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A BLOCK-LU UPDATE FOR LARGE-SCALE
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Dedicated to Gene Golub on the occasion of his 60th birthday

Abstract. Stable and efficient updates to the basis matrix factors are vital to the simplex
method. The "best" updating method depends on the machine in use and how the update is imple-
mented. For example, the classical product-form update can take advantage of the vector hardware
on current supercomputers, and this helps compensate for its well-known drawbacks. Conversely, the
method of Bartels and Golub performs well on conventional machines, but is difficult to vectorize.

With vectorization in mind, we examine a method based on the block-LU factors of an ex-
panding basis. The partitioned matrix involved was introduced by Bisschop and Meeraus [Math.
Programming, 13 (1977), pp. 241-254], [Math. Programming, 18 (1980), pp. 7-15]. The update itself
was proposed by Gill, Murray, Saunders, and Wright [SIAM J. Sci. Statist. Comput., 5 (1984),
pp. 562-589].

The main advantages of the block-LU update are that it is stable, it vectorizes well, and compared
to the product-form update, the nonzeros increase at about two-thirds the rate. The update has
been incorporated into MINOS and tested on 30 large, sparse linear programming problems. Results
are given from runs on a Cray Y-MP.
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1. Introduction. We wish to use the simplex method [Dan63] to solve the stan-
dard linear programming (LP) problem,

minimize cTx
subject to Ax b

l<_x <_u,

where A is an m by n matrix and c, x, l, u, and b are of appropriate dimension.
The simplex method is an active-set method for optimization. At each iteration a

rank-one modification (in the form of a column update) is made to a basis matrix B
associated with constraints active at the current point. After k updates, the columns
of A may be permuted to the form (Bk Nk). The next update replaces the pth
column ar of Bk by a column aq from Nk. It can be written

(1) Bk+l Bk / (aq a.)epT,

where ep is the pth column of the identity matrix. The basis is used to solve for the
search direction y and the dual variables r in the following linear systems:

(2) Bky aq,
(3) B’ Ck,

where ck contains the objective coefficients corresponding to the columns of Bk.
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Stable and efficient basis updates are vital to the computational success of the
simplex method. The "best" updating method depends on the machine in use and
how the update is implemented. For example, the classical product-form (PF) update,

(4) Bk BoT1T2 Tk,

can take advantage of the vector hardware on current supercomputers such as the
Cray X-MP and Y-MP. This helps compensate for its potential instability and for
the typically high rate of growth of nonzeros in the "eta" vectors representing the
elementary triangular factors Tk.

Conversely, the Bartels-Golub (BG) update lear71],

(5) B LkUk, Lk LOT1"" T,

performs well on conventional machines [Rei82], [GMSW87] but is difficult to vectorize
fully because each Tk may be a product of triangular factors involving short vectors,
and U is altered in an unpredictable manner. The Forrest-Tomlin (FT) update
[FT72], also described by (5), makes simpler changes to Lk and Uk and is probably
more amenable to vectorization.

With vector machines in mind, we examine two further updates in 2 and 3. We
then discuss implementation details for the second method and present computational
results comparing a block-LU method to the BG update.

2. The Schur-complement update. As an alternative to (2), Bisschop and
Meeraus IBM77], IBM80] drew attention to an augmented system Bk 5q of the
form

(6) ( uOUk uk ) ( Yly2 ) ( aqo )
where

(7) Vk (aq aq) Uk (ep, ep

Initially, B0 is defined as a basis matrix at the start of the first iteration. After a
number of iterations it may be necessary to factorize the current basis Bk and redefine
it to be B0. Each aq (j 1,..., k) corresponds to a basic column from A that has
become basic since the last refactorization of Bo.

System (6) is equivalent to (2). To see this, note that the equation Ukyl 0 sets
k elements of yl to zero, so that the remaining elements of y when combined with
y2 give the solution y E m. Specifically, y may be formed by setting y *-- yl and
overwriting y(j) y2(i) for 1,..., k, where j is defined as the unit-vector index
of the ith row of Uk.

