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Abstract. The correct formulation of numerical models for free-surface hydrodynamics often
requires the solution of special linear systems whose coefficient matrix is a piecewise constant function
of the solution itself. In so doing one may prevent the development of unrealistic negative water
depths. The resulting piecewise linear systems are equivalent to particular linear complementarity
problems whose solution could be obtained by using, for example, interior point methods. These
methods may have a favorable convergence property but they are purely iterative and convergence
to the exact solution is proven only in the limit of an infinite number of iterations. In the present
paper a simple Newton-type procedure for certain piecewise linear systems is derived and discussed.
This procedure is shown to have a finite termination property, i.e., it converges to the exact solution
in a finite number of steps and, actually, it converges very quickly, as confirmed by a few numerical
tests.
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AMS subject classifications. 90C33, 90C53, 90C06, 76M20.

1. Introduction. In numerical simulation of free-surface hydrodynamics, semi-
implicit methods for the time integration of the governing partial differential equations
are often used (see, e.g., [3, 4]). At every time step, these methods require the solu-
tion of a large, sparse, symmetric and positive definite linear system whose solution
identifies the location of the water surface elevation at the grid points of a chosen
mesh.

When wetting and drying is being simulated, the resulting water depth may be-
come negative with the consequence that mass conservation is compromised. In Ref-
erence [19] this problem has been carefully investigated and a time step limitation has
been derived to prevent the development of negative water depths.

Alternatively, as shall be seen later in our second test case, a correct formulation
of numerical methods for free-surface hydrodynamics, that guarantees nonnegative
water depths for any time step, requires the solution of large systems that can be
written in the following form

max{0,x} + Tx = b,(1.1)

where

x =







x1

...
xn






, max{0,x} =







max{0, x1}
...

max{0, xn}






, b =







b1

...
bn






,

b is known and T is an irreducible, symmetric, and (at least) positive semidefinite
matrix of size n × n satisfying either one of the following properties:
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T1 : T is a Stieltjes matrix, i.e., a symmetric M -matrix (see, e.g., [9]), or
T2 : null(T ) ≡ span(v) with v > 0 (componentwise), and T + D is a Stieltjes

matrix for all diagonal matrices D such that

D =







d1

. . .

dn






,

n
∑

i=1

di > 0, di ≥ 0, i = 1, 2, . . . , n.

The efficient solution of system (1.1) is also of interest in numerical optimization
because this system can be cast as a linear complementarity problem (see, e.g., [5, 12]).
In fact, by setting s = max{0,x} and y = s−x, system (1.1) can be formulated either
as a horizontal linear complementarity problem

(I + T )s = Ty + b, s>y = 0, s,y ≥ 0,(1.2)

or, equivalently, as a standard linear complementarity problem

s = My + q, s>y = 0, s,y ≥ 0,(1.3)

where q = (I + T )−1b and M = (I + T )−1T is a symmetric, positive semidefinite
matrix (in this case the resulting linear complementarity problem is also said to be
monotone [2, 20]).

When the size of a linear complementarity problem is reasonably small, it can
be solved by means of a (direct) pivoting method (see, e.g., [5, 6, 11]). For large
and sparse problems, however, these methods suffer from unacceptable roundoff error
accumulation and excessive storage requirement.

Linear complementarity problems can also be solved by iterative schemes such as
interior-point type methods (see, e.g., [13, 14, 15, 20]). These methods are charac-
terized by having a convergence which is only asymptotic, thus the exact solution is
obtained only in the limit of an infinite number of iterations.

Alternatively, linear as well as nonlinear complementarity problems can be solved
by means of nonsmooth/semismooth Newton methods (see, e.g., [7, 16, 17] and the nu-
merous references contained therein). Among others, an interesting algorithm based
on the inexact Newton method that applies to large-scale standard linear complemen-
tarity problems (1.3) has been investigated in Reference [10]. Here, the matrix M was
restricted to be an M -matrix, thus nonsingular.

In the next section an efficient semi-iterative procedure for solving directly sys-
tem (1.1) will be derived and its convergence in a finite number of iterations will be
established. In Section 3, some numerical tests are provided to confirm the excel-
lent convergence properties of the proposed algorithm. Finally, in Section 4, a few
concluding remarks are given.

2. The Newton-type iteration. Some introductory results are stated first in
order to derive an efficient iterative procedure for solving system (1.1) and prove its
finite termination.

The following two results are rather straightforward and their proofs have been
omitted.

