
ar
X

iv
:0

80
7.

12
13

v1
  [

q-
fi

n.
C

P]
  8

 J
ul

 2
00

8

Monte Carlo Greeks for financial products via

approximative transition densities

Jörg Kampen1, Anastasia Kolodko1, and John Schoenmakers1

November 1, 2018

Abstract

In this paper we introduce efficient Monte Carlo estimators for the val-
uation of high-dimensional derivatives and their sensitivities (”Greeks”).
These estimators are based on an analytical, usually approximative rep-
resentation of the underlying density. We study approximative densities
obtained by the WKB method. The results are applied in the context of
a Libor market model.
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expansions.
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1 Introduction

Valuation methods for high-dimensional derivative products are typically based
on Monte Carlo simulation of the underlying process. The dynamics of the
underlyings are usually given via a (jump-)diffusion SDE. In case of a diffu-
sion SDE, the underlying process may be simulated using an Euler scheme or
a (weak) second order scheme e.g. see Kloeden & Platen [23] or Milstein &
Tretyakov [29]. For simulation of jump-diffusions see e.g. Cont & Tankov [7],
and Glasserman & Merener [16] for simulation of (Libor) interest rate models
with jumps.

The evaluation of option sensitivities, ’Greeks’ in financial terms, comes
down to the computation of expressions of the form ∂

∂λE(f(Xλ)) (and possibly
higher order derivatives), where f is a pay-off function, X is the state of an
underlying process depending on some parameter λ. For example, the first and
second order derivatives with respect the initial state are called Deltas and Gam-
mas, respectively. In the literature the evaluation of Greeks has been treated
by several methods (a nice overview about classical and recent literature is pro-
vided in Elie, Fermanian, Touzi [11]). Classical finite difference approaches have
been studied by L’ Ecuyer & Perron [10], Broadie & Glasserman [4], Milstein &
Schoenmakers [28], Milstein & Tretyakov [30], Detemple, Garcia, Rindisbacher
[8], and Giles & Glasserman [15]. These approaches are quite general and easy
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to implement as they do not require particular knowledge of the distribution of
the underlying. However, they require full blown simulation of the correspond-
ing system of stochastic differential equations and, in order to be efficient, some
degree of regularity with respect to the pay-off function. In case the transition
kernel of X is known or known in a good approximation, the latter drawback can
be avoided by differentiating this kernel with respect to the sensitivity param-
eter λ, see Fries & Kampen [14] and Fries & Joshi [13]. The typical difficulty
that the distribution of the underlying is only known for very special cases
was overcome by Fournié, Lasry, Lebuchoux, Lions, Touzi [12], who used the
Malliavin integration-by-parts formula in order to express Greeks in the form
E(f(Xλ)π), where the random variable π is called a Greek weight. In a more
recent alternative approach Elie, Fermanian, Touzi [11] construct Greek esti-
mators which are based on variance minimizing choices of Greek weights. As
a matter of fact, the Malliavin method does not lead to this optimal weight in
general. In order to avoid straightforward SDE simulation in the context of the
Libor market interest rate model, and so reducing simulation costs, Kurban-
muradov, Sabelfeld & Schoenmakers [26] considered lognormal approximations
for the transition density, whereas Hunter, Jäckel, & Joshi [19], and Pelsser,
Pietersz & van Regenmortel [31] propose specific drift approximations.

In an ideal situation, the density of the underlying process Xλ at a fixed
point in time is known explictly and an efficient method to sample from it
is available. Usually, however, neither of this is true. Even if the transition
density is known, we will show that calculation of sensitivities, based on kernel
differentiation for instance (as in [14]), may cause problems (high variance) in
case the kernel under consideration is ‘highly peaked ’, for example due to small
maturities, low volatilities, or high dimensionality of the underlying system. In
this paper we therefore choose for a rather general approach with the following
objectives.

• Developing efficient variance bounded probabilistic representations for price
sensitivities, based on an analytical approximation of the underlying den-
sity and a possibly rougher approximative standard density (e.g. a log-
normal density) which is basically used as an importance sampler.

• Construction of a ”good” analytical approximation for the density of the
underlying process by using (convergent) WKB1 methods;

We underline that, in principle, the way of constructing an analytical approx-
imation of the transition density is not essential for the developed Greek esti-
mators. In this article we exploit the use of WKB approximations as a generic
convergent method. In special cases, however, construction of high accuracy
transition kernels may be possible by other means (see [26] for example).

The structure of the paper is as follows. In Section 2 we set up the model
class for which we exemplify our methods and specify the financial products
(including Bermudan callables) for which prices and sensitivities are to be de-
termined. In Section 3 we introduce probabilistic representations for integral
functionals of kernel type and their derivatives. As a particular result we prove
that the corresponding estimator for the derivatives has non-exploding variance

1The historical origin of the name is the work of Wentzel, Kramers, Brioullin in the

context of semiclassical solutions of the Schrödinger equation. The meaning of WKB has

broadened since; nowadays, it refers to analytic expansions of exponential form.
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for sharply peaked kernels in contrast to some existing weighted Monte Carlo
schemes. This estimator thus allows for efficient Monte Carlo estimation of
option sensitivities, in particular with respect to underlyings (Deltas), even in
situations where the densities are sharply peaked (for instance when volatilities
are small). The general probabilistic representations introduced in Section 3 are
applied to the computation of Deltas for Bermudan callable products in Sec-
tion 4. Section 5 deals with the WKB-theory of densities of diffusion equations
(densities of processes which have continuous paths). In Section 5.1 we summa-
rize some results concerning pointwise valid WKB-representations of densities
obtained in Kampen [21]. Since in practice only finitely many terms of a WKB
expansion can be computed, it will be necessary to use a truncated form of
the WKB-representation for actual computations. In Section 5.2. we analyze
the effect of this truncation error on approximations of solutions of Cauchy
problems and their derivatives.The case of non-autonomous diffusion models is
discussed in Section 5.3. The results of Sections 2-5 are applied in Section 6 to
the Libor market model. In Section 6.1. we compute explicitly the first three
coefficients of the WKB representation of the Libor model density. In Section
6.2 we compute prices and Deltas in a case study of European swaptions.

2 Basic setup

Let X = (X1, ..., Xn) be a Markovian process of financial derivative in Rn
+ (R+

:= {x : x > 0}) under a given pricing measure P, connected with a given dis-
counting numeraire B, B > 0, on some filtered probability space. For example,
X may represent a system of asset prices or (Libor) interest rates. A popular
framework for the system (X,B) is, for instance, the class of jump-diffusions
(e.g. Cont & Tankov [7]). For simplicity however, we mainly consider in the
present article ordinary diffusions, but, note that the main results generally
extend to jump processes as well (see Kampen, Kolodko, Schoenmakers [22]).

With respect to an n-dimensional standard Wiener process W = (W 1, ...,
Wn)⊤ on the probability space (Ω,F , (Ft)t∈[t0,T ], P ), where as usual (Ft) is the
P -augmentation of the filtration generated byW, we assume that X is governed
by the stochastic differential equation (SDE),

dX i

X i
= µ(t,X)dt+

n∑

j=1

σij(t,X)dW j , 1 ≤ i, j ≤ n. (1)

It is assumed that µ(t, x) and the matrix σ(t, x) =
(
σij(t, x)

)
, t ∈ [t0, T ], x ∈ Rn

+

are such that for all x0 ∈ Rn
+, there exists a unique solution t → Xt ∈ Rn

+ of

(1) for t0 ≤ t ≤ T satisfying Xt0 = x0 =: Xt0,x0

t0 . It is further assumed that the
Markov process X has a transition density

p(t, x, s, y), t0 ≤ s ≤ t ≤ T, x, y ∈ Rn
+, (2)

which is differentiable with respect to x, y, s, and t, up to any order. In order to
guarantee the existence and uniqueness of (1), and the existence of the transition
density (2) as stated, it is sufficient to require that the functions µ(·, ·) and
σ(·, ·) are bounded and have bounded derivatives up to any order, and that the
volatility matrix σ(t, x) is regular with

0 < λ1 ≤
∣∣(σσ⊤) (t, x)

∣∣ ≤ λ2 (3)
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for all (t, x), t ∈ [t0, T ], x ∈ Rn
+, and some 0 < λ1 < λ2 (see for example Bally

& Talay [3]).
Let us take (w.l.o.g.) B0 = 1 and consider a contingent claim with pay-

off function of the form f(Xτ )Bτ at some (F·)-stopping time τ. By general
arguments (e.g. Duffie [9]), the price of this claim at time t0 is given by

u(t0, x0) = E f(Xt0,x0
τ ).

