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Abstract

The long-time behavior of solutions of systems of conservation laws has been extensively studied. In particular,
Liu and Zeng [6] have given a detailed exposition of the leading order asymptotics of solutions close to a constant
background state. In this paper, we extend the analysis of [6] by examining higher order terms in the asymptotics in
the framework of the so-called two dimensional p-system, though we believe that our methods and results also apply
to more general systems. We give a constructive procedure for obtaining these terms, and we show that their structure
is determined by the interplay of the parabolic and hyperbolic parts of the problem. In particular, we prove that the
corresponding solutions develop long tails.

1 Introduction

In this paper, we consider the long-time behavior of solutions of systems of viscous conservation laws. This topic has
been extensively studied. In particular, for the case of solutions close to a constant background state, [6] (building on
work of [2]), contains a detailed exposition of the leading order long-time behavior of such solutions. More precisely,
it is shown in [6] that the leading order asymptotics are given as a sum of contributions moving with the characteristic
speeds of the undamped system of conservation laws and that each contribution evolves as either a Gaussian solution
of the heat equation or as a self-similar solution of the viscous Burger’s equation. Thus with the exception of the
translation along characteristics, these leading order terms reflect primarily the dissipative aspects of the problem.

In this paper, in an effort to better understand the interplay between the hyperbolic and parabolic aspects of the
problem, we examine higher order terms in the asymptotics. We work with a specific two-dimensional system of
equations – the p-system, but we believe that its behavior is prototypical. In particular, we think that our methods
and results would extend to more complicated systems such as the ‘full gas dynamics’ and the equations of Magneto-
Hydro-Dynamics (MHD) as considered in [6].

The specific set of equations we consider is the following:

∂ta = c1∂xb , a(x, 0) = a0(x) ,

∂tb = c2∂xa + ∂xg(a, b) + α
(
∂2

xb + ∂x(f(a, b)∂xb)
)

, b(x, 0) = b0(x) .
(1.1)
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We will make precise the assumptions on the nonlinear terms f and g below, but in order to describe our results
informally, we basically assume that |g(a, b)| ∼ O((|a| + |b|)2) and |f(a, b)| ∼ O((|a| + |b|)). We also note that
without loss of generality, we can set c1 = c2 = 1 and α = 2 in (1.1), which can be achieved by appropriate scalings
of space, time and the dependent variables, and possible redefinition of the functions f and g.

Physically, (1.1) is a model for compressible, constant entropy flow, where a represents the volume fraction (i.e. the
reciprocal of the density) and b is the fluid velocity. The first of the two equations in (1.1) is the consistency relation
between these two physical quantities. In particular, it would not be physically reasonable to include a dissipative term
in this equation, whereas such a term arises naturally in the second equation which is essentially Newton’s law, in
which internal frictional forces are often present. As a consequence of the form of the dissipation the damping here is
not ‘diagonalizable’ in the terminology of [6].

Next, we note that with the scaling c1 = c2 = 1 and α = 2 in (1.1), the characteristic speeds are ±1. If the initial
conditions a0 and b0 in (1.1) decay sufficiently fast as |x| → ∞, Liu and Zeng [6] showed that a(x, t) ± b(x, t) =

1√
1+t

g±0 ( x±t√
1+t

)+O((1+t)−
3
4 ), where g±

0 are self-similar solutions of either the heat equation, or of Burger’s equation,
depending on the detailed form of the nonlinear terms. In this paper we derive similar expressions for the higher order
terms in the asymptotics through a constructive procedure that can be carried out to arbitrary order.

More precisely, we show that for any N ≥ 1, there exist (universal) functions {g±
n }N

n=1 and constants {d±
n }N

n=1

determined by the initial conditions, such that

a(x, t) + b(x, t) =
1√

1 + t
g+
0 ( x+t√

1+t
) +

N∑

n=1

1

(1 + t)1−
1

2n+1

d+
n g+

n ( x+t√
1+t

) + O
( 1

(1 + t)1−
1

2N+2

)
,

a(x, t) − b(x, t) =
1√

1 + t
g−0 ( x−t√

1+t
) +

N∑

n=1

1

(1 + t)1−
1

2n+1

d−n g−n ( x−t√
1+t

) + O
( 1

(1 + t)1−
1

2N+2

)
.

