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Abstract

Self-similar fractals arise as the unique attractors of iterated func-
tion systems (IFSs) consisting of finitely many contracting similarities
satisfying an open set condition. Each point x in such a fractal F
arising from an IFS S is naturally regarded as the “outcome” of an in-
finite coding sequence T (which need not be unique) over the alphabet
Σk = {0, . . . , k − 1}, where k is the number of contracting similari-
ties in S. A classical theorem of Moran (1946) and Falconer (1989)
states that the Hausdorff and packing dimensions of a self-similar frac-
tal coincide with its similarity dimension, which depends only on the
contraction ratios of the similarities.

The theory of computing has recently been used to provide a mean-
ingful notion of the dimensions of individual points in Euclidean space.
In this paper, we use (and extend) this theory to analyze the dimen-
sions of individual points in fractals that are computably self-similar,
meaning that they are unique attractors of IFSs that are computable
and satisfy the open set condition. Our main theorem states that,
if F ⊆ Rn is any computably self-similar fractal and S is any IFS
testifying to this fact, then the dimension identities

dim(x) = sdim(F ) dimπS (T )
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and
Dim(x) = sdim(F ) DimπS (T )

hold for all x ∈ F and all coding sequences T for x. In these equations,
sdim(F ) denotes the similarity dimension of the fractal F ; dim(x) and
Dim(x) denote the dimension and strong dimension, respectively, of
the point x in Euclidean space; and dimπS (T ) and DimπS (T ) denote
the dimension and strong dimension, respectively, of the coding se-
quence T relative to a probability measure πS that the IFS S induces
on the alphabet Σk. The above-mentioned theorem of Moran and
Falconer follows easily from our main theorem by relativization.

Along the way to our main theorem, we develop the elements of
the theory of constructive dimensions relative to general probability
measures. The proof of our main theorem uses Kolmogorov complexity
characterizations of these dimensions.

Keywords: Billingsley dimension, computability, constructive dimen-
sion, fractal geometry, geometric measure theory, iterated function system,
Hausdorff dimension, packing dimension, self-similar fractal.

1 Introduction

The theory of computing has recently been used to formulate effective ver-
sions of Hausdorff dimension and packing dimension, the two most important
dimensions in geometric measure theory [34, 35, 11, 1]. These effective frac-
tal dimensions have already produced quantitative insights into many aspects
of algorithmic randomness, Kolmogorov complexity, computational complex-
ity, data compression, and prediction [26]. They are also beginning to yield
results in geometric measure theory itself [20].

The most fundamental effective dimensions are the constructive dimen-
sion [35] and the constructive strong dimension [1]. These two constructive
dimensions (which are defined explicitly in section 3 below) are the construc-
tive versions of the Hausdorff and packing dimensions, respectively. For each
set X of (infinite) sequences over a finite alphabet Σ, the constructive di-
mension cdim(X) and the constructive strong dimension cDim(X) are real
numbers satisfying the inequalities

cdim(X) ≤ cDim(X) ≤ 1

≤ ≤

0 ≤ dimH(X) ≤ DimP(X),

2



where dimH(X) and DimP(X) are the Hausdorff and packing dimensions,
respectively, of X. These constructive dimensions are exact analogs of the
constructive Lebesgue measure that Martin-Löf used to formulate algorith-
mic randomness [36]. As such, they are endowed with universality properties
that make them especially well behaved. For example, unlike the other ef-
fective dimensions, and unlike their classical counterparts, the constructive
dimensions are absolutely stable, meaning that the dimension of any union
(countable or otherwise) of sets is the supremum of the dimensions of the
individual sets. In particular, this implies that, if we define the dimension
and strong dimension of an individual sequence S ∈ Σ∞ to be

dim(S) = cdim({S}) (1.1)

and
Dim(S) = cDim({S}), (1.2)

respectively, then the constructive dimensions of any set X ⊆ Σ∞ are deter-
mined by the equations

cdim(X) = sup
S∈X

dim(S) (1.3)

and
cDim(X) = sup

S∈X
Dim(S). (1.4)

Constructive dimensions are thus investigated entirely in terms of the dimen-
sions of individual sequences.

The two constructive dimensions also admit precise characterizations in
terms of Kolmogorov complexity [37, 1]. Specifically, for any sequence S ∈
Σ∞,

dim(S) = lim inf
j→∞

K(S[0..j − 1])

j log |Σ|
(1.5)

and

Dim(S) = lim sup
j→∞

K(S[0..j − 1])

j log |Σ|
, (1.6)

where K(S[0..j − 1]) denotes the Kolmogorov complexity of the j-symbol
prefix of S [31] and the logarithm is base-2. Since K(w) measures the algo-
rithmic information content (in bits) of a string w, (1.5) and (1.6) say that
dim(S) and Dim(S) are asymptotic measures of the algorithmic information
density of S.
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Although the constructive dimensions have primarily been investigated
in sequence spaces Σ∞, they work equally well in Euclidean spaces Rn. One
of several equivalent ways to achieve this is to fix a base k ≥ 2 in which to
expand the coordinates of each point x = (x1, . . . , xn) ∈ Rn. If the expansions
of the fractional parts of these coordinates are S1, . . . , Sn ∈ Σ∞k , respectively,
where Σk = {0, . . . , k − 1}, and if S is the interleaving of these sequences,
i.e.,

S = S1[0]S2[0] . . . Sn[0]S1[1]S2[1] . . . Sn[1]S1[2]S2[2] . . . ,

then the dimension of the point x is

dim(x) = n dim(S), (1.7)

and the strong dimension of x is

Dim(x) = nDim(S). (1.8)

If one or more of the coordinates of x have two base-k expansions (because
they are rationals whose denominators are powers of k), it is easily seen that
the numbers dim(x) and Dim(x) are unaffected by how we choose between
these base-k expansions. Also, a theorem of Staiger [45], in combination with
(1.5) and (1.6), implies that dim(x) and Dim(x) do not depend on the choice
of the base k. The dimension and strong dimension of a point x ∈ Rn are
properties of the point x itself, not properties of a particular encoding.

Clearly, 0 ≤ dim(x) ≤ Dim(x) ≤ n for all x ∈ Rn. In fact, this is the only
restriction that holds in general, i.e., for any two real numbers 0 ≤ α ≤ β ≤ n,
there is a point x in Rn with dim(x) = α and Dim(x) = β [1].

The theory of computing thus assigns a dimension dim(x) and a strong
dimension Dim(x) to each point x in Euclidean space. This assignment is
robust (i.e., several natural approaches all lead to the same assignment), but
is it geometrically meaningful? Prior work already indicates an affirmative
answer. By Hitchcock’s correspondence principle for constructive dimen-
sion ([25], extending a result of [44]), together with the absolute stability of
constructive dimension [35], if X ⊆ Rn is any countable (not necessarily ef-
fective) union of computably closed, i.e., Π0

1, sets, then cdim(X) = dimH(X).
Putting this together with (1.3) and (1.7), we have

dimH(X) = sup
x∈X

dim(x) (1.9)

for any set X that is a union of computably closed sets. That is, the classical
Hausdorff dimension [15] of any such set is completely determined by the
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dimensions of its individual points. Many, perhaps most, of the sets which
arise in “standard” mathematical practice are unions of computably closed
sets, so (1.9) constitutes strong prima facie evidence that the dimensions of
individual points are indeed geometrically meaningful.

This paper analyzes the dimensions of points in the most widely known
type of fractals, the self-similar fractals. The class of self-similar fractals
includes such famous members as the Cantor set, the von Koch curve, the
Sierpinski triangle, and the Menger sponge, along with many more exotic sets
in Euclidean space [2, 12, 13, 15]. A self-similar fractal (defined precisely
in section 5 below) is constructed from an iterated function system (IFS)
S = (S0, ..., Sk−1), which is a list of two or more contracting similarities
mapping an initial nonempty, closed set D ⊆ Rn into itself. Each set Si(D)
is a strictly smaller “copy” of D inside of D, and each set Si(Sj(D)) is a
strictly smaller “copy” of Sj(D) inside of Si(D). Continuing in this way,
each sequence T ∈ Σ∞k encodes a nested sequence

D ⊇ ST [0](D) ⊇ ST [0](ST [1](D)) ⊇ . . . (1.10)

of nonempty, closed sets in Rn. Each of these sets is strictly smaller than the
one preceding it, because each similarity Si has a contraction ratio ci ∈ (0, 1).
Hence there is a unique point S(T ) ∈ Rn that is an element of all the sets
in (1.10). Figure 1 illustrates how a coding sequence T represents a point
S(T ) in the Sierpinski triangle.

The attractor of the IFS S is the set

F (S) = {S(T ) | T ∈ Σ∞k } . (1.11)

In general, the sets S0(D), . . . , Sk−1(D) need not be disjoint, so a point
x ∈ F (S) may have many coding sequences, i.e., many sequences T for which
S(T ) = x. A self-similar fractal is a set F ⊆ Rn that is the attractor of an
IFS S that satisfies a technical open set condition (defined in section 5),
which ensures that the sets S0(D), ..., Sk−1(D) are “nearly” disjoint.

The similarity dimension of an IFS S is the (unique) solution sdim(S) of
the equation

k−1∑
i=0

c
sdim(S)
i = 1, (1.12)

where c0, . . . , ck−1 are the contraction ratios of the similarities S0, . . . , Sk−1,
respectively. The similarity dimension of a self-similar fractal F = F (S) is
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Figure 1. A sequence T ∈ {0, 1, 2}∞ codes a point S(T ) in the Sierpinski
triangle.

sdim(F ) = sdim(S). A classical theorem of Moran [38] and Falconer [14]
says that, for any self-similar fractal F ,

dimH(F ) = DimP(F ) = sdim(F ), (1.13)

i.e., the Hausdorff and packing dimensions of F coincide with its similarity di-
mension. In addition to its theoretical interest, the Moran-Falconer theorem
has the pragmatic consequence that the Hausdorff and packing dimensions
of a self-similar fractal are easily computed from the contraction ratios by
solving equation (1.12).

