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Abstract. This paper concerns a fractional function of the form xT a/
√

xT Bx, where B is
positive definite. We consider the game of choosing x from a convex set, to maximize the function,
and choosing (a, B) from a convex set, to minimize it. We prove the existence of a saddle point
and describe an efficient method, based on convex optimization, for computing it. We describe ap-
plications in machine learning (robust Fisher linear discriminant analysis), signal processing (robust
beamforming and robust matched filtering), and finance (robust portfolio selection). In these appli-
cations, x corresponds to some design variables to be chosen, and the pair (a, B) corresponds to the
statistical model, which is uncertain.
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1. Introduction. This paper concerns a fractional function of the form

(1) f(x, a,B) =
xTa√
xTBx

,

where x, a ∈ R
n and B = BT ∈ R

n×n. We assume that x ∈ X ⊆ R
n\{0} and

(a,B) ∈ U ⊆ R
n×S

n
++. Here S

n
++ denotes the set of n×n symmetric positive definite

matrices.
We list some of the basic properties of the function f . It is (positive) homogeneous

(of degree zero) in x: for all t > 0,

f(tx, a,B) = f(x, a,B).

If

(2) xT a ≥ 0 for all x ∈ X and for all a, with (a,B) ∈ U ,
then for fixed (a,B) ∈ U , f is quasi-concave in x, and for fixed x ∈ X , f is quasi-
convex in (a,B). This can be seen as follows: for γ ≥ 0, the set

{x | f(a,B, x) ≥ γ} =
{
x
∣∣ γ√xTBx ≤ xTa

}
is convex (since it is a second-order cone in R

n), and the set

{(a,B) | f(a,B, x) ≤ γ} =
{

(a,B)
∣∣ γ√xTBx ≥ xT a

}
is convex (since

√
xTBx is concave in B).
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A zero-sum game and related problems. In this paper we consider the zero-
sum game of choosing x from a convex set X , to maximize the function, and choosing
(a,B) from a convex compact set U , to minimize it. The game is associated with the
following two problems:

• max-min problem

(3)
maximize inf

(a,B)∈U
f(x, a,B)

subject to x ∈ X ,
with variables x ∈ R

n,
• min-max problem

(4)
minimize sup

x∈X
f(x, a,B)

subject to (a,B) ∈ U ,
with variables a ∈ R

n and B = BT ∈ R
n×n.

Problems of the form (3) arise in several disciplines including machine learning
(robust Fisher linear discriminant analysis), signal processing (robust beamforming
and robust matched filtering), and finance (robust portfolio selection). In these ap-
plications, x corresponds to some design variables to be chosen, and the pair (a,B)
corresponds to the first and second moments of a random vector, say, Z, which are
uncertain. We want to choose x so that the combined random variable xT Z is well
separated from zero. The ratio of the mean of the random variable to the standard
deviation f(x, a,B) measures the extent to which the random variable can be well
separated from zero. The max-min problem is to find the design variables that are
optimal in a worst-case sense, where worst-case means over all possible statistics.
The min-max problem is to find the least-favorable statistical model, with the design
variables chosen optimally for the statistics.

Minimax properties. The minimax inequality or weak minimax property

(5) sup
x∈X

inf
(a,B)∈U

f(x, a,B) ≤ inf
(a,B)∈U

sup
x∈X

f(x, a,B)

always holds for any X ⊆ R and any U ⊆ S
n
++. The minimax equality or strong

minimax property

(6) sup
x∈X

inf
(a,B)∈U

f(x, a,B) = inf
(a,B)∈U

sup
x∈X

f(x, a,B)

holds if X is convex, U is convex and compact, and (2) holds, which follows from
Sion’s quasi-convex–quasi-concave minimax theorem [25].

In this paper we will show that the strong minimax property holds with a weaker
assumption than (2):

(7) there exists x̄ ∈ X such that x̄T a > 0 for all a with (a,B) ∈ U .

To state the minimax result, we first describe an equivalent formulation of the
min-max problem (4).

Proposition 1. Suppose that X is a cone in R
n that does not contain the origin,

with X ∪ {0} convex and closed, and U is a compact subset of R
n × S

n
++. Suppose

further that (7) holds. Then, the min-max problem (4) is equivalent to

(8)
minimize (a+ λ)TB−1(a+ λ)
subject to (a,B) ∈ U , λ ∈ X ∗,

where a ∈ R
n, B = BT ∈ R

n×n, and λ ∈ R
n are the variables and X ∗ is the dual
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1346 SEUNG-JEAN KIM AND STEPHEN BOYD

cone of X given by

X ∗ =
{
λ ∈ R

n | λTx ≥ 0 ∀x ∈ X} ,
in the following sense: if (a�, B�, λ�) solves (8), then (a�, B�) solves (4), and con-
versely if (a�, B�) solves (4), then there exists λ� ∈ X ∗ such that (a�, B�, λ�) solves
(8). Moreover,

inf
(a,B)∈U

sup
x∈X

f(x, a,B) =

(
inf

(a,B)∈U , λ∈X ∗
(a+ λ)TB−1(a+ λ)

)1/2

.

Finally, (8) always has a solution, and for any solution (a�, B�, λ�),

a� + λ� 	= 0.

The proof is deferred to the appendix.
The dual cone X ∗ is always convex. The objective of (8) is convex since a function

of the form f(x,X) = xTX−1x, called a matrix fractional function, is convex over
R

n×S
n
++; see, e.g., [7, section 3.1.7]. Therefore, (8) is a convex problem. We conclude

that the min-max problem (4) can be reformulated as the convex problem (8).
We can solve the max-min problem (3), using a minimax result for the fractional

function f(x, a,B).
Theorem 1. Suppose that X is a cone in R

n that does not contain the origin, with
X ∪ {0} convex and closed, and U is a convex compact subset of R

n × S
n
++. Suppose

further that (7) holds. Let (a�, B�, λ�) be a solution to the convex problem (8) (whose
existence is guaranteed in Proposition 1). Then,

x� = B�−1(a� + λ�) ∈ X ,
and the triple (x�, a�, B�) satisfies the saddle-point property

(9) f(x, a�, B�) ≤ f(x�, a�, B�) ≤ f(x�, a, B) ∀x ∈ X ∀(a,B) ∈ U .
The proof is deferred to the appendix.
We show that the assumption (7) is needed for the strong minimax property to

hold. Consider X = R
n\{0} and U = B1 × {I}, where B1 is the Euclidean ball of

radius one. Then, all of the assumptions hold except for (7). We have

sup
x �=0

inf
(a,B)∈U

xTa√
xTBx

= sup
x �=0

inf
a∈B1

xTa√
xTx

= sup
x �=0

−‖x‖
‖x‖ = −1

and

inf
(a,B)∈U

sup
x �=0

xTa√
xTBx

= inf
a∈B1

sup
x �=0

xT a

‖x‖ = inf
a∈B1

‖x‖‖a‖
‖x‖ = 0.

From a standard result [2, section 2.6] in minimax theory, the saddle-point prop-
erty (9) means that

f(x�, a�, B�) = sup
x∈X

f(x, a�, B�)

= inf
(a,B)∈U

f(x�, a, B)

= sup
x∈X

inf
(a,B)∈U

f(x, a,B)

= inf
(a,B)∈U

sup
x∈X

f(x, a,B).

