L t
tinpmmerer

SIAM J. MATRIX ANAL. APPL. © 1993 Socicty for Industnal and Applied Mathematics
Vol. 14, No. 2, pp. 456-467, April 1993 010

ON ACCURATE COMPUTATIONS OF THE PERRON ROOT*

L. ELSNERt, 1. KOLTRACHT}§, M. NEUMANNiY, anDp D. XIAO1#

Abstract. This paper establishes a new componentwise perturbation result for the Perron root of a non-
negative and irreducible matrix. The error bound is independent of the angle between left and right Perron
eigenvectors. It is shown that a known inverse iteration algorithm with new stopping criteria will have a small
componentwise backward error, which is consistent with the perturbation result. Numerical experiments dem-
onstrate that the accuracy of the Perron root computed by the proposed algorithm is, indeed, independent of
the angle.

Key words. nonnegative matrices, Perron root. sparse systems, backward error, componentwise pertur-
bations, stable algorithms

AMS(MOS) subject classifications. 65F70, 15A06, 15A18

1. Introduction. In this paper we consider the problem of how to accurately compute
the Perron root of a nonnegative and irreducible matrix 4. It is well known (see Berman
and Plemmons [3]) that the Perron root, which equals the spectral radius of 4, 1s a
simple eigenvalue to which there corresponds a positive eigenvector.

For general matrices, the sensitivity of a simple eigenvalue to perturbations depends
on the angle between normalized left and right eigenvectors corresponding to the eigen-
value. The following result appears in Wilkinson’s book [10]: If \ is a simple eigenvalue
of a square matrix A and y and x are corresponding normalized left and right eigenveciors,

then for sufficiently small & the matrix A + 8E, with | Ell, = 1, has a simple eigenvalue
\ that satisfies the inequality

- 3
A —Ri| = oy T o).

Using a formula for the componentwise condition number for general continuous
maps given in Gohberg and Koltracht [6], we shall obtain in § 2 the componentwise
condition number of a simple eigenvalue of an n X n matrix 4 and compare it with the
usual normwise condition number. In the special case when Aisan n X n nonnegative
and irreducible matrix and the eigenvalue in question is the Perron root, then for relatively
small componentwise perturbations in 4, i.e.,

(1.1) |Ei;| Sedi;, i,j=1,...,n,

* Received by the editors August 7, 1991; accepted for publication (in revised form) November 12, 1991.

1 Department of Mathematics, University of Bielefeld, P.O. Box 8640, 4800-Bielefeld 1, Germany. The
research of this author was supported in part by Sonderforschungsbereich 343, “Discrete Structures in Math-
ematics.”

1 Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009.

§ The research of this author was supported in part by National Science Foundation grant DMS-9007030
and by Sonderforschungsbereich 343, “Discrete Structures in Mathematics,” through the Department of Math-
ematics, University of Bielefeld.

1 The research of this author was supported in part by U.S. Air Force Office of Scientific Research grant
AFOSR-88-0047, by National Science Foundation grants DMS-8901860 and DMS-9007030, and by Sonder-
fofrschungsbcreich 343, “Discrete Structures in Mathematics,” through the Department of Mathematics, University
of Bielefeld.

The research of this author was supported in part by National Science Foundation grants DMS-8901860
and DMS-9007030.

456

ON ACCURATE COMPUTATIONS OF THE PERRON ROOT 457

we shall show that

IA = |

(1.2) :

=&+ o(e).

Hence the componentwise condition number of the Perron root is 1. In fact, we show
in Theorem 1 of § 2 that a better result than (1.2) 1s possible. It is that

A -
A

<e

(1.3)

In view of (1.3) a natural question to ask is whether one can find an algorithm for
computing the Perron root that is numerically stable in the sense of (1.1). To be precise,
we are looking for an algorithm for computing the Petron root of A for which the computed
root is the exact Perron root of a perturbation A + E of A satisfying

(1.4) |E V= f(myud,;, i,j=1,...,n,

where u is the unit round-off error and f(n) is a slowly growing function. Then the
computed root will satisfy

~

(1.5) —'l—;—ﬂ_s_f(n)u.

Since any algorithm for computing X is iterative, we must find an algorithm such
that, subject to certain stopping criteria, the approximate root produced by the algorithm
will be an exact root of 4 + E, where E is small and satisfies (1.4).