The solution to (6) can be found by solving in order

(8) Bow aq,
(9) CkY2 Ukw,
(10) Boy aq VkY2,

where Ck UkBIVk is the Schur-complement matrix. In general, this method
requires two solves with Bo as well as a single solve with the matrix Ck, which will
have a maximal dimension of k. If aq happens to be a column originally from Bo, we
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have aq Boes for some s. In this case w e8 and (9) reduces to Cky2 e{, where
the ith row of Uk is es.T In addition, (10) can be written as B0(Yl es) --VkY2, so
that aq itself need not be known.

Likewise, the solution to (3) can be found by solving the equivalent system

and taking r r. That is, by solving in order

BD
(13) C[2 V[z dk

During Phase 1 of the simplex method, c0 in (11) and (12) may change for each k, but
in Phase 2, system (12) need be solved only once each time the basis is refactorized. In
addition, from (14) we see that U[r2 c0 B. This implies that r2 corresponds
to the set of reduced costs for columns of Bo that are currently nonbasic.

Note that for most updates, a new column is added to V} to obtain V}+. However,
the updates occasionally involve replacing or deleting columns of Vk. From now on, k
refers to the number of columns in Vk, not the simplex iteration number. The matrices
involved then have the following dimensions: Bk is m x m, N} is m x (n- m), Vk is
m x k, Uk is k x m, and Ck is k x k.

2.1. Advantages. The Schur-complement (SC) update for linear programming
was first described by Bisschop and Meeraus IBM77], IBM80], one of whose aims was
o provide an updating technique with storage requirements that are independent of
the problem size m. This is a unique feature.

The SC update shares an important advantage with the PF update, in that the
factors L0 and U0 are used many times without modification. On a vector machine,
the triangular solves with these factors can therefore be reorganized to take advantage
of the vector hardware, as recently shown in [ER90]. The greater stability of the SC
update allows the overhead associated with this reorganization to be spread over 100
iterations (say), whereas the PF update may fail a stability test at any stage (in the
worst case after only one or two iterations).

A further advantage of the SC and PF updates is that it is only necessary to solve
systems with B0 and B; we do not need to access the columns of B0 for pricing. This
may be important for specially structured problems. See [GMSW84, pp. 578-580] for
further discussion.

2.2. Stability. The matrix in (6) has the following block-triangular factoriza-
tion:

(lg) k- Uk UkB I -Ok

Recalling that Uk is composed of unit vectors, we see that if B0 is "reasonably well
conditioned," then the first triangular factor is also reasonably well conditioned. In
such cases, the Schur complement Ck tends to reflect the condition of k, which is
essentially the same as the condition of the true basis Bk.

This means that when C is updated, ill-conditioning need not persist (because
certain rows and columns of Ck are explicitly added or deleted). or example, suppose
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bases B0, B1, ..., Bk are all well conditioned except for Bj. Then all of the Schur
complements will be well conditioned except Cj, and hence all of the basis factoriza-
tions will be well conditioned except for the jth. This property, shared by the BG
update, defines our meaning of stability.

In short, the SC update is essentially as stable as the BG update, provided Bo is
well conditioned. This cannot be said of the PF or FT updates. (Of course, the BG
update remains superior in being stable regardless of the condition of B0.)

2.3. Comments. A discussion of the Schur complement may be found in [Cot74].
Implementations of a Schur-complement method for general LP problems are de-
scribed in [Pro85], and for specially structured linear programs in [Eld88].

The original descriptions of Bisschop and Meeraus IBM77], IBM80] involved up-
dating C-1 explicitly (not a stable process). Proctor [Pro85] presented two imple-
mentations, one updating C-1 as a dense matrix, the other maintaining sparse LU
factors of Ck. The latter is to be preferred for stability reasons. Since k can be limited
to 100 (say), we believe it is more efficient to maintain dense factors of Ck; see 4.1.