Our main theorem concerns the dimensions of points in fractals that
are computably self-similar, meaning that they are attractors of computable
iterated function systems satisfying the open set condition. (We note that
most self-similar fractals occurring in practice – including the four famous
examples mentioned above – are, in fact, computably self-similar.) Our main
theorem says that, if F is any fractal that is computably self-similar with the
IFS S as witness, then, for every point x ∈ F and every coding sequence T
for x, the dimension and strong dimension of the point x are given by the
dimension formulas

dim(x) = sdim(F )dimπS(T ) (1.14)
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and
Dim(x) = sdim(F )DimπS(T ), (1.15)

where dimπS(T ) and DimπS(T ) are the dimension and strong dimension of T
with respect to the probability measure πS on the alphabet Σk defined by

πS(i) = c
sdim(F )
i (1.16)

for all i ∈ Σk. (We note that dimπS(T ) is the constructive analog of Billings-
ley dimension [3, 9].) This theorem gives a complete analysis of the dimen-
sions of points in computably self-similar fractals and the manner in which
the dimensions of these points arise from the dimensions of their coding se-
quences.

Although our main theorem only applies directly to computably self-
similar fractals, we use relativization to show that the Moran-Falconer the-
orem (1.13) for arbitrary self-similar fractals is an easy consequence of our
main theorem. Hence, as is often the case, a theorem of computable analysis
(i.e., the theoretical foundations of scientific computing [6]) has an immediate
corollary in classical analysis.

The proof of our main theorem has some geometric and combinatorial
similarities with the classical proofs of Moran [38] and Falconer [14], but
the argument here is information-theoretic. Specifically, our proof uses Kol-
mogorov complexity characterizations of dimensions with respect to proba-
bility measures. These characterizations (proven in section 4 below) say that,
if ν is a suitable probability measure on a sequence space Σ∞, then, for every
sequence S ∈ Σ∞,

dimν(S) = lim inf
j→∞

K(S[0..j − 1])

Iν(S[0..j − 1])
(1.17)

and

Dimν(S) = lim sup
j→∞

K(S[0..j − 1])

Iν(S[0..j − 1])
(1.18)

where

Iν(w) = log
1

ν(w)

is the Shannon self-information of the string w with respect to the probability
measure ν [10]. The older characterizations (1.5) and (1.6) are the special
cases of (1.17) and (1.18) in which ν(w) = |Σ|−|w| for all w in Σ∗. The char-
acterizations (1.17) and (1.18) say that dimν(S) and Dimν(S) are asymptotic
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measures of the algorithmic information density of S, but the “density” here
is now an information-to-cost ratio. In this ratio, the “information” is al-
gorithmic information, i.e., Kolmogorov complexity, and the “cost” is the
Shannon self-information. To see why this makes sense, consider the case of
interest in our main theorem. In this case, (1.16) says that

ν(w) =

|w|−1∏
j=0

c
sdim(F )
w[j] ,

whence the cost of a string w ∈ Σ∗k is

Iν(w) = sdim(F )

|w|−1∑
j=0

log
1

cw[j]

,

i.e., the sum of the costs of the symbols in w, where the cost of a symbol
i ∈ Σk is sdim(F ) log(1/ci). These symbol costs are computational and
realistic. A symbol i with high cost invokes a similarity Si with a small
contraction ratio ci, thereby necessitating a high-precision computation.

We briefly mention some other recent research on fractals in theoretical
computer science. Braverman and Cook [5, 6] have used computability and
complexity of various fractals to explore the relationships between the two
main models of real computation. Rettinger and Weihrauch [40], Hertling
[23], and Braverman and Yampolsky [7] have investigated computability and
complexity properties of Mandelbrot and Julia sets. Gupta, Krauthgamer,
and Lee [21] have used fractal geometry to prove a lower bounds on the distor-
tions of certain embeddings of metric spaces. Most of the fractals involved in
these papers are more exotic than the self-similar fractals that we investigate
here. Cai and Hartmanis [8] and Fernau and Staiger [17] have investigated
Hausdorff dimension in self-similar fractals and their coding spaces. This
work is more closely related to the present paper, but the motivations and
results are different. Our focus here is on a pointwise analysis of dimensions.

Some of the most difficult open problems in geometric measure theory
involve establishing lower bounds on the fractal dimensions of various sets.
Kolmogorov complexity has proven to be a powerful tool for lower-bound
arguments, leading to the solution of many long-standing open problems in
discrete mathematics [31]. There is thus reason to hope that our pointwise
approach to fractal dimension, coupled with the introduction of Kolmogorov
complexity techniques, will lead to progress in this classical area. In any
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case, our results extend computable analysis [39, 28, 52] in a new, geometric
direction.

The rest of this paper is organized as follows. Section 2 summarizes basic
terminology and notation. Section 3 develops the basic theory of constructive
dimensions with respect to probability measures. Section 4 establishes the
Kolmogorov complexity characterizations of these dimensions. Section 5 is a
brief exposition of self-similar fractals for readers who are not familiar with
iterated function systems. Section 6 proves our main theorem and derives
the Moran-Falconer theorem from it.

2 Preliminaries

Given a finite alphabet Σ, we write Σ∗ for the set of all (finite) strings over
Σ and Σ∞ for the set of all (infinite) sequences over Σ. If ψ ∈ Σ∗ ∪ Σ∞ and
0 ≤ i ≤ j < |ψ|, where |ψ| is the length of ψ, then ψ[i] is the ith symbol in ψ
(where ψ[0] is the leftmost symbol in ψ), and ψ[i..j] is the string consisting
of the ith through the jth symbols in ψ. If w ∈ Σ∗ and ψ ∈ Σ∗ ∪ Σ∞, then
w is a prefix of ψ, and we write w v ψ, if there exists i ∈ N such that
w = ψ[0..i− 1]. If A ⊆ Σ∗ then A=n = {x |x ∈ A ∧ |x| = n}.

For functions on Euclidean space, we use the computability notion for-
mulated by Grzegorczyk [19] and Lacombe [29] in the 1950’s and exposited
in the monographs by Pour-El and Richards [39], Ko [28], and Weihrauch
[52] and in the recent survey paper by Braverman and Cook [6]. A function
f : Rn → Rn is computable if there is an oracle Turing machine M with
the following property. For all x ∈ Rn and r ∈ N, if M is given a function
oracle ϕx : N → Qn such that, for all k ∈ N, |ϕx(k) − x| ≤ 2−k, then M ,
with oracle ϕx and input r, outputs a rational point Mϕx(r) ∈ Qn such that
|Mϕx(r)− f(x)| ≤ 2−r.

A point x ∈ Rn is computable if there is a computable function ψx : N→
Qn such that, for all r ∈ N, |ψx(r)− x| ≤ 2−r.

For subsets of Euclidean space, we use the computability notion intro-
duced by Brattka and Weihrauch [4] (see also [52, 6]). A set X ⊆ Rn is
computable if there is a computable function fX : Qn × N → {0, 1} that
satisfies the following two conditions for all q ∈ Qn and r ∈ N.

(i) If there exists x ∈ X such that |x− q| ≤ 2−r, then fX(q, r) = 1.

(ii) If there is no x ∈ X such that |x− q| ≤ 21−r, then fX(q, r) = 0.
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The following two observations are well known and easy to verify.

Observation 2.1 A nonempty set X ⊆ Rn is computable if and only if the
associated distance function

ρX : Rn → [0,∞)

ρX(y) = infx∈X |x− y|

is computable.

Observation 2.2 If X ⊆ Rn is both computable and closed, then X is a
computably closed, i.e., Π0

1, set.

All logarithms in this paper are base-2.

3 Dimensions relative to probability measures

Here we develop the basic theory of constructive fractal dimension on a se-
quence space Σ∞ with respect to a suitable probability measure on Σ∞. We
first review the classical Hausdorff and packing dimensions.

Let ρ be a metric on a set X . We use the following standard terminology.
The diameter of a set X ⊆ X is

diam(X) = sup {ρ(x, y) | x, y ∈ X }

(which may be ∞). For each x ∈ X and r ∈ R, the closed ball of radius r
about x is the set

B(x, r) = {y ∈ X | ρ(y, x) ≤ r} ,

and the open ball of radius r about x is the set

Bo(x, r) = {y ∈ X | ρ(y, x) < r} .

A ball is any set of the form B(x, r) or Bo(x, r). A ball B is centered in a
set X ⊆ X if B = B(x, r) or B = Bo(x, r) for some x ∈ X and r ≥ 0.

For each δ > 0, we let Cδ be the set of all countable collections B of balls
such that diam(B) ≤ δ for all B ∈ B, and we let Dδ be the set of all B ∈ Cδ
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such that the balls in B are pairwise disjoint. For each X ⊆ X and δ > 0,
we define the sets

Hδ(X) =

{
B ∈ Cδ

∣∣∣∣∣ X ⊆ ⋃
B∈B

B

}
,

Pδ(X) = {B ∈ Dδ | (∀B ∈ B)B is centered in X } .

If B ∈ Hδ(X), then we call B a δ-cover of X. If B ∈ Pδ(X), then we call B
a δ-packing of X. For X ⊆ X , δ > 0 and s ≥ 0, we define the quantities

Hs
δ (X) = inf

B∈Hδ(X)

∑
B∈B

diam(B)s,

P s
δ (X) = sup

B∈Pδ(X)

∑
B∈B

diam(B)s.

Since Hs
δ (X) and P s

δ (X) are monotone as δ → 0, the limits

Hs(X) = lim
δ→0

Hs
δ (X),

P s
0 (X) = lim

δ→0
P s
δ (X)

exist, though they may be infinite. Let

P s(X) = inf

{
∞∑
i=0

P s
0 (Xi)

∣∣∣∣∣ X ⊆
∞⋃
i=0

Xi

}
. (3.1)

It is routine to verify that the set functionsHs and P s are outer measures [15].
The quantities Hs(X) and P s(X) – which may be infinite – are called the
s-dimensional Hausdorff (outer) ball measure and the s-dimensional packing
(outer) ball measure of X, respectively. The optimization (3.1) over all
countable partitions of X is needed because the set function P s

0 is not an
outer measure.
Definition. Let ρ be a metric on a set X , and let X ⊆ X .

