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Abstract. A singularly perturbed semilinear reaction-diffusion equation, posed in the unit
square, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order
maximum norm a posteriori error estimate that holds true uniformly in the small diffusion param-
eter. No mesh aspect ratio assumption is made. Numerical results are presented that support our
theoretical estimate.
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1. Introduction. Solutions of singularly perturbed differential equations typ-
ically exhibit sharp boundary and interior layers, which are narrow regions where
solutions change rapidly. To obtain reliable numerical approximations of layer solu-
tions in an efficient way, one has to use locally refined meshes that are fine in layer
regions and standard outside. Furthermore, as is shown in [20, 19, 7, 13] by the nu-
merical analysis of model problems, for which the location and width of the layers are
known a priori, optimal layer-adapted meshes have extremely high maximum aspect
ratios (typically O(e~!), where ¢ is the layer width).

In contrast, a posteriori error estimates, which underlie any reliable a posteriori
mesh construction, are typically obtained under the minimum angle condition, which
is equivalent to the bounded-mesh-aspect-ratio condition; see, e.g., [2, 21]. But the
minimum angle condition seems rather restrictive and makes a posteriori error esti-
mates less practical for layer solutions, for which a posteriori mesh generation is most
needed.

The aim of the present paper is to establish an a posteriori error estimate for one
singularly perturbed problem under no mesh aspect ratio condition. Note that our
error estimate is in the maximum norm, which is sufficiently strong to capture layers
and hence seems most appropriate for singularly perturbed problems.

Consider the singularly perturbed semilinear reaction-diffusion problem posed in
the unit square:

W) Tu = —e2Au+ b(x,y,u) = 0, (z,y) € Q= (0,1) x (0,1),

u(z,y) = (x,y) € 0N
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Here ¢ is a small positive parameter, A = §%/0x2 + 9?/9y? is the Laplace operator,
the function b is sufficiently smooth, and

(1.2) 0<B<by(z,y,u) <B  forall (z,y,u) € [0,1]*> x R.

Under condition (1.2), problem (1.1) has a unique solution, which exhibits sharp
boundary layers of width O(e|1Ine|) along the boundary 99.

We discretize (1.1) using the standard second-order five-point difference scheme—
see (2.2) for details—on an arbitrary tensor-product mesh {(x;,y;)}, where 0 = 2y <
1< - <zy=land 0=y <y1 < --- < yy = 1, while h; = z; — z;_; and
kj = y; — y;j—1 are the local mesh sizes.

This is an idealized situation in the a posteriori mesh construction context since
an irregular mesh, rather than a tensor-product mesh, seems more suitable for a
practical a posteriori mesh construction algorithm. Therefore the error estimate,
which we present, is more interesting from a theoretical point of view. In particular,
it shows that the bounded-mesh-aspect-ratio condition/minimal-angle condition is not
essential in the a posteriori error estimation. Furthermore, if tensor-product meshes
are used at least in crucial layer regions, where the mesh adaptation is most needed,
one might conjecture that in such regions, local analogues of our a posteriori error
estimate would apply.

Our main result is the following maximum norm a posteriori error estimate, in
which the error is understood as the difference between the exact solution and the
bilinear interpolant of the computed solution:

PN

(1.3) IU® —ullso < Co | max {hFMy}+
M

izrcr)lyax {kaMQ’”}

N
j=0,..., j=1,..., M
—see Theorem 2.1—where, roughly speaking,
(14) Ml,ij ~ |D§Um|h’l(2+€//ﬁ)) +]., MZ,ij ~ |D§Uw|h’l(2+6/l€) +1,

with x := min{min;{h;}, min;{k;}}. Here U is the bilinear interpolant of the com-
puted solution U (the finite difference computed solution is originally defined at the
mesh nodes only; hence to measure the error in the entire domain, one first has to
interpolate the computed solution there). The quantities D>U;; and D;Uj; are the
standard discrete approximations of 9%u/0x? and 8%u/0y? defined in (2.3). In (1.4), a
few terms are skipped, for which the one-dimensional analysis [12] and the numerical
results of section 6 show that they are less important; see Theorem 2.1 for the precise
definitions of M ;; and Mo ;.

The error constant Cy in (1.3) is independent of €, the mesh, and aspect ratios of
its elements, although this constant is not specified. In a posteriori error estimation,
much attention focuses on specifying the error constants. Note that for singularly
perturbed problems, the error constant might blow up as € becomes small, and hence
the existence of an e-uniform error constant is more significant than its precise value.

Note that, roughly speaking, the a posteriori error estimate (1.3), (1.4) might be
viewed as a discrete analogue of the linear interpolation error estimates [8, 6], which
imply that a suitable anisotropic mesh should be quasi-uniform under the metric
induced by the Hessian matrix. An example of this idea being exploited for mesh
generation is given, e.g., in [10], where anisotropic meshes, defined as mappings of
regular uniform grids, are obtained via functional minimization.
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The present paper follows [11] and in particular [12], where certain maximum
norm a posteriori error estimates were derived for one-dimensional singularly per-
turbed convection-diffusion and reaction-diffusion problems; see also a more recent
paper [18] for a similar one-dimensional a posteriori error estimate. Note that the
papers [11, 12, 18] report one-dimensional error estimates, while now we extend the
one-dimensional analysis [12] to a two-dimensional case.

Problem (1.1) has often been addressed in the numerical analysis literature. In
particular, we refer the reader to [5], where iterative techniques for the standard finite
difference discretization of (1.1) are developed, and [15, 16], where certain a posteriori
error estimates for a linear version of (1.1) are obtained on anisotropic meshes in the
energy norm.

The paper is organized as follows. In section 2, we describe the numerical method,
present our a posteriori error estimate in Theorem 2.1, and outline its proof. Next, in
section 3, we establish some estimates for the Green’s function of a linearized version
of (1.1). They imply certain stability properties of the differential operator T' from
(1.1), which are presented in section 4. Then in section 5, we complete the proof
of Theorem 2.1. Finally, in section 6, numerical results are given that support our
theoretical estimate.

