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TESTING HEREDITARY PROPERTIES OF NONEXPANDING
BOUNDED-DEGREE GRAPHS∗

ARTUR CZUMAJ† , ASAF SHAPIRA‡ , AND CHRISTIAN SOHLER§

Abstract. We study graph properties that are testable for bounded-degree graphs in time
independent of the input size. Our goal is to distinguish between graphs having a predetermined
graph property and graphs that are far from every graph having that property. It is well known
that in the bounded-degree graph model (where two graphs are considered “far” if they differ in εn
edges for a positive constant ε), many graph properties cannot be tested even with a constant or
even with a polylogarithmic number of queries. Therefore in this paper we focus our attention on
testing graph properties for special classes of graphs. Specifically, we show that every hereditary
graph property is testable with a constant number of queries provided that every sufficiently large
induced subgraph of the input graph has poor expansion. This result implies that, for example, any
hereditary property (e.g., k-colorability, H-freeness, etc.) is testable in the bounded-degree graph
model for planar graphs, graphs with bounded genus, interval graphs, etc. No such results have been
known before, and prior to our work, very few graph properties have been known to be testable with
a constant number of queries for general graph classes in the bounded-degree graph model.
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1. Introduction. The area of property testing deals with the problem of distin-
guishing between two cases: that an input object (for example, a graph, a function, or
a point set) satisfies a certain predetermined property (for example, being bipartite,
monotone, or in convex position) or is “far” from satisfying the property. Loosely
speaking, an object is ε-far from having a property Π if it differs in an ε-fraction of
its description from any object having the property Π. For example, when the object
is a (dense) graph represented by an n × n adjacency matrix and the property is
bipartiteness, then a graph is ε-far from bipartite if one has to delete more than ε n2

edges to make it bipartite.
Many objects and properties are known to have randomized property testing al-

gorithms whose time complexity is sublinear in the input description size; often, we
can even achieve running time completely independent of the input size. In partic-
ular, sublinear-time property testing algorithms have been designed for graphs and
hypergraphs, functions, point sets, formal languages, and many other structures (for
the references, see, e.g., [9, 10, 11, 13, 17, 20]). After a series of results for specific
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problems, much attention has been devoted recently to a more general question: which
properties can be tested in time independent of the input size? This question has been
especially extensively investigated for properties of dense graphs represented by an
adjacency matrix. It turned out that property testing in dense graphs is closely re-
lated to Szemerédi’s regularity lemma. Very recently, this relation has been made
explicit by showing that any property is testable if and only if it can be reduced to
testing the property of satisfying a finite number of Szemerédi-partitions (see [1]).
Furthermore, it has been shown in [4] that a (natural) graph property is testable with
one-sided error if and only if it is either hereditary or it is close (in some well-defined
sense) to a hereditary property (see also [8] for an alternative proof). These results,
imply that in the adjacency matrix model, essentially any “natural” graph property
can be tested with a number of queries independent of the size of the graph.

While property testing in dense graphs is relatively well understood, surprisingly
little is known about property testing in sparse graphs. Properties of sparse graphs are
traditionally studied in the model of bounded-degree graphs introduced by Goldreich
and Ron [15]. In this model, the input graphG is represented by its adjacency list (or,
equivalently, by its incidence list) and the vertex degrees are bounded by a constant d
independent of the number of vertices of G (denoted by n). A testing algorithm has
a constant-time access to any entry in the adjacency list by making a query to the
ith neighbor of a given vertex v, and the number of accesses to the adjacency list is
the query complexity of the tester. A property testing algorithm is an algorithm that
for a given graph G determines if it satisfies a predetermined property Π or it is ε-far
from property Π; a graph G is ε-far from property Π if one has to modify more than
ε d n edges in G to obtain a graph having property Π.

Unlike the adjacency matrix model discussed above, in the bounded-degree graph
model only a few graph properties are known to be testable in constant time; see [15],
where it is shown that k-edge-connectivity, H-freeness, and some other properties are
testable with a constant number of queries. The study of testing bounded-degree
graphs thus focused on designing property testers with a sublinear query complexity
(like, Õ(

√
n) tester for bipartiteness [14]). Even more, it has been demonstrated

that unlike in the adjacency matrix model, in the bounded-degree model many basic
properties have a nonconstant query complexity. For example, acyclicity in directed
graphs has Ω(n1/3) query complexity [6], the property of being bipartite has query
complexity Ω(

√
n) [15], and the query complexity of testing 3-colorability is Ω(n) [7].