1. (Hausdorff [22]). The Hausdorff dimension of X with respect to ρ is

dim
(ρ)
H (X) = inf {s ∈ [0,∞) | Hs(X) = 0} .

2. (Tricot [48], Sullivan [47]). The packing dimension of X with respect
to ρ is

Dim
(ρ)
P (X) = inf {s ∈ [0,∞) | P s(X) = 0} .
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When X is a Euclidean space Rn and ρ is the usual Euclidean metric on
Rn, dim

(ρ)
H and Dim

(ρ)
P are the ordinary Hausdorff and packing dimensions,

also denoted by dimH and DimP, respectively.
We now focus our attention on sequence spaces. Let Σ be a finite alphabet

with |Σ| ≥ 2. A (Borel) probability measure on Σ∞ is a function ν : Σ∗ →
[0, 1] such that ν(λ) = 1 and ν(w) =

∑
a∈Σ ν(wa) for all w ∈ Σ∗. Intuitively,

ν(w) is the probability that w v S when a sequence S ∈ Σ∞ is chosen
according to the probability measure ν. A probability measure ν on Σ∞ is
strongly positive if there exists δ > 0 such that, for all w ∈ Σ∗ and a ∈ Σ,
ν(wa) > δν(w).

The following type of probability measure is used in our main theorem.

Example 3.1 Let π be a probability measure on the alphabet Σ, i.e., a func-
tion π : Σ → [0, 1] such that

∑
a∈Σ π(a) = 1. Then π induces the product

probability measure π on Σ∞ defined by

π(w) =

|w|−1∏
i=0

π(w[i])

for all w ∈ Σ∗. If π is positive on Σ, i.e., π(a) > 0 for all a ∈ Σ, then the
probability measure π on Σ∞ is strongly positive.

Example 3.2 We reserve the symbol µ for the uniform probability measure
on Σ∞, which is the function µ : Σ∗ → [0,∞) defined by

µ(w) = |Σ|−|w|

for all w ∈ Σ∗. Note that this is the special case of Example 3.1 in which
π(a) = 1/|Σ| for each a ∈ Σ.

Definition. The metric induced by a strongly positive probability measure
ν on Σ∞ is the function ρν : Σ∞ × Σ∞ → [0, 1] defined by

ρν(S, T ) = inf {ν(w) | w v S and w v T }

for all S, T ∈ Σ∞.
The following fact is easily verified.

Observation 3.3 For every strongly positive probability measure ν on Σ∞,
the function ρν is a metric on Σ∞.
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Hausdorff and packing dimensions with respect to probability measures
on sequence spaces are defined as follows.
Definition. Let Σ be a finite alphabet with |Σ| ≥ 2, let ν be a strongly
positive probability measure on Σ∞, and let X ⊆ Σ∞.

1. The Hausdorff dimension ofX with respect to ν (also called the Billings-
ley dimension of X with respect to ν [3, 9]) is

dimν
H(X) = dim

(ρν)
H (X).

2. The packing dimension of X with respect to ν is

Dimν
P(X) = Dim

(ρν)
P (X).

Note: We have assumed strong positivity here for clarity of presentation,
but this assumption can be weakened in various ways for various results.

When ν is the probability measure µ, it is generally omitted from the
terminology. Thus, the Hausdorff dimension of X is dimH(X) = dimµ

H(X),
and the packing dimension of X is DimP(X) = Dimµ

P(X).
It was apparently Wegmann [51] who first noticed that the metric ρν could

be used to make Billingsley dimension a special case of Hausdorff dimension.
Fernau and Staiger [17] have also investigated this notion.

We now develop gale characterizations of dimν
H and Dimν

P.
Definition. Let Σ be a finite alphabet with |Σ| ≥ 2, let ν be a probability
measure on Σ∞, and let s ∈ [0,∞).

1. A ν-s-supergale is a function d : Σ∗ → [0,∞) that satisfies the condition

d(w)ν(w)s ≥
∑
a∈Σ

d(wa)ν(wa)s (3.2)

for all w ∈ Σ∗.

2. A ν-s-gale is a ν-s-supergale that satisfies (3.2) with equality for all
w ∈ Σ∗.

3. A ν-supermartingale is a ν-1-supergale.

4. A ν-martingale is a ν-1-gale.

5. An s-supergale is a µ-s-supergale.
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6. An s-gale is a µ-s-gale.

7. A supermartingale is a 1-supergale.

8. A martingale is a 1-gale.

The following observation shows how gales and supergales are affected by
variation of the parameter s.

Observation 3.4 [35]. Let ν be a probability measure on Σ∞, let s, s′ ∈
[0,∞) and let d, d′ : Σ∗ → [0,∞). Assume that

d(w)ν(w)s = d′(w)ν(w)s
′

holds for all w ∈ Σ∗.

1. d is a ν-s-supergale if and only if d′ is a ν-s′-supergale.

2. d is a ν-s-gale if and only if d′ is a ν-s′-gale.

For example, if the probability measure ν is positive, then a function
d : Σ∗ → [0,∞) is a ν-s-gale if and only if the function d′ : Σ∗ → [0,∞)
defined by d′(w) = ν(w)s−1d(w) is a ν-martingale.

Martingales were introduced by Lévy [30] and Ville [50]. They have been
used extensively by Schnorr [41, 42, 43] and others in investigations of ran-
domness and by Lutz [32, 33] and others in the development of resource-
bounded measure. Gales are a convenient generalization of martingales in-
troduced by Lutz [34, 35] in the development of effective fractal dimensions.

The following generalization of Kraft’s inequality [10] is often useful.

Lemma 3.5 [35] Let d be a ν-s-supergale, where ν is a probability measure
on Σ∞ and s ∈ [0,∞). Then, for all w ∈ Σ∗ and all prefix sets B ⊆ Σ∗,∑

u∈B

d(wu)ν(wu)s ≤ d(w)ν(w)s.

Intuitively, a ν-s-gale d is a strategy for betting on the successive symbols
in a sequence S ∈ Σ∞. We regard the value d(w) as the amount of money
that a gambler using the strategy d will have after betting on the symbols in
w, if w is a prefix of S. If s = 1, then the ν-s-gale identity,

d(w)ν(w)s =
∑
a∈Σ

d(wa)ν(wa)s, (3.3)
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ensures that the payoffs are fair in the sense that the conditional ν-expected
value of the gambler’s capital after the symbol following w, given that w has
occurred, is precisely d(w), the gambler’s capital after w. If s < 1, then (3.3)
says that the payoffs are less than fair. If s > 1, then (3.3) says that the
payoffs are more than fair. Clearly, the smaller s is, the more hostile the
betting environment is.

There are two important notions of success for a supergale.
Definition. Let d be a ν-s-supergale, where ν is a probability measure on
Σ∞ and s ∈ [0,∞), and let S ∈ Σ∞.

1. We say that d succeeds on S, and we write S ∈ S∞[d], if
lim supt→∞ d(S[0..t− 1]) =∞.

2. We say that d succeeds strongly on S, and we write S ∈ S∞str[d], if
lim inft→∞ d(S[0..t− 1]) =∞.

Notation.
Let ν be a probability measure on Σ∞, and let X ⊆ Σ∞.

1. Gν(X) is the set of all s ∈ [0,∞) such that there is a ν-s-gale d for
which X ⊆ S∞[d].

2. Gν,str(X) is the set of all s ∈ [0,∞) such that there is a ν-s-gale d for
which X ⊆ S∞str[d].

3. Ĝν(X) is the set of all s ∈ [0,∞) such that there is a ν-s-supergale d
for which X ⊆ S∞[d].

4. Ĝν,str(X) is the set of all s ∈ [0,∞) such that there is a ν-s-supergale
d for which X ⊆ S∞str[d].

The following theorem gives useful characterizations of the classical Haus-
dorff and packing dimensions with respect to probability measures on se-
quence spaces.

Theorem 3.6 (gale characterizations of dimν
H(X) and Dimν

P(X)). If ν is a
strongly positive probability measure on Σ∞, then, for all X ⊆ Σ∞,

dimν
H(X) = inf Gν(X) = inf Ĝν(X) (3.4)

and
Dimν

P(X) = inf Gν,str(X) = inf Ĝν,str(X). (3.5)
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Proof. In this proof we will use the following notation, for each w ∈ Σ∗,
Cw = {S ∈ Σ∞ | w v S }.

Notice that for each S ∈ Σ∞, r > 0, the balls B(S, r) = Cv, B
o(S, r) =

Cw for some v, w ∈ Σ∗. Therefore two balls Cw, Cw′ are either disjoint or
one contained in the other.

In order to prove (3.4) it suffices to show that for all s ∈ [0,∞),

Hs(X) = 0 =⇒ s ∈ Gν(X) =⇒ s ∈ Ĝν(X) =⇒ Hs(X) = 0

First, assume that Hs(X) = 0. Then Hs
1(X) = 0, which implies that for

each r ∈ N, there is a disjoint cover B ∈ C1 such that
∑

B∈B diam(B)s < 2−r.
Let Ar = {w ∈ Σ∗ | Cw ∈ B}.

We define a function d : Σ∗ → [0,∞) as follows. Let w ∈ Σ∗. If there
exists v v w such that v ∈ Ar then

dr(w) =

(
ν(w)

ν(v)

)1−s

.

Otherwise,

dr(w) =
∑
u,

wu∈Ar

(
ν(wu)

ν(w)

)s
.

It is routine to verify that the following conditions hold for all r ∈ N.

(i) dr is a ν-s-gale.

(ii) dr(λ) < 2−r.

(iii) For all w ∈ Ar, dr(w) = 1.

Let d =
∑∞

r=0 2rd2r. Notice that d is a ν-s-gale. To see that X ⊆ S∞[d], let
T ∈ X, and let r ∈ N be arbitrary. Since B covers X, there exists w ∈ A2r

such that w v T . Then by (iii) above, d(w) ≥ 2rd2r(w) = 2r. Since r ∈ N is
arbitrary, this shows that T ∈ S∞[d], confirming that X ⊆ S∞[d].