As a consequence, x� solves (3).
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More computational results. The max-min problem (3) has a unique solution
up to (positive) scaling.

Proposition 2. Under the assumptions of Theorem 1, the max-min problem (3)
has a unique solution up to (positive) scaling, meaning that for any two solutions x�

and y�, there is a positive number α > 0 such that x� = αy�.
The proof is deferred to the appendix.
The convex problem (8) can be reformulated as a standard convex optimization

problem. Using the Schur complement technique [7, Appendix 5.5], we can see that

(a+ λ)TB−1(a+ λ) ≤ t

if and only if the linear matrix inequality (LMI)[
t (a+ λ)T

a+ λ B

]
� 0

holds. (Here A � 0 means that A is positive semidefinite.) The convex problem (8)
is therefore equivalent to

minimize t

subject to (a,B) ∈ U , λ ∈ X ∗,
[

t (a+ λ)T

a+ λ B

]
� 0,

where the variables are t ∈ R, a ∈ R
n, B = BT ∈ R

n×n, and λ ∈ R
n. When

the uncertainty sets U can be represented by LMIs, this problem is a semidefinite
program (SDP). (Several high-quality open-source solvers for SDPs are available, e.g.,
SeDuMi [26], SDPT3 [27], and DSDP5 [1].) The reader is referred to [6, 29] for more
on semidefinite programming and LMIs.

Outline of the paper. In the next section, we give a probabilistic interpre-
tation of the saddle-point property established above. In sections 3–5, we give the
applications of the minimax result in machine learning, signal processing, and portfo-
lio selection. We give our conclusions in section 6. The appendix contains the proofs
that are omitted from the main text.

2. A probabilistic interpretation.

2.1. Probabilistic linear separation. Suppose z ∼ N (a,B) and x ∈ R
n.

Here, we use N (a,B) to denote the Gaussian distribution with mean a and covariance
B. Then, xT z ∼ N (xT a, xTBx), so

(10) Prob
(
xT z ≥ 0

)
= Φ

(
xT a√
xTBx

)
,

where Φ is the cumulative distribution function of the standard normal distribution.
Theorem 1 with U = {(a,B)} tells us that the right-hand side of (10) is maximized

(over x ∈ X ) by x = B−1(a + λ�), where λ� solves the convex problem (8) with
U = {(a,B)}. In other words, x = B−1(a + λ�) gives the hyperplane through the
origin that maximizes the probability of z being on its positive side. The associated
maximum probability is Φ([(a + λ�)TB−1(a+ λ�)]1/2). Thus, (a+ λ�)TB−1(a+ λ�)
(which is the objective of (8)) can be used to measure the extent to which a hyperplane
perpendicular to x ∈ X can separate a random signal z ∼ N (a,B) from the origin.

We give another interpretation. Suppose that we know the mean E z = a and the
covariance E(z−a)(z−a)T = B of z, but its third and higher moments are unknown.
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0

x

Fig. 1. Illustration of x� = B−1a. The center of the two confidence ellipsoids (whose bound-
aries are shown as dashed line curves) is a, and their shapes are determined by B.

Here E denotes the expectation operation. Then, ExT z = xT a and E(xT z−xTa)2 =
xTBx, so by the Chebyshev bound, we have

(11) Prob
(
xT z ≥ 0

) ≥ Ψ
(

xTa√
xTBx

)
,

where

Ψ(u) =
max{u, 0}2

1 + max{u, 0}2
.

This bound is sharp; in other words, there is a distribution for z with mean a and
covariance B for which equality holds in (11) [3, 30]. Since Ψ is increasing, this
probability is also maximized by x = B−1(a + λ�). Thus, x = B−1(a + λ�) gives
the hyperplane through the origin and perpendicular to x ∈ X that maximizes the
Chebyshev lower bound for Prob(xT z ≥ 0). The maximum value of the Chebyshev
lower bound is p�/(1 + p�), where p� =

[
(a+ λ�)TB−1(a+ λ�)

]1/2. This quantity
assesses the maximum extent to which a hyperplane perpendicular to x ∈ X can
separate from the origin a random signal z, whose first and second moments are
known but otherwise arbitrary. This quantity is an increasing function of p�, so
the hyperplane perpendicular to x ∈ X that maximally separates from the origin a
Gaussian random signal z ∼ N (a,B) also maximally separates, in the sense of the
Chebyshev bound, a signal with known mean and covariance.

When X = R
n\{0}, we have X ∗ = 0, so x = B−1a maximizes the right-hand side

of (10). We can give its graphical interpretation. We find the confidence ellipsoid of
the Gaussian distribution N (a,B), whose boundary touches the origin. This ellipsoid
is tangential to the hyperplane through the origin and perpendicular to x = B−1a.
Figure 1 illustrates this interpretation in R

2.

2.2. Robust linear separation. We now assume that the mean and covariance
are uncertain but known to belong to a convex compact subset U of R

n × S
n
++. We

make one assumption: for each (a,Σ) ∈ U , we have a 	= 0. In other words, we rule
out the possibility that the mean is zero.

Theorem 1 tells us that there exists a triple (x�, a�, B�), with x� ∈ X and
(a�, B�) ∈ U , such that

(12) Φ
(

xT a�

√
xTB�x

)
≤ Φ

(
x�T a�

√
x�TB�x�

)
≤ Φ

(
x�T a√
x�TBx�

)
∀x ∈ X ∀(a,B) ∈ U .

Here we use the fact that Φ is strictly increasing.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A MINIMAX THEOREM 1349

From the saddle-point property (12), we can see that x� solves

(13)
maximize inf

(a,B)∈U ,z∼N (a,B)
Prob

(
xT z ≥ 0

)
subject to x ∈ X ,

and the pair (a�, B�) solves

(14)
minimize sup

x∈X ,z∼N (a,B)

Prob
(
xT z > 0

)
subject to (a,B) ∈ U .

Problem (13) is to find a hyperplane through the origin and perpendicular to x ∈ X
that separates robustly a normal random variable z on R

n with uncertain first and
second moments belonging to U . Problem (14) is to find the least-favorable model in
terms of the separation probability (when the random variable is normal). It follows
from (10) that (13) is equivalent to the max-min problem (3), and (14) is equivalent
to (4) and hence to the convex problem (8) by Proposition 1. These two problems
can be solved using convex optimization.

We close by pointing out that the same results hold with the Chebyshev bound
as the separation probability.

3. Robust Fisher discriminant analysis. As another application, we consider
a robust classification problem.

3.1. Fisher linear discriminant analysis. In linear discriminant analysis, we
want to separate two classes which can be identified with two random variables in R

n.
Fisher linear discriminant analysis (FLDA) is a widely used technique for pattern
classification, proposed by Fisher in the 1930s. The reader is referred to standard
textbooks on statistical learning, e.g., [13], for more on FLDA.

For a (linear) discriminant characterized by w ∈ R
n, the degree of discrimination

is measured by the Fisher discriminant ratio

F (w, μ+, μ−,Σ+,Σ−) =

(
wT (μ+ − μ−)

)2
wT (Σ+ + Σ−)w

,

where μ+ and Σ+ (μ+ and Σ−) denote the mean and covariance, respectively, of
examples drawn from the positive (negative) class. A discriminant that maximizes
the Fisher discriminant ratio is given by

w̄ = (Σ+ + Σ−)−1(μ+ − μ−),

which gives the maximum Fisher discriminant ratio

sup
w �=0

F (w, μ+, μ−,Σ+,Σ−) = (μ+ − μ−)T (Σ+ + Σ−)−1(μ+ − μ−).

