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INCIPIENT DYNAMICS OF SWELLING OF GELS

HANG ZHANG∗ AND M. CARME CALDERER†

Abstract. In this article, we analyze a model of the incipient dynamics of gel swelling, and
perform numerical simulations. The governing system consists of balance laws for a mixture of
nonlinear elastic solid and solvent yielding effective equations for the gel. We discuss the multiscale
nature of the problem and identify physically realistic regimes. The mixing mechanism is based on
the Flory-Huggins energy. We consider the case that the dissipation mechanism is the solid-solvent
friction force. This leads to a system of weakly dissipative nonlinear hyperbolic equations. After
addressing the Cauchy problem, we propose physically realistic boundary conditions describing the
motion of the swelling boundary. We study the linearized version of the free boundary problem.
Numerical simulations of solutions are presented too.

Key words. Gel swelling, two-component mixture, polymer-solvent friction, type II diffusion,
hyperbolic free boundary problem.

1. Introduction. We present analysis and numerical simulations of a model of
the incipient dynamics of polymer gel swelling. The system that we study is derived
from the balance laws of a two-component mixture of solid polymer and solvent[3].
The free energy of the system consists of the elastic energy of deformation of the
polymer together with the Flory-Huggins free energy of mixing. The dissipation is
due to the friction force between polymer and solvent. The resulting balance laws of
the mixture form a weakly dissipative hyperbolic system. We formulate the boundary
conditions for the swelling boundaries and analyze the free boundary problem for the
linearized equations. We discuss numerical simulations of the solutions of the Cauchy
problem. The effective equations that we obtain clearly reveal the multiscale nature
of the problem and the dynamics associated with the different time scales.

In dimensionless form, the elasticity, Flory-Huggins mixing and dissipative mecha-
nisms bring four time scales into the problem, with the largest one naturally associated
with the friction mechanism: this is the time scale of relaxation to the equilibrium
volume fraction, with diffusive dynamics. Indeed, many works on gels focus on the
relaxation part of the process. In this article, we address the earlier time scale dy-
namics and investigate their physical and mathematical significances, with the goal
of understanding their individual roles. This allows us to gain information on the
start-up of the process and on how the evolution of the swelling surface occurs.

In our applications, we will mostly refer to two classes of materials, entangled
linear polymers and polysaccharides. In terms of the physical parameters that char-
acterize them, the dissipation coefficient and elasticity modulus of the latter are several
orders of magnitude smaller than their polymeric counterparts.

Our study is motivated by polymeric applications to body implanted devices,
such as bone replacement tissue and controlled drug release mechanisms. Predictions
on change in shape from the dry state to saturation may help the manufacturing
process. Another related application involving polysaccharides is the study of gel
motility phenomena in myxobacteria.

Still a larger time scale would be present if polymer-polymer dissipation were
taken into account. Since our numerical simulations focus on the dynamics at the
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smaller time scales, we neglect the latter dissipation source in the present work.

Another motivation to our work is to gain some understanding of the so called
type-II diffusion phenomena [21] and [20]. It has been experimentally observed that
the dynamics of interaction between polymer and solvent, it is significantly different
in the case that dry polymer absorbs solvent than that of partially swollen polymer.
Indeed, the latter shows features of standard diffusion. In this work, we argue that
type II diffusion is mostly a hyperbolic phenomena, and therefore significantly different
than standard diffusion.

The model that we study was developed in [3]. It consists of laws of balance of
mass, momentum and energy for two-component system of nonlinear elastic solid and
solvent. Fields of the problem include volume fractions, φ1 and φ2, velocity fields,
v1 and v2, for solid and solvent, respectively, and pressure λ, a Lagrange multiplier
corresponding to the constraint of φ1+φ2 = 1. We observe that the continuum theory
for a two-component mixture can be used as a tool to obtain governing equations for
a third material, the gel, with properties that may be significantly different from
those of the individual components. Moreover, the effective equations are formulated
in terms of the center of mass velocity V and the diffusion velocity U = v1 − v2.
The model as formulated allows us to identify regimes associated with the different
time scales, with the short times characterizing evolution of the interface between
gel and solvent. The friction between polymer and solvent suggests existence of a
purely diffusive regime with V = 0. Indeed, considering initial conditions satisfying
V = 0, there exist a Lagrange multiplier function that maintains zero center of mass
velocity for as long as the solution exists. If polymer-polymer friction is included in
the model, either in the form of Newtonian dissipation or as given by a viscoelastic
law, another time scale, larger by several orders of magnitude than the diffusive one, is
added to the problem. Our model then, suggests that, upon relaxation to equilibrium
of the diffusive velocity and volume fraction, the material subsequently evolves as a
viscoelastic fluid with uniform volume fraction, with respect to the transport velocity
V.

In one dimensional geometries, the model reduces to a system of equations for the
diffusion velocity of the mixture U and the volume fraction of the polymer φ1. The
dependence on the center of mass velocity can be eliminated by imposing transitional
invariance of the solutions.

We formulate the one dimensional problem in Eulerian coordinates, in which
case, it becomes a free boundary problem. First of all, we assume that the interface
between dry polymer and solvent achieve a balance of force all the time, and that
the interface is fully saturated. In our framework, this amounts to neglecting the
shortest time scale of the system that causes very rapid saturation of the interface to
an equilibrium volume fraction φ∗ ∈ (0, 1). The value of φ∗ can itself be determined by
the pressure applied to the surrounding solvent [7]. We also assume that the interface
moves at the speed of the polymer and formulate an ordinary differential equation
for its dynamics. The remaining boundary conditions are formulated in terms of the
symmetry of the domain with respect to x = 0, implying that U(0, t) = 0. We study
the free boundary problem for the linearized equations and prove the global existence
of solutions (φ(x, t), U(x, t), S(t)) ∈ C1(Q̄S×C1(Q̄S×C2[0, t1], whereQ(S) := {(x, t) :
t ≥ 0, 0 < x < S(t)}; we also prove a global bound for S(t); 0 < |S(t) − L| < C.

The analysis of the free boundary problem precludes the presence of shocks in
the system. In a separate section, we consider the Cauchy problem and show that the
system is weakly dissipative as, characterized by Dafermos [5]. The existence of a pair
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entropy-entropy flux allows us to show that the governing system is L1-stable and,
therefore, solutions of bounded variation follow as a consequence of the theorem in
[5]. We show that the condition of hyperbolicity is satisfied for the material constants
of a linear polymer as shown in our table of section 2. Consequently, the system
remains hyperbolic and weakly dissipative for all time. However, this is not the case
for polysaccharide data, where hyperbolicity is lost at a critical volume fraction φc,
that may be greater than the saturation value φ∗. So, the swelling interface may stop
propagating before reaching saturation. We interpret such a phenomenon as the onset
of de-swelling. In the case of myxobacteria, this may suggest a reversal of direction
perhaps achieved by de-swelling. In this model, the break of hyperbolicity shown
by the polysaccharide data occurs because of small elastic modulus. This provides
another motivation to study early dynamics. Indeed, in polysaccharide systems, the
regime of relaxation dynamics may not be reached.

The works by Doi and co-authors address steady state solutions as well as relax-
ation regimes [23],[24], [25], [7] and [27]. Our modeling assumptions involving the free
energy, which combines the Flory-Huggins contribution and the rubber elasticity, and
the multiscale properties of the system are fully motivated by such works and those
by Tanaka [19].

This work is also partially inspired by the analysis in [15] of a flow with viscoelastic
particles. From another point of view, the system of equations and free boundary
problem share mathematical analogies with models of diffusion and transport aiming
at including finite speed propagation effects in heat conduction [18].

In section 2 we explain the model, and in section 3, we derive the properties of the
one-dimensional system. The Cauchy problem is studied in section 4, the boundary
conditions and the free boundary problem are formulated and studied in section 5.
Finally, in section 6, we present numerical simulations for the regularized system.