Lemma 2.1. Let matrix T in system (1.1) satisfy either T1 or T2. If T satisfies:
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• T1 then T−1 > 0;
• T2 then (T + D)−1 > 0.

Lemma 2.2. System (1.1) can also be written in the following equivalent form

[P (x) + T ]x = b,(2.1)

where P (x) is a diagonal matrix whose diagonal entries, for i = 1, 2, . . . , n, are piece-
wise constant functions defined as

p(xi) =

{

1 if xi > 0,

0 otherwise.
(2.2)

Because of the characterization (2.2) of system (2.1), this will be said to be a
piecewise linear system.

It is to be noted that the left-hand side of system (2.1) is not everywhere dif-
ferentiable. Nevertheless, a Newton-type method for solving system (2.1) is taken to
be

xk+1 = xk −
(

P k + T
)−1 [(

P k + T
)

xk − b
]

,

which simplifies to the following Picard iteration,

(

P k + T
)

xk+1 = b, k = 0, 1, 2, . . . ,(2.3)

where the upper index k denotes the iteration step and P k = P (xk).
Note that (2.3) can be directly derived from (2.1) as a fixed point iteration.
Theorem 2.3. Let matrix T in system (2.1) satisfy either T1 or T2. If T

satisfies T2 assume also that P 0 6= 0 and v>b > 0. Then P k +T is a Stieltjes matrix
and the iterations (2.3) are well defined for all k ≥ 0.

Proof. Since P k is a nonnegative diagonal matrix, if T satisfies T1 then P k + T
is a Stieltjes matrix and hence the iterates (2.3) are well defined.

If T satisfies T2 and P 0 6= 0, then P 0+T is a Stieltjes matrix. Next, by induction,
one assumes that for k ≥ 1 one has P k−1 6= 0. Therefore, the vector xk , satisfying

(

P k−1 + T
)

xk = b,

is well defined. Then, since v>b > 0, one has

v>
(

P k−1 + T
)

xk = v>P k−1xk = vT b > 0.

This implies that at least one entry of xk is strictly positive. Consequently, P k 6= 0,
P k + T is a Stieltjes matrix, and xk+1 is well defined.

Remark 1. In practice, the determination of xk+1 from (2.3) can be accomplished
quite efficiently by using a preconditioned conjugate gradient method (see, e.g., [8,
18]). This is particularly the case in applications where T is a sparse and very large
matrix. To this purpose, in light of the convergence property that will be demonstrated



4 L.BRUGNANO AND V. CASULLI

later, xk is conveniently used as a starting point for the conjugate gradient method
(the effectiveness of this choice has been confirmed by several numerical tests).

The iteration (2.3) allows a very simple stopping criterion as provided by the
following lemma.

Lemma 2.4. Under the assumptions of Theorem 2.3, if for some K ≥ 0 one gets
P K+1 = P K, then x = xK+1 is an exact solution of problem (2.1)-(2.2).

Proof. Since P K+1 = P K one has

(

P K + T
)

xK+1 =
(

P K+1 + T
)

xK+1 = b.

The thesis then follows from Lemma 2.2.
In addition to the previous results, the iteration (2.3) is characterized by a re-

markable finite termination property as shown by the following theorem.
Theorem 2.5. Let matrix T in system (2.1) satisfy either T1 or T2. If T

satisfies T2 assume also that P 0 6= 0 and v>b > 0. Then the iterations (2.3) converge
to an exact solution of problem (2.1)-(2.2) in at most n + 1 iterations.

Proof. The iterative scheme (2.3) implies the following equality

(

P k + T
)

xk+1 =
(

P k−1 + T
)

xk = b, k = 1, 2, . . .

from which it follows that

(

P k + T
)

xk+1 =
(

P k + T
)

xk − ξk(2.4)

where ξ
k ≡

(

P k − P k−1
)

xk ≥ 0. In fact, by denoting hereafter by pk
i the ith diagonal

entry of P k, one has

pk
i − pk−1

i 6= 0 ⇒















pk
i = 1 and pk−1

i = 0 ⇒ xk
i > 0,

or

pk
i = 0 and pk−1

i = 1 ⇒ xk
i ≤ 0.

Now, since
(

P k + T
)−1

> 0 and ξk ≥ 0, equation (2.4) implies xk+1 ≤ xk and,
consequently, P k+1 ≤ P k for all k = 1, 2, . . ..

Finally, from Lemma 2.4, it follows that if P k+1 = P k then xk+1 is an exact
solution of system (2.1). Conversely, one obtains P k+1 6= P k and, since P k+1 ≥ 0,
this may occur at most n − m + 1 times where (see (2.2))

m =

n
∑

i=1

p(xi).