For deterministic τ, say τ ≡ T, we have a European claim, and for t0 ≤ t ≤ T
its discounted value process can be represented by

ut := u(t,Xt) := EFtf(XT ) =

∫
p(t,Xt, T, y)f(y)dy, where

u(t, x) =

∫
p(t, x, T, y)f(y)dy (4)

is the unique solution of the Cauchy problem

∂u

∂t
+

1

2

n∑

i,j=1

xixj
(
σσ⊤)ij (t, x) ∂2u

∂xi∂xj
+

n∑

i=1

xiµ(t, x)
∂u

∂xi
= 0, (5)

u(T, x) = f(x).

The density kernel p(·, ·, T, y) is the unique (weak) solution of (5) with p(T, x, T, y)
= δ(x− y), where δ is the Dirac-delta function in Schwarz distribution sense.

Of particular importance are Bermudan callable contracts. A Bermudan
contract starting at t0, is specified by a set of exercise dates {t1, t2, ..., tI},
where t0 < t1 < ... < tI < T , and corresponding (discounted) pay-off functions
fi(x), 1 ≤ i ≤ I. According to the contract, the holder has the right to call
(once) a cash-flow fi(X

t0,x0

ti )Bt0,x0,1
ti (with Bt0,x0,1

0 = 1) at an exercise date ti
of his choice. It is well known (e.g. Duffie [9]) that the discounted price of this
contract at time t, t0 ≤ t ≤ T, assuming that no exercise took place before t, is
given by

u(t, x) := sup
τ∈Ti,I

Efτ (X
t,x
τ ) = Efτ t,x

∗
(Xt,x

τ t,x
∗

), ti−1 < t ≤ ti, (6)

where x = Xt0,x0

t , Ti,I the set of stopping times τ taking values in {ti, ti+1, ..., tI},
and τ t,x∗ is an optimal stopping time. In particular the process u(t,Xt) is a su-
permartingale and is called the Snell envelope of the (discounted) cash-flow
process fi(Xti).

3 Probabilistic representations and their esti-

mators

In this section we consider for a given smooth function u : Rn
+ → R+ and a

smooth kernel function p : Rn
+×Rn

+ → R+, probabilistic representations for the
integral

I(x) :=

∫
p(x, y)u(y)dy, and its gradient

∂I

∂x
(x) =

∫
∂

∂x
p(x, y)u(y)dy, with

∂

∂x
:=

(
∂

∂x1
, . . . ,

∂

∂xn

)
. (7)
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Here and in the following sufficient (uniform) integrability conditions are as-
sumed to be fulfilled, for instance, in order to guarantee that (7) is valid.

Remark 1. In (7), kernel p (which may or may not be a density in the second
argument) and function u have to be distinguished from the respective defini-
tions in Section 2, although they may be related. For fixed t, T, 0 ≤ t ≤ T, one
could take (see (4-5)), p(x, y) := p(t, x, T, y) and u(x) := u(t, x) for example.

Let ζ be an Rn
+-valued random variable on some probability space with

density φ, φ > 0. Then, obviously,

I(x) = E p(x, ζ)
u(ζ)

φ(ζ)
(8)

is a probabilistic representation for (7) which may be estimated by the unbiased
Monte Carlo estimator

Î(x) :=
1

M

M∑

m=1

p(x,m ζ)
u(mζ)

φ(mζ)
, (9)

where for m = 1, ...,M, mζ are i.i.d. samples from a distribution with density
φ. By taking gradients in (8) we readily obtain the probabilistic representation

∂I

∂x
(x) = E

∂

∂x
p(x, ζ)

u(ζ)

φ(ζ)
, (10)

with corresponding estimator,

∂̂I

∂x
(x) :=

1

M

M∑

m=1

∂

∂x
p(x,m ζ)

u(mζ)

φ(mζ)
. (11)

While as a rule (9) is an effective estimator for I(x) for a proper choice of
φ, unfortunately the gradient estimator (11) has a serious drawback: If the
kernel p(x, ·) is sharply peaked (nearly proportional to a ’delta-function’), its
variance may be extremely high. This fact is demonstrated by the following
stylistic example of a multi-asset model, which is nevertheless realistic in orders
of magnitude.

Example 2. Consider for fixed x0 ∈ Rn
+, parameters s > 0, and σ > 0, the

n-dimensional lognormal density

p(s, σ;x0, y) :=
1

(2πσ2s)
n/2

n∏

i=1

exp
[
− 1

2σ2s ln
2 yi

xi
0

]

yi
. (12)

In (12) p(s, σ;x0, ·) is the density of the random variable (x10e
σ
√
sξ1 , ..., xn0 e

σ
√
sξn),

where ξi , i = 1, ..., d, are i.i.d. standard normal random variables. Thus, for
small s and σ, p(s, σ;x0, ·) is peaked (’delta-shaped’) around x0. Let us now
take φ(·) := p(s, σ;x0, ·) in (8) and (10), respectively, and u ≡ ||x0|| (a constant
of order x0 in magnitude). Clearly, estimator (9) equals ||x0|| almost surely and

5



so has zero variance. However, estimator (11) is not deterministic and we have

∂̂I

∂xj
(x0) :=

1

M

M∑

m=1

||x0||
p(s, σ;x0,m ζ)

∂

∂xj
p(s, σ;x0,m ζ)

=
||x0||
M

M∑

m=1

∂

∂xj
ln p(s, σ;x0,m ζ)

=
||x0||
M

M∑

m=1

ln mζj

xj
0

σ2sxj0
=

||x0||
M

M∑

m=1

mξ
1

σ
√
sxj0

.

Hence, E
[

∂̂I
∂xj (x0)

]
= 0 as should be, but,

Var

[
∂̂I

∂xj
(x0)

]
=

||x0/xj0||2
M

1

σ2s
(13)

which explodes when σ2s goes to zero!

Remark 3. In Fries & Kampen [14] estimators (9) and (11) are used for com-
puting prices and sensitivities of European Libor options, respectively. In their
numerical examples they used 50% (rather high) volatility in order to amplify
Monte Carlo errors. While, indeed, a larger volatility generally gives rise to a
large Monte Carlo error of (9), Example 2 shows that the opposite is true for es-
timator (11). For example, 50% volatility in combination with 0.5 yr. maturity
corresponds to a (just moderate) variance factor 1/

(
σ2s
)
= 8.0 in (13), while

a more usual Libor volatility, e.g. 14%, and 0.5 y maturity would give a factor
102.0(!).

In the present paper we propose sensitivity estimators which are efficient on
a broad time and volatility scale. As a result, the next theorem provides a tool
for constructing sensitivity (gradient) estimators with non-exploding variance.