(1.2)

We give explicit expressions for the functions g±
n below, but focusing for the moment on the case N = 1 and the

variable a, we have

a(x, t) =
1

2
√

1 + t

(
g+
0 ( x+t√

1+t
) + g−0 ( x−t√

1+t
)
)
+

1

2(1 + t)
3
4

(
d+
1 g+

1 ( x+t√
1+t

) + d−1 g−1 ( x−t√
1+t

)
)
+ O

( 1

(1 + t)
7
8

)
,

where the functions g±
0 (z) and g±

1 (z) are solutions of the following ordinary differential equations:

∂2
zg±0 (z) +

1

2
z∂zg

±
0 (z) +

1

2
g±0 (z) + c±∂z(g

±
0 (z)2) = 0 (1.3)

∂2
zg±1 (z) +

1

2
z∂zg

±
1 (z) +

3

4
g±1 (z) + 2c±∂z(g

±
0 (z)g±1 (z)) = 0 . (1.4)

Here c± are constants that depend on the Hessian matrix of g(a, b) at a = b = 0 and that will be specified in the course
of our analysis. We will prove that while all solutions of (1.3) have Gaussian decay as |x| → ∞, general solutions of
the linear equation (1.4) are linear combinations of two functions g1,±(z), where g1,±(z) decays like a Gaussian as
z → ∓∞ but only like |z|− 3

2 as z → ±∞, see also [5]. The graphs of the functions g+
0 (z) and g+

1 (z) are presented in
Figure 1.

Thus, the higher order terms in the asymptotics develop long tails. These tails are a manifestation of the hyperbolic
part of the problem (or perhaps more precisely of the interplay between the parabolic and hyperbolic parts). Were we
to consider just the asymptotic behavior of the viscous Burger’s equation which gives the leading order behavior of the
solutions, we would find that if the initial data is well localized, the higher order terms in the long-time asymptotics
decay rapidly in space and have temporal decay rates given by half-integers.

We also note one additional fact about the expansion in (1.2). Prior research [3, 9] has shown that for both parabolic
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z

g+
0 (z)

z

g+
1 (z)

Figure 1: Graphs of the functions g+
0 (left panel) and g+

1 (right panel). Note the long tail of
g+
1 as z → ∞.

equations and damped wave equations the eigenfunctions of the operator

Lu(z) = ∂2
zu +

1

2
z∂zu

play an important role for the asymptotics. In particular, on appropriate function spaces this operator has a sequence
of isolated eigenvalues whose associated eigenfunctions can be used to construct an expansion for the long-time
asymptotics. In this connection we prove that the functions g±

n are closely approximated by eigenfunctions of L with
eigenvalues λn = − 1

2 + 2−(n+1); more precisely, the functions g±
n are eigenfunctions of a compact perturbation

of L, see e.g. (1.4). However, so far we have not succeeded in finding a function space which both contains these
eigenfunctions (the functions g±

n decay slowly as z → ±∞) and in which the corresponding eigenvalues are isolated
points in the spectrum. We plan to investigate this point further in future research.

Before moving to a precise statement of our results we note that our approach makes no use of Kawashima’s energy
estimates for hyperbolic-parabolic conservation laws [4]. Instead we prove existence by directly studying the integral
form of (1.1).

We now state our results on the Cauchy problem (1.1). We begin by stating the precise assumptions we make on the
nonlinearities f and g in (1.1).

Definition 1 The maps f, g : R2 → R are admissible nonlinearities for (1.1) if there is a quadratic map g0 : R2 → R

and a constant C such that for all |z|, |z1| and |z2| small enough,

|g(z)| ≤ C|z|2 , |g(z1) − g(z2)| ≤ C|z1 − z2|(|z1| + |z2|) ,

|∆g(z)| ≤ C|z|3 , |∆g(z1) − ∆g(z2)| ≤ C|z1 − z2|(|z1| + |z2|)2 ,

|f(z)| ≤ C|z| and |f(z1) − f(z2)| ≤ C|z1 − z2| ,

where ∆g(z) ≡ g(z) − g0(z).
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The main result of this paper can be formulated as follows:

Theorem 2 Fix N > 0. There exists ε0 > 0 sufficiently small such that if

(i) |a0|H1(R) + |a0|L1(R) < ε0 and |b0|H2(R) + |b0|L1(R) < ε0

(ii) |x2a0|L2(R) + |x2b0|L2(R) < ∞,

then (1.1) has a unique (mild) solution with initial conditions a0 and b0. Moreover, there exist functions {g±
n }N

n=0

(independent of initial conditions for n ≥ 1) and constants CN , {d±n }N
n=1 determined by the initial conditions such

that

a(x, t) + b(x, t) =
1√

1 + t
g+
0 ( x+t√

1+t
) +

N∑

n=1

1

(1 + t)1−
1

2n+1

d+
n g+

n ( x+t√
1+t

) + RN
u (x, t)

a(x, t) − b(x, t) =
1√

1 + t
g−0 ( x−t√

1+t
) +

N∑

n=1

1

(1 + t)1−
1

2n+1

d−n g−n ( x−t√
1+t

) + RN
v (x, t) ,

(1.5)

where the remainders RN
u and RN

v satisfy the estimates

sup
t≥0

(1 + t)
3
4− 1

2N+2 ‖RN
{u,v}(·, t)‖L2(R) ≤ CN

sup
t≥0

(1 + t)
5
4− 1

2N+2 ‖∂xRN
{u,v}(·, t)‖L2(R) ≤ CN .

(1.6)

Furthermore, for n ≥ 1, the functions g±
n satisfy g±n (z) ∼ |z|−2+ 1

2n as z → ±∞.

There is a slight incongruity in this result in that the norm in which we estimate the remainder term is weaker than
the one we use on the initial data; namely, we do not give estimates for the remainder in H2(R), or in the localization
norms L1(R) and the weighted L2(R)-norm (on that aspect of the problem, see Remark 3 below). Theorem 2 actually
holds for slightly more general initial conditions than those satisfying (i)-(ii). Furthermore, we will prove that the
estimates (1.6) hold for all initial conditions (a0, b0) in a subset D2 ⊂ H1 × H2 that is positively invariant under the
flow of (1.1). However, since the topology used to define the subset D2 is somewhat non-standard, we have chosen to
state the result initially in this slightly weaker, but hopefully more comprehensible, form to keep the introduction as
simple as possible.

Remark 3 It is interesting to note (see Proposition 7 below) that ‖x2a(·, t)‖L2(R) + ‖x2b(·, t)‖L2(R) is finite for all
finite t > 0, but that the terms with n ≥ 1 in the asymptotic expansion do not satisfy this property due to the long tails
of the functions g±

n .

Remark 4 As the asymmetry in the degree of x derivatives in (1.1) suggests, we require more spatial regularity from
the second component (the b variable) than from the first (the a variable). It is then natural to expect that RN

u or RN
v

are not necessarily in H2, but that only their difference is.

We conclude this section with a few remarks. Define u±(x, t) = a(x, t) ± b(x, t). Then the asymptotics of the
solutions of (1.1) in the variables u± are the same as those of the two dimensional (generalized) Burger’s equation

∂tu+ = ∂2
xu+ + ∂xu+ + ∂x(c+u2

+ − c−u2
−)

∂tu− = ∂2
xu− − ∂xu− + ∂x(c−u2

− − c+u2
+) ,

(1.7)
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where the constants c± are determined by the Hessian of g(a, b) at a = b = 0 through

c± = ±1

8
(1,±1) ·

(
∂2

ag ∂a∂bg

∂a∂bg ∂2
b g

)∣∣∣∣
a=b=0

·
(

1
±1

)
.

We will see that the hyperbolic effects manifest themselves through the ‘source’ terms −c−u2
−, respectively c+u2

+ in
the first, respectively second equation in (1.7). In particular, none of the terms g±

n with n ≥ 1 would be present in the
asymptotic expansion if those terms were absent.

Finally, note that we have chosen to state Theorem 2 for finite N . As it turns out, the sums appearing in (1.5) converge
in the limit as N → ∞, in which case the estimates (1.6) hold with time weights replaced by (1 + t)

3
4 ln(2 + t)−1 and

(1 + t)
5
4 ln(2 + t)−1. The proof can easily be done with the techniques used in this paper and is left to the reader.

