The coefficient aε is
bounded and uniformly positive,

0 < amin ≤ aε(t, x) ≤ amax, ∀t, x, (2)

where amin and amax are the minimum and maximum values of aε respectively. It is also assumed to
have a fine scale structure of characteristic length proportional to ε, or more precisely ∂p

xa
ε ∼ ε−p.

The typical example will be coefficients of the type aε = a(x, x/ε) or aε = a(x/ε) where a
is periodic in all arguments and 1/ε ∈ N. The solutions in this case have a smooth profile on
which rapid oscillations are superimposed; their period is proportional to ε. This problem has been
widely studied in the context of multiscale problems; indeed, the solution’s behavior when ε → 0
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is well understood through homogenization theory [4]. Numerically, the difficulty is related to the
smallness of ε; direct methods must resolve the ε-scale to be accurate and for a fixed tolerance the
computational cost is at least O(ε−d) in d dimensions. A number of methods have been proposed
and tested for this problem, such as finite elements methods with special multiscale basis functions,
[3, 18, 19, 20, 26] heterogeneous multiscale methods [1, 9, 27], equation free methods [28] and
wavelet based numerical homogenization [7, 6, 13].

In this paper we use a spectral method based on RA`SFA to solve (1). The main difference
from earlier methods is that a randomized sampling algorithm is used to identify an optimal repre-
sentation of the full solution; other methods either computes the representation explicitly or only
keep a representation of the coarse scales.

The classical spectral method [17, 32] approximates the solution with the N lowest Fourier
modes and computes the spatial derivatives by the FFT and the inverse FFT at each time step.
This gives a high accuracy compared to conventional difference methods. However, to capture the
micro-structure of length ε, the smallest length scale in the representation of the solution must be
at least of the same order, and we must take N ∼ 1/ε (see Corollary 3.3). It follows that for a fixed
tolerance, the computational cost of the spectral method would be O(ε−d| log ε|) per time step in d
dimensions. Hence, it is still very expensive to seek the solution of problem (1) when ε � 1.

A simple example will explain our motivation to replace FFT in the spectral method by RA`SFA.
We consider (1) with coefficient aε(x) = [1 + 0.5 sin(x

ε
)]−1, ε = 1/32 and initial data f(x) =

1 + 0.5 cos(x). We first solve it using a traditional spectral method and N = 512. The bottom left
subfigure in Figure 1 shows a snapshot of the solution at t = 3.2. The top left subfigure shows the
strength of the Fourier modes of the solution as a function of time; the gray scale level indicates
their absolute value (in log scale) from t = 0 (top) to t = 3.2 (bottom). It is clear that not only
the diffusion coefficient aε and the initial condition f , but also the full the solution u are well ap-
proximated by a sparse Fourier representation. We then make a second experiment, where these
functions are instead represented by only the 17 largest modes; the identity of these modes may
change over time. In each time step we approximate the time derivative using RA`SFA. Details
are given in Section 2.2. The corresponding results are shown in the top right and bottom left sub-
figures. At the scale of the plot, the results coincide. The precise difference between the RA`SFA
solution and the FFT solution is shown in the bottom right subfigure in log scale.

For this test we are thus able to get a very good solution with B � 1/ε modes if they are chosen
as the largest modes of the solution. The numerical results are qualitatively the same when we take
aε = a(x, x/ε), and we also observe that the number of modes needed for a certain tolerance does
not seem to increase when ε becomes smaller. These numerical results stimulate us to explore the
sparse spectral method further. With just B � N modes in the representation of the solution the
time complexity of the sparse spectral method is only poly(B, | log ε|, 1/α, | log δ|) per time step,
or to find a near-optimal B-term Fourier representation of the initial condition f and the coefficient
function aε. For small ε it thus outperforms the traditional spectral method in cost per time step if
B depends only mildly on ε.

In this paper we study periodic problems with distinct scale separation of the type (1). We
perform numerical experiments and analysis of a simplified setting. The results show that it is
indeed possible to solve these problems at a computational cost that is essentially independent
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Figure 1: Comparison of a numerical solution to (1) with the traditional and sparse spectral method:
size of Fourier modes for t ∈ [0, 3.2] (top), solution at t = 3.2 (bottom left) and approximation
error at t = 3.2 (bottom right).
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of the small scale parameter, for fixed accuracy. We hope that these results will carry over to
more complex problems where the Fourier modes of the solution cluster around a limited number
of frequencies, including problems with time-dependent coefficients and nonlinear terms. More
elaborate schemes will undoubtedly be needed for these problems though.

This paper is organized as follows. In Section 2, we discuss the standard spectral method for
(1) and introduce a new sparse spectral method based on the RA`SFA algorithm. In Section 3, we
analyze the approach in the simplified setting of fixed projections and show that the computational
cost to achieve a given tolerance is much lower for the sparse spectral method. Next, in Section 4,
we give some numerical results for the error analysis. Finally, we show some ways to extend the
methods to elliptic and hyperbolic problems in Section 5.

2 Sparse Spectral Methods
In this section we discuss spectral methods for the parabolic PDE

∂tu − ∂xa
ε(x)∂xu = 0, u(0, x) = f(x). (3)

We will compare a standard spectral method with a new sparse spectral method.
We discretize time uniformly with time step ∆t and denote tn = n∆t. We let Un(x) be the

approximation of the exact solution at t = tn so that Un(x) ≈ u(tn, x). This approximate solution
will be band-limited with respect to x, uniformly in t; as a result, we can restrict ourselves to a
uniform spatial grid {xj} in x, with N = J/ε points along each dimension and spacing ∆x = ε/J
for some constant J . We also denote the 1-dimensional sphere (i.e. [0, 2π], periodized) by S.

We frequently consider L2 functions on S and for such a function f(x) we generically denote
its Fourier coefficients by f̂k,

f(x) =
∑

k

f̂ke
ikx.

The norm || · ||m will denote the Hm Sobolev norm, and without subscript, the norm ‖ · ‖ always
means the L2 norm.

2.1 Standard spectral method
There are many versions of spectral schemes for (3). We take a very simple representative. The
spatial approximation will be made with the low frequency projection

(PNf)(x) =
∑

|k|<N/2

f̂ke
ikx, f(x) =

∑

k

f̂ke
ikx. (4)

Hence, PN constructs a Fourier representation by simply taking the N Fourier modes with the
lowest frequencies. This gives a very high (“spectral”) accuracy in space. We combine the
low-frequency projection with a forward Euler discretization in time to get our standard spectral
scheme:

Un+1 = PN [Un + ∆t∂xã
ε∂xU

n] , U0 = PNf, ãε = PNaε.
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The solution can be represented by N Fourier modes. By using the fast Fourier transform, spatial
derivatives, the projection PN and the multiplication ãε∂xUn can all be computed in O(N log N)
time. As we shall see below in Corollary 3.3, one typically needs to take N ∼ ε−1 to maintain
fixed accuracy when ε → 0.

2.2 Sparse spectral method
In this case we replace the projection PN by a RA`SFA based projection. Put simply, we will
project on the largest modes instead of the lowest modes as in the standard spectral method. This
implies that the set of the significant modes may vary in each time step, which is attractive in the
sense that the approximation adapts to the solution. If the functions f , aε and the solution uε can
be well represented by a few judicially chosen modes, the sparse method will have a small local
truncation error. Since the scheme is also stable (see Section 2.3), we expect a convergent method.
We are, however, not able to conclude this rigorously, as the scheme is nonlinear and difficult to
analyse, but a simplified analysis is given in Section 3.