Theorem 4. Let λ be a reference density on Rn with λ(z) 6= 0 for all z (for
example, the standard normal density). Let ξ be an Rn-valued random variable
on some probability space, with density λ and g : Rn

+ × Rn → Rn
+ be a smooth

enough map which has at least continuous derivatives with |∂g(x, z)/∂z| 6= 0,
such that for each x ∈ Rn

+ the random variable ζx := g(x, ξ) has a density φ(x, ·)
on Rn

+. Then, for (7) we have the probabilistic representation

∂I

∂x
(x) = E

∂

∂x

p(x, ζx)u(ζx)

φ(x, ζx)
= E

∂

∂x

p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))
, (14)

with corresponding Monte Carlo estimator

∂̂I

∂x
(x) =

1

M

M∑

m=1

∂

∂x

p(x, g(x,m ξ))u(g(x,m ξ))

φ(x, g(x,m ξ))
. (15)

Let ‖·‖α := α
√
E |·|α where |·| denotes either a vector norm or a compatible

matrix norm. Then it holds

E

∣∣∣∣
∂

∂x

p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2

≤ 2M2
2M

2
3M

2
4 + 4M2

1M
2
4M

2
5 + 4M2

1M
2
3M

2
4M

2
6 ,

(16)
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hence the second moments of the Monte Carlo samplers for the components of
∂I/∂x are bounded by the right-hand-side of (16), if for fixed x ∈ Rn

+, there are
constants α1, ..., α6 > 1 and M1, ...,M6 > 0 with

1

α4
+

1

α1
+

1

α5
= 1,

1

α4
+

1

α2
+

1

α3
= 1,

1

α4
+

1

α1
+

1

α6
+

1

α3
= 1,

such that,

‖u(g(x, ξ))‖2α1
≤M1,

∥∥∥∥
∂u

∂y
(g(x, ξ))

∥∥∥∥
2α2

≤M2,

∥∥∥∥
∂g

∂x
(x, ξ)

∥∥∥∥
2α3

≤M3,

∥∥∥∥
p(x, g(x, ξ))

φ(x, g(x, ξ))

∥∥∥∥
2α4

≤M4, (17)

∥∥∥∥
(
1

p

∂p

∂x
− 1

φ

∂φ

∂x

)
(x, g(x, ξ))

∥∥∥∥
2α5

≤M5,

∥∥∥∥
(
1

p

∂p

∂y
− 1

φ

∂φ

∂y

)
(x, g(x, ξ))

∥∥∥∥
2α6

≤M6.

Proof. For any bounded measurable ψ : Rn
+ → R, we have

∫
ψ(g(x, z))λ(z)dz =

∫
ψ(g(x, z))φ(x, g(x, z))

∣∣∣∣
∂g(x, z)

∂z

∣∣∣∣ dz.

Therefore, the densities φ and g are connected via the relationship

φ(x, g(x, z))

∣∣∣∣
∂g(x, z)

∂z

∣∣∣∣ = λ(z). (18)

By (18), the right-hand-side of (14) equals

∂

∂x
E
p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))
=

∂

∂x

∫
p(x, g(x, z))u(g(x, z))

φ(x, g(x, z))
λ(z)dz

=
∂

∂x

∫
p(x, g(x, z))u(g(x, z))

∣∣∣∣
∂g(x, z)

∂z

∣∣∣∣ dz

=
∂

∂x

∫
p(x, y)u(y)dy =

∂I

∂x
(x).

To prove the moment estimation (16), we observe that

E

∣∣∣∣
∂

∂x

p(x, ζx)u(ζx)

φ(x, ζx)

∣∣∣∣
2

= E

∣∣∣∣
∂

∂x

p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2

= E

∣∣∣∣u(g(x, ξ))
∂

∂x

p(x, g(x, ξ))

φ(x, g(x, ξ))
+
p(x, g(x, ξ))

φ(x, g(x, ξ))

∂u

∂y
(g(x, ξ))

∂g

∂x
(x, ξ)

∣∣∣∣
2

≤ 2E
p2(x, g(x, ξ))

φ2(x, g(x, ξ))

∣∣∣∣
∂u

∂y
(g(x, ξ))

∣∣∣∣
2 ∣∣∣∣
∂g

∂x
(x, ξ)

∣∣∣∣
2

+ 2E u2(g(x, ξ))

∣∣∣∣
∂

∂x

p(x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2

=: 2(I) + 2(II).

Then by Hölders inequality, (I) ≤

α2

√
E

∣∣∣∣
∂u

∂y
(g(x, ξ))

∣∣∣∣
2α2

α3

√
E

∣∣∣∣
∂g

∂x
(x, ξ)

∣∣∣∣
2α3

α4

√
E
p2α4(x, g(x, ξ))

φ2α4(x, g(x, ξ))
≤M2

2M
2
3M

2
4 .

7



For the second term we have (II) =

E u2(g(x, ξ))
p2(x, g(x, ξ))

φ2(x, g(x, ξ))

∣∣∣∣∣
∂p
∂x (x, g(x, ξ))

p(x, g(x, ξ))
−

∂φ
∂x (x, g(x, ξ))

φ(x, g(x, ξ))

+

(
∂p
∂y (x, g(x, ξ))

p(x, g(x, ξ))
−

∂φ
∂y (x, g(x, ξ))

φ(x, g(x, ξ))

)
∂g

∂x
(x, ξ)

∣∣∣∣∣

2

≤ 2E u2(g(x, ξ))
p2(x, g(x, ξ))

φ2(x, g(x, ξ))

∣∣∣∣∣
∂p
∂x (x, g(x, ξ))

p(x, g(x, ξ))
−

∂φ
∂x (x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣∣

2

+ 2E u2(g(x, ξ))
p2(x, g(x, ξ))

φ2(x, g(x, ξ))

∣∣∣∣∣

∂p
∂y (x, g(x, ξ))

p(x, g(x, ξ))
−

∂φ
∂y (x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣∣

2 ∣∣∣∣
∂g

∂x
(x, ξ)

∣∣∣∣
2

≤ 2M2
1M

2
4M

2
5 + 2M2

1M
2
3M

2
4M

2
6 ,

again by Hölders inequality.

Remark 5. If in (17) the random variables u(g(x, ξ)), ∂u
∂y (g(x, ξ)), and so on,

have moments of high enough order, Theorem 4 guarantees that the variance of
estimator (15) is controlled via the moment estimates (17). The most delicate
bound in (17) is M5 in fact. Indeed, if one takes g(x, ξ) ≡ g(x0, ξ) estimator
(15) collapses to (11), and in Example 2, page 5, where φ(x, y) ≡ p(x0, y) in
fact, we see that M5 cannot be taken small when σ2s is small, i.e. when p
is highly peaked around x. In contrast, if for fixed x, φ(x,·) is approximately
proportional to p(x, ·) and ∂ lnφ(x, ·)/∂x ≈ ∂ ln p(x, ·)/∂x (both with respect to
the weight function φ(x, ·)), a small M5 may exist. Note that for φ(·, ·) exactly
proportional to p(·, ·), we may take M5 = 0.

Remark 6. It can be shown that Theorem 4 can be extended to probabilistic
representations and corresponding estimators for higher order derivatives,

∂I

∂xβ
(x) = E

∂

∂xβ
p(x, ζx)u(ζx)

φ(x, ζx)
= E

∂

∂xβ
p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))
,

with corresponding Monte Carlo estimator

∂̂I

∂xβ
(x) =

1

M

M∑

m=1

∂

∂xβ
p(x, g(x,m ξ))u(g(x,m ξ))

φ(x, g(x,m ξ))
, (19)

where β := (β1, . . . , βn), βi ∈ {0, 1, 2, . . .} is a multi-index with (formally) ∂xβ =

∂xβ1

1 ∂x
β2

2 · · ·∂xβn
n . Loosely speaking, the variance of the higher order derivative

estimator (19) can be bounded from above by an expression like (16) involving

(i) sufficiently high moments of the derivatives, y → ∂u
∂yγ , and z → ∂g(x,z)

∂zγ for

fixed x, γ ≤ β (component wise), with respect to weight functions y → φ(x, y)
and z → λ(z), respectively, and, (ii) for fixed x, Lq(Rn

+, φ(x, y)dy)-norms of

y → ∂

∂xγ

(
φ(x, y)

p(x, y)

)
, and y → ∂

∂yγ

(
φ(x, y)

p(x, y)

)
, γ ≤ β,

for q large enough.
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Remark 7. In the next section we consider financial applications where I(x)
is the price of a derivative contract considered in dependence of the argument x
which may stand for the underlying process or some parameter (vector) which
affects the dynamics of the underlying process (e.g. volatilities). Moreover,
we there give a recipe how to construct a lognormal density approximation φ,
corresponding to a particular normal reference density and an exponential type
transformation (in Theorem 4, λ and g respectively).