In this paper, we take a new approach and study property testing in the bounded-
degree model under the assumption that the input graph belongs to a certain (natural)
family of graphs. The goal of this investigation is to identify natural families of
graphs, such as planar graphs, for which many properties can be efficiently tested
under the assumption that the input graph belongs to the family, even though the
testing problem may be very hard in the general case.

For the rest of this paper, we say that a graph property is testable if it can be
tested in time independent of the size of the input graph. A graph G = (V,E) is said
to have an expansion α if for every subset of vertices U ⊆ V with |U | ≤ |V |/2, the
number of neighbors of U in V \ U is at least α|U |. A graph G = (V,E) is called
nonexpanding if it has expansion smaller than 1/ log2 n. (This is informally equivalent
to the families of graphs with some good separator properties.) A graph G = (V,E)
is called C-strongly nonexpanding if every induced subgraph with at least C vertices
is nonexpanding. A graph property is called hereditary if it is closed under vertex
removal. We show the following result:
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In the bounded-degree graph model, for every constant C, every hereditary graph
property Π is testable for the family of C-strongly nonexpanding graphs.

The reader is referred to Theorem 3.6 from section 3.3 for the precise statement
of our main result.

We note that there is no function of ε that uniformly bounds the number of
queries that our algorithm performs. In other words, the number of queries can be
an arbitrary function of ε. This is due to a certain graph functional that we define
and use in section 3.2. We stress that this graph functional is used in order to allow
us to handle arbitrary hereditary properties and that for most natural properties the
running time can be bounded by a uniform function of ε. However, this function of ε
is at least doubly exponential in 1/ε so there is still a lot of room for improvements.

Hereditary graph properties have been extensively investigated in combinatorics,
graph theory, and theoretical computer science (see also the recent results about
testability of hereditary graph properties in the dense graph model [4]). The class of
hereditary graph properties also contains all monotone graph properties (properties
closed under removal of edges and vertices). Many interesting graph properties are
hereditary, for example, being acyclic, stable (independent set), planar, bipartite,
k-colorable, chordal, perfect, interval, permutation, having no induced subgraph H ,
etc. (For the definitions, see the appendix; for more discussion on hereditary graph
properties, see [16, 19].) Our result implies that these properties can be tested (in
the bounded-degree graph model) when the input graph belongs to a family of graphs
that is C-strongly nonexpanding for certain constant C. Examples of natural C-
strongly nonexpanding families of bounded-degree graphs are planar graphs, graphs
with bounded genus, graphs with forbidden minors, unit disk graphs, interval graphs,
(planar) geometric intersection graphs, etc. We are not aware of any prior results
showing testability of the above properties for nontrivial or bounded-degree graphs.

2. Preliminaries. Let G = (V,E) be an undirected graph with n vertices
and maximum degree at most d. Without loss of generality, we assume that V =
{1, . . . , n}. We write [n] := {1, . . . , n}. Given a subset S ⊆ V of vertices, we use G|S =
(S,E|S) to denote the subgraph induced by S, where E|S = {(u, v) ∈ E ∩ (S × S)}.
We assume that G is stored in the adjacency list model for bounded-degree graphs
with maximum degree d. In this model, we have constant-time access to a function
fG : [n]× [d] → [n]∪{+}, such that fG(v, i) denotes the ith neighbor of v or a special
symbol + in the case that v has less than i neighbors.

Definition 2.1. A graph G is ε-far from a property Π if one has to modify more
than ε d n entries in fG to obtain a graph with property Π.

2.1. Testing a property in a graph family. In this paper, our main focus
is on testing various graph properties for bounded-degree graphs from certain graph
families (e.g., planar graphs or unit disk graphs).

An algorithm that is given n and has access to fG is called an ε-tester for a graph
family F if it

(a) accepts with probability at least 2/3 any graph G ∈ F that has property Π,
and

(b) rejects with probability at least 2/3 any graph G ∈ F that is ε-far from Π.
If the ε-tester always accepts any graph G ∈ F that has property Π, then it is

said to have one-sided error. The ε-testers presented in this paper have one-sided
error. They will in fact accept with probability 1 any graph that satisfies Π (even if
it does not belong to F).

A property is called testable for a family F if for any fixed 0 < ε < 1 there is
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an ε-tester for F whose total number of queries to the function fG is bounded from
above by a function, which depends only on ε and not on the size n of the input graph.
Following [3], we define a property Π to be uniformly testable if there is an ε-tester
for Π that receives ε as part of the input. A property Π is said to be nonuniformly
testable if for every fixed ε, 0 < ε < 1, there is an ε-tester that can distinguish between
graphs that have property Π from those ε-far from having Π (which may not work
properly for other values of ε).