2. The model. We use the continuum theory of mixtures of an elastic solid and
a solvent as the main tool to derive the governing equations of a gel ([22], chapter 5).
Since the free energy depends explicitly on the volume fraction of the components,
the mixture modeling the gel turns out to be of immiscible type. Furthermore since
the intrinsic densities of the components are taken to be constant, the mixture is
incompressible.

2.1. Balance of mass, transport and constitutive equations. We assume
that each component occupies a domain Ωa ⊂ R

3, a = 1, 2 in the reference con-
figuration (Lagrangian), with a reference volume fraction φR

a . Here the sub-index 1
refers to the polymer and 2 represents the fluid. In some applications, the reference
configuration can be taken to be the initial state of the mixture. It is important to
emphasize that the reference domains Ωa, a = 1, 2 will, in general, be distinct. Both
components occupy a common domain in the deformed (Eulerian) configuration.

The deformation of each component, polymer and fluid, respectively, is given by
sufficiently smooth functions

x = M(X, t), X ∈ Ω1,

x = N (X, t), X ∈ Ω2,

with F = ∇XM(X, t) denoting the gradient of deformation of the polymer. According
to the theory of mixtures, both polymer and fluid, may occupy the same region, with
volume fractions φ1(x, t), φ2(x, t), respectively. Here x ∈ Ω represents a point in a
fixed region in space. We also assume that no other material or vacuum is present in
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the region, that is

φ1(x, t) + φ2(x, t) = 1, (2.1)

holds. We let ρ1 and ρ2 denote the mass densities of each component, respectively,
per unit volume in space. These are related to the true densities ( mass of component

volume of component),
γ1 and γ2 as follows:

ρ1 = γ1φ1, ρ2 = γ2φ2.

We assume that the mass densities of polymer and fluid are equal, and γ1 = γ2 = 1.
In this case, the densities and volume fractions coincide:

ρ1 = φ1, ρ2 = φ2. (2.2)

We introduce the material velocities of polymer and solvent, respectively,

ṽ1(X, t) =
∂M
∂t

(X, t), X ∈ Ω1,

ṽ2(X, t) =
∂N
∂t

(X, t) X ∈ Ω2.

We denote the corresponding velocity fields

v1(x, t) = ṽ1(M−1(x, t), t), v2(x, t) = ṽ2(N−1(x, t), t), x ∈ Ω. (2.3)

We let T1(x, t) and T2(x, t) denote Cauchy stress tensor of polymer and fluid
respectively. Each one may consist of elastic and dissipative contributions, although
in this work we emphasize the former. In addition, we take into account the friction
forces fa, per unit volume, that the polymer exerts upon the fluid, and vice-verse.
The local forms of the laws of balance of mass and linear momentum are

∂φ1

∂t
+ (v1 · ∇)φ1 + φ1∇ · v1 = 0, (2.4)

∂φ2

∂t
+ (v2 · ∇)φ2 + φ2∇ · v2 = 0, (2.5)

φ1
∂v1

∂t
+ φ1(v1 · ∇)v1 = ∇x · T1 + f1, (2.6)

φ2
∂v2

∂t
+ φ2(v · ∇)v2 = ∇x · T2 + f2. (2.7)

Assuming that the Second Law of Thermodynamics holds for all admissible processes
[3], yields the following equations for the reversible parts of the stress tensors, T1 and
T2 and an expression for the friction forces fa :

T1 = φ1{
∂ψ1

∂F
F − (φ1

∂ψ1

∂φ1
+ φ2

∂ψ2

∂φ1
+ λ)I}, (2.8)

T2 = −φ2{φ1
∂ψ1

∂φ2
+ φ2

∂ψ2

∂φ2
+ λ}I, (2.9)

f1 = λ∇φ1 − β(v1 − v2) = −f2, (2.10)

where λ is the Lagrange multiplier associated with the constraint (2.1), and β(φ1, φ2)
the polymer drag coefficient. The functions ψ1 and ψ2 represent the free energies
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of the polymer and solvent, respectively, giving the total free energy of the mixture,
Ψ ≡ φ1ψ1 + ψ2ψ2. According to the Flory theory of mixtures [8],

Ψ =
KBT

Vm
(
χ

2
φ1φ2 +

1

N
φ1 logφ1 + φ2 logφ2) + φ1W (F ), (2.11)

Expressions of the component free energies [9] that yield (2.11) are

ψ1 =
KBT

2Vm
χφ2

2 +
KBT

N1Vm
logφ1 +W (F ), (2.12)

ψ2 =
KBT

2Vm
χφ2

1 +
KBT

N2Vm
logφ2, (2.13)

where W (F ) represents the elastic deformation energy which we will assume to be
Neo-Heokean [1], that is, W (F ) = µtraceFFT , with µ > 0.

With these, equations (2.8) and (2.9) become

T1 =
KBT

NxVm
φ1((detF )

2
3 − (

1

2
+
Nx

N1
) − χNxφ1φ2)I − λφ1I + 2µφ1FF

T , (2.14)

T2 = −φ2(
KBT

N2Vm
+
KBT

Vm
χφ1φ2 + λ)I. (2.15)

We now list the parameters of the problem
1. Vm is the volume occupied by one monomer;
2. KB is the Boltzmann constant, and T is the absolute temperature;
3. N1, N2 denote the number of lattice sites occupied by the polymer and the

solvent;
4. Nx is the number of monomers between entanglement points;
5. φ1

NxVm
represents the number of entanglement points per unit volume;

6. χ is the Flory interaction parameter;
7. β is the polymer drag coefficient;
8. µ is related to the elastic shear modulus.

Parameter values appropriate to semi-dry polymers are given in the next table [27]
[16]

Parameter Polymer Polysaccharide
Nx 20 20
N1 1000 1000
N2 1 1
Vm .1 nm3 .1 nm3

χ .5 .5
T 300◦ K 300◦ K
µ 104 pNnm−2 10−5 pNnm−2

β 2.4 × 1010 pNsnm−4 2.4 × 103 pNsnm−4

Table 2.1

Data for polymer and polyssacharide

Remark. The approach developed so far is also suitable to account for polymer-
polymer friction, by postulating a viscoelastic law for the total stress. Let us denote
τ1 = T1 +φ1λ and τ2 = T2 +φ2λ, the (reversible) extra stress of polymer and solvent,
respectively. Let τ total

1 = τ1 + τd
1 . In the case of Jeffrey’s model [2], we have

τ total
1 + ξ[τ̇ total

1 − (∇v1)
T τ total

1 − τ total
1 (∇v1)] = η0D

1 + τ1, (2.16)
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where D1 is the strain, ξ > 0 denotes a relaxation constant, and η0 > 0 is the
Newtonian viscosity.

2.2. Governing equations of gels. The governing equations for the individual
components give the governing system of the gel. The fields of the gel model consist
of

{V,U, F, φ1, λ},

where V = φ1v1 +(1−φ1)v2, represents the center of mass velocity, and U = v1−v2,
the diffusion velocity. The total stress T is defined by

T = T1 + T2 − (1 − φ1)φ1U ⊗ U.

From equations (2.4)-(2.10), we derive the governing system for the new variables,

∂V

∂t
+ (V · ∇)V = ∇ · T , (2.17)

∂U

∂t
+ (1 − 2φ1)(∇U)U − (U ⊗ U)∇φ1 + (∇V)U + (∇U)V

=
1

φ1
∇ · T1 −

1

1 − φ1
∇ · T2 −

β

φ1(1 − φ1)
U +

λ∇φ1

φ1(1 − φ1)
, (2.18)

Ft + (V + (1 − φ1)U) · ∇F = ∇(V + (1 − φ1)U)F, (2.19)

∇ ·V = 0, (2.20)

∂φ1

∂t
+ ((V + (1 − φ1)U) · ∇)φ1 + φ1∇ · (V + (1 − φ1)U) = 0. (2.21)

Equation (2.19) is a version of the chain rule relating time derivatives of F with
velocity gradients. This equation is required in mixed solid-fluid systems [14]. We
note that the first equation gives the balance of linear momentum for the mixture,
and the second one can be interpreted as giving the evolution of the microstructure
of the gel. We now introduce the following tensorial notation,

T̂ :=
T1

φ1
− T2

1 − φ1

=
KBT

Vm
[

1

Nx
(detF )

2
3 − (

1

2Nx
+

1

N1
− 1

N2
)]I + 2µFFT , (2.22)

Ĝ :=
KBT

Vm
[

1

Nx
φ1

−1(detF )
2
3 − φ1

−1(
1

2Nx
+

1

N1
) − 1

N2
(1 − φ1)

−1 − χ]I

+2µφ−1
1 FFT .