Once the optimal discriminant is found, we can form the (binary) classifier

(15) φ(x) = sgn
(
w̄Tx+ v

)
,

where

sgn(z) =
{

+1, z > 0,
−1, z ≤ 0,
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and v is the bias or threshold. The classifier picks the outcome, given x, according to
the linear boundary between the two binary outcomes (defined by w̄Tx+ v = 0).

We can give a probabilistic interpretation of FLDA. Suppose that x ∼ N (μ+,Σ+)
and y ∼ N (μ−,Σ−). We want to find w that maximizes Prob(wTx > wT y). Here,

x− y ∼ N (μ+ − μ−,Σ+ + Σ−),

so

Prob
(
wTx > wT y

)
= Prob

(
wT (x− y) > 0

)
= Φ

(
wT (μ+ − μ−)√
wT (Σ+ + Σ−)w

)
.

This probability is called the nominal discrimination probability. Evidently, FLDA
amounts to maximizing the fractional function

f(w, μ+ − μ−,Σ+ + Σ−) =
wT (μ+ − μ−)√
wT (Σ+ + Σ−)w

.

3.2. Robust Fisher linear discriminant analysis. In FLDA, the problem
data or parameters (i.e., the first and second moments of the two random variables)
are not known but are estimated from sample data. FLDA can be sensitive to the
variation or uncertainty in the problem data, meaning that the discriminant computed
from an estimate of the parameters can give very poor discrimination for another set
of problem data that is also a reasonable estimate of the parameters. Robust FLDA
attempts to systematically alleviate this sensitivity problem by explicitly incorpo-
rating a model of data uncertainty in the classification problem and optimizing for
the worst-case scenario under this model; see [17] for more on robust FLDA and its
extension.

We assume that the problem data μ+, μ−, Σ+, and Σ− are uncertain but known
to belong to a convex compact subset V of R

n × R
n × S

n
++ × S

n
++. We make the

following assumption:

(16) for each (μ+, μ−,Σ+,Σ−) ∈ V , we have μ+ 	= μ−.

This assumption simply means that for each possible value of the means and covari-
ances, the two classes are distinguishable via FLDA.

The worst-case analysis problem of finding the worst-case means and covariances
for a given discriminant w can be written as

(17) minimize f(w, μ+ − μ−,Σ+ + Σ−)
subject to (μ+, μ−,Σ+,Σ−) ∈ V ,

with variables μ+, μ−, Σ+, and Σ−. Optimal points for this problem, say, (μwc
+ , μwc

− ,
Σwc

+ ,Σwc
− ), are called the worst-case means and covariances, which depend on w. With

the worst-case means and covariances, we can compute the worst-case discrimination
probability

Pwc(w) = Φ

(
wT (μwc

+ − μwc
− )√

wT (Σwc
+ + Σwc− )w

)

(over the set U of possible means and covariances).
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The robust FLDA problem is to find a discriminant that maximizes the worst-case
Fisher discriminant ratio:

(18)
maximize inf

(μ+,μ−,Σ+,Σ−)∈V
f(w, μ+ − μ−,Σ+ + Σ−)

subject to w 	= 0,

with variable w. Here we choose a linear discriminant that maximizes the Fisher
discrimination ratio, with the worst possible means and covariances that are consistent
with our data uncertainty model. Any solution to (18) is called a robust optimal Fisher
discriminant.

The robust FLDA problem (18) has the form (3) with

U = {(μ+ − μ−,Σ+ + Σ−) ∈ R
n × S

n
++ | (μ+, μ−,Σ+,Σ−) ∈ U}.

In this problem, each element of the set U is a pair of the mean and covariance of the
difference of the two random variables. For this problem, we can see from (16) that
assumption (7) holds. The robust FLDA problem can therefore be solved by using
the minimax result described above.

3.3. Numerical example. We illustrate the result with a classification problem
in R

2. The nominal means and covariances of the two classes are

μ̄+ = (1, 0), μ̄− = (−1, 0), Σ̄+ = Σ̄− = I ∈ R
2×2.

We assume that only μ+ is uncertain and lies within the ellipse

E =
{
μ+ ∈ R

2 | μ+ = μ̄+ + Pu, ‖u‖ ≤ 1
}
,

where the matrix P which determines the shape of the ellipse is

P =
[

0.78 0.64
0.64 0.78

]
∈ R

2×2.

Figure 2 illustrates the setting described above. Here the shaded ellipse corresponds
to E , and the dashed line curves are the set of points μ+ and μ− that satisfy∥∥∥Σ+

−1/2(μ+ − μ̄+)
∥∥∥ = ‖μ+ − μ̄+‖ = 1,

∥∥∥Σ−−1/2(μ− − μ̄−)
∥∥∥ = ‖μ− − μ̄−‖ = 1.

The nominal optimal discriminant which maximizes the Fisher discriminant ratio
with the nominal means and covariances is given by wnom = (1, 0). The robust optimal
discriminant wrob is computed using the method described above. Figure 2 shows two
linear decision boundaries

xTwnom = 0, xTwrob = 0

determined by the two discriminants. Since the mean of the positive class is uncertain
and the uncertainty is significant in a certain direction, the robust discriminant is
tilted toward the direction.

Table 1 summarizes the results. Here, Pnom is the nominal discrimination prob-
ability and Pwc is the worst-case discrimination probability. The nominal optimal
discriminant achieves Pnom = 0.92, which corresponds to 92% of correct discrimina-
tion without uncertainty. However, with uncertainty present, its nominal discrimi-
nation probability degrades rapidly; the worst-case discrimination probability for the
nominal optimal discriminant is 78%. The robust optimal discriminant performs well
in the presence of uncertainty. It has a worst-case discrimination probability around
83%, 5% higher than that of the nominal optimal discriminant.
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µ+µ−

E
xT wnom = 0 xT wrob = 0

Fig. 2. A simple example for robust FLDA.

Table 1

Robust discriminant analysis results.

Pnom Pwc

Nominal optimal discriminant 0.92 0.78
Robust optimal discriminant 0.87 0.83

4. Robust matched filtering. We consider a signal model of the form

y(t) = s(t)a+ v(t) ∈ R
n,

where a is the steering vector, s(t) ∈ {0, 1} is the binary source signal, y(t) ∈ R
n

is the received signal, and v(t) ∼ N (0,Σ) is the noise. We consider the problem of
estimating s(t), based on an observed sample of y. In other words, the sample is
generated from one of the two possible distributions N (0,Σ) and N (a,Σ), and we are
to guess which one.

After reviewing a basic result on optimal detection with the setting described
above, we show how the minimax result given above allows us to design a robust
detector that takes into account the uncertainty in the model parameters, namely,
the steering vector and the noise covariance.

4.1. Matched filtering. A (deterministic) detector is a function ψ from R
n

(the set of possible observed values) into {0, 1} (the set of possible signal values or
hypotheses). It can be expressed as

(19) ψ(y) =
{

0, h(y) < t,
1, h(y) > t,

which thresholds a detection or test statistic, a function of the received signal, h(y) ∈
R. Here t is the threshold that determines the boundary between the two hypotheses.
A detector with a detection statistic of the form h(y) = wT y is called linear.