The remainder of the paper is organized as follows: In Section 2, we discuss the well-posedness of the Cauchy problem
(1.1) in an appropriately defined topology. In Section 3, we explain our strategy for proving our main result, Theorem
2, on the long time asymptotics of solutions of (1.1). Namely, we decompose that proof into a series of simpler sub-
problems which are then tackled in subsequent sections: in Sections 4 and 5, we investigate properties of solutions
of Burger’s type equations, respectively of inhomogeneous heat equations, as they occur naturally in the asymptotic
analysis. In Section 6, we collect some estimates that are used in the proof of the well-posedness of (1.1). Finally, in
Section 7, we specify the sense in which the semigroup of the linearization of (1.1) is close to heat kernels translating
along the characteristics, and we give estimates on the remainder terms occurring in Theorem 2.

2 Cauchy problem

To motivate our technical treatment of the problem and in particular our choice of function spaces, we first note that
upon taking the Fourier transform of the linearization of (1.1), it follows that

∂t

(
a

b

)
= L

(
a

b

)
≡

(
0 ik

ik −2k2

)(
a

b

)
. (2.1)

We then find that the (Fourier transform of) the semigroup associated with (2.1) is

eLt = e−k2t

(
cos(kt∆) + k

∆ sin(kt∆) i
∆ sin(kt∆)

i
∆ sin(kt∆) cos(kt∆) − k

∆ sin(kt∆)

)
, (2.2)

where ∆ =
√

1 − k2. The most important fact about the semigroup eLt is that it is close to eL0t, the semigroup
associated with the problem

∂t

(
u

v

)
= L0

(
u

v

)
≡

(
∂2

x + ∂x 0
0 ∂2

x − ∂x

)(
u

v

)
. (2.3)

Formally, eL0t can be obtained by setting ∆ = 1 in eLt and by conjugating with the matrix

S ≡
(

1 1
1 −1

)
. (2.4)

These two operations correspond to a long wavelength expansion and a change of dependent variables to quantities
that move along the characteristics. More precisely, we will prove that eLt satisfies the intertwining property

SeLt ≈ eL0tS ,

where the symbol ≈ means that the action of these two operators is the same in the large scale – long time limit; see
Lemma 19 at the beginning of Section 7 for details.
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Furthermore, eLt satisfies parabolic-like estimates

|eLt| ≤ Ce−min(k2,1) t
4

(
1 1√

1+k2

1√
1+k2

1

)
, (2.5)

∣∣∣∣ eLt
( 0
ik

) ∣∣∣∣ ≤ C
e−min(k2,1) t

4√
t

( 1
1√

1+k2

)
(2.6)

uniformly in t ≥ 0 and k ∈ R.

Hence, to summarize, eLt behaves like a superposition of heat kernels translating along the characteristics of the
underlying hyperbolic problem. In view of the above observations as well as of classical techniques for parabolic
PDE’s, see e.g. [7, 1], we will consider (1.1) in the following (somewhat non-standard) topology (cf also [8]):

Definition 5 We define B0, resp. B, as the closure of C∞
0 (R,R2), resp. C∞

0 (R × [0,∞),R2), under the norm | · |,
resp. ‖ · ‖, where for z0 = (a0, b0) : R → R

2 and z = (a, b) : R× [0,∞) → R
2, we define

|z0| = ‖ẑ0‖∞ + ‖z0‖2 + ‖Dz0‖2 + ‖D2b0‖2 , ‖z‖ = ‖ẑ‖∞,0 + ‖z‖2, 1
4

+ ‖Dz‖2, 3
4

+ ‖D2b‖2, 54
? .

Here (Da)(x, t) ≡ ∂xa(x, t), â(k, t) is the Fourier transform of a(x, t),

‖f‖p,q = sup
t≥0

(1 + t)q‖f(·, t)‖p , ‖f‖p,q? = sup
t≥0

(1 + t)q

ln(2 + t)
‖f(·, t)‖p

and ‖ · ‖p is the standard Lp(R) norm.

Before turning to the Cauchy problem with initial data in B0 we collect a few comments on our choice of function
spaces.

Consider first the requirements on the initial conditions in (1.1). While the use of H1 space is quite natural in this
context, we choose to replace the L1 norm by the (weaker) control of the L∞ norm in Fourier space. This has the great
advantage that all estimates can then be done in Fourier space, where the semigroup eLt has the simple, explicit, form
(2.2).