Notation. Let || - || .g, where 1 < p < oo, denote the standard L,(Q) norm for

any domain Q. Furthermore, the standard notation W*?(Q) is used for the Sobolev
spaces with the norm |[| - ||, .5 defined, for a function v(z,y) in a domain €2, by

k
||ka,p;Q = ||v||p;ﬂ+z|v|l,p;()7 k: 1327
=1

0l pi = lvally 0 Floyll,0 s Tlopa = lvselly 6 + l0ayll, 0 + oyl 5

see, e.g., [9]. We shall use the notation || - ||, and || - ||x,p for || - ||lp:0 and || - ||&p:0
when there is no ambiguity. Sometimes the domain of interest will be an open ball
B(a,b;p) = {(z,y) : (x —a)? + (y — b)® < p?} centered at (a,b) of radius p.

Throughout the paper we let C' denote a generic positive constant that may take
different values in different formulas but is always independent of the mesh and . A
subscripted C' (e.g., C1) denotes a positive constant that is independent of h and e
and takes a fixed value.

Remark 1.1. The assumption b, (7,y,u) < 3 in (1.2) can be omitted since it
follows, for some constant 3, from 0 < 3 < b,(z,y,u) and u being a unique and
bounded solution of (1.1); see, e.g., [22, section 12]. Note that assumption (1.2)
enables us to linearize (1.1) and then invoke the Green’s function in our analysis.
On the other hand, this assumption implies that our problem has a unique solution
and thus excludes the possibility of multiple solutions. Hence, strictly speaking, our
results are not applicable to the multiple-solution case. Having said this, we still
believe that the present paper provides some insight into the numerical solution of a
more general multiple-solution version of (1.1), considered, e.g., in [10].

2. Numerical method. Main result. Let our problem (1.1) satisfy the stan-
dard compatibility conditions at the corners of the domain €:

(2.1) 5(0,0,0) = b(0,1,0) = b(1,0,0) = b(1,1,0) =0,

which guarantee that u € C3(€).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/11/13 to 130.159.104.144. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

MAXIMUM NORM A POSTERIORI ERROR ESTIMATE 1605

Numerical method. We require the computed solution U to satisfy the standard
five-point finite difference discretization of problem (1.1):
(22) —82D§Uij‘ - EQDEUZ‘J‘ + b(l’i, Yj, UZJ) =0,

for i = 1,...N— 1, j = 1,...,M— 1, where UO,j = UNJ‘ = Ui,O = Uz‘,M = 0. Here, as
usual, U;; is associated with the mesh node (x;,y;), and we use the standard finite
difference operators, defined for a discrete function V;; by

— V;'_Vvifl j Di‘/;Jrl _D,V; ;
Dy Vi =—t———2, DV =—t ol
23) ! h; ! (hi +hiy1)/2
DV, = Vij — ‘/z‘,jq? D2V, — D, Viji1— D, Vi
Y kj v (kj + kj41)/2

By condition (1.2), there exists a unique solution of the discrete problem (2.2) on an
arbitrary mesh {(x;, y;)}; see, e.g., [5].

Clearly, D2U;; is defined fori = 1,...,N—1,j =0,..., M, while DiUij is defined
fori=0,...,N,j=1,...,M —1. We now extend DzUZ—j to the mesh nodes ¢ = 0, NV
as follows. First, formally extend the discrete equation (2.2) to i = 0 and ¢ = N, in
which, using the zero boundary conditions, we set D2Up ; = DzUy,; = 0. This yields

(2.42)  D2Uy; ==& 2b(0,y;,0), D2Ux ; := e 2b(1,y;,0), j=0,...,M.
Similarly, extend D2U;; to j =0, M by
(24b)  D2U; o := e b(x;,0,0), D;U; =€ 2b(x,1,0), i=0,...,N.

Note that by (2.1), the above relations (2.4) imply that D2U;; = D2U;; = 0 if (x4, ;)
is (0,0), (0,1), (1,0), or (1, 1), which is consistent with the boundary condition in (1.1).
Remark 2.1. Now that D2U;; and D;U;; are extended by (2.4) to all 4,7, our
discrete equation (2.2) holds true for all t =0,...,N and j =0,..., M.
Bilinear interpolation notation. Let UB = U®B(z,y) be the standard bilinear
interpolant of the computed solution Uy;; i.e., U B is continuous in €, bilinear on each
[i—1,2;] X [yj—1,y;], and equal to U;; at the mesh nodes:

(2.5) UB(xi,y;) =U;;  for i=0,...,N, j=0,..., M.

Similarly, we introduce the bilinear interpolant v®(x,y) for any discrete function v;;
or any continuous function v(z,y).

Furthermore, we shall use the standard one-dimensional linear interpolants v!
and v’ with respect to z and vy, respectively, that are defined, for any function v, as
follows. For each fixed y in the domain of v, we have v!(z;,7) = v(x;,y), and v!(z,y)
is linear on each [z;_1,z;]. Similarly, for each fixed z in the domain of v, we have
v (z,y;) = v(z,y;), and v (2, y) is linear on each [y;_1,y;].

In particular, consider the bilinear interpolant U® of U;; and the linear one-
dimensional interpolants U'(z,y;) and U’ (x;,y). Clearly,

(2.6) [0z, ;)] = [U (zi,9)]' = UP (2, ).