One such algorithm is presented in § 3. It is based on a variant of the inverse iteration
due to Noda [7], which was shown by Elsner [4] to be quadratically convergent to the
Perron root and which involves, at each stage of the iteration, the solution of a linear
system whose coefficient matrix is an M-matrix. Using a theorem of Skeel [9], we show
that if at each stage of the algorithm the M-matrix system is solved by Gaussian elimination
followed by an iterative refinement of the solution and if certain stopping criteria are
satisfied, then this results in an algorithm such that the approximation to the Perron root
of A is an exact Perron root of 4 + E with E satisfying (1.4). This resuit is given in § 3.

In § 4 we present some numerical experiments that illustrate the stability of the
proposed algorithm. In particular, we give an example of an M-matrix for which the
standard QR algorithm breaks down, whereas the algorithm of § 3 computes the Perron
root with high accuracy, as expected. These results also show that the power-squaring

algorithm (see Friedland [5])
(1.6) A= p(d) = lim 4% 4%,

where p(-) denotes the spectral radius, which is seemingly natural from the point of view
of round-off error analysis, is inferior in its convergence speed. (However, it should be
remarked that on a vector or parallel computer, the power-squaring method may beco_me
competitive because its rate of convergence could be compensated for by fast matrix-
matrix multiplications.)! Our numerical experiments also show that the cqmputed P(?non
vectors are highly accurate, although we do not yet have a full perturbation analysis for

explaining this evidence.

! Friedland [5] also notes that the power-squaring algorithm could be used to compute the subdominant
eigenvalue of a nonnegative and irreducible matrix.

458 L. ELSNER, . KOLTRACHT, M. NEUMANN, AND D. XIAO

2. Perturbation results. Suppose that the matrix 4 € R™" has a simple eigenvalue

A = A(A). It is well known that the map Fz:e — A\(A + ¢E)isanalyticin a qeighbor_hood

of 0; see, for example, Wilkinson [10, pp. 66~-67]. Therefore, the map £ : A = A(A) has
continuous partial derivatives with respect to each entry at 4 and (see [10, Chap. 2])

oF F(A +IE,I)‘“‘ F(A) _ Y.

—(A4) = lim ,
Bi.j() t—=0 ! _]'Tx

L, j=1,....n.

Hence, as a map from R" —» R, F is differentiable at 4 and

, _ | 9F oF 8F aF
F'(4) = 31,|’“.’31,,,’32';““’an.n]'

According to a formula of Gohberg and Koltracht [6]. the sensitivity of F(A) 1o
componentwise perturbations in 4 as in (1.1), for A ¥ 0, 1s characterized by the com-
ponentwise condition number of F at A4 given by

|E(A)Dall _ | F/(A)D, Il

c(F,A)= ,
IF(A) I, IA]
where
DA = diag (al.l, < ey ai.ﬂs a2.|9 ey a"’").
This means that
o(F. A) = lmayixy, ..., ynan.nxn]:Taz,;x., s ValnnXn) |

where the infinity norm of the map F '(A)D, is, in fact, the 1-norm of the row vector
that represents it. Thus

2.1) o(F, A) = Zhuz1 [yiaiml _ 1yl A4] [x]
INH y7 x| N yTx]

where an absolute value of a matrix is the corresponding matrix of the absolute values

of its entries. Thus if E is a perturbation of 4 which satisfies (1.1), the A = A\(4 + E)
satisfies

(2.2)

Sco(F,A)e + o(e),

where o(¢) means that hm,.q/e = 0.

Itisinteresting to compare (2.1) with the usual condition number taken with respect
to normwise perturbations in 4. For example, let us consider perturbations in 4 with
respect to the Frobenius norm, in which case

N Wlaldl,

w!merx? the 2-norm of F'(A4) is its norm as a map from R™ to R and therefore coincides
with its usual 2-norm. Since || x|, = || yll2 = 1, it is clear that

1
[yTx|

" 1
2 (oy)?=—m—
L yTx|

i

IF'(A)], =

ON ACCURATE COMPUTATIONS OF THE PERRON ROOT 459

and so
4l
(2.3) k(F, A) = —20E
A =]

It is clear that c(F, 4) £ k(F, A). Moreover, it is possible that k(F, 4) is large, while
¢(F, A) is much smaller. Indeed, this may be the case if the smallness of yTx and/or A
is offset by a small | y7| | 4]| x]|.