For a pair of disjoint vertex sets V1, V2 we denote by e(V1, V2) the number of edges
connecting vertices from V1 with vertices from V2. For each vertex v ∈ V , we denote
its neighborhood by N (v) = {u ∈ V : (v, u) ∈ E}. We generalize this notion to sets
by defining N (S) =

⋃
v∈S N (v) \ S. Furthermore, we let D(v, r) denote the set of

vertices which have distance at most r from v, i.e., D(v, 0) = v, D(v, 1) = {v}∪N (v),
etc.

A graph G = (V,E) is called a λ-expander if for all S ⊆ V with |S| ≤ n/2, we
have |N (S)| ≥ λ|S|.

Definition 2.2. A graph G = (V,E) is called nonexpanding if G is not a
(1/ log2 n)-expander.1

A graph G = (V,E) is called C-strongly nonexpanding if every induced subgraph
of G with at least C vertices is nonexpanding.

In this paper we will consider C-strongly nonexpanding only for a constant value
of C.

2.2. C-strongly nonexpanding graph families. There are many interesting
classes of families of graphs that are C-strongly nonexpanding for some constant
C. For example, the classical planar separator theorem [18] implies immediately that
any planar graph is C-strongly nonexpanding for some constant C. Indeed, the planar
separator theorem implies that every planar graph with n vertices (for a sufficiently
large n) has a subset of vertices A, 1

3 n ≤ |A| ≤ 1
2 n, such that |N (A)| ≤ 4

√
n.

Therefore, every planar graph with n vertices (n ≥ n0 for some constant n0) is not
a 6√

n
-expander, and hence the family of planar graphs is C-strongly nonexpanding

for some constant C. As the example of planar graphs shows, all graphs with good
separator properties (for graphs of bounded-degree) are C-strongly nonexpanding.
Hence, other families of graphs (of bounded-degree) that are C-strongly nonexpanding
include, among others: the class of graphs with bounded genus, graphs with forbidden
minor, interval graphs, etc. For example, the result for graphs of bounded genus
and graphs with forbidden minor follow directly from the separator theorem for such
graphs. Gilbert, Hutchinson, and Tarjan [12] proved that any graph on n vertices with
genus g has a separator of order O(

√
gn), and Alon, Seymour, and Thomas [2] showed

a similar result for graphs with forbidden minors: if G has no minor isomorphic to a
given h-vertex graph H , then G has a separator of size O(h3/2n1/2).

3. Proof of the main result. In this section we prove our main result by
showing that the following algorithm is an ε-tester for any hereditary property Π and
any family F of C-strongly nonexpanding graphs.

1The choice of the factor 1/ log2 n can be relaxed. In fact, using a slightly more precise calculation
in our analysis, one can replace 1/ log2 n with 1/(log n log2 log n).
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ε-Tester(G,n,Π)
sample a set S of s1 vertices uniformly at random
for each v ∈ S do

Uv = D(v, s2)
U =

⋃
v∈S Uv

if G|U does not satisfy property Π then reject
else accept

Observe that in a graph of maximum degree d, the size of D(v, s2) is at most
1 + d

∑s2−1
i=0 (d − 1)i ≤ ds2 for s2 ≥ 3. Therefore, since the algorithm has to query

all edges incident to U , the number of queries to fG is upper bounded by s1 d
1+s2 ,

which, for s1 and s2 independent of n, gives the number of queries independent of n.
We will give the exact values for s1 and s2, which are independent of n but do depend
on ε, F , and Π, at the end of our analysis, in the proof of Theorem 3.6.

Since Π is hereditary, we know that our algorithm accepts any graph that has
property Π (even if it does not belong to F). Thus, we only have to show that any
graph that is ε-far from Π and belongs to F is rejected with probability at least 2

3 .
We begin our analysis with the following lemma.
Lemma 3.1. Let G = (V,E) be a C-strongly nonexpanding graph of maximum

degree d. Let δ be an arbitrary positive parameter. If n = |V | ≥ max{2C, 22/δ2}, then
one can partition V into two sets V1 and V2, such that |V1|, |V2| ≥ n

4 and e(V1, V2) ≤
δ d n/ log1.5 n.