Now we state a maximum norm a posteriori error estimate, which is the main
result of the present paper.
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THEOREM 2.1. Let u(z,y) be a solution of problem (1.1), (1.2), (2.1), Ui; a
solution of problem (2.2) on an arbitrary mesh {(z;,v;)}, and UB(z,y) its piecewise
bilinear interpolant (2.5). Then

(27) HUB - u||oo S CO i}{laxN {h?ML”} + iglaxN {k‘?Mgﬂj} s
J=0,.. M J=1,. M
where

M ;j := min{|D2U;_1 ;|,|D2Us;|} In(2 + e/K) + €| D, D2Uy;| + |D; Ui |*> + 1,
My ;= min{|D.U; ;_1],|D;Us;| } In(2 + €/K) + €| D, DiUs;| + | Dy Uj|* + 1,

with k := min{min;{h,}, min;{k;}}, while the constant C is independent of € and the
mesh.
Proof outline. By (1.1), we have

TUP — Tu = —* [0°/02* + 0*/0y*| UP + b(z,y,UP),

where 92UB /022 and 92U®B /0y? are understood in the sense of distributions. Define
an auxiliary function

q(x,y) = b(z,y,U(z,y))
and let ¢® denote its piecewise bilinear interpolant on the mesh {(x;,y;)}. Hence
TU® — Tu = —¢* [0%/0a® + 9°/0y*| UP + ¢® + [q¢ — ¢°].

Noting that ¢;; := ¢(x;,y;) = b(z;,y;,Us;) and recalling the discrete equation (2.2)
combined with Remark 2.1 yields ¢;; = EQD?CUU + 62D§UZ—]— fori =0,...,N, j =
0,..., M. Next, decompose this as ¢;; = q1,4; + q2,:5, Where

(28) q1,ij = EQDiUij7 q2,i5 = EzD;Uij, 1= O, . ,N, ] = 07 ey M.

Furthermore, using analogues of (2.6) for ¢; and ¢o, we get

®(2,y) = @, y) + S, y) = [d(2,y)] + [d@y)]  (@y) e

Therefore
02Uz, y; ! O*UY (x, :
TUB—Tu = {—528;2%) + q{(x,yj)} + [—52822‘@ + qg(xz‘,y)] +[a—q"].
Here we used
pg) LUy _[PUwy)] PUP(a.y) _ [P0 (wiy)]'
’ Ox2 Ox2 ’ Oy? Oy? ’

which follow from (2.6); see also Remark 2.2.
The proof is completed in section 5. First, the residual TU®B — T is represented
as

0 0
(210) TUB_TU: %Fl(wvy)"_ainQ(xay)—’_ [q_qBL
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where F; and Fy are functions of the current mesh and computed solution. This
will enable us to estimate the error UP — 4 in the maximum norm by linearizing the
operator T and invoking its stability properties, which are obtained in section 4 using
sharp estimates of the Green’s function of section 3.

Remark 2.2. We understand 02U®/0z? and 92U /0y? in the sense of distribu-
tions. To be more precise, in (2.9) we use 9*U'(z,y;)/02* = Ef\glvi(yj)é(x —x;),
and [02UY(z,y,)/02% = Zf\:llfu;] (y)6(x —z;), where §(-) is the Dirac é-distribution,
while Ui(yj) = DzUij (hl + hl+1)/2

3. Green’s function. Assumption (1.2) enables us to linearize (1.1) and then
invoke the Green’s function in our analysis. Hence we start with a linear case of (1.1),

where b(SC,y, u) = p(fE, y)u - f(xay):
(3.1) Lu = —?Au+ p(x,y)u = f(r,y) in Q, u=0 on ON.
Here p € Lo(2) and, in accordance with (1.2),

(3.2) 0<B<plx,y) <B.

Introduce the Green’s function G(z,y;&,n) of the linear self-adjoint operator L
that, for each (z,y) € Q, satisfies

(3 3) LG = —¢? [fo + Gnn] +p(£; TI)G = 6(1: - 5) 6(y - 77); (5,77) €1,
' G(r,y:€&m) =0, (&n) €9,

where §(-) is the Dirac é-distribution. Then the unique solution « of problem (3.1) is

(3.4) u(z,y) = /QG(w,y;S,n) f(&m) d§ dn.

Starting from (3.3), throughout the present section, the differential operators L
and L are understood as differential operators in the variables (£,7). Furthermore,
all norms are understood as norms of functions of (§,7).

THEOREM 3.1. The Green’s function G(x,y;&,n) from (3.3) satisfies

(3.5a) |G(z,y;- <Ce

)|1,1 HY]
Furthermore, for any ball B(a,b;p) of radius p we have

(35b) | G(x’y; .)}1,1 ;B(a,b;p)NQ =< CsiQﬂ’

while for the ball B(x,y;p) centered at (x,y) of radius p we have

(3.5¢) | G(x,y;- <Ce?In(2+¢/p).

) ‘271 i Q\B(z,y 5p)

3.1. Constant-coefficient case. First, we shall establish a particular case of
Theorem 3.1. Let p := 42, where v = const > 0, and let Q be the quarter plane
Ri = {x,y > 0}. In this particular case we denote the differential operator by L and

the Green’s function by G, and for each (x,y) we have
(3.6)  LG(z,y:&m) = —e*[Gee + Gpy] +7°G =06(x — )8y —m),  &n>0.

The fundamental solution for the differential operator L is

(3.7) g(x,y;,m) = iKo (ﬂ) ri=/(x— &2+ (y —n)?,

© oe? €
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where K is the modified Bessel function of the second kind of order zero [1]. Hence
the Green’s function for this differential operator over the quarter plane is

(3.8)  Glz,y;&,m) = g(z,y:&,m) — g(—z,y;6,m) — g(z, —y; &, ) + g(—z, —y; €,1).

LEMMA 3.2. For G(z,y;€,m) of (3.8), estimates (3.5) hold true, in which G is
replaced by G and Q is replaced by Ri.

Proof. We shall prove estimates (3.5) only for ||G¢||1 and ||G¢ell1 here, since the
estimates for ||G,||1 and ||G,y|l1 with ||Gg, |1 are obtained similarly. Furthermore, it
suffices to show (3.5) with G replaced by the first term g(x, y; £, n) of the representation
(3.8) of G, as the estimates for the other three terms are similar.