Our original aim was to investigate the performance of the SC update on general
LP problems. The method was implemented, but it soon became evident that the
additional solves with B0 and BoT were excessively expensive compared to the BG
update. The following variation was therefore chosen as a means of trading workspace
for time.

3. A block-LU update. Rather than using (15) we may factorize /k in the
following manner:

(10, (o0 (o0
where

(7) BoY Y C UY.
We see that the solution to (6) and hence Bky aq may be obtained from

(18) Bow Ca,

(19) CkY2 Ukw,
(20) Yl w YkY2.

Likewise, the solution to Br ck may be obtained from

(21) C[2 Y[co dk

(22) BoTrl Co U[r2.
The block-LU update was first discussed in [GMSW84]. All updating informa-

tion is carried along via the Schur-complement matrix Ck and the matrix of trans-
formed columns Yk. The updates to these matrices will be discussed in the next
section. Note that Ca is composed of some of the rows of Yk. It may be described as
"some of the rows and columns of the simplex tableau associated with the starting
basis B0."

It was termed a stabilized product-form update because the columns of Yk are handled similarly
to the "eta" vectors in the classical product-form update, and because the factors of B0 are not
altered. Note, however, that (16) is an explicit block-triangular factorization. Nothing is held in
product form.
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3.1. Advantages. The block-LU update has most of the advantages of the SC
update, in terms of using Bo as a "black box." The storage for C remains independent
of m. By storing Yk we reduce the work per iteration of the simplex method by a
solve with B0 and (in Phase 1) a solve with B0T. For many iterations when a row of
Yk is needed to update Ck, we avoid a further solve with BoT.

Comparing the right-hand sides of (10) and (20), we see that the term Vky2 has
become YkY2, which is usually somewhat more expensive. The analogous term Y[co
in (21) costs little because most of it does not require updating.

3.2. Stability. The block-LU update possesses the same stability properties as
the SC update. The main requirement again is that B0 be reasonably well conditioned.

In practice we can prevent excessive ill-conditioning in Bo by replacing certain
columns with the unit vectors associated with slack variables, according to the size of
the diagonal elements in the initial LU factors. A rather lax tolerance is needed to
prevent altering the basis after every factorization and thereby impeding convergence
of the simplex method. In the computational tests reported here, provision was made
to altered B0 if its condition appeared to be greater than --2/3 101o (where the
machine precision was e , 10-15). However, no such alterations occurred. Thus, after
every 100 iterations the current Bk was always accepted as Bo, and no numerical
difficulties were encountered.

4. Implementation issues. For the block-LU update to be efficient, we must
be able to update Ck and Yk efficiently at each iteration. The updates to these
matrices consist of four cases:

1. Add a row and column to Ck, and add a column to Yk.
2. Replace a column of Ck and Yk.
3. Replace a row of Ck, leaving Yk unchanged.
4. Delete a row and column of Ck, and delete a column from Yk.

Each of these cases depends on the type of column entering or leaving the basis and
whether or not the columns were in the initial Bo. A description of each case follows.

Case 1. The entering column is from No, and the leaving column is from B0. A
row and column are added to Ck:

(23) Uk+l-- T and Yk+l-( Yk w ),ep

C Uw)(24) Ck+l Vk+l B Yk+l- TYkep

where Bow aq and 5 eTpw. Note that w is already available from (8) in the
simplex algorithm. It becomes a new column of Yk.

Case 2. The entering column is from No and the leaving column is from Vk (not
from B0). A column of Ck is again replaced by Ukw, which is already available from
the simplex algorithm. The dimension of Ck stays the same. A column in Yk is
replaced by the new transformed column w.

Case 3. The entering column is from Bo and the leaving column is from Bo. A
row of Ck is replaced with the pth row of Yk. The dimension of Ck stays the same.

Yk is not altered.
Case 4. The entering column is from B0 and the leaving column is from V (and

not from Bo). We delete a row and column from Ck and we delete the corresponding
column from Yk.
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4.1. Storage of Ck. The size of Ck will never be larger than the refactorization
frequency. Since this is relatively small for most large-scale LP problems (we used
100), it is efficient to treat Ck as a dense matrix.