Proof. Since G is C-strongly nonexpanding, there exists a set S ⊆ V of cardinality
at most n

2 such that |N (S)| ≤ |S|/ log2 n. We first observe that if |S| ≥ n
4 , then we

can take V1 = S and V2 = V \S. Indeed, since |N (S)| ≤ |S|/ log2 n, there are at most
dn/ log2 n edges between V1 and V2. Therefore, if in addition n ≥ 22/δ2

, we can infer
that

e(V1, V2) ≤ dn/ log2 n ≤ δ d n/ log1.5 n,

as needed.
Assume then that |S| < n

4 and consider the graph G|V \S (the induced graph on
V \S). Since G is C-strongly nonexpanding and |V \S| > C (recall that n > 2C), we
can apply the same arguments as above to conclude that there is a set S′ ⊆ (V \S) of
cardinality at most n

2 such that |N (S′)| ≤ 2|S′|/ log2 n. If we have |S ∪ S′| ≥ n
4 , then

using the same arguments as above we are done by setting V1 = S∪S′ and V2 = V \V1.
Otherwise, we can replace S by S ∪S′ and continue in the same manner. Eventually,
we have a set S ∪ S′ with more than n

4 vertices and |N (S ∪ S′)| ≤ 2 |S ∪ S′|/ log2 n.
If we set V1 = S ∪S′ and V2 = V \V1, then these sets will satisfy the condition in the
lemma.

Let us call a connected component nontrivial if it has more than a single vertex.
The following is a corollary of Lemma 3.1.

Corollary 3.2. For every C-strongly nonexpanding graph G = (V,E) there
exists a positive constant c = cC , such that one can remove from G a set of at most
ε d n/2 edges, such that

(i) their removal partitions G into connected components C1, C2, . . . of size at
most 2c/ε2

each,
(ii) each connected component Ci is an induced subgraph of G, and
(iii) no edge connects in G two nontrivial connected components Ci and Cj.
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Proof. Let G = (V,E) be a C-strongly nonexpanding graph and let δ be a
parameter to be chosen later. We apply Lemma 3.1 to obtain two sets V1 and V2

with at most δ d n/ log1.5 n edges connecting V1 and V2. Assume |V1| ≤ |V2| and
let U∗ = N (V1). Since the number of edges between V1 and V \ V1 is at most
δ d n/ log1.5 n, we also have |U∗| ≤ δ d n/ log1.5 n. Remove from G all edges incident
to U∗. Since |U∗| ≤ δ d n/ log1.5 n and G has maximum degree at most d, we removed
at most δ d2 n/ log1.5 n edges from G. Next, let U1 = V1 and U2 = V2 \ U∗. Observe
that for δ ≤ log1.5 n/(4d) we have n

4 ≤ |U1|, |U2| ≤ 3n
4 and that there is no edge in G

between U1 and U2.
Then we recursively apply Lemma 3.1 on the induced subgraphs G|U1 and G|U2 ;

we proceed recursively until we obtain a subgraph of size at most max{2C, 22/δ2}. In
this way, we removed some number of edges from G and obtained a subgraph of G,
denoted H , on V (G) with connected components C1, . . . , Cq. Observe that the sets
U∗ obtained in the recursive calls will always result in trivial connected components,
because we removed all edges incident to the vertices in U∗. Let H1, . . . , Hk be non-
trivial connected components in our new graph H . By definition, every Ci has size
|Ci| ≤ max{2C, 22/δ2}. Similarly, our construction ensures that no edge is removed
between any pair of vertices in a single Hi and that there is no edge in G between
any pair of graphs Hi and Hj . We now estimate the number of edges removed.

By Lemma 3.1, the number of edges removed fromG is upper bounded by function
Q(n) defined by the following recurrence:

Q(n)

=

{
0 if n ≤ max{2C, 22/δ2},
δd2n/ log1.5 n+ max 1

4≤τ≤ 3
4
{Q(τ n) +Q((1 − τ)n)} if n > max{2C, 22/δ2}.

Since Q(n) = O(δ d2 n), we can conclude that the graph H is obtained from G
by removal of at most c′ δ d2 n edges, for some absolute positive constant c′ ≥ 1.
This yields the proof by setting δ = ε/(2dc′). Finally, recall that all the connected
components of H had size |Ci| ≤ max{2C, 22/δ2} ≤ 2c/ε2

if we took c = cG =
2 d c′C.