We introduce the projection operator PB, which finds the best B-term Fourier representation
R(x) for some fixed B. In precise notation a linear projection operator P̄B is constructed from an
L2 function f and is subsequently applied to a, possibly different, function g, as follows:

(P̄B(f)g)(x) = R(x) =
B
∑

`=1

ĝk`
eik`x,

where k1, . . . , kB are the B largest modes of f ,

{k1, . . . , kB} = MB(f) := argmax
Λ ⊂ Z

#Λ=B

∑

k∈Λ

|f̂k|
2. (5)

The operator PB is then defined as PB(f) := P̄B(f)f .

Remark Note that PB is indeed a projection since MB(P̄B(f)f) = MB(f) and therefore PB ◦
PB(f) = P̄B(P̄B(f)f)f = PB(f). The operator PB is however not linear: the number B,
of modes is fixed, but not the identity of the modes, so that PB(f + g) 6= PB(f) + PB(g) in
general. (For a fixed f the operator P̄B(f) is clearly linear though.) Moreover, if B is kept fixed,
multiplication and addition operations may lead to undesirable growth of errors. For example, let
B = 2. Suppose f = φ3 + 0.9φ7 and g = φ1 + 0.8φ4. Then P2(f) = f and P2(g) = g. However,
P2(f +g) = φ1 +φ3 6= P2(f)+P2(g) and the relative error ||f +g−P2(f +g)||/‖f +g‖ = 0.42
is quite large.

The sparse scheme then reads

Un+1 = PB (PN [Un + ∆t∂xã
ε∂xU

n]) , U0 = PB(PNf), ãε = PB(PNaε). (6)

In each step the solution is represented by B � N modes, whose identity may change over time.
We assume that we have N -term approximations of aε and f . By applying RA`SFA to these N -
term approximations we can then obtain (near-optimal) B-term Fourier representations. In other
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words, RA`SFA can be used to approximate the PB(PN · ) projection operator. The complexity
for this is O(B log N). In subsequent steps Un and ãε are both supported on a maximum of B
modes. Consequently, Un +∆t∂xã

ε∂xU
n is supported on a maximum of B +B2 modes. Applying

PB to such a short signal is easier and the RA`SFA algorithm is not necessary: in every time step,
we compute the coefficients of the B + B2 modes by simple convolution, we sort them, and retain
only the largest B; this can be done in O(B2 log B) time. Hence, the complexity is O(B log N)
for the initial data and O(B2 log B) for every subsequent time step.

Alternatively, if the samples of aε are given, then these values can be used whenever we need
to estimate, e.g., samples of aε(x)∂xU

n(x), without explicitly decomposing aε(x) into its most
important modes. In this case we can use RA`SFA in each time step. Since U n(x) is supported
on at most B modes the sampling cost is O(B), and we get a O(B2 log N) cost in each time step.
This more expensive strategy may be necessary when aε is time-dependent.

Remark We may get good approximation of aε with much fewer modes than needed for the Un.
In this case, we could introduce two numbers, Ba and BU , giving the number of modes we retain
for aε and Un, respectively. Then the first method would require O(BaBU log BU ) cost for all time
steps after the first (assuming Ba � BU ), the second method O(B2

U log N).

Remark The sparse scheme may be seen as an adaptive Galerkin method, where the approxima-
tion subspace is spanned by a set of Fourier modes that can change in every time step. RA`SFA
provides the adaptation algorithm, driving the method to use subspaces corresponding to the largest
Fourier modes of the solution.

One can also improve the projection and use a projection which also takes into account the size
of the time-derivative of the solution. Let Q̄B be defined as

Q̄B(f)g =

B′
∑

`=1

ĝk`
eik`x, (k1, . . . , kB′) = MB(f) ∪MB(∂xa

ε∂xf),

with MB defined in (5). Then we set QB(f) := Q̄B(f)f . Hence, when v solves (1), then QB(v)
projects v on the largest modes of v and vt. By replacing PB with QB in the adaptive scheme we
get the improved sparse spectral scheme

Un+1 = QB (PN [Un + ∆t∂xã
ε∂xU

n]) , U0 = QB(PNf). (7)

The complexity for this scheme is similar to the one above.

2.3 Stability
The numerical stability of the sparse scheme can be studied as follows. For any function u(x) one
can easily derive that, as long as aε > 0,

〈u, ∂xa
ε∂xu〉 = −〈ux, a

εux〉 = −〈
1

aε
aεux, a

εux〉 ≤ −
1

amax
||aεux||

2,
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and
||PN∂xu||

2 =
∑

|k|<N/2

k2û2
k ≤

N2

4

∑

|k|<N/2

û2
k =

N2

4
||PNu||2.

All the spectral schemes discussed above can be written on the form

Un+1 = P n+1W n+1, W n+1 = Un + ∆t∂xa
ε∂xU

n, PNP n = P n.

The standard spectral scheme uses simply P n = PN , while the sparse scheme has P n = P̄B(PNW n)
or P n = Q̄B(PNW n). Clearly, PNP n = P n implies PNUn = Un. Therefore, as long as ãε keeps
the positivity imposed on the exact aε, we will have

||Un+1||2 = ||P n+1W n+1||2 ≤ ||W n+1||2

= ||Un||2 + 2∆t〈Un, ∂xã
ε∂xU

n〉 + (∆t)2||∂xã
εUn

x ||
2

≤ ||Un||2 − 2∆t
1

ãmax
||ãε∂xU

n||2 +

(

N∆t

2

)2

||ãε∂xU
n||2

= ||Un||2 − ∆t||ãε∂xU
n||2

(

2

ãmax
−

N2∆t

4

)

.

This shows that all the spectral schemes are stable as long as the CFL condition

∆t ≤
8

N2ãmax

,

holds and the approximated coefficient stays positive, ãε(x) > 0 for all x.

Remark As we see this puts a severe constraint on the time step also for the sparse spectral
scheme. In fact, the time step must be taken proportional to N−2 which, as we will see below,
amounts to ∆t ∼ ε2 if we shall maintain a fixed accuracy when ε → 0. In this paper, however, we
are not concerned with the trade-off between complexity and accuracy in the time-stepping, just in
the spatial approximation.

In principle there are ways to deal with the small scale also in the time-stepping. Implicit
schemes will alleviate the stability constraint but in general we will still need to take ∆t ∼ ε to
maintain accuracy since uε

t ∼ ε−1. When aε varies slowly in time one can, however, do better.
Then it is not necessary to update the projection in every time step and one can consider schemes
of the following type: Initial data is approximated as

U0 = QB(f), Q0 = Q̄B(f).

For n > 0, we compute recursively

∂tv
n − Qn∂xa

ε(tn, x)∂xv
n = 0, vn(0, x) = Un(x), (8)

and
Un+1 = QB(vn(∆t, ·)), Qn+1 = Q̄B(vn(∆t, ·)).
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This is accurate if we take ∆t ∼ 1/|aε
t |, which is assumed independent of ε. Moreover, since

QnUn = Un,
1

2

d

dt
||vn(t, ·)||2 = 〈vn, vn

t 〉 = −〈Qnvn
x , aεQnvn

x〉 ≤ 0,

and therefore
||Un+1||2 ≤ ||vn(∆t, ·)||2 = ||vn(0, ·)||2 = ||Un||2.

Thus, the scheme is unconditionally stable and we can take ∆t as large as we like. As for com-
plexity, (8) can in principle be solved exactly at ε-independent cost. It reduces to a linear ODE for
the B modes in Qn, with a B × B system matrix. One could also potentially use adaptive implicit
ODE-methods or projective integration techniques to solve (8) at a cost independent of ε. We will,
however, not pursue these possibilities in the present paper.