The performance of a detector ψ can be summarized by the pair (Pfp, Ptp), where

Pfp = Prob(ψ(y) = 1 | s(t) = 0)

is the false positive or alarm rate (the probability that the signal is falsely detected
when in fact there is no signal) and

Ptp = Prob(ψ(y) = 1 | s(t) = 1)
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is the true positive rate (the probability that the signal is detected correctly). The
optimal detector design problem is a bicriterion problem, with objectives Pfn and
Pfp. The optimal trade-off curve between Pfn and Pfp is called the receiver operating
characteristic (ROC).

The filtered output, with weight vector w ∈ R
n, is given by

wT y(t) = s(t)wT a+ wT v(t).

The power of the steering vector wT a (which is deterministic) at the filtered output
is given by (wT a)2, and the power of the undesired signal wT v at the filtered output
is wT Σw. The signal to noise ratio (SNR) is

S(w, a,Σ) =

(
wT a

)2
wT Σw

.

The optimal ROC curve is obtained using a linear detection statistic h(y) = w�T y
with w� maximizing

f(w, a,Σ) =
wT a√
wT Σw

,

which is the square root of the SNR (SSNR). (See, e.g., [28].) The weight vector that
maximizes SSNR is given by w = Σ−1a. When the covariance is a scaled identity
matrix, the matched filter w = a is optimal. Even when Σ is not a scaled identity
matrix, the optimal weight vector is called the matched filter.

4.2. Robust matched filtering. Matched filtering is often sensitive to the un-
certainty in the input parameters, namely, the steering vector and the noise covariance.
Robust matched filtering attempts to alleviate the sensitivity problem by taking into
account an uncertainty model in the detection problem. (The reader is referred to
the tutorial [15] for more on robust signal detection.)

We assume that the desired signal and covariance matrix are uncertain but known
to belong to a convex compact subset U of R

n×S
n
++. We make a technical assumption:

(20) a 	= 0 ∀(a,Σ) ∈ U .
In other words, we rule out the possibility that the signal we want to detect is zero.

The worst-case SSNR analysis problem of finding a steering vector and a covari-
ance that minimize SSNR for a given weight vector w can be written as

(21)
minimize f(w, a,Σ)
subject to (a,Σ) ∈ U ,

with variables a and Σ. The optimal value of this problem is the worst-case SSNR
(over the uncertainty set U).

The robust matched-filtering problem is to find a weight vector that maximizes
the worst-case SSNR, which can be cast as

(22)
maximize inf

(a,Σ)∈U
f(x, a,B)

subject to w 	= 0,

with variables w. (The thresholding rule h(y) = w�T y that uses a solution w� of this
problem as the weight vector yields the robust ROC curve that characterizes limits
of performance in the worst-case sense.)
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The robust signal detection setting described above is exactly the minimax set-
ting described in the introduction, where a is the steering vector and B is the noise
covariance. For this problem, we can see from the compactness of U and (20) that
assumption (7) holds. We can solve the robust matched-filtering problem (22), using
the minimax result for the fractional function (1).

We close by pointing out that we can handle convex constraints on the weight
vector. For example, in robust beamforming, a special type of robust matched-filtering
problem, we often want to choose the weight vector that maximizes the worst-case
SSNR, subject to a unit array gain for the desired wave and rejection constraints on
interferences [22]. This problem can also be solved using Theorem 1.

4.3. Numerical example. As an illustrative example, we consider the case
when a = (2, 3, 2, 2) is fixed (with no uncertainty) and the noise covariance Σ is
uncertain and has the form ⎡

⎢⎢⎣
1 − + −

1 ? +
1 ?

1

⎤
⎥⎥⎦ .

(Only the upper triangular part is shown because the matrix is symmetric.) Here,
“+” means that Σij ∈ [0, 1], “−” means that Σij ∈ [−1, 0], and “?” means that
Σij ∈ [−1, 1]. Of course we assume Σ 
 0. The nominal noise covariance is taken as

Σ̄ =

⎡
⎢⎢⎣

1 −.5 .5 −.5
1.0 0.0 .5

1.0 0.0
1.0

⎤
⎥⎥⎦ .

Here, the upper-triangular part is shown since the matrix is symmetric. With the
nominal covariance, we compute the nominal optimal weight vector or filter.

The least-favorable covariance, found by solving the convex problem (8) corre-
sponding to the problem data above, is given by

Σlf =

⎡
⎢⎢⎣

1.00 0.00 .38 −.12
1.00 .41 .74

1.00 .23
1.00

⎤
⎥⎥⎦ .

With the least-favorable covariance, we compute the robust optimal weight vector or
filter.

Table 2 summarizes the results. The nominal optimal filter achieves an SSNR of
5.5 without uncertainty. In the presence of uncertainty, the SSNR achieved by the
filter can degrade rapidly; the worst-case SSNR level for the nominal optimal filter
is 3.0. The robust filter performs well in the presence of model mismatch; it has the
worst-case SSNR of 3.6, which is 20% larger than that of the nominal optimal filter.

5. Worst-case Sharpe ratio maximization. The minimax result has an im-
portant application in robust portfolio selection.

5.1. Mean-variance asset allocation. Since the pioneering work of Markowitz
[20], mean-variance (MV) analysis has been a topic of extensive research. In MV
analysis, the (percentage) returns of risky assets 1, . . . , n over a period are modeled
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Table 2

Robust matched-filtering results.

Nominal SSNR Worst-case SSNR
Nominal optimal filter 5.5 3.0
Robust optimal filter 4.9 3.6

as a random vector a = (a1, . . . , an) in R
n. The input data or parameters needed for

MV analysis are the mean μ and the covariance matrix Σ of a:

μ = E a, Σ = E (a− μ)(a− μ)T .

We assume that there is a risk-free asset with deterministic return μrf and zero vari-
ance.

A portfolio w ∈ R
n+1 is a finite linear combination of the assets. Let wi denote the

amount of asset i held throughout the period. A long position in asset i corresponds
to wi > 0, and a short position in asset i corresponds to wi < 0. The return of a
portfolio w = (w1, . . . , wn) is a (scalar) random variable wT a =

∑n
i=1 wiai, whose

mean and volatility (standard deviation) are μTw and
√
wT Σw, respectively. We

assume that an admissible portfolio w = (w1, . . . , wn) is constrained to lie in a convex
compact subset A of R

n. The portfolio budget constraint on w can be expressed,
without loss of generality, as 1Tw = 1. Here 1 is the vector of all ones. The set of
admissible portfolios subject to the portfolio budget constraint is given by

W =
{
w | w ∈ A, 1Tw = 1

}
.

The performance of an admissible portfolio is often measured by its reward-to-
variability or Sharpe ratio (SR):

S(w, μ,Σ) =
μTw − μrf√
wT Σw

.

The admissible portfolio that maximizes the ratio over W is called the tangency
portfolio (TP). The SR achieved by this portfolio is called the market price of risk. The
TP plays an important role in asset pricing theory and practice (see, e.g., [8, 19, 24]).

If the n risky assets with (single period) returns follow a ∼ N (μ,Σ), then

wT a ∼ N (
wTμ,wT Σw

)
,

so the probability of outperforming the risk-free return μrf is

Prob
(
aTw > μrf

)
= Φ

(
μTw − μrf√
wT Σw

)
.