We point out that the first one represents a relative stress, and the second one plays
the role of a body force, as indicated by the following calculations:

1

φ1
∇ · T1 −

1

1 − φ1
∇ · T2

= ∇ · (φ−1
1 T1 − (1 − φ1)

−1T2) − (φ−2
1 T1 + (1 − φ1)

−2T2)∇φ1

= ∇ · T̂ + Ĝ(∇φ1) −
λ∇φ1

φ1(1 − φ1)
.
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This allows us to rewrite equation (2.18) as follows:

∂U

∂t
+ (1 − 2φ1)(∇U)U − (U ⊗ U)∇φ1 + (∇V)U + (∇U)V

= ∇ · T̂ + Ĝ(∇φ1) −
β

φ1(1 − φ1)
U. (2.23)

The governing equations of the gel consist of (2.17), (2.19), (2.20), (2.21) and (2.23).
We note that the latter equation does not involve λ explicitly. Indeed, it only appears
in the balance of linear momentum of the center of mass (2.17).

We conclude this subsection discussing two limiting regimes modeled by the pre-
viously obtained system. First, let us consider the system obtained by setting V = 0.
This corresponds to fields initially satisfying V = 0, and such that λ solves the equi-
librium equation resulting from (2.17). The governing system for U and φ1 becomes

∂U

∂t
+ (1 − 2φ1)(∇U)U − (U ⊗ U)∇φ1

= ∇ · T̂ + Ĝ(∇φ1) −
β

φ1(1 − φ1)
U, (2.24)

Ft + ((1 − φ1)U) · ∇F = ∇((1 − φ1)U)F,

∂φ1

∂t
+ (((1 − φ1)U) · ∇)φ1 + φ1∇ · ((1 − φ1)U) = 0.

This corresponds to purely diffusive regimes where no net motion of the center of mass
of the mixture takes place. Of course, such type of regimes would not be compatible,
for instance, with flow geometries with prescribed nonzero boundary velocity (e.g.,
shearing flow).

Another regime fully characterized by the single velocity V can also be obtained
from the governing system. Indeed, setting U = 0 in (2.17), (2.19), (2.20), (2.21) and
(2.23), and accounting for viscoelastic stress, we get

∂V

∂t
+ (V · ∇)V = ∇ · τ −∇λ, (2.25)

τ + ξ[τ̇ − (∇V)T τ − τ(∇V)] = η0D + (T1 + T2), (2.26)

Ft + V · ∇F = (∇V)F, (2.27)

∇ · V = 0, (2.28)

where T1 +T2 denotes the total elastic stress of the system (2.14) and (2.15). In terms
of dimensional analysis, including a dissipative stress in the system to account for
polymer-polymer friction results in an additional time scale tv = η0

L2
0β
t0 much greater

than that governing the relaxation of the diffusive velocity U:

t0 =
βL2

0VmNx

KBT
, (2.29)

(Here L0 denotes a typical macroscopic length scale of the problem. The dimensional
analysis is presented in a later section). This is due to the fact that the polymer-
polymer viscosity coefficient represented by η0 is much larger that the polymer-solvent
friction coefficient β. Heuristically, we may argue that in a system where both veloci-
ties are initially present, U relaxes to 0 much faster than V. In the largest time scale,
the mixture is governed by equations (2.25)-(2.28) of viscoelastic flow, in a regime
characterized by transport only.
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2.3. Relaxation regimes. Many studies of gels address the relaxation regimes,
beyond transient behavior. For instance such an approach has been used by Doi,
Tanaka and other researchers in many pioneering studies of gel swelling [19], [7]. We
now indicate how the proposed equations relate to these earlier models. For this
we return to our original component formulation (2.1) and (2.4)-(2.7). Addition of
(2.4)-(2.5), together with the constraint equation φ1 + φ2 = 1 yield

∇ · (φ1v1 + (1 − φ1)v2) = 0.

With the stress tensors of the form (2.8) and (2.9) and setting ψ1 = φ1W (F ) and
ψ2 ≡ 0, we get

T1 = φ1
∂W

∂F
FT − φ1λ,

T2 = −φ2λ.

The equations of balance of linear momentum become,

∂v1

∂t
+ (v1 · ∇)v1 = ∇ · (φ1

∂ψ1

∂F
FT ) − φ1∇λ− β(v1 − v2), (2.30)

∂v2

∂t
+ (v1 · ∇)v2 = −φ2∇λ+ β(v1 − v2). (2.31)

Moreover, neglecting inertial terms, we get,

∇ · (φ1v1 + (1 − φ1)v2) = 0,

∇ · T1 + f1 = 0,

∇ · T2 + f2 = 0.

Taking into account that f1 = λ∇φ1 −β(v1 −v2) = −f2, the previous equations yield

∇ · (φ1v1 + (1 − φ1)v2) = 0,

∇ · (φ1
∂W (F )

∂F
FT ) + φ1∇λ− β(v1 − v2) = 0, (2.32)

−φ2∇λ+ β(v1 − v2) = 0. (2.33)

Addition of (2.32) and (2.33) yields,

∇ · (φ1
∂W (F )

∂F
FT − λ) = 0, (2.34)

where ∂W (F )
∂F is the Piola-Kirchoff stress tensor [10]. Taking into account the balance

of mass equation, φ1detF = 1, we rewrite (2.34) as

∇ · (detF−1 ∂W (F )

∂F
FT − λ) = 0.

Note that σ = detF−1 ∂W (F )
∂F FT is the Cauchy stress tensor. Summarizing,

Ft + (v1) · ∇F = ∇(v1)F,

∂φ1

∂t
+ (v1 · ∇)φ1 + φ1∇ · v1 = 0,

∇ · (σ − λ) = 0,

−(1 − φ1)∇ · λ+ β(v1 − v2) = 0,

∇ · (φ1v1 + (1 − φ1)v2) = 0.
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We observe that the first equation gives the chain rule, the second one corresponds
to balance of mass, followed by the force balance, the fourth equation corresponds to
Darcy’s law, and the last one is the incompressibility condition of the mixture.

Remark. Many analysis found in the literature consider additional linearization of
the previous system [23], [24], [25], [26] and [27].

3. One dimensional geometry. We consider the gel occupying a stripe domain

Ω = {(x, y, z) : −L ≤ x ≤ L},

in the form of a strip, with L > 0 fixed. For instance, this type of geometry may be
appropriate towards modeling gliding behavior of bacteria, by polyssacharide swelling
[11]. We seek solutions of the governing system with x = M(X, t), x = N(X, t),
denoting the deformation map of the polymer and the fluid, respectively. The fields
of the problem are taken as follows:

V = (V (x, t), 0, 0), U = (U(x, t), 0, 0), φ1 = φ1(x, t), λ = λ(x, y, z, t). (3.1)

The deformation gradient matrix is

F = diag (g(x, t), 1, 1), with (3.2)

g(x, t) =
∂M(X, t)

∂X
|X=M−1(x,t) = detF. (3.3)

The equation of balance of mass for the polymer in Lagrangian form is

φ1(x, t)detF (x, t) = α, (3.4)

g(x, t) = αφ1(x, t)
−1, (3.5)

where 0 ≤ α ≤ 1 is a parameter of the problem. It represents the volume fraction of
dry polymer in the reference configuration. For the deformation gradient F given in
(3.2) and (3.5), we calculate

T1 =
KBT

NxVm
(α

2
3φ

1
3
1 − (

1

2
+
Nx

N1
)φ1 − χNxφ1(1 − φ1))I − λφ1I

+2µφ1 diag (1, 1, α2φ−2
1 ).