Remark The RA`SFA algorithm only gives an approximation of PB(PN · ) and is only reliable
with some fixed probability. This introduces additional errors in the computations, in particular if
RA`SFA is used in every time step. The approximation error ε can be set in the algorithm, and also
the success probability 1 − δ. The latter will cause O(1) errors in the approximation on average
δ/∆t times when RA`SFA is called every time step. We will not analyse these errors in detail, but
note that if the scheme we use is stable their effect should be limited if we take e.g. ε, δ ∼ ∆t2.
With some adaptation of RA`SFA to the present case one could probably use larger ε, δ.

3 Analysis for Fixed Projections
Numerical tests indicate that our sparse spectral scheme very quickly settles on a projection which
does not change much when aε is time-independent. (See e.g Figure 1.) As a first step it therefore
makes sense to study the case when we have a fixed (time-independent) projection, but not neces-
sarily just a low-frequency projection. In this section we shall study this case. Since the projection
is fixed we can consider semi-discrete schemes where time is continuous. More precisely, we shall
be interested in approximating (1) by spectral schemes of the form

∂tv − P∂xa
ε(t, x)∂xv = 0, v(0, x) = v0(x), P v0 = v0, (9)

where P is a time-independent projection of L2(S) to a finite-dimensional subspace, and as before,
0 < amin ≤ aε(t, x) ≤ amax. The typical situation below is that P is a projection on a certain
set of Fourier modes. If P projects on all modes smaller than a number N , this is the classical
(semidiscrete) spectral scheme.

3.1 General error analysis
Let us first state a general theorem on the approximation quality of v(x) in (9) compared to the
solution u(x) of (1). The statement is similar to Céa’s Lemma in finite element analysis, in the
sense that they both relate the approximation error of the exact solution in the chosen subspace to
the error in the numerical solution.
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Theorem 3.1. Suppose P is a time-independent, linear and orthogonal projection operator on
L2(S). Let e = u − v be the difference between the spectral and the exact solution u of (1). Let
δ = u − Pu be the approximation error of the exact solution. Then

||e(t, ·)||2 +

∫ t

0

||ex(s, ·)||
2ds ≤ c||Pf − v0||

2 + c||δ(t, ·)||2 + c′
∫ t

0

||δx(s, ·)||
2 ds.

The constants only depend on amin and amax, not on derivatives of aε.

Proof. Divide e into two parts

e = δ + η, δ = u − Pu, η = Pu − v,

and set η0(x) := η(0, x). From the equation for u, (see (1)) and v (see (9)), which differ only by
the presence of P in (9), we get

∂tη − P∂xa
ε∂xη = ∂tPu − ∂tv − P∂xa

ε∂xPu + P∂xa
ε∂xv

= P∂tu − P∂xa
ε∂x(u − δ) = P∂xa

ε∂xδ. (10)

where we also used that P and ∂t commute. Let us define the weighted (time-dependent) norm

||u||2a :=

∫ 2π

0

u(x)2aε(t, x)dx.

Since η0 = Pf −v0 = Pη0 we will clearly have Pη(t, x) = η(t, x) for all t ≥ 0. Using integration
by parts we then get

d

dt

(

||η||2 +

∫ t

0

||ηx||
2
adt

)

= 2〈η, ηt〉 + ||ηx||
2
a

= 2〈η, P∂xa
ε∂xη〉 + 2〈η, P∂xa

ε∂xδ〉 + ||ηx||
2
a

= 2〈η, ∂xa
ε∂xη〉 + 2〈η, ∂xa

ε∂xδ〉 + ||ηx||
2
a

= −〈ηx, a
εηx〉 − 2〈ηx, a

εδx〉

≤ −||ηx||
2
a + 2||ηx||a · ||δx||a ≤ ||δx||

2
a.

Consequently,

||η||2 +

∫ t

0

||ηx||
2
a ds ≤ ||η0||

2 +

∫ t

0

||δx||
2
a ds,

and therefore,

||e||2 +

∫ t

0

||ex||
2
a ds ≤ ||η0||

2 + ||δ||2 + 2

∫ t

0

||δx||
2
a ds.

The final result follows form the equivalence of the || · ||a norm and the usual L2 norm,
1

amax
||u||2a ≤ ||u||2 ≤

1

amin
||u||2a.
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Remark This theorem tells us that if we can find a projection that is good for the exact solution and
its derivative, then the corresponding spectral scheme will also give a good approximation of the
solution and the derivative. More precisely, if P approximates u well in H 1 then v approximates
u well in H1 for t > 0. This means we have a point-wise correct solution. We note also that it
is not enough for P to approximate u well in just L2. (An example is to take the homogenization
problem with aε(x) = a(x/ε) where a(y) is 1-periodic. If a projection on the lowest, say ε−1/4,
modes is used the L2 error of the solution goes to zero as ε → 0 but the spectral approximation
does not converge to the exact solution.)

Of course, the big problem here is how to find that good projection, preferably on a very low-
dimensional subspace. This motivates using RA`SFA for finding the right frequencies.

Remark We have not assumed that P∂x = ∂xP . This means that, so far, the analysis holds also
for e.g. wavelet projections and not just Fourier projections.

3.2 Standard spectral scheme
In this case we have P = PN , the projection on the lowest N modes, and we take v0 = PNf . We
can then use the following result on spectral accuracy: for any u ∈ Hm,

||u − PNu|| ≤
1

Nm
||∂m

x u||. (11)

For the solution uε to (1) we thus have

||PNuε − uε|| ≤
1

Nm
||∂m

x uε||, ||PNuε
x − uε

x|| ≤
1

Nm−1
||∂m

x uε||. (12)

We next use a theorem estimating uε in terms of initial data f .
Let us first define the set E as all functions v(t, x, ε) which are infinitely differentiable in t, x

and for which there are constants Cpq independent of ε, such that

|∂p
t ∂

q
xv|∞ ≤ Cpq ε−q, ∀p, q, ε ≥ 0.

A typical member of E would be v(t, x, ε) := a(x, x/ε) where a(x, y) ∈ C∞.

Remark The variables x, t and ε play very different roles; for this reason, we shall, with a slight
abuse of notation, write vε(t, x) instead of v(t, x, ε) for v ∈ E . Typically, we would consider
a sequence εm of values for ε, with εm−−→m→∞ 0 , and be interested in the asymptotic behavior,
for m → ∞, of the sequence of functions vm(t, x) := v(t, x, εm), or, with our new notation,
vm(t, x) := vεm(t, x).

We then have

Theorem 3.2. Suppose that aε(t, x) ∈ E and that uε is the solution to (1) with initial data f ∈ HM .
Then for all 1 ≤ p ≤ M and t > 0 there are constants C(p, T ) independent of ε, such that

||∂p
xu

ε|| ≤
C(p, t)

εp−1
||f ||p, ||uε|| ≤ ||f ||. (13)

11



−3/ε −2/ε −1/ε 0 1/ε 2/ε 3/ε

Figure 2: The Rε
b projection. Solid rectangles have width 2b and correspond to the pass region in

frequency space.