Let us explain the importance of the three properties of the resulting graph stated
in Corollary 3.2. Property (i) ensures that every connected component is small. Prop-
erty (ii) ensures that if we have some induced subgraph of a nontrivial connected
component Hi, then it is also an induced subgraph of G. Property (iii) ensures that if
we have a set of induced subgraphs Λi1 ,Λi2 , . . . ,Λi�

of graphs Hi1 , Hi2 , . . . , Hi�
, then

these copies of the subgraphs do not intersect in H . Therefore, if we define a graph Λ̂
with � connected components, where the jth connected of Λ̂ is isomorphic with Λij ,
then Λ̂ is also an induced subgraph of G.

3.1. Hereditary graph properties. It is well known (and easy to see) that
any hereditary graph property Π can be characterized by a (possibly infinite) set of
minimal forbidden induced subgraphs (see, e.g., [4, section 4]). Let us denote by HΠ

forb

a minimal family of forbidden subgraphs for property Π. Notice that in general HΠ
forb

may be an infinite family of forbidden graphs. For example, if Π is the property of
being bipartite, then HΠ

forb can be chosen to be the set of all odd cycles, and if Π is
the property of being chordal, then HΠ

forb is the set of all cycles of length at least 4.
Next, let us consider an arbitrary C-strongly nonexpanding graph G that is ε-far

from Π. By Corollary 3.2, we can remove from G at most ε d n/2 edges to obtain a
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graph H on the same vertex set for which each connected component has at most r =
2c/ε2

vertices. Furthermore, if H1, . . . , Hk are the nontrivial connected components of
H , then there is no edge in G that connects any of these connected components and
each Hi is an induced subgraph of G. Since G is ε-far from Π, H is still ε/2-far from
Π. Since all connected components in H have size at most r (which is independent
of n), H cannot contain as a subgraph any graph that has a connected component
with more than r vertices. Let Jr denote the family of all graphs whose connected
components have size at most r (notice that Jr is independent of G). We conclude
that it suffices to consider the subgraphs in HΠ

forb ∩ Jr.
Corollary 3.3. If a C-strongly nonexpanding graph G is ε-far from Π, then the

graph H defined above contains as an induced subgraph a graph from HΠ
forb ∩Jr. The

same holds if we remove from H any set of at most ε d n/2 edges.
Let us denote by c(r) the number of connected (unlabeled) graphs on a set of at

most r vertices; clearly c(r) ≤ 2(r
2). Let us enumerate all possible connected graphs

with at least one and at most r vertices by G1, . . . ,Gc(r). Without loss of generality,
let G1 denote the subgraph that consists of a single vertex. Then, we can define any
graph G in HΠ

forb ∩ Jr as an integer vector f = 〈f1, . . . , fc(r)〉 of length c(r), where fi

denotes the number of copies of graph Gi occurring as a connected component in G.
In what follows, we call f a characteristic vector of G (with respect to HΠ

forb and
Jr). Similarly, for a graph H whose all connected components are of size at most r,
let us define an integer vector g〈H〉 = 〈g〈H〉

1 , . . . , g
〈H〉
c(r)〉 of length c(r), with g

〈H〉
i being

the number of connected components of H that are isomorphic to Gi.
Lemma 3.4. Let Π be a fixed hereditary property. Let G be a C-strongly non-

expanding graph of degree at most d that is ε-far from Π. Assume that we apply
Corollary 3.2 on G and obtain a subgraph of G, denoted by H, with the property that
all connected components of H are of size at most r. Then, there exists a graph G ∈
HΠ

forb ∩ Jr with characteristic vector f = 〈f1, . . . , fc(r)〉 such that for all 2 ≤ i ≤ c(r)

it holds that if fi > 0, then g
〈H〉
i ≥ γ n, where γ = ε · d/2r2

.
Proof. Let G2, . . . ,Gc(r) be all connected graphs with at least 2 and at most r

vertices. We will first construct a graph H ′ by removing some edges from H so that
for any graph Gi, i > 1, either H ′ contains no connected component isomorphic to
Gi or it contains at least γ n such components. We proceed sequentially over the
graphs G2, . . . ,Gc(r). For each Gi we do the following: if the number of connected
components in the current graph obtained from H is smaller than γ n, we remove all
the edges of any connected component that is isomorphic to Gi. Since we perform
at most c(r) iterations and in each iteration we remove at most

(
r
2

) · γ n edges, the
total number of edges removed is bounded by c(r) · (r

2

) · γn < ε dn/2 by our choice
of γ. At the end of the process we obtain a graph H ′ with the property that for any
graph Gi either H ′ contains no connected component isomorphic Gi or it contains at
least γ n such components. Observe that, when removing the edges of a component
isomorphic to Gi, we do not change the number of components of the graph that are
isomorphic to another Gj for j > 1.