Since Ky = — K, where K is the modified Bessel function of the second kind of
order one, and Jr/0¢ = —(x — §)/r, we get

ge(z,y;:6,m) = 2;€3K1 (%) x;f.
Furthermore, a similar calculation invoking K7 (s) = —Ko(s) — s 1K (s) yields
srnn) = 5 [Ro () + SR O - o (1)
Hence we have
el < CeKie), laeeloign] £ Cot Koo 4 20| T

To obtain the desired bounds for ||ge||1 and ||gee||1, we represent these integral norms
in polar coordinates and then substitute » = ey~ !s; note that dédn = rdrdy =
Ce?sdsdp. For ||gel1 g2, this yields

ll9¢ (@, 53 )|, g < 05—3/R K1(s) d€dn < Os—l/ sKi(s)ds < Ce ™,
2 0

where we also used 0 < K;(s) < Cs~le™* [1]. Similarly,

vp/e
llge (2, v; ')||1‘B(a by S 05*3/ Ki(s)dédn < csfl/ sKi(s)ds < Ce?p.
T B(@,y;p) 0
Here replacing the integral over B(a,b;p) by the integral over B(x,y;p) yields an
upper bound since K; is a positive decreasing function. Thus we obtained the desired
estimates for ||ge[|1, which imply estimates (3.5a) and (3.5b) for ||Gells.
Next, in a similar manner, we estimate ||gee||1:

. -2 Oo Ky (s) ) p
||ggg(x,y, ')HI;RZ\B(w,y;p) = e /yp/es {KO(S) * s ds < Ce [1 + Ko (g)}
<Ce?ln (2 + 5) ,
p

where, to get the second inequality, we used 0 < Ky(s) < Cs~te™® and K; = —K|,
while to get the final bound, we invoked 0 < Ky(s) < C'ln(2 + s~1) [1]. This implies
estimate (3.5¢) for ||Geellr. O

Remark 3.1. An inspection of the proof of Lemma 3.2, in which we used the
explicit representation (3.8), (3.7) of the Green’s function in the constant-coefficient
case, shows that the estimates of the Green’s function in Theorem 3.1 are sharp.
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3.2. Smooth-coefficient case. Next, we shall use Lemma 3.2 to establish a
variable-coefficient case of Theorem 3.1 under the additional assumption that

(3.9) Ipllcor @) < C,

where C%1(Q) is a standard Hélder space.

LEMMA 3.3. Under condition (3.9), the Green’s function G(x,y;&,n) from (3.3)
satisfies estimates (3.5a) and (3.5¢).

Proof. Fix (z,y) € Q. Without loss of generality consider only the case of z < 1/2
and y < 1/2, as the other cases are similar. Let G be defined by (3.7), (3.8) with
the frozen coefficient 42 := p(z,y). By Lemma 3.2, estimates (3.5) hold true for G.
Hence is suffices to show that the function

(3.10) v=uv(x,y;§,n) = G(x,y:§,n) —w(&n) Gz, y; €,m),

where w(§,n) is a smooth cut-off function that equals 1 on [0,3/4] x [0,3/4] and
vanishes on the boundaries £ = 1 and 1 = 1, satisfies

(3.11) 52’v(x,y; ~)‘271 ot E‘U(.’L‘,y; -)’1’1;9 <C.

Clearly, v = 0 for (§,1) € JQ. Furthermore, using LG = LG and (3.6), it is easy to
check that Lv = (y2 — p)G + L[(G — wG], i.e.,

(3.12a) Lv = —&[vge + vy | +p(&,n) v = &,
(3.12b) p=01+ ¢, ¢1:=[V—p&n)]G, ¢2:=L[1-w)G].

Let the stretching transformation from (£,7) to the new coordinates Ei=(E—ua)/e
and 7 := (n — y)/e map the original domain ) into the domain Q. Using the no-
tation w(&,7) 1= w(x,y;€,n) for any function w, rewrite (3.12a) as —Ad 4+ pi = ¢.
Combining this with & = 0 on 9 yields [9]l5.0 < 6*1/2||ng5||2;§2 and, more importantly,

(3.13) |0 b ®

o §01<

2,2:Q 2;Q) +

2a) S CLI+B72) 4],

where the constant C; is independent of the size of the domain Q [17, Chapter 3,
Lemma 8.1, p. 175]. Estimate (3.13), rewritten in the original variables (£,7), implies
that

(3.14) lv(@,y; )]y 4.0 Felv(@ )] 5.0 < Cllo(e,y: )], q -
Next, we claim that for ¢ from (3.12b) we have ||¢(x,y;-)||2.0 < C. Indeed, ¢ = 0 for

(&,m) €10,3/4] x [0,3/4] and |¢pa| < C outside. Furthermore, condition (3.9) implies
that |v2 — p(&,n)| < Cr, where 42 = p(z,y). Hence |¢1| < Ce=2rKy(yr/e), while

lén])? < Ce / (rJeV K2 (yr/) dé dn < C / TS K2(s)ds < C.
Q 0

Thus we have established that ||$||.,q) < C. Combining this with (3.14) and |v[x,1 <
Clvlg,2 for k= 1,2, we obtain (3.11) and complete the proof. 0
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Note that condition (3.9), under which we now proved Theorem 3.1, is suitable
for the particular linear case (3.1) of problem (1.1). However, if we consider the
semilinear case (1.1) and linearize (2.10) to the form (3.1), then the coefficient p
depends on v and U and assumption (3.9) becomes unrealistic. Hence, we still have
to prove Theorem 3.1 for the general case of p satisfying only (3.2).

3.3. General case. Proof of Theorem 3.1. Let G be defined by (3.8), (3.7)
with the coefficient 42 := 3. Then, by the maximum/comparison principle, L[G—G] =
[p(¢,m) — B] G > 0 combined with G — G > 0 on 9 implies that 0 < G < G.

Imitating the proof of Lemma 3.3, we arrive at (3.14), in which again ||¢2|ls < C,
while |42 —p(&,n)| < C implies only that |¢1| < Ce=2Ko(yr/e). Hence ||¢12 < Ce™!
and [|¢|lz < Ce™'. Combining this with (3.14) and [v|k1.B(ab:p) < Cplvlk2;0 or
[V]k1 By o) < Celv|r,2;0 for k= 1,2, we obtain

. —1
(3.15) elv(z, y; -)‘Lthb;p) <Ce p
and
2 . . .
(316) € |U(x7y")|2,1;3(a:,y;5) +8’v(‘r’y’.)|1,1;B(w,y;s) < O’

compare with (3.11).