Suppose now that 4 is a nonnegative and irreducible matrix and X is its Perron
root. Then, because x and y are positive vectors, | 37| | 4] | x] = yTAx = Av"x, and we
see at once that c(F, A) = 1. According to (2.2),

|A =\l
IX]

= ¢+ o(e).

We can, in fact, improve on this result.
THEOREM . Suppose that A is an n X n nonnegative and irreducible matrix, and

suppose that E is an n X n real matrix such that
|E| SeA,
where ¢ = 1. Let \ and A\ denote, respectively, the Perron roots of A and A + E. Then

’".E_At_’ﬂée_

Proof. The inequality (1.1) can be written as
0=A—-cASA+E=SA+eA.

(2.4)

Since p(-) is monotone on the nonnegative matrices (see, for example, [3}]), it follows
that

p(A—eA)SE p(A+E)=p(A+ eA).

Since p(A4 + eA4) = (1 £ ¢)p(A), we get that
(1 —eAZ2X=(1 +)N

Because X > 0, the last inequality is equivalent to (2.4). O

3. A stable algorithm for computing the Perron root. Let A be an irreducible non-
negative matrix, p be the Perron vector of 4 whose infinity norm is 1, and p(4) be
the Perron root of A. The basis for our algorithm is a certain inverse iteration due to
Noda [7], which has been generalized and shown to be quadratically convergent by

Elsner [4].

INVERSE ITERATION ALGORITHM. For a given), > O define iteratively
Ays)

5

ﬂs=max(

Xy = (ﬂsl_A)#lys’

and
Xy

AL T

460 L. ELSNER, . KOLTRACHT, M. NEUMANN, AND D. XIAO

Then, for any s, p(A4) < p,+ 1 = usand
1 — p(A) = Ci(ps — p(A))?

w22l

where C, and C, are some constants depending on y, and A4 only, and where, for any

and

two n-vectors u = (u,, ..., u,) and v = (v, ..., v,)7, v > 0, by definition
u Uu; . u . U,
max [— | = max —, min|—]= min —,
v l=ign U; 1s1sn ¥
and

o) 22

(For more background material concerning properties and applications of vector oscil-
lation, see Seneta [8, Chap. 3.4].) Since g, > p(A) so long as y, is not a scalar multiple
of p, it follows that the matrix (u,/ — 4) is an M-matrix. A certain version of the Gaussian
elimination algorithm due to Ahac, Buoni, and Olesky [2] can be used to compute the
solution of the equation (u,J — A)x, = y,. According to [2], the pivots will always be
found among the diagonal elements, and this saves some execution time. It is also shown
in [2] that the computed solution is exact for a perturbed system whose relative distance
from the original system is O(n)u, where u is the machine precision. This distance,
however, is measured normwise, whereas the bound of Theorem | requires compo-
nentwise perturbations. In order to get a small componentwise backward error, we add
a one-step iterative refinement, as recommended by the following theorem of Skeel [91
concerning solution of Ax = b by Gaussian elimination. _

THEOREM 2 (Skeel [9]). Let u be the machine precision, and let the arithmetic
be such that the floating-point result fl (axb) of the operation asb, where » € {+, —,
X, |}, satisfies fl (axb) = (axb)(1 + €) with |e| < u. There is a function f(A, b),
typically behaving as O(n), such that when the product of k(4) = ||| A|| A"} | and
o(A, x) = max (|A||x|)/min (14| x|) is less than (f(A, b)u)™" and there is no
overflow or underflow, then the following one-step refinement:

Solve Ax = b using Gaussian elimination, obtaining solution X, and saving the LU
Jactors;

Compute the residual r = AX — b (using single-precision u);

Solve Ad = r for d using the saved LU factors of A;

Update x = ¥ — d,
gives a vector X that is the exact solution of the equation

(A+ AA)X = b + Ab,

where

|Adi;| S (n+ Duld,l, ij=1,...,n,
and
|Ab;| = (n+ Dulb, j=1,...,n.

We formulate the following algorithm for computing approximations to the Perron
root p(4) and the Perron vector p of a nonnegative irreducible matrix 4.