This probability is maximized by the TP.
SR maximization is related to the safety-first approach to portfolio selection [23],

through the Chebyshev bound. Suppose E a = μ, E (a−μ)T (a−μ) = Σ and otherwise
arbitrary. Then, E aTw = μTx and E (aTx − μTx)2 = wT Σw, so it follows from the
Chebyshev bound that

Prob
(
aTw ≥ μrf

) ≥ Ψ
(
μTw − μrf√
wT Σw

)
.

In the safety-first approach [23], we want to find a portfolio that maximizes the bound.
Since Ψ is increasing, this bound is also maximized by the TP.
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5.2. Worst-case SR maximization. The input parameters are estimated with
error. Conventional MV allocation is often sensitive to the uncertainty or the esti-
mation error in the parameters, meaning that optimal portfolios computed with an
estimate of the parameters can give very poor performance for another set of param-
eters that is similar and statistically hard to distinguish from the estimate; see, e.g.,
[4, 5, 14, 21], to name a few. Robust MV portfolio analysis attempts to systematically
alleviate the sensitivity problem of conventional MV allocation by explicitly incorpo-
rating an uncertainty model on the input data or parameters in a portfolio selection
problem and carrying out the analysis for the worst-case scenario under this model.
Recent work on robust portfolio optimization includes [9, 10, 11, 12, 18].

In this section, we consider the robust counterpart of the SR maximization prob-
lem. The reader is referred to [16] for the importance of this problem in robust MV
analysis. In this paper, we focus on the computational aspects of the robust counter-
part.

We assume that the expected return μ and covariance Σ of the asset returns are
uncertain but known to belong to a convex compact subset U of R

n × S
n
++. We also

assume there exists an admissible portfolio w̄ ∈ W of risky assets whose worst-case
mean return is greater than the risk-free return:

(23) there exists a portfolio w̄ ∈ W such that μTw > μrf for all (μ,Σ) ∈ U .

Worst-case SR maximization. The zero-sum game of choosing w from W , to
maximize the SR, and choosing (μ,Σ) from U , to minimize the SR, is associated with
the following two problems:

• worst-case SR maximization problem of finding an admissible portfolio w that
maximizes the worst-case SR (over the given model U of uncertainty)

(24)
maximize inf

(μ,Σ)∈U
S(w, μ,Σ)

subject to w ∈ W ,

• worst-case market price of risk analysis (MPRA) problem of finding the least-
favorable statistics (over the uncertainty set U), with portfolio weights chosen
optimally for the asset return statistics,

(25)
minimize sup

w∈W
S(w, μ,Σ)

subject to (μ,Σ) ∈ U .
The SR is not a fractional function of the form (1), so we cannot apply Theorem 1

directly to the zero-sum game given above. We can get around this difficulty by using
the fact that when the domain is restricted to W , the SR has the form (1)

μTw − μrf√
wT Σw

=
wT (μ− μrf1)√

wT Σw
= f(w, μ− μrf1,Σ) ∀w ∈ W

and

(26) S(w, μ,Σ) = f(tw, μ− μrf1,Σ), w ∈ W , t > 0,

whenever S(w, μ,Σ) > 0.
The set

X = cl {tw ∈ R
n | w ∈ W , t > 0}\{0},
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where clA means the closure of the set A and A\B means the complement of B in A,
is a cone in R

n, with X ∪ {0} closed and convex. Assumption (23), along with the
compactness of U , means that

inf
(μ,Σ)∈U

w̄T (μ− μrf1) > 0.

We can therefore apply Theorem 1 to the zero-sum game of choosing w from X , to
maximize f(x, μ−μrf1,Σ), and choosing (μ,Σ) from U , to minimize f(x, μ−μrf1,Σ).

The max-min and min-max problems associated with the game are
• max-min problem

(27)
maximize inf

(μ,Σ)∈U
f(x, μ− μrf1,Σ)

subject to x ∈ X ,
• min-max problem

(28)
minimize sup

x∈X
f(x, μ− μrf1,Σ)

subject to (μ,Σ) ∈ U .
According to Theorem 1, the two problems have the same optimal value:

(29) sup
x∈X

inf
(μ,Σ)∈U

f(x, μ− μrf1,Σ) = inf
(μ,Σ)∈U

sup
x∈X

f(x, μ− μrf1,Σ).

As a result, the SR satisfies the minimax equality

sup
w∈W

inf
(μ,Σ)∈U

S(w, μ,Σ) = inf
(μ,Σ)∈U

sup
w∈W

S(w, μ,Σ),

which follows from (26) and (29).
From Proposition 1, we can see that the min-max problem (28) is equivalent to

the convex problem

(30) minimize (μ− μrf1 + λ)T Σ−1(μ− μrf1 + λ)
subject to (μ,Σ) ∈ U , λ ∈ W⊕

in which the optimization variables are μ ∈ R
n, Σ = ΣT ∈ R

n×n, and λ ∈ R
n. Here

W⊕ is the positive conjugate cone W , which is equal to the dual cone X� of X :

X ∗ = W⊕ =
{
λ ∈ R

n | λTw ≥ 0 ∀w ∈ W}
.

The convex problem (30) has a solution, say, (μ�,Σ�, λ�). Then,

x� = Σ�−1(μ� − μrf1 + λ�) ∈ X
is a unique solution of the max-min problem (27) (up to positive scaling). Moreover,
the saddle-point property
(31)
f(x, μ� −μrf1,Σ�) ≤ f(x�, μ� −μrf1,Σ�) ≤ f(x�, μ−μrf1,Σ), x ∈ X , (μ,Σ) ∈ U ,
holds. We can see from (26) that

(32) S(w, μ�,Σ�) ≤ S(w�, μ�,Σ�) ≤ S(w�, μ,Σ) ∀w ∈ W ∀(μ,Σ) ∈ U .
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Finally, since 1Tx ≥ 0 for all x ∈ X , we have

1T Σ�−1(μ� − μrf1 + λ�) ≥ 0.

If x� satisfies 1Tx� > 0, the portfolio

(33) w� =
(
1/1Tx�

)
x� =

1
1T Σ�−1(μ� − μrf1 + λ�)

Σ�−1(μ� − μrf1 + λ�)

satisfies the budget constraint and is admissible (i.e., w� ∈ W); i.e., it is a solution
to the worst-case SR maximization (24). Moreover, it is the unique solution to the
worst-case SR maximization (24). The case of 1Tx� = 0 may arise when the set W
is unbounded. In this case, the worst-case SR maximization problem (24) has no
solution, so the game involving the SR has no saddle point.

Minimax properties of the SR. The results established above are summarized
in the following proposition.

Proposition 3. Suppose that the uncertainty set U is compact and convex.
Suppose further that Assumption (23) holds. Let (μ�,Σ�, λ�) be a solution to the
convex problem (30). Then, we have the following:

(i) If 1T Σ−1(μ − μrf1 + λ�) > 0, then the triple (w�, μ�,Σ�) with w� in (33)
satisfies the saddle-point property (32), and w� is the unique solution to the
worst-case SR maximization problem (24).

(ii) If 1T Σ−1(μ − μrf1 + λ�) = 0, then the optimal value of the worst-case SR
maximization problem (24) is not achieved by any portfolio in W.