Remark 8. Theorem 4 can be can be generalized to the case where both p
and φ live on a common submanifold rather than on the whole state space.
Via such a generalization it would be possible to extend our results to factor
reduced situations in the spirit of Fries & Kampen [14] and Fries & Joshi [13].
However, this is considered beyond the scope of the present article and therefore
we restrict ourselves to the full-factor case.

4 Sensitivities for Bermudan options

Theorem 4 may be applied in general for computing sensitivities (”Greeks”)
of derivative products. For estimator (11) the danger of exploding variance
is typically the largest when derivatives of prices with respect to underlyings
(Deltas, Gammas) are considered. We therefore consider in this section only
(first order) derivatives with respect to the underlying process, hence Deltas.

Let τ : Ω → R+ be a given stopping time with respect to the filtration (F·).
As usual we may think of Ω as being the space of functions ω : [0,∞) → Rn,
which are continuous from the right and have limits from the left, and define
τs,x(ω) := s+τ(Xs,x

s+(·)(ω)).We now consider the Bermudan contract introduced

in Section 2. For fixed t, t+, t0 ≤ t ≤ t+ ≤ t1, x ∈ Rn
+, we have τ t,x∗ = τ

t+,Xt,x

t+∗
since τ t,x∗ ≥ t1, and we thus may write

u(t, x) := Ef(Xt,x

τ t,x
∗

) = EEF
t+ f(X

t+,Xt,x

t+

τ
t+,X

t,x

t+
∗

)

=

∫
p(t, x, t+, y)dyEf(Xt+,y

τ t+,z
∗

) =

∫
p(t, x, t+, y)u(t+, y)dy,

by the Chapman-Kolmogorov equation.
For each t, t+ as above, let φ(t, x, t+, y), g(t, x, t+, y), and reference density

λ(t, t+, z) be as in Theorem 4. We then have the probabilistic representation

u(t, x) = E
p(t, x, t+, g(t, x, t+, ξ))

φ(t, x, t+, g(t, x, t+, ξ))
f(X

t+,g(t,x,t+,ξ)

τ
t+,g(t,x,t+ ,ξ)
∗

), (20)

with Monte Carlo estimator

û(t, x) :=
1

M

M∑

m=1

p(t, x, t+, g(t, x, t+,m ξ))

φ(t, x, t+, g(t, x, t+,m ξ))
f(X

t+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+ , mξ)
∗

), (21)

and for the gradients (Deltas) we have the probabilistic representation

∆i :=
∂u

∂xi
(t, x) = E

∂

∂xi

(
p(t, x, t+, g(t, x, t+, ξ))

φ(t, x, t+, g(t, x, t+, ξ))
f(X

t+,g(t,x,t+,ξ)

τ
t+,g(t,x,t+ ,ξ)
∗

)

)
(22)
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with Monte Carlo estimator

∆̂i :=
1

M

M∑

m=1

∂

∂xi

(
p(t, x, t+, g(t, x, t+,m ξ))

φ(t, x, t+, g(t, x, t+,m ξ))
f(X

t+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

)

)
, (23)

where mξ, m = 1, ...,M, are i.i.d. samples from the reference density λ. Indeed,
by pre-conditioning on Ft+ and then taking expectations we see that (21) and
(23) are unbiased Monte Carlo estimators for the price (20) and ’deltas’ (22),
respectively. Moreover, if φ is close to p in the sense of Theorem 4, it is not
difficult to see that also gradient estimator (23) has non-exploding variance
when t+ ↓ t.

Estimators (21) and (23) are useful if one has an analytic approximation
p̂(t, x, t+, y) of the density p(t, x, t+, y) and known densities φ(x, ·) for x ∈ Rn

+.
The approximation p̂ may be obtained by some specific method, for example by
a WKB expansion as presented in Section 5, or some lognormal approximation
as proposed in Kurbanmuradov, Sabelfeld & Schoenmakers [26] for the Libor
market model. Of course the density φ has to be chosen with some care. If it is
possible to sample directly from p̂ (e.g. in case of a log-normal approximation)
we may take φ = p̂. If not, (e.g. in the case of a WKB expansion) one may take
for φ a (not necessarily very accurate) lognormal approximation of the density
p.

A canonical lognormal approximation for p(t, x, t+, z) is obtained by freezing
X in the coefficients of (1) at the initial time. We thus obtain

X
lgnt,x;i
t+ := xi exp


−1

2

n∑

j=1

∫ t+

t

(σij)2(s, x)ds+

∫ t+

t

r(s, x)ds

+

n∑

j=1

∫ t+

t

σij(s, x)dW j
s


 =: xi exp(ξi). (24)

Here, (ξi)
n
i=1 is a Gaussian random vector with

Eξi = −1

2

n∑

j=1

∫ t+

t

(σij)2(s, x)ds+

∫ t+

t

r(s, x)ds =: µi;t,t+,x, 1 ≤ i ≤ n,

and

Cov(ξi, ξj) =

n∑

l=1

∫ t+

t

σil(s, x)σjl(s, x) ds =: σij;t,t+ ,x, 1 ≤ i, j ≤ n.

Clearly, the density φ is then given by

φ(t, x, t+, y) :=
ψµt,t+,x,σt,t+,x(ln

y1

x1 , ln
y2

x2 , ..., ln
yn

xn )

y1y2 · · · yn , (25)

yi > 0, 1 ≤ i ≤ n, with ψµt,t+,x,σt,t+,x being the density of the n-dimensional nor-

mal distributionNn(µ
t,t+,x, σt,t+,x) with µt,t+,x := (µi;t,t+,x)1≤i≤n and σt,t+,x :=

(σij;t,t+ ,x)1≤i,j≤n.
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For practical applications it is useful to discretize estimator (23) to

∆̂h
i :=

1

M

M∑

m=1

1

2h

(
p(t, x+ hi, t

+, g(t, x+ hi, t
+,m ξ))

φ(t, x + hi, t+, g(t, x+ hi, t+,m ξ))
f(X

t+,g(t,x+hi,t
+, mξ)

τ
t+,g(t,x+hi,t

+, mξ)
∗

)

− p(t, x− hi, t
+, g(t, x− hi, t

+,m ξ))

φ(t, x − hi, t+, g(t, x− hi, t+,m ξ))
f(X

t+,g(t,x−hi,t
+, mξ)

τ
t+,g(t,x−hi,t

+, mξ)
∗

)

)
, (26)

where hi := h(δi1, . . . , δin) (δij being the Kronecker symbol), for small enough
h > 0.Without further details we note that according to Milstein and Tretyakov
(2004) in a related context, it is efficient to take h ≈ x/

√
M.

As an alternative, it is also possible to expand the derivatives in (23), which
leads to a SDE system of first order variation as in [28] and [15]. In the differen-

tiation of (23) with respect to x for a fixed trajectory, τ t
+,x

∗ (ω) can be considered

to be independent of x. This can be seen as follows: if τ t
+,x

∗ (ω) = p, the random

variable Xt+,x
p , which is assumed to have a density in Rn, lays almost surely in

the interior of the exercise region. Due to the fact that (almost surely) the map

x → Xt+,x
p is smooth (e.g. see Protter (1990)), Xt+,y

p lays in the exercise region
for y in an open disc around x. As a consequence, for any y in this disc we have

τ t
+,y

∗ (ω) = τ t
+,x

∗ (ω) = p. Thus, by differentiating (23) path-wise we obtain

∆̂i :=
1

M

M∑

m=1

f(X
t+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

)
∂

∂xi

(
p(t, x, t+, g(t, x, t+,m ξ))

φ(t, x, t+, g(t, x, t+,m ξ))

)
(27)

+
1

M

M∑

m=1

p(t, x, t+, g(t, x, t+,m ξ))

φ(t, x, t+, g(t, x, t+,m ξ))

∂f

∂z
(X

t+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

)·

· ∂yXt+,y

τ
t+,g(t,x,t+, mξ)
∗

(g(t, x, t+, mξ))
∂g(t, x, t+, mξ)

∂xi
,

where ∂
∂xi

p(t,x,t+,y)
φ(t,x,t+,y) ,

∂g(t,x,t+, mξ)
∂xi , ∂f∂z can in principle be expressed analytically,

and the vector process ∂yX
t+,y
s (·) :=

∂Xt+,y
s

∂y (·), s ≥ t+, can in principle be

simulated via a variational system of SDEs (e.g. see Protter [33], Milstein &
Schoenmakers [28], Giles & Glasserman [15]).