ON ACCURATE COMPUTATIONS OF THE PERRON ROOT 461

ALGORITHM. Let u be the machine precision. Start with Yo > 0 and yp =
max{Ayo/¥).Fors =0, 1, ...
1. Compute the LU factorization

(Iv"sI - A) = LsUs’
and solve for x;
L Ux; =y,

by the Ahac, Buoni, and Olesky algorithm; save the LU factors:
2. Compute r = Ax, — y;;
3. Solve Ad = r using the saved LU factors L, and U,;
4. Update x, = x;, — d;
5. Compute

Ays+ l) .

Xs and = max(
== Bse1 = ;
ys+1 ”xs"oo o ys+l

6. Proceed until

5" <u'’? and osc (—&—) =u'?,
Ys+1
The following theorems characterize the numerical behavior of the algorithm and
explain the stopping criteria in step 6 above. Variables computed by the algorithm are
denoted by hats. The norm below always means the infinity norm. It is assumed for
simplicity that the matrix 4 is of the size (n — 1) X (rn — 1).
THEOREM 3. Suppose that the algorithm terminates when

1% ' =6 and osc (‘ys) =g

ys+l

and that
An(1 + L
(31) 7)(7?)<F'.rl+nua

where n = max (¢,, &). Suppose further that

max (|, — 4] %) -1
min (16— 415) < 0

(3.2) (A —)7 i = Al

where f= f(jd — A, V) is as in Theorem 2. Then és — &, and ¥, , ; are the exact Perron
root and Perron vector, respectively, of the matrix A, where

Z,-,,-=A,-‘j(l+e,-,j)(l+6,<), i,j=l,...,n—-1, I%Js

and
A= A (1 + e), i=1,...,n—1,
with
le;;| < nu, le;;] < 2nu,
and

4nu 4e,(nu + e + nuey)
I — nu as(1 ~— nu)

[6;l =

SR L e e

462 L. ELSNER, 1. KOLTRACHT, M. NEUMANN, AND D. XIAO

Proof. It follows from the definition of X, in the algorithm and from Theorem 2
applied to the equation (a,/ — A)X; = y, that

(i — A4 — E)X, = s + Ay,
where
(3.3) | Eijl = nul(ps] — A)il
and
[Ayil = nul(§oil.
Therefore, dividing by the norm of x, and using the definition of ¢, we can write
(3.4) (il — A4 = E)Josr = ei({ + D.) ys,

where D, is a diagonal matrix such that |f;| = au with D,(i, i) = f;. Note that the infinity
norm of ¥, | and y, equals 1, and that they are both positive vectors. Thus

min(,ys)é 1 émax(,ys)

ys+! ys+1

max(Ays)=osc(dys)+min(nys)
Vs+1 Ys+1 Ys+1

max(,i)gusz and min(Ys)gl—ez.

Ys+1 Ys+1

From the equality

it follows that

Therefore,
(1 —e)Vse1 =P =(1 4+ e) Vo1
and hence we can write y; = (I + D,,) ;. ,, where D,, is a diagonal matrix such that
|hi| = ey with D,,(i, i) = h,. Substituting into (3.4), we get
(3.5) (is] = A= E)Jsor = (1 + D)(1 + D) Y11

This, in turn, can be rewritten as

n

(3.6) 2 (Aij+ EDVeai() = (s — Aiy) — Eij — ei(1 + L)1 + b)) Por 1 (0).
J=1 %

Let us now define ¢, ; = E; j/A, ; for i # j (where 0/0 = 0). Let ¢;; = 0if 4;; < fis/2,

andlete;; = E;;/A,; if A;; 2 ft5/2. For the case 4;; < fi;/2, let §; be such that

(3.7) 2 A+ E DV = (—Eiy — (i + b+ 1)) o0 1 (D).