Moreover, the minimax equality

sup
w∈W

inf
(μ,Σ)∈U

S(w, μ,Σ) = inf
(μ,Σ)∈U

sup
w∈W

S(w, μ,Σ)

holds regardless of the existence of a solution.
The worst-case MPRA problem (25) is equivalent to the min-max problem (28),

which is in turn equivalent to the convex problem (30). This proposition shows that
the TP of the least-favorable model (μ�,Σ�) solves the worst-case SR maximization
problem (24). The saddle-point property (32) means that the portfolio w� in (33) is
the TP of the least-favorable model (μ�,Σ�). The portfolio is called the robust TP.

5.3. Numerical example. We illustrate the result with a synthetic example,
with n = 7 risky assets. The risk-free return is taken as μrf = 5.

Setup. The nominal returns μ̄i and variances σ̄2
i of the risky assets are taken as

μ̄ = [10.3 10.5 5.5 10.5 110 14.4 10.1]T ,

σ̄ = [11.3 18.1 6.8 22.7 24.0 14.7 20.9]T .

The nominal correlation matrix Ω̄ is

Ω̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 .07 −.12 .43 −.11 .44 .25
1.00 .73 −.14 .39 .28 .10

1.00 .14 .50 .52 −.13
1.00 .04 .35 .38

1.00 .70 .04
1.00 −.09

1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The nominal covariance is

Σ̄ = diag(σ̄)Ω̄ diag(σ̄),

where we use diag(u1, . . . , um) to denote the diagonal matrix with diagonal entries
u1, . . . , um.

The mean uncertainty model used in our study is

|μi − μ̄i| ≤ 0.3|μ̄i|, i = 1, . . . , 7,∣∣1Tμ− 1T μ̄
∣∣ ≤ 0.15

∣∣1T μ̄
∣∣ .

These constraints mean that the possible variation in the expected return of each
asset is at most 30%, and the possible variation in the expected return of the portfolio
(1/n)1 (in which a fraction 1/n of the budget is allocated to each asset of the n assets)
is at most 15%. The covariance uncertainty model used in our study is∣∣Σij − Σ̄ij

∣∣ ≤ 0.3
∣∣Σ̄ij

∣∣ , i, j = 1, . . . , 7,∥∥Σ − Σ̄
∥∥

F
≤ 0.15

∥∥Σ̄∥∥
F
.

(Here, ‖A‖F denotes the Frobenius norm of A, i.e., ‖A‖F = (
∑n

i,j=1 A
2
ij)

1/2.) These
constraints mean that the possible variation in each component of the covariance
matrix is at most 30% and the possible deviation of the covariance from the nominal
covariance is at most 15% in terms of the Frobenius norm.

We consider the case when short selling is allowed in a limited way as follows:

(34) w = wlong − wshort, wlong, wshort � 0, 1Twshort ≤ η1Twlong,

where η is a positive constant and wlong and wshort represent the total long and
short positions at the beginning of the period, respectively. (w � 0 means that w is
componentwise nonnegative.) The last constraint limits the total short position to
some fraction η of the total long position. In our numerical study, we take γ = 0.3.

The asset constraint set is given by the cone

W =
{
w ∈ R

n | w = wlong − wshort, A

[
wlong

wshort

]
� 0

}
,

where

A =

⎡
⎣ −I 0

0 −I
−γ1T 1T

⎤
⎦ ∈ R

(2n+1)×(2n).

A simple argument based on linear programming duality shows that the dual cone of
X = W is given by

X ∗ =
{
λ ∈ R

n

∣∣∣∣ there exists y � 0 such that AT y +
[

λ
−λ

]
= 0

}
.

Comparison results. We can find the robust TP by applying Theorem 1 to
the corresponding problem (27) with the asset allocation constraints and uncertainty
model described above. The nominal TP can be found using Theorem 1 with the
singleton U = {(μ̄, Σ̄)}.
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Table 3

Nominal and worst-case SRs of the nominal and robust TPs.

Nominal SR Worst-case SR
Nominal TP 0.74 0.22
Robust TP 0.57 0.36

Table 4

Outperformance probability of the nominal and robust TPs.

Pnom Pwc

Nominal TP 0.77 0.59
Robust TP 0.71 0.64

Table 3 shows the nominal and worst-case SRs of the nominal optimal and robust
optimal allocations. In comparison with the market portfolio, the robust market
portfolio shows a relatively small decrease in the SR, in the presence of possible
variations in the parameters. The SR of the robust market portfolio decreases about
39% from 0.57 to 0.36, while the SR of the nominal market portfolio decreases about
70% from 0.74 to 0.22.

Table 4 shows the probabilities of outperforming the risk-free asset for the nominal
optimal and robust optimal weight allocations, when the asset returns follow a nor-
mal distribution. Here, Pnom is the probability of beating the risk-free asset without
uncertainty, called the outperformance probability, and Pwc is the worst-case prob-
ability of outperforming the risk-free asset with uncertainty. The nominal optimal
TP achieves Pnom = 0.77, which corresponds to 77% of outperforming the risk-free
asset without uncertainty. However, in the presence of uncertainty in the parameters,
its performance degrades rapidly; the worst-case outperformance probability for the
nominal optimal discriminant is 59%. The robust optimal allocation performs well
in the presence of uncertainty in the parameters, with the worst-case outperformance
probability 5% higher than that of the nominal optimal allocation.

6. Conclusions. The fractional function f(x, a,B) = aTx/
√
xTBx comes up in

many contexts, some of which are discussed above. In this paper, we have established
a minimax result for this function and a general computational method, based on
convex optimization, for computing a saddle point.

The arguments used to establish the minimax result do not appear to be extensible
to other fractional functions that have a similar form. For instance, the extension to
a general fractional function of the form

g(x,A,B) =
xTAx

xTBx
,

which is the Rayleigh quotient of the matrix pair A ∈ R
n×n and B ∈ R

n×n evaluated
at x ∈ R

n, is not possible; see, e.g., [31] for a counterexample. However, the arguments
can be extended to the special case when A is a dyad, i.e., A = aaT , with a ∈ R

n,
and X = R

n\{0}. In this case, the minimax equality

sup
x �=0

inf
(a,B)∈U

(
xT a

)2
xTBx

= inf
(a,B)∈U

sup
x �=0

(
xT a

)2
xTBx

holds with assumption (7); see [17] for the proof.
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Appendix A. Proofs.

A.1. Proof of Proposition 1. We first show that the optimal value of (8) is
positive. We start by noting that

(35) inf
(a,B)∈U

x̄T a√
x̄TBx̄

> 0,

with x̄ in (7), and

(36) inf
(a,B)∈U ,λ∈X ∗

x̄T (a+ λ)√
x̄TBx̄

= inf
(a,B)∈U

inf
λ∈X ∗

x̄T (a+ λ)√
x̄TBx̄

= inf
(a,B)∈U

x̄Ta√
x̄TBx̄

.

Here, we have used (35) and infλ∈X ∗ x̄Tλ = 0. By the Cauchy–Schwarz inequality,
xT (a+ λ)/

√
xTBx is maximized over nonzero x by x = B−1(a+ λ), so

sup
x �=0

xT (a+ λ)/
√
xTBx =

[
(a+ λ)TB−1(a+ λ)

]1/2
.