Since G was assumed to be ε-far from Π, and H was obtained from G by removing
at most ε d n/2 edges, we have that H is ε

2 -far from Π. Also, since H ′ is obtained from
H by removing less than ε d n/2 edges, H ′ does not satisfy Π, and hence it contains
a graph G ∈ HΠ

forb ∩ Jr. Now, by the conclusion of the previous paragraph, this
means that if G has characteristic vector 〈f1, . . . , fc(r)〉, then for every i > 1 for which
fi > 0 we must have that H ′ contains at least γ n connected components that are
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isomorphic to Gi. Finally, observe that from the definition of the process of obtaining
H ′ it follows that H must contain at least this many connected components that are
isomorphic to Gi. Hence, for every i > 1 for which fi > 0 we have g

〈H〉
i ≥ γ n.

3.2. The function ΨΠ. We now introduce a key notion that we will use to test
a hereditary property Π. Given a family of pairwise nonisomorphic connected graphs
{G∗

1, . . . ,G
∗
k}, let m({G∗

1, . . . ,G
∗
k}) be the least integer m with the property that the

graph that contains m vertex disjoint, disconnected copies of each of the graphs G∗
i

does not satisfy Π. If no such integer m exists, then we set m({G∗
1, . . . ,G

∗
k}) = ∞.

For an integer r, let Πr be the family of all sets of pairwise nonisomorphic connected
graphs {G∗

1, . . . ,G
∗
k} with the property that all the graphs G∗

i are of size at most r
and m({G∗

1, . . . ,G
∗
k}) <∞.

Definition 3.5. For a fixed hereditary property Π we define a function ΨΠ :
N 
→ N as follows:

ΨΠ(r) = max
{G∗

1 ,...,G∗
k}∈Πr

m({G∗
1, . . . ,G

∗
k}).

In case Πr = ∅ we set ΨΠ(r) = 0.
Note that the above is well defined as for a fixed integer r the set Πr is finite.

3.3. Proof of the main theorem. We now formally state and prove the main
result of this paper.

Theorem 3.6. Let F be any family of C-strongly nonexpanding graphs, where
C is an arbitrary constant. Then every hereditary graph property Π is nonuniformly
testable for F with one-sided error. Furthermore, Π is uniformly testable with one-
sided error if ψΠ is computable (or if its approximation is computable, where the
quality of the approximation must be independent of the input graph size).

Proof. Clearly, our tester accepts every graph that has property Π. So, suppose
that G ∈ F is ε-far from Π, and consider the subgraph H of G that is obtained via
Corollary 3.2. By Lemma 3.4, there is a subgraph G of H (and so of G) that does not
satisfy Π and has the property that (i) all its connected components Gi are of size at
most r = 2c/ε2

and (ii) except for isolated vertices, each of these connected components
appears as a connected component of H at least γn times, where γ = εd/2r2

.
Consider now the set of nonisomorphic connected components of G other than

single vertices, and denote them as {G∗
1, . . . ,G

∗
k}. We first show that our sample set

contains with probability at least 2/3 at least ΨΠ(r) vertex disjoint copies of each of
these components.

By the first paragraph of the proof, a randomly chosen vertex belongs to a con-
nected component of G that is isomorphic to G∗

i with probability at least γ. We can
assume that ΨΠ(r) ≤ γn/2, for otherwise the whole graph has O(ΨΠ(r)/γ) vertices
and we can look at it completely. We will consider the process of sampling |S| ver-
tices independently and uniformly from V one after another. As long as our current
sample set intersects less than ΨΠ(r) connected components isomorphic to G∗

i , we
have a probability of at least γ/2 that the next vertex intersects a new component of
this type. Let Yj be a 0–1 random variable that is 1 with probability γ/2. Clearly,
E[Yj ] = γ/2 and Var[Yj ] ≤ E[Y 2

j ] ≤ γ/2. Since the random variables are pairwise

independent, we have Var[
∑|S|

j=1 Yj ] ≤ γ|S|/2. Therefore, by Chebyshev inequality
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we get

Pr

⎡⎣∣∣∣∣∣∣
|S|∑
j=1

Yj − E

⎡⎣ |S|∑
j=1

Yj

⎤⎦∣∣∣∣∣∣ ≥ 1
2
E

⎡⎣ |S|∑
j=1

Yj

⎤⎦⎤⎦ ≤
16 · Var

[∑|S|
j=1 Yj

]
|S|2γ2

≤ 8
γ|S| .