J=1j%i
In this case it follows from (3.6) and (3.3) that

_Ei,i — Cl(ﬁ + ki +ﬁhi)
(s — Aii)— Ei; — (1 +)(1 + k)

|5i| =

< | E; i ei(nu+ e, + nuey)
As(1 — nu)/2 — (1 —nu)/4 jg(1 — nu)/2 — j(1 — nu)/4

< dnu ei(nu + & + nues;)
(1 = nw) ps(1 — nu)/4

ON ACCURATE COMPUTATIONS OF THE PERRON ROOT 463
If A;; 2 u,/2, then let §, be such that
(3.8) 2 (A, + E NP ())s; = —e (i + i+ fil) P11 (0).
j=1

Again, it follows from (3.6) and (3.3) that

—el(ﬁ + h,‘ +f;h,) < Sj(nu + &> + nu€2)
s = e(1+ O+ k)|~ i — As(1 — nu)/a

Using the definition of §; and e;,; and the equality (3.5), we finally obtain

(3.9) 2 A+ E DL+ 6) 5,0 1() + A1+ €)Y 1 (8) = (B — 1) Jor 1 ().

J=1Lj*i

16;] =

The theorem is proved. O

It follows from Theorem [that if n = #'/? and if the conditions (3.1) and (3.2) are
satisfied, then fi; — ¢, is the exact Perron root of 4 such that | 4 — 4| < (u'/? + O(u))A.
Indeed, it is easy to see from (3.1) that |4 = u'? + O(u). Thus, by Theorem |,
lis = &1 — p(A)] = (u'? + O(u))p(4), and hence 13, — p(A)] = (1 + p(A))u/? +
O(u). Since the sequence { fi;} converges quadratically to p(4), it follows that

fiss1 — p(A) = Ci(1 + p(A))%u + o(u),

where C; is a constant defined in the inverse iteration algorithm.

We comment that condition (3.1) is not restrictive since A can be replaced, e.g., by
I + 4. Let us argue that the condition (3.2) is not restrictive either. This condition is
necessary to assure that the product of k(u,f ~ 4) and o(u,J — A, X,) is not too large
relative to the machine precision for Skeel’s theorem to apply. However, as was pointed
out by Wilkinson [10, § 9.47], it is typical for the inverse iteration that the solution of
(ud — A)x, = y,is computed with high relative accuracy, while the coefficient matrix
may be very ill conditioned. Further justification of this point will be given in Theorem
4 below. The second factor, o(u,/ — A4, x,), is necessary in Skeel's theorem to account
for possible zeros of the solution vector and the right-hand side, as is discussed in detail
in Arioli, Demmel, and Duff [{]. Since in our case both x; and y; are positive vectors,
one can expect Skeel’s result to hold even if the factor o{u,/ — A4, x;) is large. These
arguments are supported by numerical evidence in § 4. The experiments also suggest
that if only the Perron root, but not the Perron vector, needs to be calculated, then the
stopping criterion of the algorithm should be changed to || x| ™! < u'/2, since the-second
criterion, which assures accuracy of the Perron vector, may slow down the algqnthm to
some degree. In this case, as can be seen from the proof of the theorem, condition (3.1)

can be replaced by the condition

I —nu

1 +nu’

It is now clear that ¢, does not need to be very small for this condition to be satisfied.

In the next theorem we show when the condition (3.2) will alu{ays be satisﬁed.
THEOREM 4. Let §,., and i, denote the quantities computed in the algorithm for

some value of s. Let p be the Perron vector of A, and define

A

48|(l + 82) < Uy

_ max (p) _ max (Ps+1)
?" min (p)’ Yoomin (Jie)

and
5,,, = min z A,',j.

1SiSn (p;

@n
e

464 L. ELSNER, I. KOLTRACHT, M. NEUMANN, AND D. XIAO

Then
(3.10) It — A (asd —)| | (85 — p(A)) = 2S,i,,
(3.11) max(l“’I”Aly’“)amé2Syﬁs.

min (|, — A| Po41)
Proof. Observe that
|(is] — A)| = A— 2D,y + jl,
where D, = diag (4,,, ..., An,). Let y = |ii,] — A| ¥, . Then clearly
YE s Psrr + Afsy,
and
Y Z (sl = Dyg) Y541 + 6, min (Ps+1).
It follows from the inequality fi; Z fi, ., and the definition of ji. , that
min 0) = m G A TS o
Thus (3.11) is proved. To show (3.10), observe that for any u > p{(A4),
(0l —A)"'p = (n— p(4))p.
Let D, = diag (p(1),...,p(n))and e = (1, ..., 1)7. Then
D, (ul — A)' Dpe = (u = p(4)) e,

S,.

which implies that
IDZ! (I ~ A)"' Dyl = (u — p(A))~".
Therefore,

(el = A)7) = (- p(A)) 'S,
and

Mt =)7 (el = A S 1 (ud — A) (] + A)]]|
= [(uf — A) " 2ul — (uI — AN

= 126(ul =)™ = 1|l S 2p)|(ud — 4)7'I.
Thus, clearly,

N Cud ~)7 (el —)| < 2u(p — p(4))7'S,.