The proof is given in Appendix A. Together with (12) we get

||PNuε − uε|| ≤
C1(m, t)

Nmεm−1
, ||PNuε

x − uε
x|| ≤

C2(m, t)

(εN)m
(14)

when f ∈ Hm+1. Since δ = uε − PNuε in Theorem 3.1, we furthermore obtain

||e(t, ·)||2 +

∫ t

0

||ex(s, ·)||
2ds ≤

C ′
1(m, t)

N2mε2m−2
+

1

ε2mN2m

∫ t

0

C ′
2(m, s) ds ≤

C(m, t)

(εN)2m
,

if v0 = PNf . We have thus proved
Corollary 3.3. Suppose f ∈ Hm+1. If P = PN and v0 = PNf in (9), then

||e(t, ·)||2 +

∫ t

0

||ex(s, ·)||
2ds ≤

C(m, t)

(εN)2m
, e = u − v.

Thus for t > 0 fixed, the L2-error is of the order O(1/(Nε)m), and for a fixed tolerance, we
need to take "a fixed number of modes per wavelength": N ∼ ε−1 = J . Note that for any T > 0
this estimate is equivalent to an L2(H1) estimate, and thus controls the error point-wise at least for
almost all 0 < t < T .

3.3 Error analysis and complexity for a sparse spectral scheme
It is clear from Figure 1 that in practice the significant modes cluster around multiples of 1/ε in the
homogenization problems where aε is either on the form a(x/ε) or a(x, x/ε). We will here show
that it is in fact also enough to track only these modes to still maintain an accurate solution. We
thus consider the fixed projection Rε

bPN where

(Rε
bu)(x) =

∑

|j|≤b

∑

`∈Z

û`n+je
i(`n+j)x, n = 1/ε ∈ N.

The projection is on modes in a b-wide band around multiples of 1/ε, see Figure 2. Clearly Rε
b

commutes both with PN and ∂x so that PNRε
b = Rε

bPN and ∂xR
ε
b = Rε

b∂x.
We then study the semi-discrete scheme

∂tv − Rε
bPN∂xa

ε(x)∂xv = 0, v(0, x) = Rε
bPNf(x). (15)

We look at two kinds of coefficients: aε(x) = a(x/ε) and aε(x) = a(x, x/ε). As we will see,
for these cases, even the fixed projection Rε

b will allow us to remove the ε-dependence for the
complexity at fixed accuracy. In terms of accuracy the adaptive sparse scheme should in principle
be able to do at least as well.

12



3.3.1 The case when aε = a(x/ε)

We consider aε = a(x/ε) in (15) where ε = 1/n for some n ∈ N. For this case, we note that Rε
b

also commutes with multiplication by a(x/ε). In fact, we have

Proposition 3.4. If v ∈ L2(S) and 1/ε ∈ N then Rε
bv(x/ε) = v(x/ε)Rε

b on L2(S).

Proof. Let n = 1/ε and suppose u(x) ∈ L2(S) has the Fourier coefficients û`. Then, after writing
` = p + nq where −n/2 ≤ p < n/2, we get

v(x/ε)u(x) =
∑

k∈Z

v̂ke
iknx

∑

|p|≤n/2

∑

q∈Z

ûp+nqe
i(p+nq)x =

∑

|p|≤n/2

∑

k,q∈Z

v̂kûp+nqe
i(p+n(q+k))x.

Therefore,

Rε
bv(x/ε)u(x) =

∑

|p|≤b

∑

k,q∈Z

v̂kûp+nqe
i(p+n(q+k))x =

∑

k∈Z

v̂ke
iknx

∑

|p|≤b

∑

q∈Z

ûp+nqe
i(p+nq)x,

which shows that Rε
bv(x/ε)u(x) = v(x/ε)Rε

bu(x).

Since (15) implies that Rε
bv = v, we get from Proposition 3.4,

0 = ∂tv − PN∂xa(x/ε)∂xR
ε
bv = ∂tv − PN∂xa(x/ε)∂xv v(0, x) = Rε

bPNf(x),

and it is clear that we are in fact doing the same approximation as for a standard spectral scheme;
the only difference is in the approximation of initial data. Supposing f ∈ Hm+1 we then have

||(PN(I − Rε
b)f || ≤ ||Pbf − f || ≤

||f ||m+1

bm+1
,

by (11). Therefore, we get

||e(t, ·)|| +

∫ t

0

||ex(s, ·)||ds ≤ C(t)

[

1

bm+1
+

1

(εN)m

]

.

in a way similar to the proof of Corollary 3.3 in the previous section.
We can now compute the complexity of the traditional spectral method and our sparse spectral

scheme, for a pre-assigned error tolerance τ . If we take b ∼ (Nε)
m

m+1 = J
m

m+1 , then the error
estimate is proportional to (εN)−m = J−m, for both methods. To achieve an error with tolerance
τ , we must thus have J = O(τ− 1

m ). In the traditional spectral method, we need

O(N log N) = O

(

J

ε
log(J/ε)

)

= O
(

ε−1τ− 1
m log(ε−1τ− 1

m )
)

computations per time step to achieve this tolerance. The sparse scheme uses B = 2bNε = 2bJ =

O(J
2m+1
m+1 ) modes. As derived in Section 2.2 the complexity in the first step is

O(B log N) = O
(

J
2m+1
m+1 log N

)

= O
(

τ− 2m+1
m(m+1) log N

)

≤ O
(

τ− 2
m log(ε−1τ− 1

m )
)

.
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For subsequent time steps the complexity is

O(B2 log B) = O
(

J
4m+2
m+1 log J

)

≤ O
(

τ− 4
m log τ−1

)

.

Thus if we fix τ , we have the complexity O(ε−1| log ε|) per time step for the standard spectral
scheme, whereas our sparse scheme requires O(1) computations for all but the first time step to
achieve the same result. The cost of the first step is O(| log ε|). We can conclude that the cost for
the sparse spectral scheme is essentially independent of ε.

3.3.2 The case when aε = a(x, x/ε)

For this case we invoke a well-known expansion from homogenization theory, and write the solu-
tion to (1) as

uε(t, x) = u0(t, x) + εu1(t, x, x/ε) + ε2u2(t, x, x/ε) + · · ·+ εrur(t, x, x/ε) + εr+1T (t, x) , (16)

where T ∈ E . (See e.g. Theorem 5.1 and Remark 5.2 in [4].) The functions u0(t, x), u1(t, x, y),
. . . , ur(t, x, y) can be assumed to be uniformly smooth and are periodic in both the x- and y-
arguments. By the general error analysis it is enough to show that ||Puε−uε|| and ||Puε

x−uε
x|| are

small for our projection PNRε
b. We need the following proposition, which shows that the Fourier

coefficients of a smooth multiscale function w(x) = v(x, nx) satisfy ŵp+nq ≈ v̂pq to very good
accuracy, and that therefore Rε

bw converges rapidly to w when b increases.

Proposition 3.5. Suppose v(x, y) is 2π-periodic in both x and y and v ∈ Hm(S2) with m ≥ 2.
Let w(x) = v(x, nx) for some n ∈ N and denote the Fourier coefficients of v(x, y) and w(x) by
v̂k` and ŵk respectively. Let m1 and m2 be two non-negative integers satisfying

m1 + m2 ≤ m, m1 ≥ 2, m2 ≤ m − 1.

Then

|ŵk − v̂pq| ≤
C

nm1(1 + |q|)m2
, |ŵk| ≤

C ′

(1 + |p|)m1(1 + |q|)m2
, ||Rε

bw − w|| ≤
C ′′

bm−3/2
,

(17)
where

ε = 1/n, k = p + qn, p, q ∈ Z, −n/2 ≤ p < n/2.

The constants only depend on m and on ||v||m.