In this paper we will prefer the discretized version (26) of (23) for our appli-
cations. The algorithm is as follows. We first choose an h > 0, and sample mξ
for m = 1, . . . ,M from the reference (usually normal) density. Next we simulate
for each m a pair of trajectories mX

±, which start in mg
± := g(t, x±h, t+, mξ)

at t+, and end at the optimal stopping times mτ
±
∗ := τ t

+,mg±

∗ . Of course the
optimal exercise dates mτ

±
∗ are generally unknown in practice, but we assume

that we have good approximations mτ
± at hand, which are constructed via

some well known procedure. For example, in a pre-computation we may con-
struct an exercise boundary via a regression method (e.g. Longstaff & Schwartz
[27]), or as an alternative, we may use the policy iteration method of Kolodko
& Schoenmakers [24], see also Bender & Schoenmakers [5]. As discussed above,
for a particular ω we have mτ

+
∗ = mτ

−
∗ provided that h is small enough. For this

reason we take in our simulations simply mτ
− =m τ+, where τ is some approx-

imation of the optimal exercise policy. This pragmatic assumption is justified if
the probability of the event mτ

− 6=m τ+ is small enough, i.e. h is small enough.
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For each m we compute also the values mp
± := p(t, x ± h, t+, mg

±) and mφ
±

:= φ(t, x ± h, t+, mg
±), and finally compute the estimate (26).

Remark 9. In the previous sections vector and matrix components are denoted
by superscripts, so that time parameters of processes can be denoted by sub-
scripts. In the next sections we depart from this convention and use subscripts
for vector and matrix components.

5 WKB approximations for transition densities

5.1 Recap of WKB theory

We summarize some results concerning WKB-expansions of parabolic equations
(cf. Kampen [21] for details). Let us consider the parabolic diffusion operator

∂u
∂t + Lu ≡ ∂u

∂t + 1
2

∑
i,j aij

∂2u
∂xi∂xj

+
∑

i bi
∂u
∂xi

. (28)

For simplicity of notation and without loss of generality it is assumed that the
diffusion coefficients aij and the first order coefficients bi in (28) depend on the
spatial variable x only. In the following let δt := T − t, and let the functions

(x, y) → d(x, y) ≥ 0, (x, y) → ck(x, y), k ≥ 0,

be defined on Rn × Rn, with d2 and ck, k ≥ 0, being smooth. Then a set of
(simplified) conditions sufficient for pointwise valid WKB-representations of the
form

p(t, x, T, y) =
1√

2πδt
n exp

(
−d

2(x, y)

2δt
+

∞∑

k=0

ck(x, y)δt
k

)
, (29)

for the solution (t, x) → p(t, x, T, y) of the final value problem

∂p

∂t
+ Lp = 0, with final value (30)

p(T, x, T, y) = δ(x− y), y ∈ Rn fixed,

is given by

(A) The operator L is uniformly elliptic in Rn, i.e. as in (3) the matrix norm
of (aij(x)) is bounded below and above by 0 < λ < Λ <∞ uniformly in x,

(B) the smooth functions x → aij(x) and x → bi(x) and all their derivatives
are bounded.

For more subtle (and partially weaker conditions) we refer to Kampen [21]. If
we add the uniform boundedness condition

(C) there exists a constant c such that for each multiindex α and for all 1 ≤
i, j, k ≤ n, ∣∣∣∂

αajk
∂xα

(x)
∣∣∣,
∣∣∣∂

αbi
∂xα

(x)
∣∣∣ ≤ c exp

(
c|x|2

)
, (31)
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then the Taylor expansions of the functions d and ck around y ∈ Rn are equal
to d and ck, k ≥ 0 globally. I.e. we have the power series representations

d2(x, y) =
∑

α

dα(y)δx
α (32)

ck(x, y) =
∑

α

ck,α(y)δx
α, k ≥ 0, (33)

where δx := x − y. Note that (C) is implied by the stronger condition that all
derivatives in (31) have a uniform bound. Summing up we have the following
theorem:

Theorem 10. If the hypotheses (A),(B) are satisfied, then the fundamental
solution p has the representation

p(δt, x, y) =
1√

2πδt
n exp


−d

2(x, y)

2δt
+
∑

k≥0

ck(x, y)δt
k


 , (34)

where d and ck are smooth functions, which are unique global solutions of the
first order differential equations (35),(36), and (38) below. Especially,

(δt, x, y) → δt ln p(δt, x, y) = −n
2
δt ln(2πδt)− d2

2
+
∑

k≥0

ck(x, y)δt
k+1

is a smooth function which converges to − d2

2 as δtց 0, where d is the Rieman-

nian distance induced by the line element ds2 =
∑

ij a
−1
ij dxidxj , where with a

slight abuse of notation (a−1
ij ) denotes the matrix inverse of (aij). If the hypothe-

ses (A),(B) and (C) are satisfied, then in addition the functions d, ck, k ≥ 0
equal their Taylor expansion around y globally, i.e. we have (32)-(33).

The recursion formulas for d and ck, k ≥ 0 are obtained by plugging the
ansatz (29) into the parabolic equation (30), and ordering terms with respect
to the monoms δti = (T − t)i for i ≥ −2. By collecting terms of order δt−2 we
obtain

d2 =
1

4

∑

ij

d2xi
aijd

2
xj
, (35)

where d2xk
denotes the derivative of the function d2 with respect to the variable

xk, with the boundary condition d(x, y) = 0 for x = y. Collecting terms of order
δt−1 yields

− n

2
+

1

2
Ld2 +

1

2

∑

i


∑

j

(aij(x) + aji(x))
d2xj

2


 ∂c0
∂xi

(x, y) = 0, (36)

where the boundary condition

c0(y, y) = −1

2
ln
√
det (aij(y)) (37)

determines c0 uniquely for each y ∈ Rn. Finally, for k + 1 ≥ 1 we obtain

(k + 1)ck+1(x, y) +
1
2

∑
ij aij(x)

(
d2
xi

2
∂ck+1

∂xj
+

d2
xj

2
∂ck+1

∂xi

)

= 1
2

∑
ij aij(x)

∑k
l=0

∂cl
∂xi

∂ck−l

∂xj
+ 1

2

∑
ij aij(x)

∂2ck
∂xi∂xj

+
∑

i bi(x)
∂ck
∂xi

,

(38)
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with boundary conditions

ck+1(x, y) = Rk(y, y) if x = y, (39)

Rk being the right side of (38). For some classical models in finance a global
transformation of the diffusion operator to the Laplace operator is possible (at
the price of more complicated first order terms however). We observe this in
the case of a Libor market model (Section 6). The requirement that a transfor-
mation y(x) of an operator with second order coefficients aij(x) = (σσ⊤)ij(x)
leads to a Laplacian with respect to second order terms in y is equivalent to

∑

ml

(σσ⊤)ml(x)
∂yk
∂xl

∂yj
∂xm

= δjk (40)

where δjk denotes the Kronecker delta. If σ is invertible it follows directly that
the transformation y(x) satisfies the first order matrix equation

(
∂yk
∂xl

) = (σ−1
kl (x)). (41)

The latter equation determines the transformation (up to constants, of course)
but cannot be integrated in general, and if it can not explicitly in general.
However, a necessary and sufficient condition for integrability of (41) in terms
of σ can be given, where we restrict ourselves to the case of invertible σ.