Combining (3.15) and (3.16) with Lemma 3.2, we observe that G = v + wG
satisfies (3.5b), and furthermore, G satisfies (3.5a) and (3.5¢), with € replaced by
B(x,y;¢). Hence, to complete the proof, it suffices to show that

2 . .
(317) € ‘G(J?, Ys .)|2,1 i O\B(z,y ;€) + 6|G(SL’, Y .>‘1,1 ;O\ B(z,y ;€) <C.

Next, divide the domain Q\B(z,y;¢) into the subdomains D; := {({,n) € Q :
pj < 1 < pj+1}, where j = 0,1,... and p; := 2/e. Furthermore, D; C D; =
'Dj,1 U Dj U Dj+1 so that dist(aDj\GQ R 82);\89) > 8/2.

Let the stretching transformation from (£, 7) to the new coordinates £:=(E—x)/e
and 7 := (7 — y)/e map D; into D;. Imitating the proof of Lemma 3.3, we use the
notation G(&,7) := G(z, y; £,n) and rewrite the equation from (3.3) as —AG+pG =0
to get the local estimate
(3.18) HGHQ,z;@j < CQHGH&@;

[17, Chapter 3, estimate (8.6), p. 171]; compare with the global estimate (3.13). Here
the constant Cs is independent of € since dist(0D;\02,9D;\0S2) > 1/2. Rewriting
the above estimate in the variables (£,7) yields

1G9 )y, + |G v ) 20, < ClIG@ 1) g0y < Clla(, i )l2,;

Here we also used |G| < G < 4g; see (3.7), (3.8). Finally, since |G|x1:0, < Cp;|Glr2:p,
for k = 1,2, we arrive at

(319) 52|G(Z‘, Y; ')’Z,I;Dj + E|G(:Ea Y; ')|1,1;D]- < Cp]Hg(x, Y; .)||2,D} :
Note that
YPi+1/€ j—1/€
Hg(x,y; )H; o S 05_2/ o sKOQ(s) ds < Ce 2728 iy < Qe 2ePile
P e Tpin/e
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since for r > £/2 we have g < Ce~2s~/2¢~*, where s = yr/e. Furthermore,
o) oo [oe]
(3.20) ZPJ‘HQ(%Z/; )||2 o S Z pJ ) e il 28) < ¢ se *ds < C
Dj
§=0 j=0 v/4

since p; = 2(p; — pj—1), while e~® is decreasing. Combining (3.20) with (3.19), we
get (3.17) and thus complete the proof. d

4. Stability properties of differential operators. The main result of the
present section is the following stability theorem for the semilinear differential operator
T from (1.1), which we shall further apply to relation (2.10).

Consider the right-hand side f in the special form

(4'13‘) f(x,l/) = _%[Fl($7y) +F1(x’y)] - %[FQ(J:’Z-/) + FQ(xvy)] + f(xvy)a

where F17 Fl, FQ, F27 f S LOO(Q) and
(41b) Fl(zvy) :Ai(y)(xfxi—l/Q) for (xay) € (mi—hxi) X [0’ 1]3 i = 13"'7N7
(41C) FQ(xvy):B](‘r)(y_yjfl/Q) for ('ray) € [07 1} X (yj—hyj)’ jzla"'aMa

while @;_1 /5 := x; — hi/2 and y;_1 /2 := y; — k; /2.

THEOREM 4.1. Let the function b in (1.1) satisfy (1.2). Then, for any v, w €
W2(Q) such that Tv(x,y) — Tw(z,y) = f(z,y), where f is defined by (4.1), and
v(z,y) = w(z,y) for (z,y) € 00, we have

lv = wlloo < Ce™ ([IFilloc + [ F2llo0) + B flloc

h2 k?
max {; max |4 ( )|}+ max { 5 nax |B;( )‘}] In (2+£).
i=1,..,N y€[0,1] j=1,,M | €2 z€[0,1] K

The proof is deferred to section 4.2

+C

4.1. Linear reaction-diffusion. First, we address the linear problem (3.1),
(3.2) with the right-hand side (4.1). Since the differential operator L is linear, it is
convenient to establish stability of v with respect to various components of f sepa-
rately.

LEMMA 4.2. There ezists a unique solution u € Lo () of problem (3.1), (3.2)
with the right-hand side (4.1a). Furthermore, if Fy = Fy := 0, then

(4.2) lulloe < B flloe + Ce™ (I Filloo + [F2]lo0)-

Proof. Since L is linear, it suffices to establish the desired estimate in the following
two cases. Case A: f = f, while F; = I, := 0. Then estimate (4.2) is well known and
follows from the maximum/comparison principle extended to functions in the Sobolev
space W12 [9, section 8.1]. Case B: f := 0. Now the desired estimate (4.2) follows
from (3.4) combined with estlmate (3.5a). 0

LEMMA 4.3. Let Fy = Fy = f := 0 in (4.1a). Then the solution u € Loo(Q) of
problem (3.1), (3.2) with the m’ght—hand side (4.1) satisfies

2 k2
max hi max ‘A )‘ + max max ’B )’ In (2 + E) ,
i=1,...N | €2 ye[0,1] §=1,....M 52 z€(0,1] K

where = min{min,; {h;}, min;{k;}}.

[ulle <C
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Proof. 1t suffices to consider only the case of f := —0F;/0z, ie., Fy := 0, as
the case of f := —0F5/dy is considered similarly, while our differential operator L is
linear.