Choosing |S| ≥ 24 · c(r) · ΨΠ(r)/γ, we obtain that with probability at most 1
3c(r)

the sample set intersects fewer than ΨΠ(r) connected components isomorphic to
G∗

i . Therefore, by the union bound the sample set S contains k · ΨΠ(r) vertices
{vi,j}1≤j≤ΨΠ(r)

1≤i≤k that belong to a distinct connected component of G, with the prop-
erty that for every 1 ≤ j ≤ ΨΠ(r), the connected component of G to which vi,j belongs
is an induced copy of G∗

i .
To finish the proof we have to consider three cases.
Case (i): G does not contain isolated vertices as connected components. Since

G �∈ Π and since the graph has no connected components consisting of single vertices,
we have that m({G∗

1, . . . ,G
∗
k}) < ∞ (cf. section 3.2). Now the definition of ΨΠ

guarantees that the graph obtained by taking ΨΠ(r) vertex disjoint copies of each of
the graphs G∗

i does not satisfy Π. By the above discussion, we have that for each
1 ≤ i ≤ k, S contains vertices vi,j from ΨΠ(r) vertex disjoint connected components
isomorphic to G∗

i . Choosing parameter s2 = r = 2c/ε2
we know that graph G|U

contains each connected component containing one of the vertices vi,j as an induced
subgraph. Since G does not contain edges connecting vertices from distinct non-
trivial connected components of G (here we rely on Corollary 3.2(iii) and the fact that
G is a subgraph of H), we know that G|U also contains the union of the connected
components containing the vi,j as an induced subgraph. Therefore, with probability
at least 2/3 the tester will reject G.

Case (ii): G contains isolated vertices and other connected components. In this
case we get that m({G∗

1, . . . ,G
∗
k}) <∞, because isolated vertices are a vertex induced

subgraph of every other graph. Thus, we can apply Case (i).
Case (iii): G contains only isolated vertices. In this case, we only have to show

that |S| contains an independent set in G of size at least ΨΠ(r). However, since G
has maximum degree d, it contains an independent set of size n/(d + 1). Assuming
that ΨΠ(r) ≤ n/(2(d+ 1)), we can apply Chebyshev inequality as in the proof above
and obtain that, for |S| ≥ 24(d+ 1) · ΨΠ(r), with probability at least 2/3 the sample
set S contains an independent set of size at least ΨΠ(r) and so the property tester
rejects.

Therefore, choosing s1 = 24 · c(r) ·ΨΠ(r)/γ+24(d+1) ·ΨΠ(r) and s2 = r = 2c/ε2

guarantees that our algorithm is a property tester.

3.4. Discussion. When do we need ΨΠ? Notice that the function ΨΠ defined
in section 3.2 is not necessarily computable. However, we only need this definition in
order to obtain a general result on all hereditary properties. Observe, for example,
that for any hereditary property Π that is closed under disjoint union2 we have that
ΨΠ(r) = 1. Therefore, in these cases we have a trivial function Ψ. Furthermore,
notice that any natural hereditary property, such as those discussed throughout the
paper, is closed under disjoint union; therefore for such properties we get uniform
testers (for any family of strongly nonexpanding graphs F).

When does Π have a uniform tester? The proof of Theorem 3.6 shows that when
the function ΨΠ is computable then one can design a one-sided error uniform tester

2I.e., if G1 = (V1, E1), G2 = (V2, E2) satisfy the property, then so does G3 = (V1 ∪V2, E1 ∪E2).
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for Π. Using arguments similar to those used in [5], it can be shown that if the tester is
allowed to use the size of the input in order to make its decisions, then all hereditary
properties have a uniform tester with constant query complexity but with running
time that depends on n. Following [5], let us define an oblivious tester as one that has
no access to the size of the input when making its decisions. Given ε, an oblivious
tester computes a number q = Q(ε) and then asks an oracle for D(v, q) for all the
vertices v ∈ S, where S is a random subset of vertices of V (G) of size q (recall that
D(v, q) is the neighborhood of v of radius q). Using the answers to these queries the
tester should either accept or reject the input. Observe that the algorithm we design
in the proof of Theorem 3.6 is oblivious. Therefore, if ΨΠ is computable, then Π has
an oblivious one-sided error uniform tester.