Proposition 11. There is a global coordinate transformation for the opera-
tor (28) such that the second order part of the transformed operator equals the
Laplacian, iff aij = (σσ⊤)ij for a (square) matrix function σ which satisfies

n∑

l=1

∂σik(x)

∂xl
σlj(x) =

n∑

l=1

∂σij(x)

∂xl
σlk(x), x ∈ Rn. (42)

The latter fact is also observed and proved in Ait-Sahalia [1]. If the condition
of Proposition 11 is satisfied, then coordinate transformation leads to second
order coefficients of the form aij ≡ δij , so that the solution of (35) becomes

d2(x, y) =
∑

i

(xi − yi)
2.

If conditions (A), (B), (C), and (42) hold, then in the transformed coordinates,
explicit formulas for the coefficient functions ck, k ≥ 0 can be computed via the
formulas

c0(x, y) =
∑

i

(yi − xi)

∫ 1

0

bi(y + s(x − y))ds,

ck+1(x, y) =

∫ 1

0

Rk(y + s(x− y), y)skds, (43)

with Rk being the right-hand-side of (38) where aij = δij . Similar formulas are
obtained in Ait-Sahalia [1]. In Kampen [21] it is shown in addition how the co-
efficients ck can be computed explicitly in terms of power series approximations
of the diffusion coefficients aij and bi. However, in high dimensional models
such as the Libor market model direct computation of the coefficients ck seems
more feasible as it turns out that the computation up to the coefficient c1 is
sufficient for our purposes.
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5.2 Error estimates

We now study the approximation error of a truncated WKB expansion (and
its derivatives), which is essential for convergence of the Monte Carlo schemes.
In this respect we will show how the derivatives (up to second order) of the
product value function with respect to the underlyings computed by means of a
truncated WKB-expansion converge in supremum norm and Hölder norms. Let
us consider a WKB-approximation of the fundamental solution p of the form

pl(t, x, T, y) =
1√

2πδt
n exp

(
−d

2(x, y)

2δt
+

l∑

k=0

ck(x, y)δt
k

)
, (44)

i.e. we assume that the coefficients d2 and ck, 0 ≤ k ≤ l have been computed
up to order l (recall that δt = T − t for the sake of brevity). Let us denote the
domain of the Cauchy problem by D = (0, T )×Rn. For integers n ≥ 0 and real
numbers δ ∈ (0, 1) let Cm+δ/2,n+δ(D) be the space of m (n) times differentiable
functions such that the mth (nth) derivative with respect to time (space) is
Hölder continuous with exponent δ

2 (δ). Furthermore, |.|m+δ/2,n+δ denote the
natural norms associated with these function spaces. It is well-known that in
case of our assumptions (A) and (B) the fundamental solution p satisfies the a
priori estimate

|p(t, x, T, y)| ≤ C(T − t)−n/2 exp

(
−λ0|x− y|2

2(T − t)

)
, (45)

for some generic constant C and some λ0 which is less or equal than the lower
bound λ in assumption (A) above. We call a WKB-approximation pl of the
fundamental solution p admissible, if it satisfies the a priori estimate (45). The
WKB-approximation p0 is always admissible while the proof of theorem 9 (cf.
[21]) that pl is admissible if l ≥ l0 where l0 is some natural number depending
on the coefficient functions and can be computed by comparison of the WKB-
expansion and the Levy-expansion. For lower l admissibility has to be ensured
for each model. In the Libor market model admissibility for l = 1 is ensured.
As a consequence of Safanov’s theorem (cf. Krylov [25]) we have

Theorem 12. Assume that (A), (B), and (C) are satisfied and let h ∈ C2+δ (Rn)
and f ∈ Cδ/2,δ(D). If

c ≤ −λ for some λ > 0, (46)

then the Cauchy problem





∂w
∂t + 1

2

∑
ij aij(x)

∂2w
∂xi∂xj

+
∑

i bi(x)
∂w
∂xi

+ c(x)w = f(t, x) in D

w(T, x) = h(x) for x ∈ Rn

(47)

has a unique solution w, and there exists a constant c depending only on δ, n
λ,Λ and K = max{|a|δ, |b|δ, |c|δ} such that

|w|1+δ/2,2+δ ≤ c
[
|f |δ/2,δ + |h|2+δ

]
. (48)

In order to analyze the truncation error of the Cauchy problem with data h
we consider the function

u∆(t, x) = u(t, x)− ul(t, x), where
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u(t, x) =

∫

Rn

h(y)p(t, x, T, y) and ul(t, x) =

∫

Rn

h(y)pl(t, x, T, y)dy. (49)

We say that ul in (49) is admissible if pl is admissible. It is now possible to
derive different error estimates in strong norms depending on which Greeks we
want to control on which level of regularity.

Theorem 13. Assume that conditions (A), (B), and (C) hold and that h ∈
C2+δ(Rn) and assume that ul is admissible. Then

|u(t, x)− ul(t, x)|1+δ/2,2+δ ∈ O(tl−
δ
2 ).

Proof. Let w(t, x) = e−rtu∆(t, x) with r constant and wl(t, x) = e−rtul(t, x).
Since

∂u∆

∂t + Lu∆ = −∂ul

∂t − Lul =: ful
(t, x), we have

∂w
∂t + Lw + rw = ∂wl

∂t + Lwl + rwl = ert
(
−∂ul

∂t − Lul
)
=: ertful

(t, x).

Admissibility of ul and an argument similar to that of Krylov ensures that the
right side of the latter equation can be measured in the norm |.|δ/2,δ. Hence we
can apply the estimate (48) to the function w(t, x) = e−rtu∆(t, x) for a constant
r > 0 and we get (after dividing by ert)

|u∆|1+δ/2,2+δ ≤ c|ful
|δ/2,δ. (50)

In order to compute the term on the right side of (50) we can plug (44) into the
left-hand side of (30) the parabolic equation satisfied by the exact fundamental
solution p. However in order to see how the higher order terms behave exactly
we plug in

p(t, x, y) =
1√
2πt

n exp

(
−d

2(x, y)

2t
+

l∑

k=0

ck(x, y)t
k +Rl+1(t, x, y)

)
, (51)

where

Rl+1(t, x, y) =

∞∑

k=l+1

ck(x, y)t
k = O(tl+1). (52)

We get

∂p
∂t +

1
2

∑
ij aij

∂2pl

∂xi∂xj
+
∑

i bi
∂p
∂xi

=

= tl

(
(l + 1)cl+1 +

∂
∂tRl+1 +

1
2

∑
ij aij

(
− d2

xi

2

(
∂

∂xj

Rl+1

t

)
− d2

xj

2

(
∂

∂xi

Rl+1

t

)

+(cl,xi
+Rl+1,xi

)(cl,xj
+Rl+1,xj

)
)
+ L(cl +Rl)

)
p = O(tl)p, t ↓ 0.

Applying a priori estimates for p we get the result.

Remark 14. A more intricate analysis shows that for practical purposes it
is possible to remove the admissibility condition above, if we approximate the
Cauchy problem by a Dirichlet problem with a large but spatially bounded
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domain (a natural step from the numerical point of view). However, since
this involves an additional analysis of an integral equation corresponding to the
boundary condition we go not into the details here. Generalizations to estimates
which include Taylor-expansions of the WKB-coefficients will also be considered
elsewhere. The assumption h ∈ C2+δ(Rn) can be weakened to Hölder continuous
pay-offs if we abstain from controlling the Θ Greek (sensitivity with respect to
time) up to maturity. The case where ck are computed up to k = 1 is the first
case where the truncation error for first and second derivatives converges to zero
(in supremum norm with order O(δt) and in Hölder- extension of supremum

norm with order O(δt)1−
δ
2 ). This implies that our Monte Carlo computation

scheme for the Greeks converges.