Proof. Since w(x) is real, |ŵk| = |ŵ−k| so we need only to consider k ≥ 0 and in particular only
q ≥ 0. Moreover,

v(x, nx) =
∑

k

∑

`

v̂k`e
i(k+n`)x =

∑

k

∑

`

v̂k−n`,`e
ikx,

so that
ŵk =

∑

`

v̂k−n`,`.

14



We next define the two sums S1 and S2 as

|ŵk − v̂pq| ≤
∑

6̀=q

|v̂p−n(`−q),`| =
∑

`6=q

|`|<λ

|v̂p−n(`−q),`| +
∑

`6=q

|`|≥λ

|v̂p−n(`−q),`| =: S1 + S2,

where λ = k/2n. To estimate these sums, we use the fact that for any f(x, y) ∈ Hm(S2) we can
bound its Fourier coefficients f̂k` by

|f̂k`| ≤ C
||f ||m

(1 + |k|)m1(1 + |`|)m2
, m1 + m2 ≤ m, (18)

where C is a constant independent of f, k, `, m1, m2. Applied to S1 we get with m1 = m and
m2 = 0,

S1 ≤
∑

6̀=q

|`|<λ

Cm

(1 + |k − n`|)m
≤ Cm

2λ

(1 + k/2)m
≤

C ′
m

n(1 + k)m−1
,

since here |k − n`| ≥ k − n|`| ≥ k − nλ = k/2. Moreover, q ≥ 1 since q = 0 is incompatible
with the restrictions |`| < λ = (p/n + q)/2 and q 6= `. Therefore q − 1/2 ≥ (q + 1)/4 and

S1 ≤
C

n(1 + p + nq)m−1
≤

C

n(1 + n(q − 1
2
))m−1

≤
C4m−1

nm(1 + q)m−1
. (19)

To estimate S2 we use (18) again,

S2 ≤
∑

6̀=q

|`|≥λ

C

(1 + |k − n`|)m1(1 + |`|)m2
≤

C

(1 + λ)m2

∑

6̀=q

1

(1 + |k − n`|)m1

=
C

(1 + λ)m2

∑

6̀=0

1

(1 + |p − n`|)m1
≤

4m1C

nm1(1 + λ)m2

∑

6̀=0

1

(|`| + 1/2)m1
.

Here we used the fact that when |`| ≥ 1 we have as before |p−n`| ≥ n(|`| − 1/2) ≥ n(|`|+1)/4.
Next, noting that the series converges for m1 ≥ 2 and that also 1 + λ ≥ 1/2 + q, we get

S2 ≤
C

nm1(1 + λ)m2
≤

C ′

nm1(1 + q)m2
. (20)

By combining (19) and (20) we get the first inequality in (17) since m1 ≤ m and m2 ≤ m − 1.
Then after applying (18) to v(x, y) we have

|ŵk| ≤ |v̂pq| + |ŵk − v̂pq| ≤
||v||m

(1 + |p|)m1(1 + |q|)m2
+

C

nm1(1 + q)m2
,

and the second inequality in (17) follows upon noting that n ≥ 1 + |p|.
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Finally, we use this last estimate with m1 = m − 1 and m2 = 1 to get

||Rε
bw − w||2 =

n/2
∑

|p|=b+1

∑

q∈Z

|ŵp+nq|
2 ≤

n/2
∑

p=b+1

∑

q∈Z

2C

(1 + |p|)2m−2(1 + |q|)2

=

n/2
∑

p=b+1

C ′

(1 + p)2m−2
≤ C ′

m

∫ ∞

b

dx

(1 + x)2m−2
=

C ′′
m(2m − 3)

(1 + b)2m−3
.

This shows the remaining inequality in (17).

Let us now show that the projections are accurate when applied to (16).
Corollary 3.6. Suppose uε has the expansion (16) up to r terms and that 1/ε is an integer. If the
functions uε, u0, u1, . . . , ur ∈ Hm with m ≥ 3 then

||PNRε
bu

ε − uε|| ≤ C(m)

[

1

bm−3/2
+

ε

(Nε)m
+ εr+1

]

, (21)

||PNRε
bu

ε
x − uε

x|| ≤ C ′(m)

[

1

bm−5/2
+

1

(Nε)m
+ εr

]

. (22)

Proof. We have

||PNRε
bu

ε − uε|| ≤ ||PNuε − uε|| + ||PN(Rε
bu

ε − uε)|| ≤ C(t)
ε

(Nε)m
+ ||Rε

bu
ε − uε||,

by (14). For the Rε
b term we first note that since uj ∈ Hm we get from (11) and Proposition 3.5

||Rε
bu0 − u0|| ≤ ||Pbu0 − u0|| ≤

||u0||m
bm

, ||Rε
buj − uj|| ≤

Cm

bm−3/2
, j > 0.

Hence, by (16)

||Rε
bu

ε − uε|| ≤
r
∑

j=0

εj||Rε
buj − uj|| + O(εr+1) ≤ C

(

1

bm−3/2
+ εr+1

)

.

This shows (21).
Next, we differentiate (16) to get

∂xu
ε(t, x) = w0(t, x) + εw1(t, x, x/ε) + · · ·+ εr−1wr(t, x, x/ε) + O(εr),

where wj := ∂xuj + ∂yuj+1. As before, this gives us

||PNRε
bu

ε
x − uε

x|| ≤ ||PNuε
x − uε

x|| + ||Rε
bu

ε
x − uε

x|| ≤
C

(Nε)m
+

r−1
∑

j=0

εj||Rε
bwj − wj|| + O(εr).

But since wj(x) ∈ Hm−1, we have

||Rε
bwj − wj|| ≤

C

bm−5/2
,

showing (22).
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We conclude from (21, 22) and Theorem 3.1 that, under the assumptions of Corollary 3.6,

||e(t, ·)|| +

∫ t

0

||ex(s, ·)||ds ≤ C(t)

[

1

bm−5/2
+

1

(Nε)m
+ εr

]

. (23)

For b = (Nε)m/(m−2.5) = Jm/(m−2.5), the error bound is thus proportional to J−m + εr. We
assume that we are in the asymptotic regime where εr is much smaller than the tolerance τ . Then, if
we write τ = (α+1)εr with α � 1, this implies that we need J−m be proportional to αεr = α

α+1
τ ,

or J of order O(τ−1/m) as in Section 3.3.1. The standard spectral scheme still needs O(N log N) =
O(J

ε
log J

ε
) = O(ε−1τ−1/m log(ε−1τ−1/m)) operations. Here B = 2bJ = O(J (2m−2.5)/(m−2.5)) and

the complexity is

O
(

B2 log N
)

= O
(

J
4m−5
m−2.5 log N

)

≤ O
(

τ− 4
m−2.5 log(ε−1τ−1/m)

)

for the sparse spectral method. (The logarithmic contribution can again be omitted after the first
time step.) We note thus that we have a similar complexity for this case as when aε = a(x/ε). In
particular the sparse scheme with fixed tolerance has a cost of O(| log ε|) in the first time step and
O(1) in later time steps.

4 Numerical Experiments
In this section, we investigate the performance of the sparse spectral method in a few numerical
experiments. In [33, 34], the advantage in speed of RA`SFA over the FFTW, for processing sparse
signals of large size, has already been extensively documented; we shall not repeat this here. We
concentrate on the accuracy issues of the approximation solution obtained by the sparse spectral
method.

We compute approximate solutions to

ut = ∂xa
ε(x)∂xu, u(0, x) = f(x), x ∈ [0, 2π), (24)

for various aε(x). We compare the numerical solutions with a solution obtained from the standard
spectral method with a high resolution (N large) applied to (24).