Fix (z,y) and denote v(&,n) := G(x,y;&,n). Then, by (3.4), we have

N
(43)  u(w,y) = /Q Fy (&, n)ve(,m) dedn =3 /Q A1) (€ = i1 2) ve(€) dE dn,
i=1 "%

where Q; := (z;_1,2;) x (0,1), i = 1,..., N. Furthermore, let 2 € [z,,,_1/2, Tp11/2]
for some 0 < m < N (the cases of x € [0,71/2] and = € [xx_1/2, 1] are similar) and
introduce the rectangular domain

Q/ = (xmfla $m+1) X (y - hmvy + ;Lm)v where }Nlm = min{hm, hm+1}/2’
so that
(4.4) B(z,y:hm) C QY C B(@mo1/2,Y 3 hn) UB(Tmt1/2, Y3 hans1)-

Clearly, (4.3) can be written as u(x,y) = S; + S2, where

N
Sy = Z/Q.Az‘(n)(f—ii—1/2)5§(§,n) dé dn,
im1 7

with 0 :=wv in ©; \ @ and 0 := 0 in ', while

m—+1
Z (€ = wi—1y2) ve(§,m) dE dn .
Q mQ’
To estimate S7, note that
~ ~ § ~
(4.5) Ve(€,m) = Ve(ziz1,m) —|—/ Vee(s,m)ds for €€ (x—1,2;).
Ti—1

Here v¢¢ is well defined, since the singularity of v occurs at (z,y), which is inside £,
and furthermore, for each i and 7 either ¥g¢ = vge or O¢e = 0 for all £ € (w;_1, ;).
Combining (4.5) with f;";l (§ = xi_1/2) d§ = 0 yields

3

/df(fffﬂi—uz)/ ’555(5,77)d5
o
<[ fatonlas

/ (€ i) Bel€,m) de| =

i—

Hence

h2
|Sl|<2 [t [ ets.nn o

2
< = Ay
< i_ql’a?fN{ 1 n%%l }/W& &) dédn.
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Finally, recalling (4.4) and estimate (3.5c) for vee = Gee, we get

/ (e (6, m) € di < /  Joge(€m)| dedn < G (2 + £/h)
Q Q\B(xvy;hm)

and thus the desired estimate for Si:

2
1S < C maXN{z; max ’Al(n)|} In <2+ %)

i=1,..., n€[0,1]
It remains to obtain a similar estimate for Ss:

+1 +1
m m Chl

Sy < h; max |A; ve(€,m)|dEdn < max |A;(n)|h; ——
2= mac [A(n)| B(wi,m,y;hl)d n)| € dn ;ne[m]\ (n)hi—

h2
< CmaX{Z max] |A1(77)|} .

i g2 nelo,1

Here we used (4.4) and estimate (3.5b) for ve = Ge. 0

4.2. Semilinear reaction-diffusion. Proof of Theorem 4.1. Using the stan-
dard linearization technique, we have Tw(z,y) — Tw(z,y) = L[v(z,y) — w(z,y)],
where the operator L is linear and defined by (3.1) with the coefficient p(x,y) =
fol bu(z,y, w(z,y) + slv(z,y) — w(z,y)]) ds, which, by (1.2), satisfies condition (3.2).
Hence the desired estimate follows from Lemmas 4.2 and 4.3. 0

5. Analysis of the numerical method. Proof of Theorem 2.1. To com-
plete the proof of Theorem 2.1, which we started in section 2, we shall invoke the
following lemma.

LEMMA 5.1. We have

OPUY(x,y;) 0 02U (x;,y) 0
—52Tj+q{(x,yj) :%Fl(xayj)a —EQT‘F%}(%W) Z@F2($iay),
where

D q1,5 2
(5.1a) Fl(xayj) = (J1,z‘j(l‘ - 961‘71/2) + T(xz —x)*, T € (xi—laxi)a
fori=1,...,N,j=0,...,M, and

D, q2,i;
(5.1b) Fy(xi,y) := QQ,ij(y - yj—1/2) + yTj(yg - 3/)27 Y € (Yiz1,¥i),

fori=0,...,N,j=1,..., M.

Proof. We closely imitate the one-dimensional argument used in the proof of [12,
Theorem 3.3] and give the proof here only for completeness.

It suffices to obtain the first desired relation, as the other one is similar. To
simplify the presentation, within this proof, fix y; and use the notation Ul(z) :=
Ul(z,y;), ¢ (2) :== ¢l (z,v;), q1.i := q1.ij, and Fy(z) := F(z,y;). Furthermore, for any
function v, let v’ := dv/dz. Thus we intend to show that —2(U')" + ¢t = FY.

First, note that

/

(5.2) 20 4l == [+ [ l(s) s
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Recalling (2.3) and (2.8), we observe that

N-1
hm + hm ,
EQ(UI)/:52D;;U1'I:€2D;UJIV_Z ql,m%a Ie(xi—lvxi)a Z:17"'7]\]'

Now, substituting the above representation in (5.2) and omitting the derivative of the
constant e2D~ UL, we arrive at —2(U")” + ¢f = FY, where

_ = hnth !
Fi(x) := Z qu%mH 7/1 q{(s) ds, € (xj_1,2;), t=1,...,N.
A calculation shows that
N-1 1
hm +h h; h
D G =iy +/ @i (s)ds —q1.n

and, omitting the derivative of another constant ¢; yhn /2, we obtain F | = FY, where

T
(5.3) Fi(z) := ql,i% - / qi(s)ds, z€ (i 1,2;), i=1,...,N.