We have now shown that d is a ν-s-gale such that X ⊆ S∞[d], whence
s ∈ Gν(X).

Conversely, assume that s ∈ Ĝν(X). To see that Hs(X) = 0, let δ > 0,
r ∈ N. It suffices to show that Hs(X) ≤ 2−r. If X = ∅ this is trivial, so
assume that X 6= ∅.
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Since s ∈ Ĝν(X), there is a ν-s-supergale d such that X ⊆ S∞[d]. Note
that d(λ) > 0 because X 6= ∅. Let

A = {w ∈ Σ∗ | ν(w) < δ, d(w) ≥ 2rd(λ) and (∀v)[v < w =⇒ v 6∈ A]} .

It is clear that A is a prefix set. It is also clear that B = {Cw | w ∈ A} is a
δ-cover of S∞[d], and since X ⊆ S∞[d], B is also a δ-cover of X. By Lemma
3.5 and the definition of A, we have

d(λ) ≥
∑
w∈A

ν(w)sd(w) ≥ 2rd(λ)
∑
w∈A

ν(w)s.

Since B ∈ Cδ(X) and d(λ) > 0, it follows that

Hs
δ (X) ≤

∑
w∈A

ν(w)s ≤ 2−r.

This completes the proof of (3.4).
The proof of (3.5) is based on the following three claims.

Claim 1. For each family Xi ⊆ Σ∞, i ∈ N

inf Gν,str(∪iXi) = sup
i

inf Gν,str(Xi).

Claim 2. For each X ⊆ Σ∞, if P s
0 (X) <∞ then inf Gν,str(X) ≤ s.

Claim 3. For each X ⊆ Σ∞, if s > inf Ĝν,str(X) then P s(X) = 0.
Proof of Claim 1. The ≥ inequality follows from the definition of Gν,str().
To prove that inf Gν,str(∪iXi) ≤ supi inf Gν,str(Xi), let s > supi inf Gν,str(Xi).
Assume that Xi 6= ∅ for every i, since otherwise the proof is similar taking
only nonempty Xi’s. Then for each i ∈ N there is a ν-s-gale di such that
Xi ⊆ S∞str[di]. We define a ν-s-gale d by

d(w) =
∑
i

2−i

di(λ)
di(w)

for all w ∈ Σ∗. Then for each i, for any S ∈ Xi, we have

d(S[0..n− 1]) ≥ 2−i

di(λ)
di(S[0..n− 1])

for all n, so S ∈ S∞str[d]. Therefore ∪iXi ⊆ S∞str[d] and the claim follows. 2
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Proof of Claim 2. Assume that P s
0 (X) <∞. Let ε > 0. Let

A = {w | w ∈ Σ∗ and Cw ∩X 6= ∅} .

Notice that there is a constant c such that for every n,
∑

w∈A=n ν(w)s < c
and that for each T ∈ X, for every n, T [0..n − 1] ∈ A. For each n ∈ N we
define dn : Σ∗ → [0,∞) similarly to the first part of this proof, that is, let
w ∈ Σ∗. If there exists v v w such that v ∈ A=n then

dn(w) =

(
ν(w)

ν(v)

)1−s

.

Otherwise,

dn(w) =
∑
u,

wu∈A=n

(
ν(wu)

ν(w)

)s
.

dn is a ν-s-gale, dn(λ) =
∑

u∈A=n ν(u)s and for all w ∈ A=n, dn(w) = 1.
Let d(w) =

∑∞
n=0 ν(w)−εdn(w). Notice that d is a ν-(s + ε)-gale. To see

that X ⊆ S∞str[d], let T ∈ X and let n be arbitrary. Since T [0..n− 1] ∈ A,

d(T [0..n− 1]) ≥ ν(T [0..n− 1])−εdn(T [0..n− 1]) ≥ ν(T [0..n− 1])−ε.

Since ν(T [0..n− 1])
n→∞−→ 0 this shows that T ∈ S∞str[d]. Therefore X ⊆ S∞str[d]

and inf Gν,str(X) ≤ s+ ε for arbitrary ε, so the claim follows. 2

Proof of Claim 3. Let s > t > inf Ĝν,str(X). To see that P s(X) = 0, let d
be a ν-t-supergale such that X ⊆ S∞str[d]. Let i ∈ N and

Xi = {T | ∀n ≥ i, d(T [0..n− 1]) > d(λ)} .

Then X ⊆ ∪iXi. For each i ∈ N we prove that P s
0 (Xi) = 0.

Let δi = min|w|≤i ν(w). Let δ < δi and B be a δ-packing of Xi, then
B ⊆ {w | d(w) > d(λ)} and

∑
w∈B ν(w)t ≤ 1. Therefore P t

0(Xi) ≤ 1 and

P s
0 (Xi) = 0 (since

∑
w∈B ν(w)s ≤ δs−t

δ→0−→ 0). Therefore P s(X) = 0 and the
claim follows. 2

We next prove (3.5). inf Gν,str(X) ≤ Dimν
P(X) follows from Claims 1 and

2, and Dimν
P(X) ≤ Ĝν,str(X) from Claim 3. 2

We note that the case ν = µ of (3.4) was proven by Lutz [34], and the
case ν = µ of (3.5) was proven by Athreya, Hitchcock, Lutz, and Mayordomo
[1].
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Guided by Theorem 3.6, we now develop the constructive fractal ν-
dimensions.
Definition. A ν-s-supergale d is constructive if it is lower semicomputable,
i.e., if there is an exactly computable function d̂ : Σ∗ × N → Q with the
following two properties.

(i) For all w ∈ Σ∗ and t ∈ N, d̂(w, t) ≤ d̂(w, t+ 1) < d(w).

(ii) For all w ∈ Σ∗, limt→∞ d̂(w, t) = d(w).

Notation. For each probability measure ν on Σ∞ and each set X ⊆ Σ∞, we
define the sets Gνconstr(X), Gν,strconstr(X), Ĝνconstr(X), and Ĝν,strconstr(X) exactly like

the sets Gν(X), Gν,str(X), Ĝν(X), and Ĝν,str(X), respectively, except that the
gales and supergales d are now required to be constructive.
Definition. Let ν be a probability measure on Σ∞, and let X ⊆ Σ∞.

1. The constructive ν-dimension of X is cdimν(X) = inf Ĝνconstr(X).

2. The constructive strong ν-dimension ofX is cDimν(X) = inf Ĝν,strconstr(X).

3. The constructive dimension of X is cdim(X) = cdimµ(X).

4. The constructive strong dimension of X is cDim(X) = cDimµ(X).

The fact that the “unhatted” G-classes can be used in place of the “hat-
ted” Ĝ-classes is not as obvious in the constructive case as in the classical
case. Nevertheless, Fenner [16] proved that this is the case for constructive
ν-dimension. (Hitchcock [24] proved this independently for the case ν = µ.)
The case of strong ν-dimension also holds with a more careful argument [1].

Theorem 3.7 (Fenner [16]). If ν is a strongly positive, computable proba-
bility measure on Σ∞, then, for all X ⊆ Σ∞,

cdimν(X) = inf Gνconstr(X)

and
cDimν(X) = inf Gν,strconstr(X).

A correspondence principle for an effective dimension is a theorem stat-
ing that the effective dimension coincides with its classical counterpart on
sufficiently “simple” sets. The following such principle, proven by Hitchcock
[25], extended a correspondence principle for computable dimension that was
implicit in results of Staiger [44].
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Theorem 3.8 (correspondence principle for constructive dimension [25]).
If X ⊆ Σ∞ is any union (not necessarily effective) of computably closed, i.e.,
Π0

1, sets, then cdim(X) = dimH(X).

We now define the constructive dimensions of individual sequences.
Definition. Let ν be a probability measure on Σ∞, and let S ∈ Σ∞. Then
the ν-dimension of S is

dimν(S) = cdimν({S}),

and the strong ν-dimension of S is

Dimν(S) = cDimν({S}).

4 Kolmogorov Complexity Characterizations

In this section we prove characterizations of constructive ν-dimension and
constructive strong ν-dimension in terms of Kolmogorov complexity. These
characterizations are used in the proof of our main theorem in section 6.

Let Σ be a finite alphabet, with |Σ| ≥ 2. The Kolmogorov complexity of
a string w ∈ Σ∗ is the natural number

K(w) = min {|π| | π ∈ {0, 1}∗ and U(π) = w} ,

where U is a fixed optimal universal prefix Turing machine. This is a stan-
dard notion of (prefix) Kolmogorov complexity. The reader is referred to
the standard text by Li and Vitanyi [31] for background on prefix Turing
machines and Kolmogorov complexity.

If ν is a probability measure on Σ∞, then the Shannon self information
of a string w ∈ Σ∗ with respect to ν is

Iν(w) = log
1

ν(w)
.

Note that 0 ≤ Iν(w) ≤ ∞. Equality holds on the left here if and only if
ν(w) = 1, and equality holds on the right if and only if ν(w) = 0. Since
our results here concern strongly positive probability measures, we will have
0 < Iν(w) <∞ for all w ∈ Σ+.
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The following result is the main theorem of this section. It gives charac-
terizations of the ν-dimensions and the strong ν-dimensions of sequences in
terms of Kolmogorov complexity.

Theorem 4.1 If ν is a strongly positive, computable probability measure on
Σ∞, then, for all S ∈ Σ∞,

dimν(S) = lim inf
m→∞

K(S[0..m− 1])

Iν(S[0..m− 1])
(4.1)

and

Dimν(S) = lim sup
m→∞

K(S[0..m− 1])

Iν(S[0..m− 1])
. (4.2)

Proof. Let S ∈ Σ∞. Let s > s′ > lim infm
K(S[0..m−1])
Iν(S[0..m−1])

. For infinitely many

m, K(S[0..m− 1]) < s′ Iν(S[0..m− 1]), so ν(S[0..m− 1])s
′
< 2−K(S[0..m−1]).

Let m ∈ N. We define the computably enumerable (c.e.) set

A = {w | K(w) < s′ Iν(w)} ,

and the ν-s-constructive supergale dm as follows. If there exists v v w such
that v ∈ A=m then

dm(w) =

(
ν(w)

ν(v)

)1−s

.