It follows from the minimax inequality (5), (35), and (36) that

inf
(a,B)∈U ,λ∈X ∗

[
(a+ λ)TB−1(a+ λ)

]1/2
= inf

(a,B)∈U ,λ∈X ∗
sup
x �=0

xT (a+ λ)√
xTBx

≥ sup
x �=0

inf
(a,B)∈U ,λ∈X ∗

xT (a+ λ)√
xTBx

≥ inf
(a,B)∈U ,λ∈X ∗

x̄T (a+ λ)√
x̄TBx̄

> 0.

(Here, we use the fact that the weak minimax property for xT (a+ λ)/
√
xTBx holds

for any U ⊆ R
n × S

n
++ and X ⊆ R

n.)
We next show that (8) has a solution. There is a sequence{(

a(i) + λ(i), B(i)
) ∣∣∣ (a(i), B(i)

)
∈ U , λ(i) ∈ X ∗, i = 1, 2, . . .

}
such that

(37) lim
i→∞

(
a(i) + λ(i)

)T

B(i)−1
(
a(i) + λ(i)

)
= inf

(a,B)∈U ,λ∈X ∗
(a+ λ)TB−1(a+ λ).

Since U is a compact subset of R
n × S

n
++, we have

sup
{
λmax

(
B−1

) ∣∣ for all B with (a,B) ∈ U} <∞.

(Here λmax(B) is the maximum eigenvalue of B.) Then, S1 = {a(i) + λ(i) ∈ R
n | i =

1, 2, . . . } must be bounded. (Otherwise, there arises a contradiction to (37).) Since
U is compact, the sequence S2 = {(a(i), B(i)) ∈ U | i = 1, 2, . . .} is bounded, which
along with the boundedness of S1 means that S3 = {λ(i) ∈ R

n | i = 1, 2, . . .} is
also bounded. The bounded sequences S2 and S3 have convergent subsequences,
which converge to, say, (a�, B�) and λ�, respectively. Since U and X ∗ are closed,
(a�, B�) ∈ U and λ� ∈ X ∗. The triple (a�, B�, λ�) achieves the optimal value of (8).
Since the optimal value is positive, a� + λ� 	= 0.
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The equivalence between (4) and (8) follows from the following implication:

(38) sup
x∈X

xT a > 0 =⇒ sup
x∈X

xT a√
xTBx

= inf
λ∈X ∗

[
(a+ λ)TB−1(a+ λ)

]1/2
.

Then, (4) is equivalent to

minimize inf
λ∈X ∗

(a+ λ)TB−1(a+ λ)

subject to (a,B) ∈ U .
It is now easy to see that (4) is equivalent to (8).

To establish the implication, we show that

(39) sup
x∈X

xT a√
xTBx

= sup
x �=0

inf
λ∈X ∗

xT (a+ λ)√
xTBx

.

First, suppose that x ∈ X . Then, λTx ≥ 0 for any λ ∈ X ∗ and 0 ∈ X ∗, so
infλ∈X ∗ λTx = 0. Thus,

inf
λ∈X ∗

xT (a+ λ)√
xTBx

=
xT a√
xTBx

.

Next, suppose that x 	∈ X ∪{0}. Note from X ∗∗ = X ∪{0} that there exists a nonzero
λ̄ ∈ X ∗, with λ̄Tx < 0. Then,

inf
λ∈X ∗

xT (a+ λ)√
xTBx

≤ inf
t>0

(
xT a√
xTBx

+
txT λ̄√
xTBx

)
= −∞ ∀x 	∈ X ∪ {0}.

When supx∈X x
Ta > 0, we have from (39) that

inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

> 0.

By the Cauchy–Schwarz inequality,

inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

= inf
λ∈X ∗

[
(a+ λ)TB−1(a+ λ)

]1/2
=
[

inf
λ∈X ∗

(a+ λ)TB−1(a+ λ)
]1/2

.

Since (a + λ)TB−1(a + λ) is strictly concave in λ, we can see that there is λ� such
that

(40) inf
λ∈X ∗

(a+ λ)TB−1(a+ λ) = (a+ λ�)TB−1(a+ λ�).

Then,

sup
x �=0

xT (a+ λ�)√
xTBx

= inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

.

As will be seen soon, x� = B−1(a+ λ�) satisfies

(41)
x�T (a+ λ�)√
x�TBx�

= inf
λ∈X ∗

x�T (a+ λ)√
x�TBx�

.
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Therefore,

sup
x �=0

inf
λ∈X ∗

xT (a+ λ)√
xTBx

= inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

.

Taken together, the results established above show that

sup
x∈X

xTa√
xTBx

= sup
x �=0

inf
λ∈X ∗

xT (a+ λ)√
xTBx

= inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

= inf
λ∈X ∗

[
(a+ λ)TB−1(a+ λ)

]1/2
.

We complete the proof by establishing (41). To this end, we derive explicitly the
optimality condition for λ� to satisfy (40):

(42) 2x�T (λ− λ�) ≥ 0 ∀λ ∈ X ∗,

with x� = B�−1(a+ λ�). (See [7, section 4.2.3].) We now show that x� satisfies (41).
To this end, we note that λ̄ is optimal for (41) if and only if〈

∇λ

(
x�T (a+ λ)

)2
x�TBx�

∣∣∣∣∣
λ̄

,
(
λ− λ̄

)〉 ≥ 0 ∀λ ∈ X ∗.

Here ∇λh(λ)|λ̄ denotes the gradient of h at the point λ̄. We can write the optimality
condition as

2
x�T

(
a+ λ̄

)
x�T B̄x�

x�T
(
λ− λ̄

) ≥ 0 ∀λ ∈ X ∗.

Substituting λ̄ = λ� and noting that (a + λ)�Tx�/x�TB�x� = 1, the optimality
condition reduces to (42). Thus, we have shown that λ� is optimal for (41).

A.2. Proof of Theorem 1. We will establish the following claims:
• x� = B�−1(a� + λ�) ∈ X .
• (x�, a�, λ�, B�) satisfies the saddle-point property

(43)
xT (a� + λ�)√

xTB�x
≤ x�T (a� + λ�)√

x�TB�x�
≤ x�T (a+ λ)√

x�TBx�
∀x 	= 0 ∀λ ∈ X ∗ ∀(a,B) ∈ U .

• x� and λ� are orthogonal to each other:

(44) x�Tλ� = 0.

The claims of Theorem 1 follow directly from the claims above. By definition of
the dual cone, we have λ�Tx ≥ 0 for all x ∈ X and 0 ∈ X ∗. It follows from (43) and
(44) that

xT a�

√
xTB�x

≤ xT (a� + λ�)√
xTB�x

≤ x�T (a� + λ�)√
x�TB�x�

=
x�T a�

√
x�TB�x�

≤ x�Ta√
x�TBx�

∀x ∈ X ∀(a,B) ∈ U .
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The saddle-point property (43) is equivalent to showing that

(45) sup
x �=0

xT (a� + λ�)√
xTB�x

=
x�T (a� + λ�)√
x�TB�x�

and

(46) inf
(a,B)∈U ,λ∈X ∗

x�T (a+ λ)√
x�TBx�

=
x�T (a� + λ�)√
x�TB�x�

.