T
Thus we have obtained the desired relation —2(U')” +¢f = FJ, in which Fy is defined
by (5.3), and it remains to show that the definition of Fj in (5.1a) is equivalent to
(5.3). Indeed, by computing [¢’(s)ds in (5.3) using ¢f (z) = q1,; — (z; — ) D7q14,
we get (5.1a). 0

Remark 5.1. One can easily check that F; and Fy or (5.1) allow an alternative

representation:

D q1,ij
F1(93,1/j) = Q1,1:—1,j(93 - lL’z'—1/2) + % O(h?), r € (Tim1,T4),

D, q2,i

5 O(ka’), Y€ (Yi—1,i)

Fy(z4,y) == q,ij-1(y — yj—1/2) +

E.g., the new representation of F follows from q¢i1,;; = q1,i—1,; + hi D7 q1,45-
Proof of Theorem 2.1 (continued from section 2). Extending Fy and F3 of (5.1)
onto the whole domain €2 by linear interpolation,

Fi(z,y) = [Fi(z,y)]",  Fola,y) = [Faws )],

we obtain (2.10). Now, invoking Theorem 4.1 yields

2 2
h; k‘j €
@:r{l,?,),iw 2 \ql,z‘j| + ;ir?axﬁ -2 |QQ,ij| In (2 + E)

j=0,...,M

(5'4)HUB - u”oo <C

2 2

h; D- kj D-
Jnax ¢ — Dz qugl o+ max 0 = 1Dy g2,
j=0,...,M i=1,..., M

Combining this with (2.8) and the bilinear interpolation estimate

+67 g = 4%l

(55)  |lg—¢®le <C

)

Jmax R (1+ Dy Uyl*)} + max {kj(1+|D,Uyl")}

j=0,...,M j=1,...,.M
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we obtain a version of the desired a posteriori error estimate (2.7) in which the quan-
tities mm{|D2 i—1,5], ID2Us5|} and min{|D2U; ;_1|,|D2Uy;|} are replaced by | D2Uj|
and \D Uij|, respectively.

By Remark 5.1, the quantities |g1,;| and |g24;| in (5.4) can be replaced by
min{|q1,i—1,4] |q17ij\} and min{|ga; j—11,]¢2,:j]}, respectively. Combining this sharper
version of (5.4) with (2.8) and (5.5) yields the desired estimate (2.7).

Finally, note that the interpolation error estimate (5.5), which we used, follows
from ¢—¢” = [g—q"]+[¢" —(¢")”] combined with [0°q(z,y;) /02| < C(1+|D; Uy|?)
for x € (z;_1,2;) and [0%q(zs,y)/0y?| < C(1 + |D, Uyl|?) for y € (yj-1,y;); see
[3, Comment 2.15] for a similar argument. a

6. Numerical results. The maximum norm a posteriori error estimate of
Theorem 2.1 implies that

(6.1) e:=|[UP —ulls < Cn, 1 == max{no, M, M2, M3},
o 27 (D) 2771 _
7 := max {_rg}a?; {RiMy 55} 5 max (k5 My} } 1=0,1,2,3,
j=0,..., M j=1,..., M
where C' = Cln(2 +¢/k), while Ml( Z)J MQ(Ol)J =1,
2 . 3 _
MY =Dy Uy, ME) =min{|D2U,_;|, DU}, M), = e|D; DUy,
2 .
M) =Dy UG P, M) = min{|D2U; ;1| |D2U; |}, M), = e| Dy DIUS .

Here n; and MW, [ =1,2,3, involve discrete analogues of [th-order derivatives.

In this section we present numerical results on a priori chosen meshes to inves-
tigate the efficiency of the upper maximum norm error estimator 7 in (6.1) and its
components 7;. It is also of interest which of 7; is the principal component in 7 if any.
We shall examine the errors e and, more importantly, the quantities n, e/n, n;, e/m
and their dependence on ¢, N = M, and particular mesh choices.

We consider e = 107%, k= 1,. .., 10, and two tensor-product meshes with M = N:
a variant of the layer-adapted mesh by Bakhvalov [4] and a simple uniform mesh;
see Tables 6.1-6.5. Note that a Bakhvalov-type layer-adapted mesh was chosen for
the numerical experiments, since it yields e-uniform second-order accuracy [4, 13].
Furthermore, we expect a robust adaptive algorithm to generate a mesh that is very
close to a Bakhvalov mesh, as in [14, section 6 and Figure 2].

To be precise, if ¢ < &, our Bakhvalov-type mesh is given by x; = y; := z(i/N)
fori=0,1,...,N, where z(§) :=eXIn[b/(b— &)] for £ € [0,6], (1) :=1, and z(§) is
continuous on [0, 1] and linear on [#,1]. We use the constants b = 1/2, £ = b/ A, and
0 = b — e\. The constant A will be specified later. For ¢ > &, the Bakhvalov mesh is
defined to be a simple uniform mesh.

Our test problem is the linear problem (3.1), in which p(x,y) := 1, and whose
exact solution

—zfe _ ,—1/e —y/e _ o—1/¢
e e e e
u(z,y) == <cos(7m:) - 1—6_1/5> (1 —y— 1—e—1/E>

exhibits boundary layers and a corner layer.
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TABLE 6.1
Bakhvalov mesh, A = 3: Mazimum norm error e and the efficiency constant e/n for the upper

mazimum norm error estimator n.

e=10""1 e=10"2 e=10"3 e=10"%k=4,...,10

N e e/n e e/n e e/n e e/n

32 | 3.60e-3 1.25e-1 | 4.04e-3 1.19e-1 | 4.21e-3  1.23e-1 4.23e-3  1.24e-1
64 9.16e-4  1.25e-1 | 1.02e-3 1.19e-1 | 1.07e-3  1.24e-1 1.08e-3  1.24e-1
128 | 2.32e-4  1.26e-1 | 2.58e-4 1.19e-1 | 2.70e-4  1.24e-1 2.72e-4  1.25e-1
256 | 5.85e-5 1.27e-1 | 6.46e-5 1.19e-1 | 6.78e-5  1.24e-1 6.82e-5  1.25e-1
512 | 1.47e-5 1.27e-1 | 1.62e-5 1.19e-1 | 1.70e-5 1.24e-1 1.71e-5  1.25e-1

TABLE 6.2

Bakhvalov mesh, A\ = 3: Upper maximum norm error estimator n, its components n1, N2, 13,
and its efficiency constant e/n.