Otherwise,

dm(w) =
∑
u,

wu∈A=m

(
ν(wu)

ν(w)

)s
.

First notice that dm is well-defined since dm(λ) <∞ and dm is a supergale,

dm(λ) =
∑

u∈A=m

ν(u)s ≤
∑

u∈A=m

2−K(u)(1− δ)m(s−s′) ≤ (1− δ)m(s−s′)

for δ ∈ (0, 1) a constant testifying that ν is strongly positive.
We define the ν-s-constructive supergale

d(w) =
∑
m

(1− δ)−m(s−s′)d2m(w) +
∑
m

(1− δ)−m(s−s′)d2m+1(w).

Notice that the fact that A is c.e. is necessary for the constructivity of d.
Since for w ∈ A, d|w|(w) = 1 we have that d(w) ≥ (1 − δ)−|w|(s−s

′)/2 for
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w ∈ A. Since for infinitely many m, S[0..m− 1] ∈ A we have that S ∈ S∞[d]
and dimν(S) ≤ s. This finishes the proof of the first inequality of (4.1).

For the other direction, let s > dimν(S). Let d be a ν-s-constructive gale
succeeding on S. Let c ≥ d(λ) be a rational number.

Let B = {w | d(w) > c}, notice that B is c.e. For every m,∑
w∈B=m

ν(w)s ≤ 1.

Let θm : B=m → {0, 1}∗ be the Shannon-Fano-Elias code given by the proba-
bility submeasure p defined as p(w) = ν(w)s for w ∈ B=m (this code assigns
shorter code words θm(w) to words with a larger probability p(w), see for
example [10]). Specifically, for each w ∈ B=m, θm(w) is defined as the most

significant 1 +
⌈
log 1

p(w)

⌉
bits of the real number

∑
|v|=m,
v<B w

p(v) +
1

2
p(w)

where <B corresponds to the words in B ordered according to their appear-
ance in the computable enumeration of B.

Then

|θm(w)| = 1 +

⌈
log

1

p(w)

⌉
= 1 + ds Iν(w)e

for w ∈ B=m.
Since B is c.e. codification and decodification can be computed given

the length, that is, every w ∈ B can be computed from |w| and θ|w|(w).
Therefore if w ∈ B, K(w) ≤ 2 + s Iν(w) + 2 log(|w|).

Notice that since ν is strongly positive, Iν(w) = Ω(|w|) and since there
exist infinitely many m for which S[0..m− 1] ∈ B,

lim inf
m→∞

K(S[0..m− 1])

Iν(S[0..m− 1])
≤ s.

The proof of (4.2) is analogous. 2

If ν is a strongly positive probability measure on Σ∞, then there is a real
constant α > 0 such that, for all w ∈ Σ∗, Iν(w) ≥ α|w|. Since other notions of
Kolmogorov complexity, such as the plain complexity C(w) and the monotone
complexity Km(w) [31], differ from K(w) by at most O(log |w|), it follows
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that Theorem 4.1 also holds with K(S[0..m− 1]) replaced by C(S[0..m− 1]),
Km(S[0..m− 1]), etc.

The following known characterizations of dimension and strong dimension
are simply the special case of Theorem 4.1 in which Σ = {0, 1} and ν = µ.

Corollary 4.2 [37, 1] For all S ∈ {0, 1}∞,

dim(S) = lim inf
m→∞

K(S[0..m− 1])

m

and

Dim(S) = lim sup
m→∞

K(S[0..m− 1])

m
.

Later, alternative proofs of Corollary 4.2 appear in [35, 46].
We define the dimension and strong dimension of a point x in Euclidean

space as in (1.7) and (1.8). It is convenient to characterize these dimensions
in terms of Kolmogorov complexity of rational approximations in Euclidean
space. Specifically, for each x ∈ Rn and r ∈ N, we define the Kolmogorov
complexity of x at precision r to be the natural number

Kr(x) = min
{
K(q)

∣∣ q ∈ Qn and |q − x| ≤ 2−r
}
.

That is, Kr(x) is the minimum length of any program π ∈ {0, 1}∗ for which
U(π) ∈ Qn ∩ B(x, 2−r). (Related notions of approximate Kolmogorov com-
plexity have recently been considered by Vitanyi and Vereshchagin [49] and
Fortnow, Lee and Vereshchagin [18].) We also mention the quantity

Kr(r, x) = min
{
K(r, q)

∣∣ q ∈ Qn and |q − x| ≤ 2−r
}
,

in which the program π must specify the precision parameter r as well as
a rational approximation q of x to within 2−r. The following relationship
between these two quantities is easily verified by standard techniques.

Observation 4.3 There exist constants a, b ∈ N such that, for all x ∈ Rn

and r ∈ N,
Kr(x)− a ≤ Kr(r, x) ≤ Kr(x) + K(r) + b.

We now show that the quantity Kr(r, x) is within a constant of the Kol-
mogorov complexity of the first nr bits of an interleaved binary expansion
of the fractional part of the coordinates of x, which was defined in section 1,
together with the integer part of x.
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Lemma 4.4 There is a constant c ∈ N such that, for all x = (x1, . . . , xn) ∈
Rn, all interleaved binary expansions S of the fractional parts of x1, . . . , xn,
and all r ∈ N,

|Kr(r, x)−K(bxc, S[0..nr − 1])| ≤ c. (4.3)

where bxc is the interleaved binary expansion of (bx1c, . . . , bxnc)

Proof. We first consider the case x ∈ [0, 1]n. For convenience, let l = d logn
2
e

(notice that both n and l are constants). Let M be a prefix Turing machine
such that, if π ∈ {0, 1}∗ is a program such that U(π) = w ∈ {0, 1}∗ and |w|
is divisible by n, and if v ∈ {0, 1}nl, then M(πv) = (|w|/n, q), where q ∈ Qn

is the dyadic rational point whose interleaved binary expansion is wv. Let
c1 = nl + cM , where cM is an optimality constant for M . Let x ∈ Rn, let S
be an interleaved binary expansion of x, and let r ∈ N. Let π ∈ {0, 1}∗ be
a witness to the value of Kr(S[0..nr − 1]), and let v = S[nr..n(r + l) − 1].
Then M(πv) = (r, q), where q is the dyadic rational point whose interleaved
binary expansion is S[0..n(l + r)− 1]. Since

|q − x| =
√
n(2−(r+l))2 = 2−(r+l)

√
n ≤ 2−r,

it follows that

Kr(r, x) ≤ |πv|+ cM = K(S[0..nr − 1]) + c1, (4.4)

which is one of the inequalities we need to get (4.3).
We now turn to the reverse inequality. For each r ∈ N and q ∈ Qn, let

Ar,q be the set of all r-dyadic points within 2l−r + 2r of q. That is, Ar,q is the
set of all points q′ = (q′1, . . . , q

′
n) ∈ Qn such that |q− q′| ≤ 2l−r + 2r and each

q′i is of the form 2−ra′i for some integer a′i.
Let q′, q′′ ∈ Ar,q. For each 1 ≤ i ≤ n, let q′i = 2−ra′i and q′′i = 2−ra′′i be

the ith coordinates of q′ and q′′, respectively. Then, for each 1 ≤ i ≤ n, we
have

|a′i − a′′i | = 2r|q′i − q′′i |
≤ 2r(|q′ − q|+ |q′′ − q|)
≤ 2r+1(2l−r + 2−r)

= 2l+1 + 2.

This shows that there are at most 2l+1 + 3 possible values of a′i. It follows
that

|Ar,q| ≤ (2l+1 + 3)n. (4.5)
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Let M ′ be a prefix Turing machine such that, if π ∈ {0, 1}∗ is a program
such that U(π) = (r, q) ∈ N×Qn, 0 ≤ m < |Ar,q|, and sm is the mth string in
the standard enumeration s0, s1, s2, . . . of {0, 1}∗, then M ′(π0|sm|1sm) is the
nr-bit interleaved binary expansion of the fractional points of the coordinates
of the mth element of a canonical enumeration of Ar,q. Let c2 = n(2l′ + 1) +
cM ′ , where l′ = dlog(2l+1 + 3)e and cM ′ is an optimality constant for M ′.

Let x ∈ Rn, let S be an interleaved binary expansion of x, and let r ∈ N.
Let q′ be the r-dyadic point whose interleaved binary expansion is S[0..nr−1],
and let π ∈ {0, 1}∗ be a witness to the value of Kr(r, x). Then U(π) = (r, q)
for some q ∈ Qn ∩B(x, 2−r). Since

|q′ − q| ≤ |q′ − x|+ |q − x|
≤ 2−r

√
n+ 2−r

≤ 2l−r + 2−r,

we have q′ ∈ Aq,r. It follows that there exists 0 ≤ m < |Ar,q| such that
M ′(π0|sm|1sm) = S[0..nr − 1]. This implies that

K(S[0..nr − 1]) ≤ |π0|sm|1sm|+ cM ′

= Kr(r, x) + 2|sm|+ cM ′ + 1

≤ Kr(r, x) + 2|s|Ar,q |−1|+ cM ′ + 1 (4.6)

= Kr(r, x) + 2blog |Ar,q|c+ cM ′ + 1

≤ Kr(r, x) + 2bn log(2l+1 + 3)c+ cM ′ + 1

≤ Kr(r, x) + c2.

If we let c = max{c1, c2}, then (4.4) and (4.6) imply (4.3).
For the general case, notice that Kr(r, bxc) = K(bxc) +O(1). 2

We now have the following characterizations of the dimensions and strong
dimensions of points in Euclidean space.

Theorem 4.5 For all x ∈ Rn,

dim(x) = lim inf
r→∞

Kr(x)

r
, (4.7)

and

Dim(x) = lim sup
r→∞

Kr(x)

r
. (4.8)
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Proof. Let x ∈ Rn, and let S be an interleaved binary expansion of the
fractional parts of the coordinates of x. By (1.7) and Corollary 4.2, we have

dim(x) = n dim(S)

= n lim inf
m→∞

K(S[0..m− 1])

m
.