For maximum reliability, we maintain a dense orthogonal factorization QkCk
Rk, where Qk is orthogonal and Rk is upper triangular. The techniques for updating
the QR factors of Ck involve sweeps of plane rotations as discussed in [GGMS74].
A set of routines called QRMOD were used for this purpose. For slightly greater
efficiency, Qk and/k may be updated using sweeps of stabilized elimination matrices;
see [Cli77].

4.2. Storage of Yk. As Yk has a row dimension of m, the method of dealing with
this matrix is important. Yk consists of transformed columns that have entered the
basis since the last refactorization. We must be able to do matrix-vector multiplies
with Yk (20) and YkT (21) as well as fetch rows of Yk (24). The sparsity of each column
of Yk depends on the sparsity of the basis itself as well as the sparsity of each of the
entering basic columns.

Since the use of indirect addressing reduces performance on most vector comput-
ers, indirect adressing should be avoided for all except very sparse vectors. On the
other hand, performing computations with vectors containing a very large proportion
of zero elements is also inefficient. With this in mind, each column of Yk is stored
in one of two ways depending on its density. We have used the following dynamic
storage scheme for Yk:

1. A column ofY that has a density of at least NTHISH is considered to be dense.
Such columns are stored "as is" and not packed. In the computational tests,
a value of ITHRSH 0.40 was used.

2. Columns with density less than ITHISH are considered sparse and are packed
in a conventional column list. For each column, the nonzero elements of these
vectors are stored contiguously, along with a parallel array of row indices, the
number of nonzeros, and a pointer to the first nonzero.

The average sparsity for Yk’s columns for each of the test problems is given in Table 4.
A row of Yk can be extracted trivially from columns in dense form. Packed columns
require a search for the desired row index, which can usually be vectorized.

Dense columns of Yk are stored separately from the sparse columns in order to
make operations with the dense columns vectorizable. Thus, the storage array for
Yk consists of a dense part and a sparse part. The updates to Yk consist of adding,
deleting and replacing columns. Each case is described below.

1. When a new column is added to Yk, the column is simply appended to the
end of the "dense" or "sparse" arrays for Yk. Dense columns are stored "as
is" and sparse columns are packed in a conventional column list.

2. For simplicity, column deletion was implemented by moving all later columns
one place to the left (thereby overwriting the deleted column and recovering
its storage). The operations are essentially the same whether the deleted
column is dense or sparse. Half of Yk must be moved on average, but the
copy operation is vectorizable and cheap. Also, less than half of the updates
require deletion.

3. Column replacement occurs in one of two ways. When both new and old
columns are dense, the new column simply overwrites the old column. In all
other cases, the old column is deleted from Y (2 above) and the new column
is appended to Y (1 above).
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TABLE 1
Problem specifications.

1
2
3
4
5
6
7
8
9 grow22 441 444
10 nesm 663 666
11 perold 626 629
12 pilot.ja 941 944
13 pilot.we 723 726
14 pilot4 411 414
15 pilotnov 976 979
16 pilots 1442 3652
17 scfxm2 661 664
18 scfxm3 991 994
19 scrs8 491 494
20 scsd6 148 151
21 scsd8 398 401
22 sctap3 1491 1494
23 ship081 779 782
24 shipl21 1152 1155
25 shipl2s 1152 1155
26 stair 357 360
27 stocfor2 2158 2161
28 tdesgl 3500 4050
29 tdesg5 4215 22613
30 woodw 1099 1102

Problem Rows Cols Elem

80bau3b 2263 2266
bp822 822 825
cycle 1904 1907
czprob 930 933
etamacro 401 404
fffff800 525 528
ganges 1310 1313
greenbea 2393 2396