T2 is as in (2.15). The second and third component equations in (2.17) give λ = λ(x, t)
(independent of y and z. Moreover, the equation ∇·V = 0 together with (3.1a) gives
V = V (t). Prescribing V (0) = 0, V (t) = 0, t > 0 follows provided ∇ · T = 0 holds.
The latter determines λ in terms of φ1 and U , up to a constant. Moreover φ1 and U
satisfy the equations,

∂φ1

∂t
+
∂(φ1(1 − φ1)U)

∂x
= 0, (3.6)

∂U

∂t
+

∂

∂x
(
1

2
U2(1 − 2φ1) −G(φ1)) = − β

φ1(1 − φ1)
U, (3.7)

where

G(φ1) =
KBT

VmNx
(−1

2
α2/3φ

− 2
3

1 − (
1

2
+
Nx

N1
) log φ1)

+µα2φ−2
1 − KBTχ

Vm
φ1 +

KBT

N2Vm
log(1 − φ1). (3.8)
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The sign of G′(φ1) is very relevant to the forthcoming analysis. Indeed, the
condition G′(φ1) < 0 will be needed to guarantee hyperbolicity of the governing
system, and therefore a requirement for the propagation of the swelling front towards
the solvent region. It turns out that G′(φ1) < 0 holds for polymer data. However,
in the case of polyssacharides with data as previously given, there is a quantity φc =
φc(µ), 0 < φc < 1 such that G′(φc) = 0. This may be interpreted in terms of the
onset of de-swelling, observed in bacteria motility phenomenon [11]; it may also be
associated with volume phase transitions observed in systems with small elastic shear
modulus [13].

We assume that initially, the polymer occupies the strip −L < x < L, and the
solvent is in the region |x| > L. At a later time t > 0, the gel occupies the region
−S(t) < x < S(t), where x = S(t) denotes the position of the interface between the
gel and the pure solvent. We look for symmetric solutions about the origin, x = 0,
i.,e., φ1(x) = φ1(−x), and U(−x) = −U(x), x ∈ (−S(t), S(t)). Therefore, it is
sufficient to solve the problem for x > 0 only. So, we assume that (3.6) and (3.7) hold
for x ∈ (0, S(t)), t > 0, for the fields (φ1, U). Equation(2.7) for the incompressible
inviscid solvent φ2 = 1 holds in the region x > S(t). This implies that

v = 0, λ = − KBT

VmN2
+ c, (3.9)

where c is a constant. In addition, we choose c so that the pressure in the fluid region
takes a prescribed value, p0, that is λ = p0, x > S(t).

The boundary conditions of the problem consist of symmetry conditions at x = 0
and balance of forces at the interface x = S(t). The former reduce to

∂φ1

∂x
(0, t) = 0, U(0, t) = 0. (3.10)

Letting − and + denote the left and right limit at S(t), respectively, we formulate
boundary conditions. We first establish balance of forces

(T1 + T2)
−
11 = (T2)

+
11. (3.11)

Also, following Doi [24], we propose the following constitutive equation that expresses
the degree of permeability of the interface. For a given P > 0, we assume that

λ− − λ+ = P. (3.12)

Using the expressions of Ti, i = 1, 2 and substituting (3.12) into (3.11) yields

P =
KBT

NxVm
(α

2
3 (φ−1 )

1
3 − (

1

2
+
Nx

N1
)φ−1 ) − χ

KBT

Vm
φ−1 (1 − φ−1 ) − KBT

NxV2
(1 − φ−1 )

+2µα2(φ−1 )−1 +
KBT

N2Vm
. (3.13)

If the interface is fully permeable, then the pressure is continuous and P = 0 holds.
In the case of charged polymers the discontinuity of λ is related to the net surface
charge. Here, we take the point of view of P being a parameter of the problem. In
particular, we observe from (3.13), that prescribing P allows us to the determine the
saturation value φ−1 ≡ φ∗. This, in turn, motives the definition of the interface as the
location x = S(t) with φ1(S(t), t) = φ∗, that moves with the speed of the polymer.
Specifically, the dynamics of the interface is described by the following equations:
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dS

dt
(t) = (1 − φ1(S(t), t))U(S(t), t), (3.14)

S(0) = L, (3.15)

φ1(S(t), t) = φ∗. (3.16)

The problem reduces to three equations equations (3.6), (3.7) and (3.14) for the
unknowns (φ1, U, S), with boundary conditions (3.10) and (3.16), initial conditions
(3.15) and

φ1(x, 0) = φ0(x), U(x, 0) = 0, x ∈ (0, L). (3.17)

We conclude this section listing the time scales of the problem. Let L0 denote a
typical length; in polymer experiments, this would be of the order of centimeters. We
find the following time constants:

t0 =
βL2

0VmNx

KBT
, t1 =

βL2
0Vm

KBTχ
,

t2 =
βL2

0VmN2

KBT
, t3 =

βL2
0

µ
.

Comparing the time constants, we observe that

t0 =
Nx

χ
t1, t1 =

1

χN2
t2, t2 =

µN2Vm

KBT
t3.

For the data in (2.1), we have that

t2 ∼ 10−1t3.

The previous data reflects the relative orders of magnitude of the time scales in poly-
mer applications. The largest time constant is t0, and t2 is the smallest. Many works
on gels focus on the time scale t0 corresponding to the relaxation regime. In our work,
study the dynamics at the time scale t2. After scaling equations (3.6) and (3.7) to
make them nondimensional, G takes the form

G(φ1) = C0(−
1

2
α2/3φ

− 2
3

1 − (
1

2
+
Nx

N1
) logφ1)

+C3α
2φ−2

1 − C2φ1 + C1 log(1 − φ1),

with dimensionless parameters

C0 =
β2L2

0VmN
2
2

KBTNx
, C1 =

β2L2
0VmN

2
2χ

KBT
,

C2 =
β2L2

0VmN2

KBT
, C3 =

µβ2L2
0V

2
mN

2
2

K2
BT

2
.

The scaled equations and coefficients are employed in the numerical simulations.
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4. The Cauchy problem. In this section we consider the Cauchy problem for
equations (3.6) and (3.7) with initial conditions

U(x, 0) = U0(x),

φ1(x, 0) = φ0(x). (4.1)

First we show that for the range of physical parameters corresponding to semi-dry
polymer, the governing system is of hyperbolic type with dissipation. Let us denote

u = (φ1, U)T ,

F = [φ1(1 − φ1)U,
1

2
U2(1 − 2φ1) −G(φ1)]

T ,

G = [0,
β

φ1(1 − φ1)
U ]T .

The governing system becomes

∂u

∂t
+
∂F

∂x
(u) + G(u) = 0. (4.2)

The gradient matrix is

DF =

[

(1 − 2φ1)U φ1(1 − φ1)
−U2 −G′(φ1) (1 − 2φ1)U

]

.

Eigenvalues λi, i = 1, 2 of DF are

λ1 = (1 − 2φ1)U +
√

−φ1(1 − φ1)(U2 +G′(φ1)),

λ2 = (1 − 2φ1)U −
√

−φ1(1 − φ1)(U2 +G′(φ1)).

They are real and distinct provided that

U2 +G′(φ1) < 0

holds. The hyperbolic region in the space (φ1, U) consists of the points between the
graphs of U = ±Û(φ1), with Û(φ1) =

√

|G′(φ1)|. The right eigenvectors of DF are

r1 =

[√

φ1(1−φ1)
|U2+G′(φ1)|

1

]

, r2 =

[

−
√

φ1(1−φ1)
|U2+G′(φ1)|

1

]

.

Let

V =

[√

φ1(1−φ1)
|U2+G′(φ1)| −

√

φ1(1−φ1)
|U2+G′(φ1)|

1 1

]

, V −1 =





1
2

√

|U2+G′(φ1)|
φ1(1−φ1)

1
2

− 1
2

√

|U2+G′(φ1)|
φ1(1−φ1)

1
2



 .