Remark 2. Note that P k+1 6= P k would occur n+1 times only in the hypothetical
case that m = 0 and

∑n
i=1

pk
i = n − k + 1, k = 1, 2, . . . , n. In practice, several test

cases have shown that convergence to the exact solution can be obtained in just a few
iterations. Of course, if one can guess P 0 = P (x) then convergence to the exact
solution is obtained in just one step.
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Note that the diagonal of P k can be considered as a binary string. The number
of ones never increases when the iteration starts with all ones. In other words, the
Hamming distances to the string corresponding to the exact solution never increases
(except possibly in the first step for certain initial guesses). Consequently, the itera-
tion (2.3) can be considered as an iteration on points of a finite lattice, as opposed to
R

n.

Theorem 2.6. Let matrix T in system (2.1) satisfy either T1 or T2. If T
satisfies T2 assume also that v>b > 0. Then the solution of problem (2.1)-(2.2)
exists and is unique.

Proof. The existence of a solution has been established constructively by the
previous Theorem 2.5. Regarding its uniqueness, note first that, with reference to
(2.2), for any two vectors x and y one has

P (x)x − P (y)y = Q (x− y),

where Q is a suitable diagonal matrix whose diagonal entries qi satisfy the inequalities
0 ≤ qi ≤ 1, i = 1, 2, . . . , n. In fact, either one of the following four cases occurs:

1. xi, yi > 0 ⇒ p(xi) = p(yi) = 1 ⇒ qi = 1;
2. xi, yi ≤ 0 ⇒ p(xi) = p(yi) = 0 ⇒ qi = 0;
3. xi > 0 ≥ yi ⇒ p(xi) = 1, p(yi) = 0 ⇒ 0 < qi ≤ 1;
4. xi ≤ 0 < yi ⇒ p(xi) = 0, p(yi) = 1 ⇒ 0 < qi ≤ 1.

Assume now that x and y are both solutions of system (2.1) so that

[P (x) + T ]x = b, [P (y) + T ]y = b.

Thus,

[P (x) + T ]x − [P (y) + T ]y = (Q + T ) (x − y) = 0.(2.5)

Therefore, if T satisfies T1, then Q+T is certainly a Stieltjes matrix and hence x = y.
When T satisfies T2, since v>b > 0, one has

v> [P (x) + T ]x = v>P (x)x = v>b > 0,

v> [P (y) + T ]y = v>P (y)y = v>b > 0.

Consequently, P (x) 6= 0, P (y) 6= 0 and hence at least one of the diagonal entries of Q
is strictly positive. Thus, Q + T is a Stieltjes matrix and uniqueness (x = y) follows
directly from (2.5).

Although it may not be as interesting in practical applications, the next result
completes the framework in the case when T satisfies T2.

Corollary 2.7. Consider problem (2.1)-(2.2) where matrix T satisfies T2.
Then:

• if v>b = 0, then a solution exists but is not unique;
• if v>b < 0, then the problem has no solution.
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Proof. Assume that v>b = 0. In this case b belongs to the range of T , thus a
vector u exists such that Tu = b. The thesis follows by observing that, if ui and vi

denote the ith entries of the vectors u and v, respectively, then for all α ≥ maxi ui/vi

the vector

x(α) = u − αv

satisfies

x(α) ≤ 0, Tx(α) = b.

Consequently, x(α) is solution of problem (2.1)-(2.2).
Assume now that v>b < 0. If a solution x would exist, then from (2.1) one has

v> [P (x) + T ]x = v>P (x)x = v>b < 0,

which is impossible because v > 0 and P (x)x ≥ 0 for all x.

3. Numerical tests. Consider problem (2.1)-(2.2) where T is defined as

T =















2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2















n×n

.

Clearly, in this case T satisfies T1. Thus, given b, problem (2.1)-(2.2) has a unique
solution and convergence of the iterative scheme (2.3) is assured for any choice of the
initial guess. The right-hand side in equation (2.1) is chosen in such a way that the
exact solution is given by

xi = e6
i−1

n−1
−5 − 1, i = 1, 2, . . . , n.

The initial guess is taken to be x0 ≡ 1, so that P 0 = In. In Table 3.1 the required iter-
ations (K) are listed for increasing values of n along with the corresponding Hamming
distance (δk) between two subsequent iterations

δk =
n

∑

i=1

pk−1
i − pk

i ≥ 0, k = 1, . . . , K.