Objective value 11
29063
11127
21322
14173
2489
6235
7021

31499
8318
13988
6026
14706
9218
5145

9.8722822814E/05
5.5018458595E/03
-5.2263930249E/00
2.1851966988E/06
-7.5571519542E/02
5.5567961167E/05
-1.0958627396E/05
-7.2462397960E/07
-1.6083433648E/08
1.4076079892E/07
-9.3807558690E/03
-6.1131579663E/03
-2.7201045880E/06
-2.5811392641E/03

13129
43220
5229
7846
4029
5666
11334
17554
17085
21597
10941
3857
9492
18041

105002
37478

-4.4972761882E/03
-5.5760732709E/02
3.6660261565E/04
5.4901254550E/04
9.0429998619E/02
5.0500000078E/01
9.0499999993E/02
1.4240000000E/03
1.9090552114E/06
1.4701879193E/06
1.4892361344E/06
-2.5126695119E/02
-3.9024408538E/04
4.3560773922E/04
4.3407357993E/04
1.3044763331E/00

5. Computational results. In this section we compare numerical results ob-
tained from an implementation of the algorithm described in 3. The standard basis
update in MINOS 5.3 [MS87] is the Bartels-Golub update. For a complete discussion
of LUSOL, the package of basis routines in MINOS 5.3, see [GMSW87].

The implementation of the block-LU update has been included as an option in a
specially modified version of MINOS 5.3. The new version, MINOS/SC 5.3, includes
other options including a special pricing routine designed especially for vector com-
puters described in [FT88], and a vectorization algorithm for the solution of triangular
systems of equations described in [ER90]. These options were disabled for the present
computational tests.

The purpose of the tests is to demonstrate the efficiency of the new update and
show that for vector machines the method is more efficient than the Bartels-Golub
update on a representative set of large, sparse problems. The two algorithms are
labeled BG for the Bartels-Golub update and BLU for the block-LU update. The
tests consist of comparing timings of BG and BLU by solving 30 linear programming
test problems. Many of these problems are available from the netlib collection [Gay85].
The test problem specifications are given in Table 1. The smallest netlib test problems
were omitted from the results, as some timing categories for these problems were less
than 1/100th of a second on the machine used.
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TABLE 2
Update results.

Method BG" OBG BLU: OBLU

Problem
name

Total
update
time
(sec)

Mean
update
time
(#sec)

Total
update
time

Mean Mean Update
update size speed-
time Ck up
(#sec)

1 80bau3b
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O

bp822
cycle
czprob
etamacro
fffff800
ganges
greenbea
grow22
nesm
perold
pilot.ja
pilot.we
pilot4
pilotnov
pilots
scfxm2
scfxm3
scrs8
scsd6
scsd8
scrap3
ship081
shipl21
shipl2s
stair
stocfor2
tdesgl
tdesg5
woodw
MEAN

13.50
11.60
2.49
0.39
0.97
1.22

118.99
1.28
3.64
6.64

14.98
7.55
1.76
6.78

117.55
0.88
1.97
0.64
0.40
2.83
2.61
0.71
2.10
0.93
0.67
7.29

24.98
271.51

7.67
22.34

30137.88
20079.65
36633.00
16289.44
7130.00

10281.49
17342.51
46059.83

3.87
3.83
2.91
0.67
0.50
0.79
0.44

18.87

3385.i7 33.99 8.90
5471.75 25.66 3.67
9745.26 37.74 3.76
4228.94 37.20 3.85
8427.22 34.73 0.85
7898.30 36.01 1.30
6180. 7 4o.44  .81
7391.08 31.06 6.23

11 08.06 40. 0 1.61
5621.24 30.99 2.14

5134.65 24.27 4.64
4737.04 24.65 3.35
4567.76 23.23 2.69
5679.31 26.80 4.39
5388.31 24.12 13.54
8299.71 39.82 1.38
8236.08 40.40 2.03
6497.42 29.36 1.54
7396.47 33.84 0.49

10152.39 40.66 0.83
5952.07 41.13 4.41
2673.06 42.42 5.09
2747.94 40.92 6.84
3632.95 42.79 4.78
5270.27 24.60 2.34
9562.93 39.75 3.82
5950.65 39.59 10.15
7774.24 40.12 10.32
6807.28 37.37 2.98
6370.17 34.26 4.14