In turn, our choice of q-exponents in the norm ‖·‖ is motivated by the fact that these are the highest possible exponents
for which the ‖ · ‖-norm of the leading order asymptotic term 1√

1+t
g±0 ( x±t√

1+t
) is bounded. Note also that for the linear

evolution (2.1), we have

‖eLt
z0‖ ≤ C|z0| , (2.7)

since ĵ(k, t) = e−min(k2,1)tu0(k) satisfies

‖Dnj(·, t)‖2 ≤ C
(
e−t‖Dnu0‖2 + min

(
t−

1
4−n

2 ‖û0‖∞, ‖Dnu0‖2

))

for all n = 0, 1, . . ..

Finally, we note that for admissible nonlinearities in the sense of Definition 1, the map h(a, b) = f(a, b)∂xb+g(a, b) =
h(z) satisfies

‖h(z)‖1, 1
2

+ ‖h(z)‖2, 34
+ ‖Dh(z)‖2, 5

4
≤ C‖z‖2 , (2.8)

‖h(z1) − h(z2)‖1, 12
+ ‖h(z1) − h(z2)‖2, 3

4
≤ C‖z1 − z2‖(‖z1‖ + ‖z2‖) , (2.9)

‖D(h(z1) − h(z2))‖2, 5
4
≤ C‖z1 − z2‖(‖z1‖ + ‖z2‖) . (2.10)

We are now fully equipped to study the Cauchy problem (1.1) in B:
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Theorem 6 For all z0 ∈ B0 with |z0| = |(a0, b0)| ≤ ε0 small enough, the Cauchy problem (1.1) is (locally) well posed
in B if the nonlinearities are admissible in the sense of Definition 1. In particular, the solution satisfies ‖z‖ ≤ cε0 for
some c > 1 and is unique among functions in B satisfying this bound.

Proof. Upon taking the Fourier transform of (1.1), we get

∂t

(
a

b

)
=

(
0 ik

ik −2k2

)(
a

b

)
+

( 0
ikh

)
, (2.11)

which gives the following representation for the solution

z(t) ≡
(
a(t)
b(t)

)
= eLt

(
a0

b0

)
+

∫ t

0

ds eL(t−s)
(

0
∂xh(z(s))

)
≡ eLt

z0 + N [z](t) . (2.12)

We will prove below that for all zi ∈ B, i = 1, 2, we have

‖N [z]‖ ≤ C‖z‖2 and ‖N [z1] −N [z2]‖ ≤ C‖z1 − z2‖(‖z1‖ + ‖z2‖) (2.13)

for some constant C. The proof of Theorem 6 then follows from the fact that for all z0 ∈ B0 with |z0| ≤ ε0 small
enough and c > 1, the r.h.s. of (2.12) defines a contraction map from some (small) ball of radius cε0 in B onto itself.

The general rule for proving the various estimates involved in (2.13) is to split the integration interval into two parts,
with s ∈ I1 ≡ [0, t

2 ] and s ∈ I2 ≡ [ t
2 , t]. In I1, we place as many derivatives (or equivalently, factors of k) as possible

on the semigroup eL(t−s), while on I2, (most of) these derivatives need to act on h, since the integral would otherwise
be divergent at s = t.

Additional difficulties arise from the fact that eLt has very little smoothing properties (slow or no decay in k as
|k| → ∞), so that in some cases we need to consider separately the large-k part and the small-k part of the L2 norm,
say. This is done through the use of P, defined as the Fourier multiplier with the characteristic function on [−1, 1].

We decompose the proof of ‖N [z]‖ ≤ C‖z‖2 into that of

‖N [z]‖ ≤ ‖N̂ [z]‖∞,0 + ‖N [z]‖2, 1
4

+ ‖PDN [z]‖2, 34
+ ‖(1 − P)DN [z]‖2, 3

4

+ ‖(1− P)D2N [z]2‖2, 5
4

? + ‖(1 − Q)PD2N [z]2‖2, 5
4

? + ‖QPD2N [z]2‖2, 54
?

≤ C‖z‖2 , (2.14)

where Q is the characteristic function for t ≥ 1 and N [z]2 denotes the second component of N [z].