The characteristic coordinates, w = V −1
u give

w1 =
1

2
(

√

φ1

1 − φ1
|U2 +G′(φ1)| + U), w2 =

1

2
(−

√

φ1

1 − φ1
|U2 +G′(φ1)| + U).

Let us define the pair of functions,

η(φ1, U) = −
∫

φ

G(ρ) dρ+
1

2
φ1(1−φ1)U

2, q = φ1(1−φ1)U [−G(φ1)+
1

2
U2(1−2φ1)].
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Lemma 4.1. The functions (η, q) form an entropy-flux pair for the hyperbolic
system.

Proof. We need to find B = (B1(φ1, U, x, t), B2(φ1, U, x, t)) such that

B = Dη,

BDF = Dq,

where D = (∂φ1 , ∂U )T . It is easy to verify that

Dη = (
1

2
φ1(1 − φ1)U

2 −G,φ1(1 − φ1)U),

Dq = ((
1

2
φ1(1 − φ1)U

2 −G)((1 − 2φ1)U − (U2 +G′)φ1(1 − φ1)U,

(
1

2
φ1(1 − φ1)U

2 −G)φ1(1 − φ1) + φ1(1 − φ1)(1 − 2φ1)U
2).

Choosing B = (1
2φ1(1 − φ1)U

2 −G,φ1(1 − φ1)U), a direct calculation gives

BDF = Dq.

Hence, (η, q) is an entropy-flux pair.

We now introduce the concept of L1−stability [4]. The Cauchy problem (3.6)-

(3.7), (4.1) is said to be L1 − stable at an equilibrium state U = Û and φ1 = φ̂, if
there are positive numbers r and b such that, any admissible BV solution U(x, t) and
φ1(x, t) of (3.6)-(3.7), (4.1) defined on any time interval [0, T ), 0 < T ≤ ∞, and taking

values in the ball Br(φ̂, Û) of R2 satisfies the inequality

∫ ∞

∞
|φ1(x, t)− φ̂|+ |U(x, t)− Û |dx ≤ b

∫ ∞

∞
|U0(x)− Û |+ |φ0(x)− φ̂|dx, 0 ≤ t < T.

(4.3)

Lemma 4.2. The Cauchy problem (3.6)-(3.7), (4.1) is L1−stable at the equilib-
rium state U = 0, φ = φ∗.

Proof. From Lemma 4.1 and the form of the entropy function, we see that η(φ1, U)
is C1 near the equilibrium U = 0, φ = φ∗. So, there are constants r > 0 sufficiently
small, and d > 0, such that

d−
1
2 (|φ− φ∗| + |U |) ≤ |η(φ1, U)| ≤ d

1
2 (|φ− φ∗| + |U |)

holds, for any (φ,U) ∈ Br(φ
∗, 0). Moreover, the entropy production is non-negative,

i.e.

BG = βU2 ≥ 0.

Hence, by an argument similar to [4], the L1 stability is readily established. So, there
exist r and d such that any admissible BV-solution U(x, t) and φ1(x, t) of (3.6)-(3.7),

(4.1) satisfy (4.3) with Û = 0 and φ̂ = φ∗ .

We next derive the linearization of the governing system about the equilibrium
solution, U = 0 and φ1 = φ∗, where φ∗ ∈ (0, 1) denotes the saturation volume fraction.
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We calculate,

DF(ue) =

[

0 φ∗(1 − φ∗)
−G′(φ∗) 0

]

,

2λ1 =
√

φ∗(1 − φ∗)|G′(φ∗)|, 2λ2 = −
√

φ∗(1 − φ∗)|G′(φ∗)|,

r1 = [

√

φ∗(1 − φ∗)

|G′(φ∗)| , 1]T , r2 = [−
√

φ∗(1 − φ∗)

|G′(φ∗)| , 1]T ,

V =

[√

φ∗(1−φ∗)
|G′(φ∗)| −

√

φ∗(1−φ∗)
|G′(φ∗)|

1 1

]

.

We also calculate,

DG(u∗) =

[

0 0

0 β
φ∗(1−φ∗)

]

,

R = V −1(DG)V =
β

2φ∗(1 − φ∗)

[

1 1
1 1

]

, (4.4)

w = V −1
u.

The resulting linear diagonal system is

∂w

∂t
+ diag(λ1, λ2)

∂w

∂x
+Rw = 0.

We recall that a matrix A is strictly diagonally dominant if

Aii −
∑

i6=j

|Aij | ≥ 0, i, j = 1, 2, . . . , n.

It is easy to check that the matrix R defined by (4.4) has positive entries in the princi-
pal diagonal, and is diagonally dominant. However, since it is not strictly diagonally
dominant, the exponential decay property of TVxφ1 and TVxU established in The-
orem 2 of [6] cannot be asserted here. This prevents us from obtaining asymptotic
stability of solutions with respect to time.

Since the Cauchy problem (3.6)-(3.7), with initial condition (4.1) is L1-stable and
R is diagonally dominant, the results proved by Dafermos[5] on existence and decay
of BV solutions of weakly dissipative hyperbolic systems apply as follows.

Theorem 4.3. Let r, b be defined in (4.3). Consider integrable initial data
(φ0, U0) taking values in Br(φ

∗, 0). Let

σ =

∫ ∞

−∞
|U0(x)| + |φ0(x) − φ∗|dx,

and

ω = TV(−∞,∞)|U0(x)| + TV(−∞,∞)|φ0(x)|,

over (−∞,∞). Then there are positive constants σ0, ω0, a and µ such that, when
σ < σ0 and ω < ω0, there exists an admissible global BV solution U(x, t), φ1(x, t) to
the Cauchy problem (3.6)-(3.7) with (4.1), taking values in Br(φ

∗, 0). Furthermore,
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for each fixed t ∈ (0,∞), (φ1(x, t), U(·, t)) is integrable and has bounded variation over
(−∞,∞):

∫ ∞

−∞
|φ1(x, t) − φ∗| + |U(x, t)|dx ≤ bσ,

TV(−∞,∞)|U(·, t)| + TV(−∞,∞)|φ1(·, t) − φ∗| ≤ aωe−µt + aσ.

Next we discuss the free boundary problem for the linearized system.

5. Analysis of the free boundary problem. We now analyze a free boundary
problem for equations (3.6) and (3.7). We consider the boundary and initial conditions
given by equations (3.10), (3.16), (3.14), (3.15) and (3.17).

Also, since φ1(x, 0) is the initial volume fraction, we have the bound 0 < φ1(x, 0) <
1 for any 0 ≤ x ≤ L. We consider the linearization of the above equations and
boundary conditions with respect to the equilibrium values φ∗, and U = 0.

5.1. Linearization and Hyperbolicity Condition. We linearize equations
(3.6) and (3.7) with respect to φ = φ∗ and U = 0, set φ̄ = φ1 − φ∗, and write the
resulting system as follows:

∂φ̄

∂t
+ φ∗(1 − φ∗)

∂Ū

∂x
= 0

∂Ū

∂t
−G′(φ∗)

∂φ̄

∂x
= − β

φ∗(1 − φ∗)
Ū . (5.1)

The linearized free boundary conditions (3.10), (3.16), (3.14), (3.15) and (3.17) be-
come,

S′(t) = Ū(S(t), t)(1 − φ∗),

S(0) = L,

φ̄(S(t), t) = 0,

Ū(0, t) = 0, t ∈ [0, T ] (5.2)

φ̄(x, 0) = φ0(x) − φ∗, x ∈ [0, L]

Ū(x, 0) = Ū0(x), x ∈ [0, L] .