4.1 Testcase 1: aε = a(x/ε)

We begin with experiments for solving the PDE with coefficient function aε that is only dependent
on x/ε. We use

aε(x) =
3

5 + 3 sin(x
ε
)
, f(x) = exp(− cos(x)),

as coefficient function and initial data. The solution is computed using (6) with ãε and U0 approx-
imated by RA`SFA. For subsequent steps, direct computation of B2 modes plus sorting is used to
evaluate the PB(PN · ) projection, as discussed in Section 2.2. For the initial RA`SFA step, we
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set the failure probability (remember that RA`SFA is a randomized algorithm!) δ = 0.05, and the
accuracy required for the truncated approximation is set at α = 10−8. The problem is solved with
ε = 1/64, N = 512 and B = 15 modes. Figure 3 provides a comparison at time t = 3 of the
sparse spectral method with the exact solution in time domain. The solutions and its derivatives
are very close and their difference can be distinguished only by magnifying the graph. In Figure 4
a corresponding plot for the frequency domain is given. It shows that the sparse spectral solution
accurately captures the largest 15 Fourier modes of the true solution.
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Derivatives of exact solution and sparse approximate solution (time domain)

true solution
sparse solution

Figure 3: Solution to Testcase 1 in time domain. Left: approximate and true solution; they coin-
cide and it is hard to distinguish them. Right: the magnified comparison of the derivative of the
approximate solution and the true solution. Since the two solutions are again very close, we have
to zoom in to see their difference.

4.2 Testcase 2: aε = a(x, x/ε)

In this case we use a more complicated coefficient function that also depends on x, namely

a(x, x/ε) =
1

10
exp

(

0.6 + 0.2 cos(x)

1 + 0.7 sin
(

x
ε

)

)

, f(x) = exp(− cos(x)). (25)

The coefficient a(x, x/ε) is plotted in Figure 7. We use the same method as in Testcase 1 to com-
pute the solution, again with ε = 1/64 and N = 512 but this time we need slightly more modes,
B = 30, to accurately capture the solution. Comparisons of the computed and true solutions at
t = 3 in time and frequency domain is given in in Figure 5 and 6. The same general conclusions
as in Testcase 1 holds. A good point-wise approximation of the true solution is obtained.

4.3 Testcase 3: aε = a(x, x/ε)

In this testcase we use the same coefficient and initial data as in Testcase 2, see (25). We use,
however, the improved sparse scheme in (7) rather than the one in (6).
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Figure 4: Solution to Testcase 1 in the frequency domain. The Fourier modes of the approximate
solution are the largest 15 among all the N = 512 modes; their amplitudes for the 15 largest modes
are almost the same as those of the traditional spectral solution.
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Figure 5: Solution to Testcase 2 in time domain. Left: approximate and true solution. Right:
absolute value of the derivatives of the true and the approximate solution.
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Figure 6: Solution to Testcase 2 in frequency domain. The 30 largest Fourier modes of the true
solution agrees well with the modes of the approximate solution. Since aε(x) is more complicated,
the number of the significant modes in this example is larger than in Testcase 1.
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Figure 7: The coefficient aε = a(x, x/ε).
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Figure 8: Here we used 22 modes for the sparse scheme and the low mode scheme.

We do not approximate aε, i.e. ãε = aε but we assume samples of aε are available so that
samples of aε∂xU

n(x) can be fed directly into the algorithm for computing QB(PN · ). For
simplicity, we do not use RA`SFA to approximate QB(PN · ), but instead compute it exactly,
by simply using standard FFT plus sorting. This way we avoid the extra approximation errors
introduced by RA`SFA; the code is of course asymptotically slower, but we are mainly interested
in studying the accuracy not the speed.

The solution is computed with B = 11 and N = 512. Since QB in general projects on 2B
modes, we compare with a solution using the lowest 22 modes, i.e. the standard spectral scheme
with N = 22. In Figure 8 the sparse solution at t = 5 is plotted when we used ε = 1/64. It agrees
very well with the exact solution, while the corresponding solution with the 22 lowest modes, is
completely wrong. The corresponding results for the derivative of the solution is given in Figure 9.
Convergence diagrams in B for the solution and its derivative are shown in Figure 10. The error
and convergence rate is essentially independent of ε. Since we have set up the problem such that
the O(1/bm−2.5) term dominates in (23) this result is as predicted for the fixed projection scheme.

4.4 Testcase 4: aε = a(t, x, x/ε)

Here we use a modified version of the improved scheme (7) to allow for time-dependent coeffi-
cients. It reads

Un+1 = QB (PN [Un + ∆t∂xa
ε
n∂xU

n]) , U0 = QB(PNf), aε
n = aε(tn, ·).

We compute QB exactly, as in Testcase 3. we use B = 11 (corresponding to roughly 22 modes)
and N = 512. The coefficient is

aε(t, x) = α(t)
2 + 1.6 sin(ω(t)x)

3 + cos(x)
+ (1 − α(t))

[

1.3 + 0.5 sin

(

ω(t)x

4

)]
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Figure 9: The derivative converges point-wise. Right figure is a zoom of the left figure.
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Figure 10: Convergence in B for solution and derivative.
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where
α(t) = cos2(2πt), ω(t) =

1

ε
− 10(1 − sin(6πt)).

The two dominant frequencies, ω(t) and ω(t)/4, hence change slowly, with the smaller of them
appearing and disappearing as time progresses. In the computations we use ε = 1/64. The sparse
and exact solutions, their derivatives and aε are plotted in Figure 11 at three different times. The
sparse solution cannot be distinguished from the exact solution in the plots. In Figure 12 we show
which modes that the sparse scheme picks out. Modes appear and disappear roughly according
to the changes of ω(t). They can appear far from modes in previous time steps which would be
difficult for a standard adaptive scheme.
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Figure 11: Solution uε, derivative ∂xu
ε and coefficient aε at times t = 0.25, t = 0.5 and t = 0.85

(from top to bottom). There is no discernible difference between sparse numerical solution and
exact solution.
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5 Extensions to Elliptic and Hyperbolic Problems
We consider here briefly some possible ways of extending the methods described above also to
elliptic and hyperbolic problems. We also show some numerical results for these extensions.

5.1 Elliptic Problems
In the elliptic case we would like to solve the model problem

− ∂xa
ε(x)∂xu = f. (26)

We assume periodic boundary conditions and therefore also impose that the mean value of f is
zero, to have a well-posed problem. To solve this we propose to first apply the improved sparse
parabolic scheme to,

∂tu − ∂xa
ε(x)∂xu = f, u(0, x) = f. (27)

We make just a few steps, n = 1, . . . , M ,

Un+1 = QB(PN [Un + ∆t∂xa
ε∂xU

n + ∆tf ]), U0 = Q(PNf),

with the same computational strategy as in Testcases 3 and 4 above. Then we define the projection
QM = Q̄B(UM ) and use it to solve the elliptic problem

−QM∂xa
ε(x)∂xQ

Mv = QMf.

This is thus a Galerkin approximation of (26) with a particular approximation subspace chosen
to correspond to the largest modes in the solution to (27). Since the projection quickly settles
on a fixed set of modes for the parabolic case, when aε is time-independent, we thus assume the
projection obtained in this way agrees well with the corresponding projection after long time, i.e.
the steady, elliptic, case. Once the QM projection is found, the problem reduces to a linear system
of equations with at most 2B unknowns that can be solved at an ε-independent cost. We note that
for the elliptic case, Céa’s lemma,

||u − v||1 ≤ c||QMu − u||1

is a direct analogue of Theorem 3.1 in the parabolic case, and the analysis for fixed projections
would be similar.