Remark 15. We can easily see how the boundedness of the constant M5 in
Theorem 4 is controled in situations where p is WKB-approximated by pl, l ≥ 0,
and where the prior is chosen according to (24) in Section 4. For simplicity
we here assume that the problem is reduced to the form aij = δij . Then the
logarithmic derivative of the WKB-expansion (cf. (35)) of the density p takes
the form

1

p

∂p

∂x
= −x− y

t
+
∑

k≥0

∂

∂x
ck(x, y)t

k =
1

pl
∂pl

∂x
+O(tl+1).

The logarithmic derivative of the lognormal prior (24) takes the form

1

φ

∂φ

∂x
= −x− y

t
+

∂

∂x
cφ0 (x, y), hence (53)

1

pl
∂pl

∂x
− 1

φ

∂φ

∂x
=

∂

∂x
(c0(x, y)− cφ0 (x, y)) +O(t),

i.e., in the difference the first terms cancel out. So for small time t the main
contibution to the constant M5 is the difference of ∂

∂x (c0 − cφ0 ) which does not
depend on t. Note that if we freeze (53) at x0 say, which leads to the naive
estimator (11), the difference contains a term of order of O(t−1)!

6 Applications to the Libor market model

We consider a Libor market model with respect to a tenor structure 0 < T1 . . . <
Tn+1 in the terminal measure Pn+1 (induced by the terminal zero coupon bond
Bn+1(t)). The dynamics of the forward Libors Li(t), defined in the interval
[0, Ti] for 1 ≤ i ≤ n, are governed by the following system of SDE’s (e.g., see
Jamshidian [20]),

dLi = −
n∑

j=i+1

δjLiLj γ
⊤
i γj

1 + δjLj
dt+ Li γ

⊤
i dW

(n+1) =: µi(t, L)Li + Li γ
⊤
i dW

(n+1),

(54)
where δi = Ti+1−Ti are day count fractions and t→ γi(t) = (γi,1(t), . . . , γi,d(t)),
0 ≤ t ≤ Ti, are bounded and smooth enough deterministic volatility vector func-
tions. We denote the matrix with rows γ⊤i by Γ and assume that Γ is invertible.
In what follows we assume that Γ(t) ≡ Γ does not depend on t. The case of
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time-dependent volatility is discussed in Kampen, Kolodko, Schoenmakers [22].
In (54), (W (n+1)(t) | 0 ≤ t ≤ Tn) is a standard d-dimensional Wiener process
under the measure Pn+1 with d, 1 ≤ d ≤ n, being the number of driving factors.
In what follows we consider the full-factor Libor model with d = n in the time
interval [0, T1).

6.1 WKB approximations for the Libor kernel

Let us transform the dynamics of (54) to Ki := lnLi, 1 ≤ i ≤ n,

dKi =
1

Li
dLi −

1

2L2
i

d〈Li〉 =
(
−γ

⊤
i γi
2

+ µi(t, e
K1 , . . . , eKn)

)
dt+ γ⊤i dW

(n+1),

(55)
where µ is given in (54). Note that the coefficients of the generator correspond-
ing to process K are bounded and satisfy the WKB assumptions (A) (B) in
Section 5.1. Hence, we may apply a WKB approximation to the transition
density of the process (55).

By the transformation Y := Γ−1K we obtain the process

dYi = µY
i (t, Y )dt+ dW

(n+1)
i , 1 ≤ i ≤ n, where (56)

µY
i (t, Y ) = Vi +

n∑

j=1

Γ−1
ij µj(t, e

(ΓY )1 , . . . , e(ΓY )n), Vi = −
n∑

j=1

Γ−1
ij

|γj |2
2

,

for which the generator has a Laplacian diffusion term, which leads to technically
more convenient expressions in the respective WKB expansion.

The situation of time independent γ (hence bounded µY ) is exemplified
in case study Section 6.2, where the transition density pY is approximated and
subsequently transformed to an approximated transition density pL of the Libor
process. Below we spell out the ingredients for computing the corresponding
WKB coefficients c0 and c1 according to (43) to be exploited in Section 6.2.
Using the notations

Fl(s, x, y) :=
1

(Γ(x − y))l
ln

1 + δle
(Γx)l

1 + δle(Γy)l
, 1 ≤ l ≤ n,

and a := (γ⊤i γj)
n
i,j=1, we may write,

c0(s, x, y) =

n∑

i=1

Vi(yi − xi) +

n∑

i=1

n∑

j=1

Γ−1
ij (yi − xi)

n∑

l=j+1

ajlFl(s, x, y), (57)

∂c0
∂xp

(s, x, y) = −Vp +
n∑

j=1

Γ−1
pj

n∑

l=j+1

ajlFl(s, x, y)−

n∑

i=1

n∑

j=1

Γ−1
ij (yi − xi)

n∑

l=j+1

ajl
∂Fl(s, x, y)

∂xp
,

∂2c0
∂x2p

(s, x, y) = 2
n∑

j=1

Γ−1
pj

n∑

l=j+1

ajl
∂Fl(s, x, y)

∂xp
−

n∑

i=1

n∑

j=1

Γ−1
ij (yi − xi)

n∑

l=j+1

ajl
∂2Fl(s, x, y)

∂x2p
,
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where

∂Fl(s, x, y)

∂xp
=

Γlp(s)

(Γ(x − y))l

(
δle

(Γx)l

1 + δle(Γx)l
− Fl(s, x, y),

)
and

∂2Fl(s, x, y)

∂x2p
=

2Γ2
lp

(Γ(x− y))2l

(
Fl(s, x, y)−

δle
(Γx)l

1 + δle(Γx)l

)

+
Γ2
lp

(Γ(x − y))l

δle
(Γx)l

(1 + δle(Γx)l)2
.

We finally obtain pL(s, u, t, v) by density transformation formula,

pL(s, u, t, v) = pY (s, S−1
s (u), t, S−1

t (v))

∣∣∣∣
∂S−1

t (v)

∂v

∣∣∣∣

with
S−1
t (v) := Γ−1(t)(ln v1, . . . , ln vn)

⊤.

For simplicity in the case study below we assume that the matrix Γ is upper
triangular and does not depend on t. We then have,

pL(s, u, t, v) =
1√

2π(t− s)
n

n∏

i=1

Γ−1
ii

vi
exp


−

(
Γ−1(ln v1

u1
, . . . , ln vn

un
)⊤
)2

2(t− s)

+

∞∑

k=0

ck(s, S
−1(u), S−1(v))(t − s)k

)
.

6.2 Case study

We now illustrate the estimators (9) and (15) in Section 3 and the estimators
(21) and (26) in Section 4 by computing European and Bermudan swaptions
and Deltas in a Libor market model. A (payer) swaption contract with maturity
Ti and strike θ with principal $1 gives the right to contract at Ti for paying a
fixed coupon θ and receiving floating Libor at the settlement dates Ti+1,. . . ,Tn.
The discounted payoff of the contract is thus given by

fi(L(Ti)) =
1

Bn+1(Ti)

n∑

j=i

Bj+1(Ti) (δjLj(Ti)− θ)
+
. (58)

For our experiments we take in (54), δi ≡ 0.5, L(0) = 3.5% flat, and constant
volatility loadings, γi(t) ≡ 0.2ei, where ei are n-dimensional unit vectors de-
composing an input correlation matrix ρ,

ρij = exp
[ |j − i|
n− 1

ln ρ∞
]
, 1 ≤ i, j ≤ n, (59)

with ρ∞ = 0.3 (for more general correlation structures we refer to Schoenmakers
[35]). We consider at-the-mondey European swaptions with maturity T1 and at-
the-money Bermudan swaptions with 10 annual exercise possibilities, starting
from T1, hence θ = 3.5% in (58).
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For the Bermudan swaptions a good approximation of the optimal stopping
policy is constructed by Andersen’s method (strategy II, see Andersen [2]),

τ
T1,L(0)
A := inf

{
i : Ti ≥ T1, Ti ∈ T , Bn+1(Ti)fi(L

T1,L(0)
Ti

) ≥ Hi+

max
j≥i,Tj∈ T

Ei
[
Bn+1(Tj)fj(L

T1,L(0)
Tj

)
]}

, (60)

where L
0,L(0); j
Ti

:= Lj(Ti) in line with Sections 2 and 4, and T := {T1, T3, T5,
. . . , T19} is the set of possible exercise dates. The conditional expectations in
(60) can be computed accurately in closed-form (see, e.g., Schoenmakers [35]).
Further in (60), H is a constant vector computed by backward optimization over
a set of pre-simulated trajectories, as proposed by Andersen [2]. In Table 3,
column 2, we display the Bermudan prices ûlow

ex due to stopping strategy τA.
Upper estimations ûup

ex
are constructed from ûlow

ex
by the dual approach, developed

in Rogers [34] and Haugh and Kogan [18], see Table 3, column 1. As we see, the
distance between lower and upper Bermudan estimates does not exceed 0.5%
(relative to the values).