Because 0 < φ0 < 1, we have −φ∗ < φ̄ < 1− φ∗. Let us recall that G′(φ∗) < 0, which
ensures hyperbolicity. Let Γ = G′(φ∗). We make the following change of variables

φ̄ =
√
−Γ(p+ q),

Ū =
√

φ∗(1 − φ∗)(p− q). (5.3)

Then the system (5.1) and (5.2) changes to the following equivalent system of equa-
tions.

pt + λvpx = − β

2φ∗(1 − φ∗)
(p− q), (5.4)

qt − λvqx =
β

2φ∗(1 − φ∗)
(p− q), (5.5)
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with free boundary conditions:

S′(t) = (1 − φ∗)
√

φ∗(1 − φ∗)(p(S(t), t) − q(S(t), t)),

S(0) = L,

p(S(t), t) + q(S(t), t) = 0, t ∈ [0, T ] ,

p− q = 0, t ∈ [0, T ] , (5.6)

p(x, 0) = p0(x), x ∈ [0, L] ,

q(x, 0) = q0(x), x ∈ [0, L] .

where λv =
√

−Γφ∗(1 − φ∗).

5.2. Free Boundary problem for the linearized system. A free boundary
problem analogous to the present one is studied in [28]. However, the proof of the
theorem relays on the assumption that the speed U is strictly positive at x = 0. Here,
we generalize the global existence result to the case U = 0 at x = 0. We first point
out that the local existence of solution stated next follows from the theorem in [12].

Theorem 5.1. Let 0 < φ∗ < 1, Γ < 0 be constant. Suppose that p0(x), q0(x) ∈
C1[0, L] satisfy compatibility conditions at (0, 0) and (L, 0). Let

|p0(L)| <
√
−Γ

2(1 − φ∗)
. (5.7)

Then there is a t0 > 0, such that the free boundary problem (5.4), (5.5) and (5.6) has
a unique solution (p(x, t), q(x, t), S(t)) ∈ C1(Q̄S,t0) × C1(Q̄S,t0) × C2[0, t0], where

QS,t0 = {(x, t), 0 < x < S(t), 0 < t < t0} ,

and, t0 depends on S(0), S
′

(0), ‖p0(x)‖C1[0,L] and ‖q0(x)‖C1[0,L].
In order to prove global existence of solutions, we will use the lemmas stated next.
The proof of the following one makes use of the approach presented in [28].

Lemma 5.2. [28] Let (φ̄, Ū , S) be a C1 solution of (5.1) and (5.2), and define p,q
as in (5.3). Also, suppose that p0 satisfies (5.7). Then

|S′ | < λv, |p(S(t), t)| <
√
−Γ

2(1 − φ∗)
, |q(S(t), t)| <

√
−Γ

2(1 − φ∗)
,

hold for t ∈ (0, t0).
Proof. We proceed by contradiction. First, since S

′

(0) > λv, we suppose that
there exists 0 < t̂ ≤ t0, such that

lim
t→t̂−

S
′

(t) = λv and S
′

(t) < λv for 0 < t < t̂,

holds. This implies that S
′

(t) reaches its maximum as t approaches t̂, and conse-
quently,

lim
t→t̂−

S′′(t) ≥ 0.

This together with boundary condition (5.2a) yields

lim
t→t̂−

d

dt
Ū(S(t), t) = lim

t→t̂−

∂U

∂x
λv +

∂U

∂t
≥ 0 at (S(t̂), t̂). (5.8)
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On the other hand, because of boundary condition (5.2c), φ̄ ≡ 0 on (S(t), t) follows,
and therefore

d

dt
φ̄(S(t), t) =

∂φ̄

∂x
λv +

∂φ̄

∂t
= 0 on (S(t), t). (5.9)

Multiplying equation (5.1a) by
√
−Γ√

φ∗(1−φ∗)
, adding the result to (5.1b), and taking

limits as x→ S(t) and t→ t̂−, we get
√
−Γ

√

φ∗(1 − φ∗)
(
∂φ̄

∂x
λv +

∂φ̄

∂t
) +

∂U

∂x
λv +

∂U

∂t
+

βλv

φ∗(1 − φ∗)2
= 0. (5.10)

By application of (5.9), it reduces to

∂U

∂x
λv +

∂U

∂t
= − βλv

φ∗(1 − φ∗)2
< 0,

which contradicts inequality (5.8). We can follow the analogous argument in the case
that

lim
t→t̂−

S
′

(t) = −λv and S
′

(t) > −λv for 0 < t < t0.

Therefore,

|S′

(t)| < λv =
√

−Γφ∗(1 − φ∗),

holds. This inequality together with boundary conditions (5.6a) and (5.6c) yield the
two remaining conclusions of the lemma hpld.

Lemma 5.3. [28] Let (φ̄, Ū , S) ∈ C1(QS,t0)×C1(QS,t0)×C2[0, t0] be a solution of
(5.1) satisfying boundary conditions (5.2). Also, suppose that max {‖p0‖L∞ , ‖q0‖L∞}
≤ C0 <

√
−Γ

2(1−φ∗) . Then |p(x, t)| ≤ C0 and |q(x, t)| ≤ C0 for x ∈ QS,t0 , where QS,t0 is

defined in Theorem 5.1.
Proof. Arguing by contradiction, suppose otherwise, that is, there exist ǫ > 0,

(x∗, t∗) ∈ QS,t0, such that

|p(x∗, t∗)| = max {|p(x∗, t∗)|, |q(x∗, t∗)|} = C0 + ǫ,

max {|p(x, t)|, |q(x, t)|} < C0 + ǫ for any fixed t < t∗.

First notice that S(t∗) > 0, because, otherwise, if S(t∗) = 0, we can apply the
boundary conditions at x = 0 and x = S(t), to conclude that p = q = 0 ≤ C0. For
0 < x∗ ≤ S(t), there exist δ > 0, such that x∗ − λvδ > 0 and t∗ − δ > 0. Integrating
on characteristics, we have

p(x∗, t∗) = e−
β

2φ∗(1−φ∗)
δp(x∗ − λvδ, t

∗ − δ)

+

∫ δ

0

β

2φ∗(1 − φ∗)
e−

β

2φ∗(1−φ∗)
(τ−δ)q(x∗ + (τ − δ), t∗ + (τ − δ))dτ.

With the help of mean value theorem, we get the estimate

|p(x∗, t∗)| ≤ e−
β

2φ∗(1−φ∗)
δ|p(x∗ − λvδ, t

∗ − δ)|
+ |q(x∗ + (θ − δ), t∗ + (θ − δ))|(1 − e−

β

2φ∗(1−φ∗)
δ)

≤ max {|p(x∗ − λvδ, t
∗ − δ)|, |q(x∗ + (θ − δ), t∗ + (θ − δ))|}

< C0 + ǫ.
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This is a contradiction to the statement |p(x∗, t∗)| = C0 + ǫ. Now, if x∗ = 0, there
exist 0 < δ < t∗ such that 0 < λvδ < S(t); applying the boundary condition p(0, t∗) =
q(0, t∗), yields

|p(0, t∗)| = |q(0, t∗)| ≤ max {|q(λvδ, t
∗ − δ)|, |p(λv(δ − θ), t− (δ − θ))|}

< C0 + δ,

where 0 < θ < δ. This is again a contradiction to |p(x∗, t∗)| = C0 + ǫ. Hence
|p(x, t)| ≤ C0. We can follow an analogous argument in the case that |q(x∗, t∗)|
= max {|p(x∗, t∗)|, |q(x∗, t∗)|} = C0 + ǫ.
Remark. Note that we can chooseC0 so that, max{‖φ0‖L∞ , ‖U0‖L∞}< min{φ∗, 1−
φ∗}. Hence φ̄ is always bounded by min{φ∗, 1 − φ∗}.

Lemma 5.4. Under assumption of Lemma 5.3, and
∫ L

0
φ̄0dx + φ∗L > 0, there

exist C > 0 and η > 0 such that

C ≥ S(t) ≥ η > 0,

where η depends on C0, p0, q0, φ
∗ and Γ.

Proof. Integrating ∂φ̄
∂t + φ∗(1 − φ∗)∂Ū

∂x = 0 with respect to x at fixed t, we get

∫ S(t)

0

∂φ̄

∂t
dx+ φ∗(1 − φ∗)Ū(S(t), t) = φ∗(1 − φ∗)Ū(0, t).

By applying boundary conditions (5.2a) and (5.2d), we get

∫ S(t)

0

∂φ̄

∂t
dx+ φ∗S

′

(t) = 0.