We now consider ‖PDN [z]‖2, 3
4

as an example of the way we prove the above estimates. We have

‖PDN [z](·, t)‖2 ≤ ‖h(z)‖2, 34

(
sup

|k|≤1,τ≥0

|k|√τe−
k2τ
4

) ∫ t
2

0

ds
(1 + s)−

3
4

t − s

+ ‖Dh(z)‖2, 5
4

(
sup

|k|≤1,τ≥0

e−
k2τ
4

) ∫ t

t
2

ds
(1 + s)−

5
4√

t − s

≤ C‖z‖2
(2

t

∫ t
2

0

ds

(1 + s)
3
4

+
1

(1 + t
2 )

5
4

∫ t

t
2

ds√
t − s

)
≤ C‖z‖2(1 + t)−

3
4 (2.15)

for all t ≥ 0, which shows that ‖PDN [z]‖2, 3
4
≤ C‖z‖2. All other estimates in (2.14) can be done similarly; we

postpone their proof to Section 6 below.

Finally, we note that the Lipschitz-type estimate in (2.13) can be obtained in the same manner, mutatis mutandis, due
to the similarity between (2.9) and (2.10) with (2.8); we omit the details.
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We can now turn to the question of the asymptotic structure of the solutions of (1.1) provided by Theorem 6. Note that
already if we wanted to prove that eLt

z0 satisfies ‘Gaussian asymptotics’ we would need more localization properties
on z0 than those provided by the B0-topology. It will turn out to be sufficient to require z0 ∈ B0 ∩ L2(R, xmdx) for
(some) m ≥ 2. We now prove that this requirement is forward invariant under the flow of (1.1):

Proposition 7 Let ρm(x) = |x|m and define

Dm =
{

z0 ∈ B0 such that |z0| + ‖ρmz0‖2 < ∞
}

.

If z0 ∈ Dm and |z0| ≤ ε0 such that Theorem 6 holds, then the corresponding solution z(t) of (1.1) satisfies z(t) ∈ Dm

for all finite t > 0. Furthermore, there holds |z(t)| ≤ (1 + δ)ε0 for some (small) constant δ.

Proof. Note first that by Theorem 6, |z(t)| ≤ ‖z‖ ≤ (1 + δ)ε0 since z0 ∈ B0 and |z0| ≤ ε0. Then, fix m ∈ N,
m ≥ 1. The proof of Theorem 6 can easily be adapted to show that (1.1) is locally (in time) well posed in Dm. Global
existence then follows from the fact that the quantity

N(t) =
1

2
‖ρmz(·, t)‖2 =

1

2

∫ ∞

−∞
dx |x|m(a(x, t)2 + b(x, t)2)

grows at most exponentially as t → ∞. Namely, we have

∂tN(t) =

∫ ∞

−∞
dx |x|m

(
∂x(ab) + 2b∂2

xb + b∂x

(
f(a, b)∂xb + g(a, b)

))

= −
∫ ∞

−∞
dx m|x|m−1sign(x)

(
b(a + g(a, b)) + (2 + f(a, b))b∂xb

)

−
∫ ∞

−∞
dx |x|m(∂xb)2

(
2 + f(a, b)

)

≤
∫ ∞

−∞
dx

(
(m − 1)m−1 + |x|m

)∣∣∣ b(a + g(a, b)) + (2 + f(a, b))b∂xb
∣∣∣

−
∫ ∞

−∞
dx |x|m(∂xb)2

(
2 + f(a, b)

)

≤
∫ ∞

−∞
dx

(
(m − 1)m−1 + |x|m

)(
|b(a + g(a, b))| + 2−1|2 + f(a, b)|b2

)

≤ C1(m, ε0) + C2(ε0)N(t) ,

due to the estimates ‖f(a, b)‖∞ ≤ Cε0 � 2 and ‖ g(a,b)√
a2+b2

‖∞ ≤ Cε0.

3 Asymptotic structure - Proof of Theorem 2

We can now state our main result on the asymptotic structure of solutions of (1.1) in a definitive manner:

Theorem 8 Let Dm be as in Proposition 7 with m ≥ 2, let z0 ∈ Dm with |z0| ≤ ε0 such that Theorem 6 holds and
write z(t) = (a(t), b(t)) for the corresponding solution of (1.1). Then there exist functions {g±

n }N
n=0 (independent of

z0 for n ≥ 1) and constants CN , {d±n }N
n=1 determined by z0 such that

a(x, t) + b(x, t) =
1√

1 + t
g+
0 ( x+t√

1+t
) +

N∑

n=1

1

(1 + t)1−
1

2n+1

d+
n g+

n ( x+t√
1+t

) + RN
u (x, t)

a(x, t) − b(x, t) =
1√

1 + t
g−0 ( x−t√

1+t
) +

N∑

n=1

1

(1 + t)1−
1

2n+1

d−n g−n ( x−t√
1+t

) + RN
v (x, t) ,

(3.1)
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where the remainders RN
u and RN

v satisfy the estimates

sup
t≥0

(1 + t)
3
4− 1

2N+2 ‖RN
{u,v}(·, t)‖L2(R) ≤ CN

sup
t≥0

(1 + t)
5
4− 1

2N+2 ‖∂xRN
{u,v}(·, t)‖L2(R) ≤ CN .