Since all values of K(S[0..m − 1]) with nr ≤ m < n(r + 1) are within a
constant (that depends on the constant n) of one another, it follows that

dim(x) = n lim inf
r→∞

K(S[0..nr − 1])

nr

= lim inf
r→∞

K(S[0..nr − 1])

r
.

Since K(r) = O(log r) [31], it follows by Observation 4.3 and Lemma 4.4 that
(4.7) holds. The proof that (4.8) holds is analogous. 2

5 Self-Similar Fractals

This expository section reviews a fragment of the theory of self-similar frac-
tals that is adequate for understanding our main theorem and its proof. Our
treatment is self-contained, but of course far from complete. The interested
reader is referred to any of the standard texts [2, 12, 13, 15] for more extensive
discussion.
Definition. A contracting similarity on a set D ⊆ Rn is a function S :
D → D for which there exists a real number c ∈ (0, 1), called a contraction
ratio of S, satisfying |S(x)− S(y)| = c|x− y| for all x, y ∈ D.
Definition. An iterated function system (IFS) is a finite sequence S =
(S0, . . . , Sk−1) of two or more contracting similarities on a nonempty, closed
set D ⊆ Rn. We call D the domain of S, writing D = dom(S).

We note that iterated function systems are often defined more generally.
For example, IFSs consisting of contractions, which merely satisfy inequal-
ities of the form |S(x) − S(y)| ≤ c|x − y| for some c ∈ (0, 1), are often
considered. Since our results here are confined to self-similar fractals, we
have used the more restrictive definition.

We use the standard notation K(D) for the set of all nonempty compact
(i.e., closed and bounded) subsets of a nonempty closed set D ⊆ Rn. For
each IFS S, we write K(S) = K(dom(S)).
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With each IFS S = (S0, . . . , Sk−1), we define the transformation S :
K(S)→ K(S) by

S(A) =
k−1⋃
i=0

Si(A)

for all A ∈ K(S), where Si(A) is the image of A under the contracting
similarity Si.

Observation 5.1 For each IFS S, there exists A ∈ K(S) such that S(A) ⊆
A.

Proof. Assume the hypothesis, with S = (S0, . . . , Sk−1) and dom(S) = D,
and let c0, . . . , ck−1 be contraction ratios of S0, . . . , Sk−1, respectively. Let
c = max{c0, . . . , ck−1}, noting that c ∈ (0, 1), and fix z ∈ D. Let

r =
1

1− c
max
0≤i<k

|Si(z)− z|,

and let A = D ∩ Br(z). Then A is a closed subset of the compact set Br(z),
and z ∈ A, so A ∈ K(S). For all x ∈ A and 0 ≤ i < k, we have

|Si(x)− z| ≤ |Si(x)− Si(z)|+ |Si(z)− z|
≤ c|x− z|+ |Si(z)− z|
≤ cr + (1− c)r
= r,

so each Si(A) ⊆ A, so S(A) ⊆ A.
2

For each IFS S = (S0, . . . , Sk−1) and each set A ∈ K(S) satisfying S(A) ⊆
A, we define the function SA : Σ∗k → K(S) by the recursion

SA(λ) = A;

SA(iw) = Si(SA(w))

for all w ∈ Σ∗k and i ∈ Σk.
If c = max{c0, . . . , ck−1}, where c0, . . . , ck−1 are contraction ratios of

S0, . . . , Sk−1, respectively, then routine inductions establish that, for all w ∈
Σ∗k and i ∈ Σk,

SA(iw) ⊆ SA(w) (5.1)
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and
diam(SA(w)) ≤ c|w|diam(A). (5.2)

Since c ∈ (0, 1), it follows that, for each sequence T ∈ Σ∞k , there is a unique
point SA(T ) ∈ Rn such that⋂

wvT

SA(w) = {SA(T )}. (5.3)

In this manner, we have defined a function SA : Σ∞k → Rn. The following
observation shows that this function does not really depend on the choice of
A.

Observation 5.2 Let S be an IFS. If A,B ∈ K(S) satisfy S(A) ⊆ A and
S(B) ⊆ B, then SA = SB.

Our proof of Observation 5.2 uses the Hausdorff metric on K(Rn), which
is the function ρH : K(Rn)×K(Rn)→ [0,∞) defined by

ρH(A,B) = max{sup
x∈A

inf
y∈B
|x− y|, sup

y∈B
inf
x∈A
|x− y|}

for all A,B ∈ K(Rn). It is easy to see that ρH is a metric on K(Rn). It
follows that ρH is a metric on K(S) for every IFS S.
Proof of Observation 5.2. Assume the hypothesis, with S = (S0, . . . , Sk−1),
and let c0, . . . , ck−1 be contraction ratios of S0, . . . , Sk−1, respectively. The
definition of ρH implies immediately that, for all E,F ∈ K(S) and 0 ≤ i < k,
ρH(Si(E), Si(F )) = ciρH(E,F ). It follows by an easy induction that, if we
let c = max{c0, . . . , ck−1}, then, for all w ∈ Σ∗k,

ρH(SA(w), SB(w)) ≤ c|w|ρH(A,B). (5.4)

To see that SA = SB, let T ∈ Σ∞k , and let ε > 0. For each w v T , (5.1),
(5.2), and (5.3) tell us that

ρH({SA(T )}, SA(w)) ≤ diam(SA(w)) ≤ c|w|diam(A) (5.5)

and
ρH({SA(T )}, SB(w)) ≤ diam(SB(w)) ≤ c|w|diam(B). (5.6)

Since c ∈ (0, 1), (5.4), (5.5), and (5.6) tell us that there is a prefix w v T
such that

ρH({SA(T )}, {SB(T )})
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≤ ρH({SA(T )}, SA(w)) + ρH(SA(w), SB(w)) + ρH({SB(T )}, SB(w))

< ε/3 + ε/3 + ε/3

= ε.

Since this holds for all ε > 0, it follows that ρH({SA(T )}, {SB(T )}) = 0, i.e.,
that SA(T ) = SB(T ). 2

For each IFS S, we define the induced function S : Σ∞k → Rn by set-
ting S = SA, where A is any element of K(S) satisfying S(A) ⊆ A. By
Observations 5.1 and 5.2, this induced function S is well-defined.

We now have the machinery to define a rich collection of fractals in Rn.
Definition. The attractor (or invariant set) of an IFS S = (S0, . . . , Sk−1)
is the set

F (S) = S(Σ∞k ),

i.e., the range of the induced function S : Σ∞k → Rn.
It is well-known that the attractor F (S) is the unique fixed point of the

induced transformation S : K(S)→ K(S), but we do not use this fact here.
For each T ∈ Σ∞k , we call T a coding sequence, or an S-code, of the point

S(T ) ∈ F (S).

Example 5.3 (generalized Sierpinski triangles S in R2). Let D be the set
consisting of the triangle in R2 with vertices v0 = (0, 0), v1 = (1, 0), and

v2 = (1
2
,
√

3
2

), together with this triangle’s interior. Given c0, c1, c2 ∈ (0, 1),
define S0, S1, S2 : D → D by

Si(p) = vi + ci(p− vi)

for i ∈ {0, 1, 2} and p ∈ D. Then S0, S1, and S2 are contracting similarities
with contraction ratios c0, c1, and c2, respectively, so S = (S0, S1, S2) is an
IFS with domain D. Intuitively, a coding sequence T ∈ {0, 1, 2}∞ can be
regarded as an abbreviation of the procedure

∆0 := D;
for j := 0 to ∞ do

∆j+1 := the cT [j] − reduced copy of ∆j lying in corner T [j] of ∆j.

The point S(T ) of F (S) is then the unique point of R2 lying in all the triangles
∆0,∆1,∆2, . . .. The attractor F (S) is thus a generalized Sierpinski triangle.
Figure 2(a,b) illustrates this construction in the case where c0 = 1

2
, c1 = 1

4
,

and c2 = 1
3
. If c0 = c1 = c2 = 1/2, then F (S) is the familiar Sierpinski

triangle of Figure 2(c).
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(a) (b)

(c)

Figure 2: (a) The IFS S of Example 5.3, with c0 = 1
2
, c1 = 1

4
, and c2 = 1

3
.

(b) The attractor F (S) of this IFS. (c) The attractor F (S) when c0 = c1 =
c2 = 1

2
.
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In general, the attractor of an IFS S = (S0, . . . , Sk−1) is easiest to analyze
when the sets S0(dom(S)), . . . , Sk−1(dom(S)) are “nearly disjoint”. (Intu-
itively, this prevents each point x ∈ F (S) from having “too many” coding
sequences T ∈ Σ∞k .) The following definition makes this notion precise.
Definition. An IFS S = (S0, . . . , Sk−1) with domain D satisfies the open
set condition if there exists a nonempty, bounded, open set G ⊆ D such
that S0(G), . . . , Sk−1(G) are disjoint subsets of G. We will say that G is the
witness of the open set condition for S.

We now define the most widely known type of fractal.
Definition. A self-similar fractal is a set F ⊆ Rn that is the attractor of
an IFS that satisfies the open set condition.
Example 5.3 (continued). If c0 + c1 ≤ 1, c0 + c2 ≤ 1, and c1 + c2 ≤ 1,
then the set G = Do (the topological interior of D) testifies that S satisfies
the open set condition, whence F (S) is a self-similar fractal. If c0 + c1 > 1 or
c0 + c2 > 1 or c1 + c2 > 1, then S does not satisfy the open set condition.

The following quantity plays a central role in the theory of self-similar
fractals.
Definition. The similarity dimension of an IFS S = (S0, . . . , Sk−1) with
contraction ratios c0, . . . , ck−1 is the (unique) solution sdim(S) = s ∈ [0,∞)
of the equation

k−1∑
i=0

csi = 1.