The theorem is now proved. a

Theorem 4 shows that if 45,S,42u < £15, (4, — p(A)), where u is the computer
precision, then the condition (3.2) of Theorem 3 will be satisfied for s, for which the
algorithm terminates. We remark that as long as (a,f — A)X, ~ J,, then we have‘t.hat
#s— p(A) =~ || X|| *. Therefore, with is = p(A) =~ u'’*ji;, one can expect that the condition
(3.10) will be satisfied when £, | ~ u'/2 (see also [10, § 9.471).

4. Nume_rical experiments. Test matrices whose Perron vectors have various 0_591'
latory properties can be generated, for example, as follows, Take any matrix with positive

ON ACCURATE COMPUTATIONS OF THE PERRON ROOT 465

entries, and divide each row by the sum of the elements of this row. This is the matrix
B. Choose any n positive numbers d,, d,, . . . , d,, and let

D= diag(d,, dz, . ,dn).

Then

(4.1) A=DBD!

is positive (and hence irreducible), the Perron root of A4 is equal to 1, and the Perron
vector of 4 is (d,, d,, ..., d,)". One possible choice of B is with all its entries equal to
I/nandd; =d’"',j=1,...,n, with d < 1. In this case a right Perron vector is p =
(1,d,...,d"" "7 and the left Perron vectoris ¢ = (d"~',..., d, 1)7. It is clear that

the usual condition number of the Perron root k(F, 4) given by (2.3) can be arbitranly
large in this case, since 1/¢"p=n""'d'"".

We have extensively tested two algorithms on such matrices, the algorithm of § 3
and the power-squaring method given by (1.6). The reason for testing the latter algorithm
is its obvious numerical stability: there are no subtractions of numbers with the same
sign and, with appropriate scaling, no overflows in the course of this method. The power-
squaring method requires 7> multiplication operations for each iteration step, while the
algorithm we suggested in the previous section requires about % n? operations of multi-
plication and division per step because of the elimination involved. The experiments
were performed with a computer precision « = 2752 ~ 107'® using MATLAB on the
SUN 3/50 workstation.

We observed that the algorithm of § 3 always converged quadratically to the exact
Perron root, and with || x|l > 10® = u'/? the error in the computed u,,, was of
O(u) = 0(107'%). The power-squaring method always converged more slowly, sometimes
significantly so, than the first algorithm, which is not surprising because it has only a
geometric rate of convergence. The comparison of the two methods on a parallel or
vector machine could change their relative performances but we have not yet carried out
such experiments.

In the following tables we give some typical numerical examples. The iteration is
stopped when || x,]| = m,. In the tables, ¢; denotes 1 /[x| and ¢, denotes osc (y;/ v 1).
In Table 1 we present a reproducible result, where A is the 20 X 20 matrix

o1 0 --- O
o 01 --- 0
A=
o0 0 - 1
e 00 - 0
TABLE |
e=05X 10%°,
my & 5] s~ P lﬂs‘tl‘Pg Koot P
1.2 x 10* 4.1 X 107° 5.1 %1072 4.1 %1073 1.4 x 107° 10X 10t
1.2 % 10* 1.0x10°® 1.3 x 1077 1.0x 107t 68 x 107" 7.7 % 107
1.2 x 10'® 7.7 x 107 84 x 1074 7.7 %107 0 0