18483.14
12021.19
17083.67
23820.10
15853.32
12291.56
24923.93
72976.57
11478.61
16756.42
9984.7O
3611.14
8415.58

26277.24
13613.07
18806.31
17370.72
12352.67
36568.73
60392.59
80266.15
20271.52
23919.09

0.81
1.57
1.82
3.31
2.18
0.66
1.57
8.89
0.64
0.98
0.34
0.85
3.58
0.64
0.14
0.31
0.20
0.29
2.19
2.31

27.61
2.63
3.18

5.1. Test environment. The computational tests were performed on an 8-
processor Cray Y-MP supercomputer. Only one processor was used. The operating
system was UNICOS version 5.1, and the MINOS code was compiled using the CFT77
compiler with full optimization. Each run was made as a batch job.

For each test the number of iterations and total solution time are recorded in
Table 4. The solution time was measured by timing the MINOS subroutine MSSOLV.
The options used for MINOS were the standard MINOS/SC options, namely PhRTIhL
PRICE I0, SCALE OPTION 2, FACTORIZATION FREQUENCY I00. The set of problems
was then run with (BLU) and without (BG) the SCHUR-COMPLEMENT option.

For purposes of evaluating the block-LU update, the following items were deemed
to be of interest for each method:

1. Total and average time spent updating the basis.
2. Total time spent solving for dual variables and the search direction y using

the basis factors.
3. Average solve times with the basis factors.
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TABLE 3
Solve results.

Method BG" BLU:

No. Problem
name

Mean
solve

Mean Mean Mean
solve solve solve
y y

(#see) (#see) (#sea)
1 80bau3b
2 bp822
3 cycle
4 czprob
5 etamacro
6 fffff800
7 ganges
8 greenbea
9 grow22

10 nesm
11 perold
12 pilot.ja
13 pilot.we
14 pilot4
15 pilotnov
16 pilots
17 scfxm2
18 scfxm3
19 scrs8
20 scsd6
21 scsd8
22 sctap3
23 ship081
24 shipl21
25 shipl2s
26 stair
27 stocfor2
28 tdesgl
29 tdesg5
30 woodw

MEAN

40568.12
28050.47
34750.42
17566.18
8594.14
10509.23
14002.71
67136.65
21071.95
14057.41
22935.79
30307.37
24727.20
18750.67
29968.91
66454.81
13580.72
19622.53
12217.33
6011.64
16193.41
14512.53
14065.56
16048.90
16948.28
17300.74
30451.35
52146.37
80847.35
27375.91
26225.82

32337.06
27790.85
44877.62
12823.63
8356.12
12726.54
17897.94
54699.46
22581.79
14433.41
23822.10
32987.48
25234.13
18488.82
32639.40
65155.80
13348.56
19358.95
11776.33
4875.61
12426.66
20346.93
9978.80
12260.41
12683.65
17629.60
40716.96
50159.20
69401.81
24530.58
25544.87

41853.63
26730.54
37200.98
19565.78
10980.39
12594.22
17465.92
70031.12
19877.60
14532.32
20340.22
26348.98
22966.24
13718.79
26490.74
48638.38
16225.99
22415.36
12735.71
8348.29
18668.06
18591.30
17703.06
18865.25
20275.87
12552.57
34382.52
54627.08
85958.77
28535.34
26640.70

27891.02
22025.21
39155.63
10986.37
6787.33
11379.08
16229.53
47843.61
16715.92
10878.63
16273.83
23197.10
18282.15
10770.45
23707.26
44065.14
11929.60
17280.10
7971.36
4777.12
11411.83
19643.66
10714.05
12051.95
12718.61
9661.55

36011.83
46676.17
67876.06
20750.70
21188.76

5.2. Updates. Time spent updating the basis was measured by timing the ap-
propriate portion of the MINOS subroutine ISSOLV. The total and average updating
times are recorded in Table 2. These results dramatize the efficiency of the block-
LU update for the Cray Y-MP. In 27 of the 30 test problems the BLU method gave
faster mean and total updating times than BG. The average update speedup was
4.14. A point of interest is that while update times grew for the larger problems using
method BG, the average update time remained fairly constant for method BLU. The
average BG update time ranged from 3611-80266 microseconds, while the range was
2673-11508 microseconds for the BLU update.