We show numerical results when aε is as given in (25) and f(x) = exp(− cos(x)) − c where
c is chosen so that f has zero mean. In Figure 13 we show results when ε = 1/128 for B = 5, 9
and N = 1536. This corresponds to 9 and 17 modes respectively. We took M = B steps in
the parabolic scheme. When only using 17 modes the solution is very close to the exact solution,
while the solution when QM projects on the lowest 17 modes is very bad. Convergence in B for the
solution and its derivative is shown in Figure 14. As in the parabolic case the error and convergence
rate are essentially independent of ε.
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Figure 13: Solution for the elliptic case with 9 and 17 modes (left) and zoom of the solution’s
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5.2 Hyperbolic Problems
Here we consider the simple hyperbolic model equation

ut + aε(x)ux = 0, u(0, x) = f(x),

with periodic boundary conditions. This problem is more sensitive than the parabolic and elliptic
problems. We can, however, still solve the problem with a sparse method but we need to use a
different time stepping strategy, where the projection is changed more seldom to avoid inducing
instabilities. We define a new projection with the same philosophy as we defined QB: that it should
project on the largest modes of both u and ut. In the this case we get

Q̄a
B(f)g =

B′
∑

`=1

ĝk`
eik`x, (k1, . . . , kB′) = MB(f) ∪MB(aε∂xf),

with MB defined in (5). We then construct the following Leap frog scheme:

Un+1 = Qn(PN [Un−1 − 2∆taε∂xU
n]), U0(x) = Q0f,

where the projection Qn is updated every M -th time step,

Qn =

{

Q̄a
B(Un), n = kM, k ∈ Z,

Qn−1, otherwise.

In the numerical computations we use aε and f as given in (25). Figure 15 shows results at t = 5
when ε = 1/128, B = 35 (circa 50–60 modes1), ∆t = 0.0002, M = 500 and N = 2048.
The sparse solution agrees well with the exact solution. In contrast, a solution computed with
the standard spectral scheme using a comparable number of modes (the lowest 70 modes) has the
wrong speed of propagation and it is far from correct. Convergence in B for the solution and
its derivative is shown in Figure 16. The error and rate of convergence for the solution itself are
still practically independent of ε. Unlike in the parabolic and elliptic cases, however, there is no
convergence for the derivative. This is another manifestation of the more sensitive nature of the
hyperbolic case.

6 Conclusions
We provide a new sparse spectral method. Its speed is significantly faster than the traditional
spectral method in solving some multiscale PDE problem, while retaining good accuracy.
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1There is more overlap between the largest modes of u and ut in the hyperbolic case than in the parabolic case.
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A Proofs
A.1 Utility results
In the proofs we will denote the binomial coefficients by cjk,

cjk :=

(

j
k

)

=
j!

(j − k)!k!
.

To prove the theorem we first need a couple of lemmas, starting with one about the set E defined
in Section 3.2.

Lemma A.1. The set E is closed under addition and multiplication,

uε, vε ∈ E ⇒ uε + vε, uεvε ∈ E ,

and invariant under the operation of ε∂x,

uε ∈ E ⇒ ε∂xu
ε ∈ E .
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Proof. The addition part is obvious. If uε, vε ∈ E then the product satisfies

|∂p
t ∂

q
xu

εvε|∞ =

∣

∣

∣

∣

∣

p
∑

j=0

q
∑

k=0

cpjcqk(∂
j
t ∂

k
xuε)(∂p−j

t ∂q−k
x vε)

∣

∣

∣

∣

∣

∞

≤

p
∑

j=0

q
∑

k=0

djkε
−kεk−q ≤ Cε−q,

where djk are some constants. Moreover, if uε ∈ E , then

|∂p
t ∂

q
x∂xu

ε|∞ =
∣

∣∂p
t ∂

q+1
x uε

∣

∣

∞
≤ Cpq ε−q−1, q = 0, . . . , m − 1.

Hence, ε∂xu
ε ∈ E .

Lemma A.2. Suppose that aε(t, x) ∈ E and that uε ∈ H2p+q is a solution to (1) with p ≥ 1. Then

∂p
t ∂

q
xu

ε =

2p+q
∑

j=1

εj−2p−qrε
j,p,q∂

j
xu

ε, rε
j,p,q ∈ E , rε

2p+q,p,q = (aε)p. (28)

Proof. We show this by induction. For p = 1 and q = 0 we have uε
t = aε

xu
ε
x + aεuε

xx and by
Lemma A.1

rε
1,1,0 = εaε

x ∈ E , rε
2,1,0 = aε ∈ E .

Suppose the claim holds up to p = n when q = 0. After temporarily dropping the last two indices
for legibility (rε

j,n,0 → rε
j ) we get

∂n+1
t uε =

2n
∑

j=1

εj−2n∂tr
ε
j∂

j
xu

ε =

2n
∑

j=1

εj−2n
[

(∂tr
ε
j)∂

j
xu

ε + rε
j∂

j+1
x aε∂xu

ε
]

=
2n
∑

j=1

εj−2n

[

(∂tr
ε
j)∂

j
xu

ε + rε
j

j+1
∑

k=0

cj+1,k(∂
j+1−k
x aε)∂k+1

x uε

]

=
2n
∑

j=1

εj−2n(∂tr
ε
j)∂

j
xu

ε +
2n+1
∑

k=0

2n
∑

j=max(1,k−1)

cj+1,kε
j−2nrε

j(∂
j+1−k
x aε)∂k+1

x uε.

=
2n
∑

j=1

εj−2n(∂tr
ε
j)∂

j
xu

ε +
2n+2
∑

j=1

2n
∑

k=max(1,j−2)

ck+1,j−1ε
k−2nrε

k(∂
k+2−j
x aε)∂j

xu
ε.

Thus,

∂n+1
t u =

2n+2
∑

j=1

εj−2n−2rε
j,n+1,0∂

j
xu,

where

rε
j,n+1,0 = ε2(∂tr

ε
j,n,0) +

2n
∑

k=max(1,j−2)

ck+1,j−1r
ε
k,n,0(ε∂x)

k+2−jaε
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with the convention that rε
j,p,0 ≡ 0 for j < 1 and j > 2p. It follows from Lemma A.1 that

rε
j,n+1,0 ∈ E . Moreover, rε

2n+2,n+1,0 = c2n+1,2n+1r
ε
2n,n,0a

ε = (aε)n+1 since cn,n = 1. We have thus
proved (28) for q = 0.

When q > 0 we differentiate (28),

∂p
t ∂

q
xu

ε =

2p
∑

j=1

εj−2p∂q
xr

ε
j,p,0∂

j
xu

ε =

2p
∑

j=1

q
∑

`=0

εj−2pcq,`(∂
q−`
x rε

j,p,0)∂
j+`
x uε

=

2p+q
∑

j=1

min(q,j−1)
∑

`=0

εj−`−2pcq,`(∂
q−`
x rε

j−`,p,0)∂
j
xu

ε

which agrees with (28) when we identify

rε
j,p,q =

min(q,j−1)
∑

`=0

cq,`(ε∂x)
q−`rε

j−`,p,0.

By Lemma A.1 these functions all belong to E . Finally, since rε
j,p,0 = 0 when j > 2p,

rε
2p+q,p,q =

q
∑

`=0

cq,`(ε∂x)
q−`rε

2p+q−`,p,0 = cq,qr
ε
2p,p,0 = (aε)p

and we have shown (28) for all q ≥ 0.