If F = F (S) is a self-similar fractal, where S is an IFS satisfying the open
set condition, then the classical Hausdorff and packing dimensions of F are
known to coincide with the similarity dimension of S. (The fact that this
holds for Hausdorff dimension was proven by Moran [38]. The fact that it
holds for packing dimension was proven by Falconer [14]. As we shall see,
both facts follow from our main theorem.) In particular, this implies that
the following definition is unambiguous.
Definition. The similarity dimension of a self-similar fractal F is the
number

sdim(F ) = sdim(S),

where S is an IFS satisfying F (S) = F and the open set condition.
It should be noted that some authors define a fractal to be self-similar if

it is the attractor of any IFS S. With this terminology, i.e., in the absence
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of the open set condition, the Hausdorff and packing dimensions may be less
than the similarity dimension.

6 Pointwise Analysis of Dimensions

In this section we prove our main theorem, which gives a precise analysis of
the dimensions of individual points in computably self-similar fractals. We
first recall the known fact that such fractals are computable.
Definition. An IFS S = (S0, . . . , Sk−1) is computable if dom(S) is a
computable set and the functions S0, . . . , Sk−1 are computable.

Theorem 6.1 (Kamo and Kawamura [27]). For every computable IFS S,
the attractor F (S) is a computable set.

One consequence of Theorem 6.1 is the following.

Corollary 6.2 For every computable IFS S, cdim(F (S)) = dimH(F (S)).

Proof. Let S be a computable IFS. Then F (S) is compact, hence closed, and
is computable by Theorem 6.1, so F (S) is computably closed by Observation
2.2. It follows by the correspondence principle for constructive dimension
(Theorem 3.8) that cdim(F (S)) = dimH(F (S)). 2

We next present three lemmas that we use in the proof of our main
theorem. The first is a well-known geometric fact (e.g., it is Lemma 9.2 in
[15]) whose proof is short enough to repeat here.

Lemma 6.3 Let G be a collection of disjoint open sets in Rn, and let r, a, b ∈
(0,∞). If every element of G contains a ball of radius ar and is contained in
a ball of radius br, then no ball of radius r meets more than

(
1+2b
a

)n
of the

closures of the elements of G.

Proof. Assume the hypothesis, and let B be a ball of radius r. Let

M =
{
G ∈ G

∣∣ B ∩G 6= ∅} ,
and let m = |M|. Let B′ be a closed ball that is concentric with B and has
radius (1 + 2b)r. Then B′ contains G for every G ∈ M. Since each G ∈ M
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contains a ball BG of radius ar, and since these balls are disjoint, it follows
that

volume(B′) ≥
∑
G∈M

volume(BG).

This implies that
[(1 + 2b)r]n ≥ m(ar)n,

whence m ≤
(

1+2b
a

)n
. 2

Our second lemma gives a computable means of assigning rational “hubs”
to the various open sets arising from a computable IFS satisfying the open
set condition.
Definition. A hub function for an IFS S = (S0, . . . , Sk−1) satisfying the
open set condition with G as witness is a function h : Σ∗k → Rn such that
h(w) ∈ SG(w) for all w ∈ Σ∗k. In this case, we call h(w) the hub that h
assigns to the set SG(w).

Lemma 6.4 If S = (S0, . . . , Sk−1) is a computable IFS satisfying the open
set condition with G as witness, then there is an exactly computable, rational-
valued hub function h : Σ∗k → Qn for S and G.

Proof. Assume the hypothesis. From oracle Turing machines computing
S0, . . . , Sk−1, it is routine to construct an oracle Turing machineM computing
the function

S̃ : dom(S)× Σ∗k → dom(S)

defined by the recursion
S̃(x, λ) = x,

S̃(x, iw) = Si(S̃(x,w))

for all x ∈ dom(S), w ∈ Σ∗k, and i ∈ Σk. Fix a rational point q ∈ G ∩ Qn,
and let Cq be the oracle that returns the value q on all queries, noting that

|MCq(w, r)− S̃(q, w)| ≤ 2−r (6.1)

holds for all w ∈ Σ∗k and r ∈ N. Fix l ∈ Z+ large enough to satisfy the
following conditions.

(i) G contains the closed ball of radius 2−l about q.

(ii) For each i ∈ Σk, 2−l ≤ ci, where ci is the contraction ratio of Si.
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Then a routine induction shows that, for each w ∈ Σ∗k, SG(w) contains the
closed ball of radius 2−l(1+|w|) about S̃(q, w). It follows by (6.1) that the
function h : Σ∗k → Qn defined by

h(w) = MCq(w, l(1 + |w|))

is a hub function for S and G. It is clear that h is rational-valued and exactly
computable. 2

Iterated function systems induce probability measures on alphabets in
the following manner.
Definition. The similarity probability measure of an IFS S = (S0, . . . , Sk−1)
with contraction ratios c0, . . . , ck−1 is the probability measure πS on the al-
phabet Σk defined by

πS(i) = c
sdim(S)
i

for all i ∈ Σk. For w ∈ Σ∗k, we use the abbreviation IS(w) = IπS(w).
Our third lemma provides a decidable set of well-behaved “canonical pre-

fixes” of sequences in Σ∞k .

Lemma 6.5 Let S = (S0, . . . , Sk−1) be a computable IFS, and let cmin be
the minimum of the contraction ratios of S = (S0, . . . , Sk−1). For any real
number

α > sdim(S) log
1

cmin

, (6.2)

there exists a decidable set A ⊆ N× Σ∗k such that, for each r ∈ N, the set

Ar = {w ∈ Σ∗k | (r, w) ∈ A}

has the following three properties.

(i) No element of Ar is a proper prefix of any element of Ar′ for any r′ ≤ r.

(ii) Each sequence in Σ∞k has a (unique) prefix in Ar.

(iii) For all w ∈ Ar,

r · sdim(S) < IS(w) < r · sdim(S) + α. (6.3)

Proof. Let S, cmin, and α be as given, and let c0, . . . , ck−1 be the contraction
ratios of S0, . . . , Sk−1, respectively. Let cmax = max{c0, . . . , ck−1}, and let
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δ = 1
2

min{cmin, 1 − cmax}, noting that δ ∈ (0, 1
2k

]. Since S is computable,
there is, for each i ∈ Σk, an exactly computable function

ĉi : N→ Q ∩ [δ, 1− δ]

such that, for all t ∈ N,
|ĉi(t)− ci| ≤ 2−t. (6.4)

For all T ∈ Σ∞k and l, t ∈ N, we have

l−1∏
i=0

ĉT [i](t+ i)−
l−1∏
i=0

cT [i]

=
l−1∑
i=0

[(
i−1∏
j=0

cT [j]

)(
l−1∏
j=i

ĉT [j](t+ j)

)

−

(
i∏

j=0

cT [j]

)(
l−1∏
j=i+1

ĉT [j](t+ j)

)]

=
l−1∑
i=0

(ĉT [i](t+ i)− cT [i])pi,

where

pi =

(
i−1∏
j=0

cT [j]

)(
l−1∏
j=i+1

ĉT [j](t+ j)

)
.

Since each |pi| ≤ 1, it follows by (6.4) that∣∣∣∣∣
l−1∏
i=0

ĉT [i](t+ i)−
l−1∏
i=0

cT [i]

∣∣∣∣∣ < 21−t (6.5)

holds for all T ∈ Σ∞k and l, t ∈ N.
By (6.2), we have 2−α/sdim(S)/cmin < 1, so we can fix m ∈ Z+ such that

21−m < 1− 2−α/sdim(S)/cmin. (6.6)

For each T ∈ Σ∞k and r ∈ N, let

lr(T ) = min

{
l ∈ N

∣∣∣∣∣
l−1∏
i=0

ĉT [i](r +m+ i+ 1) ≤ 2−r − 2−(r+m)

}
,
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and let
A = {(r, T [0..lr(T )]) | T ∈ Σ∞k and r ∈ N} .

Since the functions ĉ0, . . . , ĉk−1 are rational-valued and exactly computable,
the set A is decidable. It is clear that each Ar has properties (i) and (ii).

Let r ∈ N. To see that Ar has property (iii), let w ∈ Ar. Let l = |w|,
and fix T ∈ Σ∞k such that l = lr(T ) and w = T [0..l− 1]. By the definition of
lr(T ) and (6.5), we have

l−1∏
i=0

cw[i] < 2−r,

which implies that
IS(w) > r · sdim(S). (6.7)

If l > 0, then the minimality of lr(T ) tells us that

l−2∏
i=0

ĉw[i](r +m+ i+ 1) > 2−r − 2−(r+m).

It follows by (6.5) and (6.6) that

l−2∏
i=0

cw[i] > 2−r − 21−(r+m)

= 2−r(1− 21−m)

> 2−(r+α/sdim(S))/cmin,

whence

l−1∏
i=0

cw[i] >
cw[l−1]

cmin

2−(r+α/sdim(S))

≥ 2−(r+α/sdim(S)).

This implies that
πS(w) > 2−(r·sdim(S)+α). (6.8)

If l = 0, then πS(w) = 1, so (6.8) again holds. Hence, in any case, we have

IS(w) < r · sdim(S) + α. (6.9)

By (6.7) and (6.9), Ar has property (iii). 2
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Our main theorem concerns the following type of fractal.
Definition. A computably self-similar fractal is a set F ⊆ Rn that is the
attractor of an IFS that is computable and satisfies the open set condition.

Most self-similar fractals occurring in the literature are, in fact, com-
putably self-similar. For instance, let F be a generalized Sierpinski triangle
with contraction ratios c0, c1, c2 ∈ (0, 1), defined as in Example 5.3. As we
have noted, F is self-similar if c0 + c1 ≤ 1, c0 + c2 ≤ 1, and c1 + c2 ≤ 1.
It is easy to see that F is computably self-similar if c0, c1, and c2 are also
computable real numbers.

We now have the machinery to give a complete analysis of the dimensions
of points in computably self-similar fractals.