Due to the choice of x0, the monotony property P k+1 ≤ P k holds for all k ≥ 0.
Accordingly, the Hamming distance of the initial guess P 0 from P (x) is given by

∆ ≡
n

∑

i=1

p0
i − p(xi) =

K
∑

k=1

δk.
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Table 3.1

Required iterations and Hamming distances.

n K δ1 δ2 δ3 δ4 δ5 ∆
1000 5 828 3 1 1 0 833
2000 4 1661 3 2 0 – 1666
3000 5 2494 3 2 1 0 2500
4000 5 3327 3 2 1 0 3333
5000 4 4160 4 2 0 – 4166
6000 5 4993 4 2 1 0 5000
7000 5 5826 4 2 1 0 5833
8000 4 6660 4 2 0 – 6666
9000 5 7493 4 2 1 0 7500

10000 5 8326 4 2 1 0 8333

As indicated in Table 3.1, convergence to the exact solution is obtained in at most 5
iterations for all n.

The second test problem is derived from the mathematical modelling of a two-
dimensional flow in a homogeneous phreatic aquifer. The governing differential equa-
tion, often called the Boussinesq equation (see Reference [1] for details), is given by

εηt = [κ(h + η)ηx]x + [κ(h + η)ηy]y + ϕ, (x, y) ∈ Ω(t), t > 0,(3.1)

where x and y are coordinates in a horizontal reference frame; t is the time; ε and κ
are the porosity and the hydraulic conductivity, respectively; h(x, y) is the prescribed
aquifer’s bottom and η(x, y, t) is the unknown free-surface elevation (see Figure 3.1).
Thus,

H(x, y, t) = h(x, y) + η(x, y, t), (x, y) ∈ Ω(t)(3.2)

represents the aquifer thickness measuring the distance of the phreatic surface from the
bottom. The time dependent domain is Ω(t) = {(x, y) : H(x, y, t) > 0}. Obviously,
one can assume H(x, y, t) = 0 for (x, y) ∈/ Ω(t). Finally, ϕ(x, y, t) represents the
prescribed source or sink.

In the present test the aquifer’s bottom is described by a paraboloid of revolution
given by

h(x, y) = h0

(

1 −
x2 + y2

L2

)

,

where h0 and L are given positive constants. Here, for simplicity only, porosity and
permeability are assumed to be constants. With an initially flat phreatic surface
η(x, y, 0) = 0 one has Ω(0) = {(x, y) : x2 + y2 < L2}.

A square of side 2L, centered at the origin and containing Ω(0) is covered by a
grid having size ∆x = ∆y = L/N . Then, a consistent semi-implicit finite difference
discretization of Equation (3.1) is taken to be (see, e.g., [3, 4])
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Fig. 3.1. h(x, y) and η(x, y, t) on a vertical cross section.

ε
H`+1

ij − H`
ij

∆t
= κ

H`
i+ 1

2
,j
(η`+1

i+1,j − η`+1
ij ) − H`

i− 1

2
,j
(η`+1

ij − η`+1
i−1,j)

∆x2

+ κ
H`

i,j+ 1

2

(η`+1
i,j+1 − η`+1

ij ) − H`
i,j− 1

2

(η`+1
ij − η`+1

i,j−1)

∆y2
+ ϕ`

ij ,

i, j = −N,−N + 1, . . . , N,(3.3)

where ∆t denotes the time step size and η`
ij and H`

ij are the discrete free-surface
elevation and the aquifer’s thickness at t` = `∆t, respectively. Here ` denotes the
time level not to be confused with the iteration index k. Finally, between grid points,
the aquifer thicknesses H`

i±1/2,j and H`
i,j±1/2

are defined as averages from the nearest
grid values.

In order to avoid the development of un-physical negative values of the aquifer’s
thickness, H`+1

ij in (3.3) is defined as

H`+1
ij = max{0, hij + η`+1

ij },

which is consistent with (3.2) in the wet area, and gives H `+1
ij = 0 in the dry area. It

is to be noted that for those grid points (i, j) where H `
i±1/2,j = 0 and H`

i,j±1/2
= 0,

equation (3.3) trivially implies H`+1
i,j = H`

i,j . In this case equation (3.3) does not
contribute to the system that is being formulated.