1.2 x 10" 7.7 x 107 8.4 x 107" 7.7 %107 0

466 L. ELSNER, 1. KOLTRACHT, M. NEUMANN, AND D. XIAO

TABLE 2
e=12x107".
my &l &2 By = p lus — &1 = ol Bet1— P
1.2 x 10* 1.4 x 107 58 x 107 1.4 x10™ 1.3 X 1077 4.3 x 1077
1.2 X 108 3.6 X 10712 1.4 X 10710 3.6 X 10712 1.38 x 1078 2.7 X107
1.2 x 10® 3.6 x107% 1.4 x 10710 3.6 X 10712 1.38 X 107'® 2.7 x 1077
1.2 X 10" 2.7 x 107" 6.6 X 107'¢ 27x 1077 6.9 X 1078 2.7 x 1077

with e = (0.5)% = 9.5367 X 107", The initial vector for our algorithm was chosen to be
Yo=(1,1,..., 1)7. Itis easy to see that p(4) = ¢/, p = (1, &/, ..., e~ g=
(e e)T and ¢Tp = ne'™™ /7 =~ 1075, 1t takes 11 steps to get the results
on the first line of Table 1, 12 steps on the second line, and 13 steps on the third and
fourth lines.

In Table 2 we give results for the same A above, but with ¢ = (0.16)* = 1.2 X
107, 1t takes 21 steps to get the results on the first line of Table 2, 23 steps on the
second and third lines, and 24 steps on the fourth line. _

We see that for s = 23, when m, = ©~'/2, the computed value g, ; approximates
p(A) within the computer precision. The relatively large value of ¢7p has no effect on
the accuracy of the algorithm. We continued experiments with this matrix for decreasing
e=107",10"",107%, and 107"7. The computed Perron root was accurate, anq Fhe
results were similar, e.g., the Perron root was computed exactly after the condition
my' < u'’? was satisfied. We also tested the standard QR algorithm of MATLAB (the
function eig (A4)) for these values of e. For ¢ = 10 ~** the QR algorithm lost two significant
figures, for ¢ = 107" it lost three, and for ¢ = 10 it lost four. For ¢ = 10~!7 the QR
algorithm computed no significant figures at all, namely, it gave 20 complex eigenvalues
A1, ...y Ay such that 0.06 > |Re (\;)| > 0.04 and 0.06 > |Tm (A;)| > 0.028, while the
value of the Perron root in this case was 107!7/20 = (141

In Table 3 we present a typical example of experiments with 20 X 20 matrices of
the form (4.1) in which B was generated randomly. The results are very similar to those
of Table 1.

These examples, which are representative of a large number of other experiments
that we performed, demonstrate that the separation angle between the right and left
eigenvectors has no effect on the accuracy of the computed Perron root. They also show

that the stopping criterion || x| ™' < u'/? gives the maximum possible accuracy and that
there is no need to use a threshold smaller than %'/2.

TABLE 3
My & & Bs = p lpus — &1 — pl Hes1 TP
1.2x10¢ 15 %107 1.0 x 1072 15x% 1078 221077 M
1.2x10° 1.3 x 107 8.5x 107 1.3 X 107 53x 107" 2_2<£
1.2 X 10" 3.3 x 107" 8.4 X 107" 3.3 % 10-!! 54 % 10" M
~16
1.2 107 1.3x 1071 1.8 x 10° 20x 1071 22X 107" iﬁj‘_{?_',

ON ACCURATE COMPUTATIONS OF THE PERRON ROOT 467

REFERENCES

{1} M. ArioLl, J. W. DEMMEL, AND L. S. DUFF, Solving sparse linear systems with sparse backward error,
SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165-190.

[2} A. A. AHAC, J. J. BUONI, AND D. D. OLESKY, Stable LU factorization of H-matrices, Linear Algebra
Appl., 99 {1988), pp. 97-110.

[3] A. BERMAN AND R. PLEMMONS, Nonnegative Matrices in Mathematical Sciences, Academic Press, New
York, 1979.

[41 L. ELSNER, Inverse iteration for calculating the spectral radius of a nonnegative irreducible matrix, Linear
Algebra Appl., 15 (1976), pp. 235-242.

[5] S. FRIEDLAND, Revisiting matrix squaring, Linear Algebra Appl., 154/156 (1991), pp. 59-63.

[6] 1. GOHBERG AND I. KOLTRACHT, Componentwise mixed and structured condition numbers, submitted.

[7] T. NODA, Note on the computation of the maximal eigenvalue of a nonnegative irreducible matrix, Numer.
Math., 17 (1971), pp. 382-386.

{8] E. SENETA, Non-negative Matrices and Markov Chains, Springer-Verlag, New York, 1981.

[9] R. D. SKEEL, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput. Mach., 26 (1979),

pp. 494-526.
[10] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK., 1965.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12