e=10""1 e=10"F k=4,...,10
N m n2 N3 =1 e/n Ul 72 N3 =1 e/n
32 1.75e-2  2.61le-2  2.88e-2  1.25e-1 | 3.10e-2  3.09e-2  3.41e-2  1.24e-1
64 4.72e-3  6.96e-3 7.31e-3 1.25e-1 8.26e-3  8.25e-3  8.65e-3 1.24e-1
128 | 1.22e-3  1.80e-3  1.84e-3  1.26e-1 | 2.13e-3 2.13e-3  2.18e-3  1.25e-1
256 | 3.1le-4  4.57e-4  4.62e-4 1.27e-1 5.41le-4 5.4le-4  5.47e-4 1.25e-1
512 | 7.86e-5 1.15e-4 1.16e-4 1.27e-1 1.36e-4  1.36e-4  1.37e-4  1.25e-1
TABLE 6.3

Uniform mesh: Mazimum norm error e and the efficiency constant e/n2 for the component n2

of the upper mazimum norm error estimator 7.

e=10"2 e=10"3 e=10"% e=10"% k=5,...,10

N e e/n2 e e/n2 e e/n2 e e/n2

32 | 345e-1 4.17e-1 | 5.68¢-1 5.7le-1 | 5.77e-1  5.78e-1 5.78e-1  5.79e-1
64 | 1.60e-1 2.77e-1 | 5.54e-1  5.59e-1 | 5.77e-1  5.77e-1 5.78e-1  5.78e-1
128 | 5.40e-2 1.9le-1 | 5.11le-1  5.28e-1 | 5.76e-1  5.77e-1 5.78¢-1  5.78e-1
256 | 1.57e-2  1.53e-1 | 4.04e-1  4.56e-1 | 5.73e-1  5.74e-1 5.78e-1  5.78e-1
512 | 4.21e-3  1.35e-1 | 2.20e-1  3.24e-1 | 5.63e-1  5.66e-1 5.78-1  5.78e-1

TABLE 6.4

Uniform mesh: The components n2 and n3 of the upper mazimum norm error estimator n and

the efficiency constant e/n2 for na.
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e=10"1% e=10"" c—= 1010
N 72 n3=n__ e/n 2 n3=n__ e/n n2 n3=n__ e/n
32 | 9.99e-1 3.12e+2 5.78e-1 | 9.99e-1 3.12e+5 5.79%-1 | 9.99e-1 3.12e+8 5.79%-1
64 | 1.00e+0 1.56e+2 5.77c-1 | 1.00e+0 1.56e+5 5.78¢-1 | 1.00e+0 1.56e+8 5.78e-1
128 | 9.99e-1 7.8le+1 5.77e-1 | 1.00e+0 7.8le+4 5.78e-1 | 1.00e+0 7.8le+7 5.78e-1
256 | 9.99e-1 3.90e+1 5.74e-1 | 1.00e+0 3.91e+4 5.78¢-1 | 1.00e+0 3.91e+7 5.78e-1
512 | 9.95e-1 1.95e+1 5.66e-1 | 1.00e+0 1.95e+4 5.78e-1 | 1.00e+0 1.95e+7 5.78e-1
TABLE 6.5

Bakhvalov mesh, A = 1: Maximum norm error e, upper maximum norm error estimator n, its
components n1, N2, N3, and its efficiency constant e/n.

e=10"" e=10"10
N e il n2 n3=mn__ e/n e n n2 n3=n__ e/
32 | 7.50e-2 9.60e-3 1.67e-2 2.13e-1 3.52¢-1 | 9.48¢-2 9.6le-3 1.58¢-2 2.4le-1 3.93e-1
64 | 3.81e-2 2.41e-3 8.37e-3 1.05e-1 3.64e-1 | 4.91e-2 2.41e-3 7.93e-3 1.20e-1 4.09e-1
128 | 1.89e-2 6.02e-4 4.22¢-3 5.15¢-2 3.66e-1 | 2.49¢-2 6.02e-4 3.98¢-3 5.94e-2 4.19¢-1
256 | 9.17e-3 1.5le-4 2.13e-3 2.52e-2 3.64e-1 | 1.25e-2 1.5le-4 1.99e-3 2.95¢-2 4.23e-1
512 | 4.40e-3 3.76e-5 1.07e-3 1.23e-2 3.58¢-1 | 6.22¢-3 3.76e-5 9.96e-4 1.46e-2 4.25¢-1
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Tables 6.1 and 6.2 present numerical results for the Bakhvalov mesh with A = 3.
This mesh yields e-uniform second-order accuracy in the maximum norm; i.e., ul-
timately, we would like to be able to construct a similar adaptive mesh. We ob-
serve agreement with our theoretical estimate (6.1). Not only does e/n stabilize—
see Table 6.1—but it becomes very close to the linear interpolation error constant
1/8 = 1.25¢ — 1. Table 6.2 is given to compare the components 7; of . We observe
that 7o &~ n3 = 1. Furthermore, for ¢ < 1072 we have 1, ~ 12 ~ 13, while for e = 107!
the quantity 7; is dominated by 7, and n3. The quantity 79 is not presented, since it
is negligible and, furthermore, known a priori.

When uniform meshes are used—see Tables 6.3 and 6.4—the boundary layers
are not resolved and e = O(1). This is indicated by 1 = 13 blowing up even more
significantly than e. Unlike 13 the component 7y remains bounded. Thus both 7 and
13 not being small correctly indicates that the method is inaccurate. But ny better
reflects the actual errors since e/n2 ~ const = 0.58 in Table 6.4.

Finally we consider the Bakhvalov mesh with A = 1; see Table 6.5. Since the
condition A > 2, which implies e-uniform second-order accuracy for our test problem
[4, 13], is violated, the errors slightly decrease as ¢ — 0. We observe that 7, is too
small compared to n and e.

In summary, for our test problem on the meshes considered, the error estimator 7
indicates correctly whether or not the method is e-uniformly accurate. Furthermore,
we observe that the quantity = n3 might blow up (see Table 6.4), while the com-
ponent 7; is sometimes too optimistic (see Table 6.5). The component 7, seems the
most relevant estimator for the actual error e. Besides, 72 does not blow up, like 73,
and hence seems a suitable error indicator for a posteriori mesh construction.
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