The Libor transition kernel pL(s, x, t, y) shows to have a pronounced ”delta-
shaped” form. Because of this, it is very important for efficiency of the esti-
mators in Sections 3-4 to find a suitable proxy density φ. We take for φ the
transition kernel of a lognormal approximation Llgn, obtained from the Libor
process (54) by freezing the coefficients at the initial time s,

L
lgns,x; i
t (ξ) = xi exp(ξi), (61)

where ξ is a n-dimensional Gaussian vector with

Eξi = (t− s)


 |γi|2

2
−

n∑

j=i+1

|γi||γj |ρijδjxj
1 + δjxj


 =: µlgn

i (s, t, x),

Cov(ξi, ξj) = Γij , 1 ≤ i, j ≤ n. (62)

The transition density of Llgn is then given by

φ(s, u, t, v) :=
1√

2π(t− s)
n

n∏

i=1

Γ−1
ii

vi
×

exp


−

∣∣∣Γ−1((ln v1
u1
. . . ln vn

un
)− µlgn(s, t, x))T

∣∣∣
2

2(t− s)


 ,

with | · | denoting the Euclidean norm. So, in order to sample from density φ,
we simulate via (61)-(62) the lognormal samples

mζ = L
lgn0,L(0)
T1

(mξ) =: g(0, L(0), T1,m ξ), m = 1, . . . ,M.

As a (more accurately approximated) Libor transition kernel, we use WKB
approximation pL0 and pL1 . We endow the corresponding estimators with super-
scripts 0 and 1 respectively.

European and Bermudan prices and Deltas via the estimators (9), (15), (21),
(26) are given in Tables 1-4. These results are compared with corresponding
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estimates due to ”exact” Libor trajectories, simulated by a log-Euler scheme
with small time step ∆t (we take ∆t = δi/5 for Europeans, ∆t = δi/10 for
Bermudans). The ”exact” estimates are endowed with the superscript ex. For
comparison, the corresponding estimates due to the standard lognormal Libor
approximation Llgn are computed as well. In order to keep standard deviations
within 0.5% relative (to the values) we take h = 3.5×10−5, M = 5×105. As we
see, the WKB approximation with only two coefficients, c0 and c1, provides a
very close estimate of the European swaptions and Deltas, also for large matu-
rities. The distance between the values simulated via ”exact” Libor trajectories
and the corresponding values due to the WKB approximation is smaller than

0.5% relative to the value. In contrast, the lognormal estimators Îlgn,
∂bIlgn
∂xi

, ûlgn

and
∂bulgn

∂xi
give an acceptable approximation only for T1 ≤ 2.

Table 1. European swaptions (values in basis points)

T1 Îex (SD) Îlgn (SD) Î0 (SD) Î1 (SD)

1.0 178.9(0.4) 179.0(0.4) 181.6(0.4) 178.9(0.4)
2.0 245.3(0.6) 246.5(0.6) 251.4(0.6) 244.3(0.6)
5.0 351.3(1.0) 359.8(1.0) 376.4(1.1) 352.7(1.0)
10.0 429.6(1.5) 451.4(1.6) 495.6(1.7) 431.8(1.4)

Table 2. European Deltas (values in basis points)

T1
∂̂Iex
∂xn

(h)

(SD)
∂̂Ilgn
∂xn

(h)

(SD) ∂̂I0
∂xn

(h)

(SD) ∂̂I1
∂xn

(h)

(SD)

1.0 1768.3(2.8) 1774.2(2.8) 1794.9(2.9) 1770.7(2.8)
2.0 1726.4(2.9) 1732.1(2.9) 1729.0(2.9) 1729.0(2.9)
5.0 1599.6(3.2) 1615.9(3.3) 1722.5(3.5) 1597.0(3.2)
10.0 1417.1(3.8) 1474.0(4.2) 1668.0(4.7) 1422.7(3.9)

Table 3. Bermudan swaptions (values in basis points)
T1 ûlow

ex
(SD) ûup

ex
(SD) ûlgn (SD) û0 (SD) û1 (SD)

1.0 351.2(0.7) 352.5(1.0) 350.9(0.7) 354.7(0.7) 351.2(0.7)
2.0 388.4(0.8) 389.8(1.0) 388.2(0.8) 396.6(0.8) 387.3(0.8)
5.0 461.5(1.1) 463.4(1.3) 466.3(1.1) 492.9(1.1) 460.8(1.1)
10.0 523.7(1.6) 524.8(1.7) 543.6(1.7) 601.2(1.7) 523.6(1.5)

Table 4. Bermudan Deltas (values in basis points)

T1
∂̂uex

∂xn

(h)

(SD)
∂̂ulgn

∂xn

(h)

(SD) ∂̂u0

∂xn

(h)

(SD) ∂̂u1

∂xn

(h)

(SD)

1.0 2709.2(3.5) 2720.9(3.5) 2747.2(3.5) 2709.2(3.5)
2.0 2631.1(3.5) 2630.5(3.5) 2700.7(3.6) 2628.6(3.5)
5.0 2392.9(3.7) 2407.7(3.8) 2561.9(4.0) 2398.0(3.8)
10.0 2101.5(4.4) 2152.5(4.7) 2443.4(5.3) 2111.5(4.4)

Remark 16. The values in Tables 1–4 are computed using a second order Taylor
approximation of c1(x, y) around x, where c1(x, x), the derivatives

∂c1
∂yi

(x, x) and
∂2c1

∂yi∂yj
(x, x), are computed (using finite differences) prior to the Monte Carlo

simulation.
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Figure 1: CPU time (seconds) for simulating European (left) and Bermudan
(right) Deltas for different T1 by log-Euler Libor simulation (solid line) and by
WKB density approximation (with c0 and c1) (dash line).

Computational time

By using the new estimators we avoid step-by-step Euler simulation of the Libor
process in the time interval [0, T1]. Generally, the cost of Euler stepping up to T1
is proportional to T1/∆t, whereas the cost of the ”direct estimators” (15) and
(26) is independent of T1. In particular, in the present Libor case, Euler stepping
up to T1 requires a cost proportional to n2 T1

∆t times the cost of computing the
(possibly virtual) pay-off at T1. In comparison, the cost of simulating estimators
(15) and (26) is proportional to n2 times the cost of the pay-off at T1.

In Figure 2 we compare for different T1 the CPU time (per sample) needed
for computing the values in Tables 2,4 using WKB based estimators (15) and
(26) with the CPU time required for computing the estimates via straightfor-
ward Euler stepping of ”exact” Libor trajectories up to T1. We conclude that,
particularly for larger T1, the efficiency gain is quite high in the European case,
and still considerable in the Bermudan case.

Remark 17. Fries & Kampen [14] and Fries & Joshi [13] propose simulation
schemes which improve upon Euler SDE simulation and allow for taking larger
time steps for obtaining the same accuracy. Assuming that such a scheme re-
quires a time step of order, say O(

√
∆t), instead of O(∆t) for the same accuracy,

it is clear that, for example in the European case, the gain of our method with
respect to this one is still order of O(T/

√
∆t).
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