Lemma A.3. Suppose aε(t, x) ∈ E satisfies (2) and

ut = (aεux)x + Wx, vt = (aεv)xx + Wx, t ≥ 0.

Then

||u(t, ·)|| ≤ ||u(0, ·)||+ C(t) sup
0≤s≤t

||W (s, ·)||, (29)

||v(t, ·)|| ≤ C(t)

(

||v(0, ·)||+ sup
0≤s≤t

||W (s, ·)||

)

. (30)

Proof. For u(t, x) we get

1

2
∂t||u||

2 = 〈u, ut〉 = −〈ux, a
εux〉 − 〈ux, W (x)〉

≤ −amin||ux||
2 + ||ux|| ||W || ≤

1

4amin
||W ||2.

Consequently,

||u(t, ·)||2 ≤ ||u(0, ·)||2 +
1

2amin

∫ t

0

||W (s, ·)||2ds,
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from which (29) follows. Furthermore,
1

2
∂t〈v, aεv〉 =

1

2
〈v, aε

tv〉 + 〈aεv, vt〉 =
1

2
〈v, aε

tv〉 − ||(aεv)x||
2 − 〈(aεv)x, W (x)〉

≤
|aε

t |∞
2amin

〈v, aεv〉 +
1

4
||W ||2.

By Grönwall’s Lemma,

||v||2 ≤
1

amin
〈v, aεv〉 ≤

C(t)

amin

(

||v(0, ·)||2 +

∫ t

0

||W (s, ·)||2ds

)

.

This shows (30).

Lemma A.4. Suppose that aε(t, x) ∈ E and that uε is the solution to (1) with initial data f ∈
H2M+1. Then for all 1 ≤ n ≤ M and t > 0 there are constants C(n, t) independent of ε, such that

||∂n
t uε(t, ·)|| ≤ C(n, t)

(

ε1−2n||f ||2n + sup
0≤s≤t

2n−1
∑

j=1

εj−2n+1||∂j
xu

ε(t, ·)||

)

, (31)

||∂n
t uε

x(t, ·)|| ≤ C(n, t)

(

ε−2n||f ||2n+1 + sup
0≤s≤t

2n
∑

j=1

εj−2n||∂j
xu

ε(t, ·)||

)

. (32)

Proof. We define W (x) as

∂n+1
t uε = ∂n

t ∂xa
ε∂xu

ε =

n
∑

j=0

cnj∂x(∂
n−j
t aε)∂j

t ∂xu
ε =: ∂xa

ε∂x∂
n
t uε + ∂xW (x). (33)

Then by Lemma A.3,

||∂n
t uε(t, ·)|| ≤ ||∂n

t uε(0, ·)||+ C(t) sup
0≤s≤t

||W (s, ·)||. (34)

For W (t, x) we have by Lemma A.2 with q = 1,

W (t, x) =

n−1
∑

j=0

cnj(∂
n−j
t aε)∂j

t u
ε
x =

n−1
∑

j=0

cnj(∂
n−j
t aε)

2j+1
∑

`=1

ε`−2j−1rε
`,j,1∂

`
xu

ε.

Hence, since aε, rε
`,j,1 ∈ E ,

||W (t, ·)|| ≤ C

n−1
∑

j=0

2j+1
∑

`=1

ε`−2j−1||∂`
xu

ε(t, ·)|| ≤ C

2n−1
∑

`=1

ε`−2n+1||∂`
xu

ε(t, ·)||. (35)

Lemma A.2 with q = 0 also shows us that

||∂n
t uε(0, ·)|| =

∥

∥

∥

∥

∥

2n
∑

j=1

εj−2nrε
j,n,0∂

j
xf

∥

∥

∥

∥

∥

≤ C(n)ε1−2n||f ||2n.
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Together with (34) and (35) this shows (31). For (32), we differentiate (33) with respect to x,

∂n+1
t uε

x = ∂xxa
ε∂n

t uε
x + ∂xxW,

and by Lemma A.3,

||∂n
t uε

x(t, ·)|| ≤ C(t)

(

||∂n
t uε

x(0, ·)||+ sup
0≤s≤t

||Wx(s, ·)||

)

. (36)

Letting sε
`,j := cnj(∂

n−j
t aε)rε

`,j,1 ∈ E , we get from Lemma A.2 with q = 1,

Wx(t, x) = ∂x

n−1
∑

j=0

2j+1
∑

`=1

ε`−2j−1sε
`,j∂

`
xu

ε =
n−1
∑

j=0

2j+1
∑

`=1

ε`−2j−2(ε∂xs
ε
`,j)∂

`
xu

ε+
n−1
∑

j=0

2j+2
∑

`=2

ε`−2j−2sε
`−1,j∂

`
xu

ε.

Hence, since sε
`,j ∈ E ,

||Wx(t, ·)|| ≤ C

n−1
∑

j=0

2j+2
∑

`=1

ε`−2j−2||∂`
xu

ε(t, ·)|| ≤ C

2n
∑

`=1

ε`−2n||∂`
xu

ε(t, ·)||. (37)

Lemma A.2 with q = 1 also shows us that

||∂n
t uε

x(0, ·)|| =

∥

∥

∥

∥

∥

2n+1
∑

j=1

εj−2n−1rε
j,n,0∂

j
xf

∥

∥

∥

∥

∥

≤ C(n)ε−2n||f ||2n+1.

Together with (36) and (37) this shows (32).

A.2 Proof of Theorem 3.2
We now proceed to show Theorem 3.2 by induction. The right inequality in (13) and the case p = 1
follows directly from Lemma A.3 with W ≡ 0. Suppose that the statement is true up to an odd
number, p = 2n − 1 < M . By Lemma A.2 with q = 0,

∂n
t u =

2n
∑

j=1

εj−2nrε
j,n,0∂

j
xu = (aε)n∂2n

x uε +

2n−1
∑

j=1

εj−2nrε
j,n,0∂

j
xu,

where |rε
j,n,0|∞ ≤ C. Therefore, using Lemma A.4

||∂2n
x u|| ≤ (aε)−n||∂n

t u|| + C
2n−1
∑

j=1

εj−2n||∂j
xu||

≤ C(n, t)

(

ε1−2n||f ||2n + sup
0≤s≤t

2n−1
∑

j=1

εj−2n+1||∂j
xu

ε(t, ·)||

)

+ C

2n−1
∑

j=1

εj−2n||∂j
xu||,
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and by the induction hypothesis we get ||∂2n
x u|| ≤ Cε1−2n||f ||2n. On the other hand, if it is true up

to an even number, p = 2n < M , then we get from Lemma A.2 with q = 1,

∂n
t ux =

2n+1
∑

j=1

εj−2n−1rε
j,n,1∂

j
xu = (aε)n∂2n+1

x uε +

2n
∑

j=1

εj−2n−1rε
j,n,1∂

j
xu,

where as before |rε
j,n,1|∞ ≤ C and by Lemma A.4,

||∂2n+1
x u|| ≤ (aε)−n||∂n

t ux|| + C

2n
∑

j=1

εj−2n−1||∂j
xu||

≤ C(n, t)

(

ε−2n||f ||2n+1 + sup
0≤s≤t

2n
∑

j=1

εj−2n||∂j
xu

ε(t, ·)||

)

+ C
2n
∑

j=1

εj−2n−1||∂j
xu||.

From the induction hypothesis we conclude that ||∂2n+1
x u|| ≤ Cε−2n||f ||2n+1, which shows the

theorem.
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