Let us show that for any hereditary property Π, the computability of ΨΠ is not
only sufficient but also necessary if one wants to design an oblivious one-sided error
tester for Π. Here is a sketch of the proof. It is easy to see that an oblivious one-
sided error tester for a hereditary property must accept the input if the graph that is
spanned by

⋃
v∈S D(v, q) satisfies the property.3 Suppose then that Π can be tested

with query complexity Q(ε). We claim that in this case ΨΠ(r) ≤ Q(1/2r2
), and since

Q is assumed to be computable, then so does ΨΠ. Indeed, for any {G1, . . . ,Gk} ∈ Πr

and for any positive integer d, consider a graph consisting of d disjoint copies of each
graph Gi. Let us think of this graph as consisting of d clusters Cj , where each cluster
Cj contains one copy of each of the graphs G1, . . . ,Gk. This graph has degree bounded
by r, and we claim that for all large enough d, it is 1/2r2

-far from Π. Let us denote
by n the number of vertices of the graph and by m the number of vertices in each
cluster Ci, and observe that m ≤ r2(r

2). Therefore, after adding/removing at most
n

4m edges, we will still have n
2m clusters Cj which have not changed. Therefore, as

m({G1, . . . ,Gk}) <∞ for large enough d, the new graph still does not satisfy Π. We
thus conclude that for large enough d, the graph is at least 1/(4mr)-far from satisfying
Π (and 1/(4mr) ≤ 1/2r2

). However, since the algorithm must find a graph that does
not satisfy Π, it must ask at least m({G1, . . . ,Gk}) queries in order to succeed on
such graphs. Therefore, m({G1, . . . ,Gk}) ≤ Q(1/2r2

) for any set {G1, . . . ,Gk} ∈ Πr

and by the definition of ΨΠ this means that ΨΠ ≤ Q(1/2r2
) as needed.

4. Conclusions. In this paper we made a first attempt to give general testa-
bility results for graphs belonging to restricted families of graphs. We showed that
all hereditary graph properties are (nonuniformly) testable if the input graph is C-
strongly nonexpanding for a constant C. Some interesting open questions include the
following:

• Which properties can be tested for expander graphs? Which properties can
be tested in O(

√
n) time for expander graphs?

• Which properties can be tested for strongly nonexpanding families of graphs
when only the average degree of the graph is bounded?

• Which properties can be tested for directed graphs in sublinear time (in par-
ticular, when we can see a directed edge 〈u, v〉 only from vertex u)?

3Suppose the tester rejects an input even though
⋃

v∈S D(v, q) satisfies Π. In that case if we
were to execute the tester on the graph that is defined as the disjoint union of {D(v, q) : v ∈ S}, it
would have a nonzero probability of rejecting this graph even though it satisfies the property.
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Appendix. Examples of hereditary graph properties.
For the convenience of the user, we will list now some of the well-known classes

of graph properties that are known to be hereditary.
• Being H-free: For a fixed graph H , G is H-free if no subgraph of G is

isomorphic to H .
• Being induced H-free: For a fixed graph H , G is induced H-free if no induced

subgraph of G is isomorphic to H .
• k-colorability: G is k-colorable if its vertices can be partitioned into k sets

such that no two adjacent vertices belong to the same set.
• Perfect graphs: G is perfect if for every induced subgraph H of G, the chro-

matic number of H equals the size of the largest clique in H [16].
• Chordal graphs: G is chordal if it contain no induced cycle of length at least 4.
• Interval graphs: G = (V,E) (on n vertices) is an interval graph if there are

closed intervals on the real line I1, I2, . . . , In such that (i, j) ∈ E if and only
if Ii ∩ Ij �= ∅.

• Circular-arc graphs: G = (V,E) (on n vertices) is a circular-arc graph if
there are closed intervals on an I1, I2, . . . , In such that (i, j) ∈ E if and only
if Ii ∩ Ij �= ∅.

• Permutation graphs: G = (V,E) (on n vertices) is a permutation graph if
there is a permutation σ of {1, 2, . . . , n} such that (i, j) ∈ E if and only if
(i, j) is an inversion under σ.

• Comparability graphs: G is a comparability graph if its edges can be oriented
such that if there is a directed edge from i to j and from j to k, then there
is one from i to k.

• Asteroidal triple-free graphs: G is asteroidal triple-free if it contains no inde-
pendent set of 3 vertices such that each pair is joined by a path that avoids
the neighborhood of the third.

• Split graphs: G is a split graph if its vertex set can be split into a clique and
an independent set.
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