The remaining set of equations can be assembled into a single piecewise linear
system. In fact, upon multiplication of each term in (3.3) by ∆t/ε, this system
(which has to be solved at every time step) can be written in the form (1.1). The
resulting matrix T is irreducible, sparse, symmetric, positive semidefinite, and of time
dependent size n` × n`, with n` being the number of grid points (i, j) where at least



ITERATIVE SOLUTION OF PIECEWISE LINEAR SYSTEMS 9

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

X−axis

0 d

1 d

2 d

3 d

4 d

5 d

6 d

7 d

Z
−

ax
is

Fig. 3.2. Computed free surfaces at the cross section y = 0.

one of H`
i±1/2,j and H`

i,j±1/2
is strictly positive. This matrix satisfies T2 and its null

space is spanned by the vector v = (1, . . . , 1)> ∈ R
n` . Thus, according to Theorems

2.3–2.6, the sign of v>b and the choice of the initial guess are crucial for the existence
and uniqueness of the solution H`+1

ij and to obtain convergence of the iterations (2.3).
For the present simulations the chosen parameters are ε = 0.4, κ = 1 m/s, h0 =

10 m and L = 103 m. The flow is then driven by an idealized pointwise sink, located
at the origin, that pumps water out of the aquifer at a constant rate q = 10 m3/s.
Thus, by setting ϕ`

ij = 0, except ϕ`
00 = − q

∆x∆y , the expected domain Ω(t) is the area
confined by concentric circles of decreasing radius and the new water volume at time
t`+1 is given by

V `+1 = ε∆x∆y
∑

ij

H`+1
ij = V ` − q∆t.

On the other hand, since V `+1 = ε∆x∆y v>b, the inequality V `+1 > 0 represents a
necessary condition for the existence and the uniqueness of H `+1

ij .
A numerical simulation has been carried out for seven days using a relatively large

time step size ∆t = 1 day. As initial guess for H `+1
ij the values of the water depths

have been taken from the previous time step so that the condition P 0 6= 0, required
by Theorems 2.3 and 2.5, is certainly satisfied provided that V ` > 0. The linear
systems defined by each iteration (2.3) have been solved by the conjugate gradient
method after diagonal scaling and red/black reordering. Figure 3.2 shows the resulting
free-surface elevation η`

i0 at the cross section y = 0, for ` = 0, 1, . . . , 7.
For specified N = 50, 100, and 200, Table 3.2 shows the size of the resulting

piecewise linear system, the required iterations and the computed water volume at
each time step. As expected by a Newton-type scheme, the number of iterations
turns out to be remarkably small and insensitive to grid resolution, thus confirming
the usefulness of the proposed algorithm for real world applications.
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Table 3.2

System size, required iterations and computed water volume.

` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 6 ` = 7

N=50 n` 8109 7629 7025 6345 5605 4701 3577

K
`

3 3 3 3 3 3 4

V
`

5419110 4555110 3691110 2827110 1963110 1099110 235110

N=100 n` 31965 29925 27549 24845 21853 18333 13905

K
`

3 3 3 3 3 3 4

V
`

5419173 4555173 3691173 2827173 1963173 1099173 235173

N=200 n` 126741 118693 109085 98369 86393 72449 54933

K
`

3 3 4 3 3 4 5

V
`

5419182 4555182 3691182 2827182 1963182 1099182 235182

Table 3.2 also shows that for all ` = 1, 2, . . . , 7 the water volumes are strictly
positive and linearly decreasing at a constant rate q. In fact, the volume difference
between two subsequent time levels is correctly given by V `+1 − V ` = −864, 000 m3.
Thus, any attempt to extend the simulation beyond day 7 would produce a physically
unrealistic negative water volume V 8 < 0 implying v>b < 0. Consequently, when
` = 7 Corollary 2.7 applies indicating that problem (3.3) does not have a solution.
Moreover, the assumption v>b > 0 required by Theorems 2.3 and 2.5 is violated and
the iterative scheme (2.3) would fail to converge in this case. This is an interesting
example demonstrating that the proposed algorithm does not permit artificial over-
drainage.

4. Conclusions. A simple Newton-type iterative procedure for solving certain
piecewise linear systems that arise from numerical modelling of free-surface hydrody-
namics has been derived and investigated.

It is shown that, under rather general assumptions, the iterates are well defined
and converge to the exact solution of the given system in a finite number of steps.

Existence and uniqueness of the solution has been established under the same
assumptions for which convergence is assured.

The present algorithm efficiently applies to very large systems that are often
encountered in other applications governed by partial differential equations and in
optimization.

Simple, and yet nontrivial numerical tests have confirmed the efficiency, the ro-
bustness and the usefulness of the proposed algorithm.
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