Here, (45) follows from the Cauchy–Schwarz inequality.
We establish (46) by showing an equivalent claim

inf
(c,B)∈V

x�T c√
x�TBx�

=
x�T c�√
x�TB�x�

,

where

c� = a� + λ�, V = {(a+ λ,B) ∈ R
n × S

n
++ | (a,B) ∈ U , λ ∈ X ∗}.

The set V is closed and convex.
We know that (c�, B�) is optimal for the convex problem

(47)
minimize g(c, B) = cTB−1c
subject to (c, B) ∈ V ,

with variables c ∈ R
n and B = BT ∈ R

n×n. From the optimality condition of this
problem that (c�, B�) satisfies, we will prove that (c�, B�) is also optimal for the
problem

(48) minimize x�T c/
√
x�TBx�

subject to (c, B) ∈ V ,

with variables c ∈ R
n and B = BT ∈ R

n×n. The proof is based on an extension of
the arguments used to establish (41).

We derive explicitly the optimality condition for the convex problem (47). The
pair (c�, B�) must satisfy the optimality condition〈

∇cg(c, B)|(c�,B�) , (c− c�)
〉

+
〈
∇Bg(c, B)|(c�,B�) , (B − B�)

〉
≥ 0 ∀(c, B) ∈ V

(see [7, section 4.2.3]). Here (∇cf(c, B)|(c̄,B̄),∇Bg(c, B)|(c̄,B̄)) denotes the gradient of
f at the point (c, B). Using ∇c(cTB−1c) = 2B−1c, ∇B(cTB−1c) = −B−1ccTB−1,
and 〈X,Y 〉 = Tr(XY ) for X,Y ∈ S

n, where Tr denotes trace, we can express the
optimality condition as

2c�TB�−1(c− c�) − TrB�−1c�c�TB�−1(B −B�) ≥ 0 ∀(c, B) ∈ V

or equivalently

(49) 2x�T (c− c�) − x�T (B −B�)x� ≥ 0 ∀(c, B) ∈ V ,

with x� = B�−1c�.
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To establish the optimality of (c�, B�) for (48), we show that a solution of (48) is
also a solution to the optimization problem

(50) minimize
(
x�T c

)2
/
(
x�TBx�

)
subject to (c, B) ∈ V ,

with variables c ∈ R
n and B = BT ∈ R

n×n and vice versa. To show that (50) is a
convex optimization problem, we must show that the objective is a convex function
of c and B. To do so, we express the objective as the composition(

x�T c
)2

x�TBx�
= g(H(c, B)),

where g(u, t) = u2/t and H is the function

H(c, B) =
(
x�T c, x�TBx�

)
.

The function H is linear (as a mapping from c and B into R
2), and the function g

is convex (provided t > 0, which holds here). Thus, the composition f is a convex
function of a and B. (See [7, section 3].)

This equivalence between (48) and (50) follows from

x�T c/
(
x�TBx�

)1/2
> 0 ∀(c, B) ∈ V ,

which is a direct consequence of the optimality condition (49):

2x�T c ≥ 2x�T c� + x�T (B −B�)x�

= x�T c� + x�T (c� −B�x�) + x�TBx�

= x�TB�−1x� + x�TBx�

> 0 ∀(c, B) ∈ V .
We now show that (c�, B�) is optimal for (50) and hence for (48). The optimality

condition for (50) is that a pair (c̄, B̄) is optimal for (50) if and only if〈
∇c

(
x�T c

)2
x�TBx�

∣∣∣∣∣
(c̄,B̄)

, (c− c̄)

〉
+

〈
∇B

(
x�T c

)2
x�TBx�

∣∣∣∣∣
(c̄,B̄)

,
(
B − B̄

)〉 ≥ 0 ∀(c, B) ∈ V

(see [7, section 4.2.3]). Using

∇c

(
x�T c

)2
x�TBx�

= 2
cTx�

x�TBx�
x�, ∇B

(
x�T c

)2
x�TBx�

= −
(
cTx�

)2
(x�TBx�)2

x�x�T ,

we can write the optimality condition as

2
x�T c̄

x�T B̄x�
x�T (c− c̄) − Tr

(
x�T c̄

)2(
x�T B̄x�

)2x�x�T
(
B − B̄

)

= 2
x�T c̄

x�T B̄x�
x�T (c− c̄) −

(
x�T c̄

)2(
x�T B̄x�

)2x�T
(
B − B̄

)
x�

≥ 0 ∀(c, B) ∈ V .
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Substituting c̄ = c�, B̄ = B�, and noting that c�Tx�/x�TB�x� = 1, the optimality
condition reduces to

2x�T (c− c�) − x�T (B −B�)x� ≥ 0 ∀(c, B) ∈ V ,
which is precisely (49). Thus, we have shown that (c�, B�) is optimal for (50), which
in turn means that it is also optimal for (48).

We next show by way of contradiction that x� ∈ X . Suppose that x� 	∈ X . Then,
it follows from X ∗∗ = X ∪{0} that there is λ̄ ∈ X ∗ such that λ̄Tx� < 0. For any fixed
(ā, B̄) in U , we can see from (43) (already established) that

inf
(a,B)∈U , λ∈X ∗

x�T (a+ λ)√
x�TBx�

≤ inf
λ∈X ∗

x�T (ā+ λ)√
x�T B̄x�

≤ x�T ā√
x�T B̄x�

+ inf
t≥0

tx�T λ̄√
x�T B̄x�

= −∞.

However, this is contradictory to the fact that

x�T (a� + λ�)√
x�TB�x�

= inf
(a,B)∈U , λ∗∈X ∗

x�T (a+ λ)√
x�TBx�

must be finite.
We complete the proof by showing λ�Tx� = 0. Since 0 ∈ X ∗, the saddle-point

property (43) implies that

x�T (a� + λ�)√
x�TB�x�

≤ x�Ta�

√
x�TB�x�

,

which means x�Tλ� ≤ 0. Since λ ∈ X ∗ and x� ∈ X , we also have x�Tλ� ≥ 0.

A.3. Proof of Proposition 2. Let γ be the optimal value of (3):

(51) γ = sup
x∈X

inf
(a,B)∈U

xT a√
xTBx

.

We can see that for any x ∈ X , the set X = {(
√
xTBx, xT a) | (a,B) ∈ U} cannot lie

entirely above the line r = γσ in the (σ, r) space.
Using the Cauchy–Schwarz inequality, we can show that for any nonzero x and y

(52)
1
2

(√
xTBx+

√
yTBy

)
≥
((

x+ y

2

)T

B

(
x+ y

2

))1/2

.

Here equality holds if and only if x and y are linearly dependent.
Suppose that there are two solutions x� and y� which are not linearly dependent.

Then, the two sets

X =
{(√

x�TBx�, x�T a
) ∣∣∣ (a,B) ∈ U

}
, Y =

{(√
y�TBy�, y�Ta

) ∣∣∣ (a,B) ∈ U
}

lie on and above, but cannot lie entirely above, the line r = γσ in the (σ, r) space. If
x� and y� are not linearly dependent, then it follows from (52) and the compactness
of U that the set Z = {(

√
z�TBz�, z�Ta) | (a,B) ∈ U}, with z� = (x� + y�)/2, lies

entirely above the line r = γσ. Therefore, we have

inf
(a,B)∈U

z�Ta√
z�TBz�

> γ,

which is contradictory to the definition of γ given in (51).
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