5.3. Solves. The average solve times for the two methods are quite similar, as
exhibited in Table 3. It is important to note that although it was not performed here,
the solves with Lo and Uo can be vectorized with method BLU. The solves with L0
may be vectorized for method BG but as Uk is updated explicitly with this method,
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TABLE 4
Overall Problem Results.

Method BG: BLU:
No. Problem Itns Itns

name

1 80bau3b
2 bp822
3 cycle
4 czprob
5 etamacro
6 fffff800
7 ganges
8 greenbea

11963
6792
3198
1544
55O
953
708

26094

Soln.
time

206.22
71.70
51.92
11.97
2.00
4.85
5.78

622.14

6999
2987
1595
594
996
718

25527
9

10
11
12
13
14
15

grow22
nesm
perold
pilot.ja
pilot.we
pilot4
pilotnov

704
3058
3923
6350
4805
1446
2747

6.39
21.96
35.74
80.46
48.17
9.98

35.04

703
2792
3801
6445
4611
1446
2773

16 pilots
17 scfxm2
18 scfxm3
19 scrs8
20 scsd6
21 scsd8
22 sctap3
23 ship081
24 shipl21
25 shipl2s
26 stair
27 stocfor2
28 tdesgl
29 tdesg5
30 woodw

MEAN

16267
772
1184
647
1127
3400
1003
526
1125
538
551

2014
4177
34177
3822

4872.16

577.24
4.33
9.61
3.30
3.12

22.17
9.72
4.02

12.10
4.60
3.62

31.50
95.50

1334.49
65.17

113.16

16494
772

1184
521
1153
3531
1070
523

1113
544
551

2292
3878

35518
3860

4880.53

Soln. Mean
time dens.
(seas)

.oe 
58.64 .621
39.63 NA
10.48 .016
2.25 .159
4.95 .277
5.34 .051

493.56 .223
4.99 .691

17.66 .121
25.71 NA
58.94 .640
37.24 .719
6.90 .577

26.65 .568
347.56 .736

4.24 .094
8.83 .104
2.33 .155
3.76 .343

24.45 .338
8.80 .024
3.66 .011

10.58 .007
4.12 .006
2.45 .655

30.28 .088
69.27 NA

1144.78 .070
58.56 NA
89.45 .291

U0 is not constant between refactorizations. This means that it is possible to decrease
solution times with the factors of B0 using method BLU even further.

5.4. Comparison with the product-form update. On average, the density
of the columns of Yk will be similar to that of the eta vectors in the classical product-
form update. Note, however, that over a period of 100 iterations the average number
of columns in Yk is only 25 to 40, with a mean of 34. This means that the number
of transformed vectors used in solving systems of equations is lower for the block-LU
method than for the PF update, where the average would be 50 if stability require-
ments allow 100 updates. Since the size of the additional matrix Ck is small on average
(25 to 40), this suggests that the block-LU update requires fewer floating-point op-
erations per solve as well as lower storage requirments than the PF update on large
problems. The ratio is 34/50 2/3.

6. Conclusions. 1. A block-LU update technique is a viable alternative to a
standard (Bartels-Golub) updating technique when vectorization is available.
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2. Numerical experiments running a modified version of MINOS 5.3 on a Cray
Y-MP showed the block-LU update to be superior to Bartels-Golub updating on 27
of 30 test problems.

3. Average solve times with basis factors using the block-LU update were com-
parable to the solve times using the standard method.

4. Use of the block-LU update reduced CPU times by approximately 21 percent
on these test problems. Vectorization of all the solves with L0, U0, Lc, U" as in [ER90]
would give a further marked improvement.
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