Theorem 6.6 (main theorem). If F ⊆ Rn is a computably self-similar frac-
tal and S is an IFS testifying this fact, then, for all points x ∈ F and all
S-codes T of x,

dim(x) = sdim(F )dimπS(T ) (6.10)

and
Dim(x) = sdim(F )DimπS(T ). (6.11)

Proof. Assume the hypothesis, with S = (S0, . . . , Sk−1). Let c0, . . . , ck−1 be
the contraction ratios of S0, . . . , Sk−1, respectively, and let G be a witness to
the fact that S satisfies the open set condition, and let
l = max{0, dlog diam(G)e}. Let h : Σ∗k → Qn be an exactly computable,
rational-valued hub function for S and G as given by Lemma 6.4. Let α =
1 + sdim(F ) log 1

cmin
, for cmin = min{c0, . . . , ck−1}, and choose a decidable set

A for S and α as in Lemma 6.5.
For all w ∈ Σ∗k, we have

diam(SG(w)) = diam(G)

|w|−1∏
i=0

cw[i]

= diam(G)πS(w)
1

sdim(F ) .

It follows by (6.3) that, for all r ∈ N and w ∈ Ar+l,

2−ra1 ≤ diam(SG(w)) ≤ 2−r, (6.12)

where a1 = 2−(l+ α
sdim(F ))diam(G).
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Let x ∈ F , and let T ∈ Σ∞k be an S-code of x, i.e., S(T ) = x. For each
r ∈ N, let wr be the unique element of Ar+l that is a prefix of T . Much of
this proof is devoted to deriving a close relationship between the Kolmogorov
complexities Kr(x) and K(wr). Once we have this relationship, we will use
it to prove (6.10) and (6.11).

Since the hub function h is computable, there is a constant a2 such that,
for all w ∈ Σ∗k,

K(h(w)) ≤ K(w) + a2. (6.13)

Since h(wr) ∈ SG(wr) and x = S(T ) ∈ SG(wr) = SG(wr), (6.12) tells us that

|h(wr)− x| ≤ diam(SG(wr)) ≤ 2−r,

whence
Kr(x) ≤ K(h(wr))

for all r ∈ N. It follows by (6.13) that

Kr(x) ≤ K(wr) + a2 (6.14)

for all r ∈ N. Combining (6.14) and the right-hand inequality in (6.3) gives

Kr(x)

r · sdim(F )
≤ K(wr) + a2

IS(wr)− α
(6.15)

for all r ∈ N.
Let E be the set of all triples (q, r, w) such that q ∈ Qn, r ∈ N, w ∈ Ar+l,

and
|q − h(w)| ≤ 21−r. (6.16)

Since the set A and the condition (6.16) are decidable, the set E is decidable.
For each q ∈ Qn and r ∈ N, let

Eq,r = {w ∈ Σ∗k | (q, r, w) ∈ E } .

We prove two key properties of the sets Eq,r. First, for all q ∈ Qn and r ∈ N,

|q − x| ≤ 2−r ⇒ wr ∈ Eq,r. (6.17)

To see that this holds, assume that |q−x| ≤ 2−r. Since x = S(T ) ∈ SG(wr) =

SG(wr), the right-hand inequality in (6.12) tells us that

|q − h(wr)| ≤ |q − x|+ |x− h(wr)| ≤ 2−r + diam(SG(wr)) ≤ 21−r,
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confirming (6.17).
The second key property of the sets Eq,r is that they are small, namely,

that
|Eq,r| ≤ γ (6.18)

holds for all q ∈ Qn and r ∈ N, where γ is a constant that does not depend
on q or r. To see this, let w ∈ Eq,r. Then w ∈ Ar+l and |q − h(w)| ≤ 21−r,
so h(w) ∈ SG(w) ∩B(q, 21−r). This argument establishes that

w ∈ Eq,r ⇒ B(q, 21−r) meets SG(w). (6.19)

Now let
Gr = {SG(w) | w ∈ Ar+l} .

By our choice of G, Gr is a collection of disjoint open sets in Rn. By the
right-hand inequality in (6.12), each element of Gr is contained in a closed
ball of radius 2−r. Since G is open, it contains a closed ball of some radius
a3 > 0. It follows by the left-hand inequality in (6.12) that SG(w), being a
contraction of G, contains a closed ball of radius 21−ra4, where a4 = a1a3

2diam(G)
.

By Lemma 6.3, this implies that B(q, 21−r) meets no more than γ of the

(closures of the) elements of Gr, where γ =
(

2
a4

)n
. By (6.19), this confirms

(6.18).
Now let M be a prefix Turing machine with the following property. If

U(π) = q ∈ Qn (where U is the universal prefix Turing machine), sr is the
rth string in a standard enumeration s0, s1, . . . of {0, 1}∗, and 0 ≤ m < |Eq,r|,
then M(π0|sr|1sr0

m1) is the mth element of Eq,r. There is a constant a5 such
that, for all w ∈ Σ∗k,

K(w) ≤ KM(w) + a5. (6.20)

Taking π to be a program testifying to the value of Kr(x) and applying (6.17)
and (6.18) shows that

KM(wr) ≤ |π0|sr|1sr0
m1|

= Kr(x) + 2|sr|+m+ 2

≤ Kr(x) + 2 log(r + 1) + |Eq,r|+ 1

≤ Kr(x) + 2 log(r + 1) + γ + 1,

whence (6.20) tells us that

K(wr) ≤ Kr(x) + ε(r) (6.21)
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for all r ∈ N, where ε(r) = 2 log(r + 1) + a5 + γ + 1. Combining (6.21) and
the left-hand inequality in (6.3) gives

Kr(x)

r · sdim(F )
≥ K(wr)− ε(r)

IS(wr)
(6.22)

for all r ∈ N. Note that ε(r) = o(IS(wr)) as r →∞.
By (6.15) and (6.22), we now have

K(wr)− ε(r)
IS(wr)

≤ Kr(x)

r · sdim(F )
≤ K(wr) + a2

IS(wr)− α
(6.23)

for all r ∈ N. In order to use this relationship between Kr(x) and K(wr),

we need to know that the asymptotic behavior of K(wr)
IS(wr)

for r ∈ N is the

same as the asymptotic behavior of K(w)
IS(w)

for arbitrary prefixes w of T . Our
verification of this fact makes repeated use of the additivity of IS, by which
we mean that

IS(uv) = IS(u) + IS(v) (6.24)

holds for all u, v ∈ Σ∗k.
Let r ∈ N, and let wr v w v wr+1, writing w = wru and wr+1 = wv.

Then (6.24) tells us that

IS(wr) ≤ IS(w) ≤ IS(wr+1),

and (6.3) tells us that

IS(wr+1)− IS(wr) ≤ sdim(F ) + α,

so we have
IS(wr) ≤ IS(w) ≤ IS(wr) + a6, (6.25)

where a6 = sdim(F ) + α. We also have

a6 ≥ IS(wr+1)− IS(wr)

= IS(uv)

= log
1

πS(uv)

≥ log c
−sdim(F )|uv|
min

= |uv|sdim(F ) log
1

cmin

,
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i.e.,
|wr+1| − |wr| ≤ a7, (6.26)

where a7 = a6

sdim(F ) log 1
cmin

.

Since (6.26) holds for all r ∈ N and a7 does not depend on r, there is a
constant a8 such that, for all r ∈ N and wr v w v wr+1,

|K(w)−K(wr)| ≤ a8. (6.27)

It follows by (6.25) that

K(wr)− a8

IS(wr) + a6

≤ K(w)

IS(w)
≤ K(wr) + a8

IS(wr)
(6.28)

holds for all r ∈ N and wr v w v wr+1.
By (6.23), (6.28), Theorem 4.5, and Theorem 4.1, we now have

dim(x) = lim inf
r→∞

Kr(x)

r

= sdim(F ) lim inf
r→∞

K(wr)

IS(wr)

= sdim(F ) lim inf
j→∞

K(T [0..j − 1])

IS(T [0..j − 1])

= sdim(F )dimπS(T )

and

Dim(x) = lim sup
r→∞

Kr(x)

r

= sdim(F ) lim sup
r→∞

K(wr)

IS(wr)

= sdim(F ) lim sup
j→∞

K(T [0..j − 1])

IS(T [0..j − 1])

= sdim(F )DimπS(T ),

i.e., (6.10) and (6.11) hold. 2

Finally, we use relativization to derive the following well-known classical
theorem from our main theorem.
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Corollary 6.7 (Moran [38], Falconer [14]). For every self-similar fractal
F ⊆ Rn,

dimH(F ) = DimP(F ) = sdim(F ).

Proof. Let F ⊆ Rn be self-similar. Then there is an IFS S satisfying
F (S) = F and the open set condition. For any such S, there is an oracle
A ⊆ {0, 1}∗ relative to which S is computable. We then have

dimH(F ) ≤ DimP(F )

= DimA
P(F )

≤ cDimA(F )

= sup
x∈F

DimA(x)

= (a) sdim(F ) sup
T∈Σ∞k

DimπS ,A(T )

= sdim(F )

= sdim(F ) sup
T∈Σ∞k

dimπS ,A(T )

= (b) sup
x∈F

dimA(x)

= cdimA(F )

= (c) dimA
H(F )

= dimH(F )

which implies the corollary. Equalities (a) and (b) hold by Theorem 6.6,
relativized to A. Equality (c) holds by Corollary 6.2, relativized to A.

2

7 Conclusion

Our main theorem gives a complete analysis of the dimensions of points in
computably self-similar fractals. It will be interesting to see whether larger
classes of fractals are also amenable to such pointwise analyses of dimensions.
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[22] F. Hausdorff. Dimension und äußeres Maß. Math. Ann., 79:157–179,
1919.

[23] P. Hertling. Is the Mandelbrot set computable? Mathematical Logic
Quarterly, 51:5–18, 2005.

44



[24] J. M. Hitchcock. Gales suffice for constructive dimension. Information
Processing Letters, 86(1):9–12, 2003.

[25] J. M. Hitchcock. Correspondence principles for effective dimensions.
Theory of Computing Systems, 38:559–571, 2005.

[26] J.M. Hitchcock. Effective fractal dimension bibliography.
http://www.cs.uwyo.edu/˜jhitchco/bib/dim.shtml.

[27] H. Kamo and K. Kawamura. Computability of self-similar sets. Math.
Log. Q., 45:23–30, 1999.

[28] K. Ko. Complexity Theory of Real Functions. Birkhäuser, Boston, 1991.
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