Moreover, using the boundary condition φ̄(S(t), t) = 0, we get

d

dt

{

∫ S(t)

0

φ̄dx+ φ∗S

}

= 0.

Integration with respect to t gives

∫ S(t)

0

φ̄dx+ φ∗S −
∫ L

0

φ̄0dx− φ∗L = 0.

Following lemma 5.3, we can choose C0 such that

‖φ̄‖L∞ < 2
√
−ΓC0 ≤ min{φ∗, 1 − φ∗} − ǫ.

Hence

S(t) ≥ 1

2
√
−ΓC0 + φ∗

(

∫ L

0

φ̄0dx+ φ∗L) > 0,

and

S(t) ≤ 1

−2
√
−ΓC0 + φ∗

(

∫ L

0

φ̄0dx+ φ∗L).
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Lemma 5.5. Under the assumption of Lemma 5.3, then

|px(x, t)| ≤ C3, |qx(x, t)| ≤ C3.

for 0 < t < t0, where C3 depends on ‖p0‖C1[0,L], ‖p0‖C1[0,L] and C0.

Proof. First let us suppose that t0 < t1 = L
2λv

. Differentiating (5.4) and (5.5)
with respect to x yields equations

pxt + λvpxx = − β

2φ∗(1 − φ∗)
(px − qx), (5.11)

qxt − λvqxx =
β

2φ∗(1 − φ∗)
(px − qx), (5.12)

and boundary condition,

px + qx = 0 at x = 0, (5.13)

(2(1 − φ∗)p−
√
−Γ)px + (2(1 − φ∗)p+

√
−Γ)qx = 0 at x = S(t). (5.14)

Now, for fixed 0 < t < t0, define,

A(t) = ‖px(x, t)‖L∞[0,S(t)],

B(t) = ‖qx(x, t)‖L∞[0,S(t)],

C(t) = max {A(t), B(t)} ,
C1 = max

{

‖p0x‖L∞[0,L], ‖q0x‖L∞[0,L]

}

.

If (x, t) ∈ Ω3, integrating along the characteristics of (5.11) and(5.12) yields

qx(x, t) = e−
β

2φ∗(1−φ∗)
(t−t0)qx(S(t0), t0)

+

∫ t

t0

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−t)px(S(t0) − λv(τ − t0), τ)dτ, (5.15)

px(S(t0), t0) = e−
β

2φ∗(1−φ∗)
t0px(S(t0) − λvt, 0)

+

∫ t0

0

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−t0)qx(S(t0)

− λv(t0 − τ), τ)d τ. (5.16)

From the boundary condition (5.14), we have

qx =

√
−Γ − 2(1 − φ∗)p

2(1 − φ∗)p+
√
−Γ

px.

(S(t 0),t 0)

Ω2

Ω1
(x,t)

Ω3

t1 =L/2λv
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It follows from lemma 5.3 that |p(x, t)| ≤ C0 < const. Hence

|qx| ≤
∣

∣

∣

∣

√
−Γ− 2(1 − φ∗)p

2(1 − φ∗)p+
√
−Γ

∣

∣

∣

∣

|px|

≤
∣

∣

∣

∣

√
−Γ + 2(1 − φ∗)C0√
−Γ− 2(1 − φ∗)C0

∣

∣

∣

∣

|px| = C2|px|,

where C2 := |
√
−Γ+2(1−φ∗)C0√
−Γ−2(1−φ∗)C0

| > 1. Combining (5.15) and (5.16) gives

|qx(x, t)| ≤ C1C2e
− β

2φ∗(1−φ∗)
t + C2

∫ t

0

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−t)C(τ)dτ.

For (x, t) ∈ Ω1 ∪ Ω2, we have the estimate

|qx(x, t)| ≤ C1e
− β

2φ∗(1−φ∗)
t +

∫ t

0

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−t)C(τ)dτ.

Hence

B(t) ≤ C1C2e
− β

2φ∗(1−φ∗)
t + C2

∫ t

0

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−t)C(τ)dτ,

holds. Now, for (x, t) ∈ Ω2, we have the following relations:

px(x, t) = e−
β

2φ∗(1−φ∗)
x

λv px(0, t− x

λv
)

+

∫ t

t− x
λv

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−t)qx(λv(τ − t+

x

λv
), τ)dτ,

qx(0, t− x

λv
) = e−

β

2φ∗(1−φ∗)
(t− x

λv
)qx(λv(t− x

λv
), 0)

+

∫ t−x/λv

0

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−(t− x

λv
))px(λv(t− x

λv
− τ), τ)dτ.

Application of the boundary condition (5.13) to the previous expression yields the
estimate

|px(x, t)| ≤ C1e
− β

2φ∗(1−φ∗)
t +

∫ t

0

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−t)C(τ)dτ.

For (x, t) ∈ Ω1 ∪ Ω3, we get

|px(x, t)| ≤ C1e
− β

2φ∗(1−φ∗)
t +

∫ t

0

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−t)C(τ)dτ.

Hence,

C(t) ≤ C1C2e
− β

2φ∗(1−φ∗)
t + C2

∫ t

0

β

2φ∗(1 − φ∗)
e

β

2φ∗(1−φ∗)
(τ−t)C(τ)dτ.

By Gronwall’s inequality, we have

C(t) ≤ C1C2e
− β

2φ∗(1−φ∗)
teC2(1−e

−
β

2φ∗(1−φ∗)
t
) =: C3.
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Note that C3 has a bound depending only on C1, C2 and t0. Now for t0 > t1, we take
the value of the solution at t = t1 as initial condition, and extend the estimate up to

t1 + S(t1)
2λv

. Since S(t1) > η > 0, we can extend the estimate up to t0. This completes
the proof of the lemma.

Lemma 5.6. Under the assumption of Lemma 5.3, there exists ǫ > 0, such that

|S′

(t)| ≤ λv(1 − ǫ).

Proof. Suppose that for any positive constant ǫ > 0, there exists 0 < t∗ ≤
min {t0, t1} and 0 < δ < ǫ, such that |S′

(t∗)| = λv(1 − δ). So, we have

∂φ̄

∂x
λv(1 − δ) +

∂φ̄

∂t
= 0, on (S(t), t),

lim
t→t∗

∂U

∂x
λv(1 − δ) +

∂U

∂t
≥ 0. (5.17)

By following arguments analogous to those in the derivation of (5.10), and using
(5.17), we have

λvδ(
λv

φ∗(1 − φ∗)

∂φ̄

∂x
+
∂Ū

∂x
) ≤ − β

φ∗(1 − φ∗)

λv(1 − δ)

1 − φ∗
. (5.18)

By lemma 4, |px| ≤ C3 and |qx| ≤ C3, and, so φ̄x and Ūx, as linear combinations of px

and qx are also bounded by a constant. Hence, λv

φ∗(1−φ∗)
∂φ̄
∂x + ∂Ū

∂x > −C holds, where

C = ( λv

φ∗(1−φ∗) + 1)C3. So, letting (x, t) → (x∗, t∗), and using (5.18) and (5.17), we
get

−δλvC +
β(1 − δ)

1 − φ∗
≤ 0,

which implies

δ ≥ β

C(1 − φ∗)λv + β
> 0.

This contradicts inequality (5.18).
We now state the following theorem on global existence. It also states that the

interface remains bounded, and cannot collapse to a point.
Theorem 5.7. Let the assumptions of theorem 5.1 hold. Let δ > 0 be such that

max{‖p0‖L∞ , ‖q0‖L∞} < δ.

Then for any t > 0, there exists a unique solution

(U(x, t̃), φ1(x, t̃), S(t̃)) ∈ C1(Q̄S,t) × C1(Q̄S,t) × C2[0, t],

where QS,t =
{

(x, t̃), 0 < x < S(t), 0 < t̃ < t
}

. Moreover, there exist η and µ, such
that

µ1 > S(t̃) > η > 0.
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Proof. Because the transformation (5.3) is non-singular, there exist δ > 0 such
that if

max{|p(x, t)|, |q(x, t)|} < δ <

√
−Γ

2(1 − φ∗)
,

then |φ| < max{φ∗, 1− φ∗, } holds. Now, define tmax to be the maximum time of the
local solution to (5.1) with (5.2). First, let us suppose that tmax ≤ t1 = L

2λv
. By

lemma 5.6, |S′

(t)| ≤ λv(1 − ǫ), with ǫ > 0 depending on the max{‖p0‖C1 , ‖q0‖C1}.
From lemma 5.3 and lemma 5.5, we have that

lim
t→tmax

‖p(x, t)‖C1 < C3,

lim
t→tmax

‖q(x, t)‖C1 < C3.

On the other hand, by lemma 5.4, there exist η > 0 such that S(t) ≥ η > 0 for
0 < t < tmax. Then by the local existence theorem, we can extend the solution
beyond tmax, hence we have tmax ≥ t1. Now, taking {φ̄(x, t1), U(x, t1), S(t1)} as

initial condition, we can extend the solution up to time L
2λv

+ S(t1)
2λv

. Note that S(t) > η,

and therefore we can further extend the solution up to L
2λv

+mS(t1)
2λv

, for any m ∈ Z
+.

Hence, the solution exists for all t > 0.

6. Numerical Simulations. Based on the theoretical study, the following sim-
ulations are carried out for the Cauchy problem, with periodic boundary conditions.
In order to achieve numerical stability, an artificial dissipation of form γ△2φ1 is added
to the balance of mass equation, with γ > 0 small. Data is taken from the table 2.1.

It is well known that the value of β may be very sensitive to the volume fraction
of the polymer. We consider the following expression for β [20]:

β(φ1) = (1 − φ1)φ
2γ

(3γ−1)

1 ,

where γ = 1/2 for a Θ-solvent, and γ = 3/5 for a good solvent[27]. Since we are
interested in initial behavior where φ1 jumps from 0 to 1, near the initial location
of the interface between solvent and dry polymer, then, effectively β is considerably
smaller than the constant value in Table I 2.1. The time and length scales of the
calculations are taken to be 10−7s and 10−5m, respectively. We take the polymer
domain as the strip (−1, 3) centered at x = 1. Because of the symmetry of the
problem, we only show the strip (−1, 1). We use the spectral method [17] to solve
the nonlinear equation recursively; the result is shown in Figure 6.1. We observe
that initially, the diffusive velocity builds up quickly, and the volume fraction changes
rapidly. However after a short initial time interval, the diffusive velocity decays, and
the polymer volume fraction tends to an equilibrium saturation value.

7. Conclusion. We have analyzed the model developed in [3] for a two com-
ponent mixture of elastic solid and solvent and obtained effective equations for gels.
We investigate the multiple time scales of the system and characterize the corre-
sponding dynamics. We argue that studying early dynamics provides information on
the evolution of swelling fronts, and it also gives a mathematical characterization of
type II diffusion in polymers. We consider one-dimensional geometries and study the
corresponding Cauchy problem, by applying the theory of Dafermos [5] on weakly
dissipative hyperbolic systems. This allows us to establish existence and asymptotic
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(a): Polymer profile, (b): Speed profile, (c): Maximum Relative velocity U versus time

properties of the solution of the Cauchy problem. We interpret the break-down of the
hyperbolicity condition, occurring at critical volume fractions for polyssacharide data,
as an onset of de-swelling. We formulate and study the free boundary problem for the
linearized system, and prove existence and uniqueness of solutions. This provides di-
rect information on interface evolution; in particular, we show that, the strip domain
cannot collapse to a point. Follow up studies address the nonlinear free boundary
problem by combining estimates of the Cauchy problem with the information on the
solution of the linearized problem.

8. Acknowledgments. The authors wish to thank Hans Weinberger, Suping
Lyu and Brandon Chabaud for many fruitful discussions. Both authors also thank
Jie Shen for the help and advice on the numerical study of the problem. This work is
supported in part by Medtronic Inc, and by the National Science Foundation Grant
DMS-0456232.

REFERENCES

[1] S. S. Antman, Nonlinear Problems of Elasticity, Springer, 2nd ed., 2004.
[2] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymer Liquids, Wiley-

Interscience, 1987.
[3] B. Chabaud, H. Zhang, and M. C. Calderer, Modeling of viscoelastic solid and fluid mixture

with applications to gel, Preprint, (2006).
[4] C.M. Dafermos, A system of hyperbolic conservation laws with frictional damping, Z. Angew.

Math. Phys., 46 (1995), pp. S294–S307.



8-24

[5] , Hyperbolic systems of balance laws with weak dissipation, Journal of Hyperbolic Differ-
ential Equations, 3 (2006), pp. 505–527.

[6] C.M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and
dissipation, Indiana University Mathematics Journal, 31 (1982), pp. 471–491.

[7] M. Doi and A. Onuki, Dynamic coupling between stress and composition in polymer solutions
and blends, J. Phys. II France, 2 (1992), pp. 1631–1656.

[8] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, 1953.
[9] D. R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor & Francis, 1995.

[10] M. E. Gurtin, An introduction to Continuum Mechanics, no. 158 in Mathematics in Science
and Engineering, Academic Press, 1981.

[11] E. Hoiczyk, Gliding motility in cyanobacteria: observations and possilbe explanations, Arch.
Micro., 174 (2000), pp. 11–17.

[12] D. Li and W. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Durham,
NC, U.S.A. : Mathematics Dept., Duke Universit, 1985.

[13] Y. Li and T. Tanaka, Phase transitions of gels, Annu.Rev.Mater.Sci., 22 (1992), pp. 243–77.
[14] Fanghua Lin, Chun Liu, and Ping Zhang, On hydrodynamics of viscoelastic fluids, Comm.

Pure Appl. Math., LVIII (2005), p. 1.
[15] C. Liu and N. J. Walkington, An eulerian description of fluids containing visco-hyperelastic

particles, Arch. Ration. Mech. Anal., 159 (2001), pp. 229–252.
[16] H. F. Mark and J. I. Kroschwitz, Encyclopedia of polymer science and engineering., Wiley,

1980.
[17] J. Shen, Efficient spectral-galerkin method i. direct solvers for the second and fourth order

equations using legendre polynomials., SIAM J. SCI. COMPUT., 15 (1994), pp. 1489–
1505.

[18] R. E. Showalter and N. J. Walkington, Micro–structure models of diffusion in a fissured
media, J. Math. Anal. and Appl., 155 (1991), pp. 1–20.

[19] T. Tanaka and D.J. Filmore, Kinetics of swelling of gels, J. Chem. Phys., 70 (1979), pp. 1214–
1218.

[20] N.L. Thomas and A.H. Windle, A theory of case ii diffusion, Polymer, 23 (1982), pp. 529–543.
[21] N. L. Thomas and A. H. Windle, A theory of case ii diffusion, Polymer, 23 (1982).
[22] C. Truesdell, Thermodynamics, Springer Verlag, 1984.
[23] T. Yamaue and M. Doi, Swelling dynamics of constrained thin-plate gels under an external

force, Phys. Rev. E, 70 (2004), p. 011401.
[24] , Theory of one-dimensional swelling dynamics of polymer gels under mechanical con-

straint, Phys. Rev. E, 69 (2004), p. 041402.
[25] , The stress diffusion coupling in the swelling dynamics of cylindrical gels, J. Chem.

Phys., 122 (2005), p. 084703.
[26] T. Yamaue, H. Mukai, K. Asaka, and M. Doi, Electrostress diffusion coupling model for

polyelectrolyte gels, Macromolecules, 38 (2005), pp. 1349–1356.
[27] T. Yamaue, T. Taniguchi, and M. Doi, The simulation of the swelling and deswelling dy-

namics of gels, Molecular Physics, 102 (2004), pp. 167–172.
[28] T. Yang and F. Yi, Global existence and uniqueness for a hyperbolic system with free boundary,

Discrete and continuous dynamical systems, 7 (2001), pp. 763–780.