(3.2)

Furthermore, for n ≥ 1, the functions g±
n satisfy g±n (z) ∼ |z|−2+ 1

2n as z → ±∞.

Remark 9 As will be apparent from the proof of Theorem 8, any hyperbolic-parabolic system of the form

∂tz + f(z)x = (B(z)zx)x

with admissible nonlinearities in the sense of (the natural extension of) Definition 1 gives rise to solutions having the
same asymptotic structure as those of the p-system as long as the following two conditions are satisfied:

1. There exist two matrices S and A with S non-singular and A diagonal having eigenvalues of multiplicity 1 for
which SeLt ≈ eL0tS in the sense of Lemma 19 (see Section 7), where L0 = ∂2

x+A∂x and L = B(0)∂2
x−f ′(0)∂x.

2. The Cauchy problem with initial condition in the corresponding function space (the natural extension of B0 to
the problem considered) is well posed and satisfies the analogues of Theorem 6 and Proposition 7.

We now briefly comment on the above assumptions for specific systems such as the ‘full gas dynamics’ and the MHD
system. The intertwining property of item 1 above is proved in [6] for quite general systems, though not in exactly the
same topology as that used in Lemma 19. As for item 2, local well-posedness for initial data in B0 is certainly not an
issue, the only difficulty is to prove that the various norms of Definition 5 exhibit ‘parabolic-like’ decay as t → ∞.
This is very likely to hold, particularly for systems satisfying item 1.

While the variables (a, b) are adapted to the study of the Cauchy problem because of the inherent asymmetry of spatial
regularity in (1.1), they are not the best framework for studying the asymptotic structure of the solutions to (1.1). It
turns out to be more convenient to change variables to quantities that move along the characteristics. We thus define

(
u(x, t)
v(x, t)

)
≡

(
T −1 0

0 T

)(
1 1
1 −1

)(
a(x, t)
b(x, t)

)
≡

(
T −1 0

0 T

)
Sz(x, t) ,

where T is the translation operator defined by

(T f)(x, t) = f(x + t, t) or equivalently by T̂ f(k, t) = eiktf̂(k, t) . (3.3)

Note in passing that

a(x, t) =
1

2

(
u(x + t, t) + v(x − t, t)

)
and b(x, t) =

1

2

(
u(x + t, t) − v(x − t, t)

)
.

We then use the fact that z satisfies the integral equation

Sz(t) = SeLt
z0 +

∫ t

0

ds SeL(t−s)
( 0
∂xh(z(s))

)

= eL0tSz0 +

∫ t

0

ds eL0(t−s)S
(

0
∂xg0(z(s))

)
+ R[z](t) , (3.4)

where

R[z](t) =
(
SeLt − eL0tS

)
z0 +

∫ t

0

ds

[
SeL(t−s)

(
0

∂xh(z(s))

)
− eL0(t−s)S

(
0

∂xg0(z(s))

) ]
.
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To justify the notation, which suggests that R[z] = (Ru[z],Rv [z]) is a remainder term, we will prove in Section 7
that it satisfies the improved decay rates

‖R{u,v}[z]‖2, 3
4

? + ‖DR{u,v}[z]‖2, 5
4

? ≤ Cε0 , (3.5)

because of the intertwining relation SeLt ≈ eL0tS (see Lemma 19) and the fact that h(z) = g0(z) + h.o.t..

Recalling that g0 is quadratic (cf Definition 1), we will write

g0(z) = c+(a + b)2 − c−(a − b)2 + c3(a + b)(a − b)

= c+(T u)2 − c−(T −1v)2 + c3(T u)(T −1v)

for z = (a, b). We thus find from (3.4) that u and v satisfy

u(t) = e∂2
xt(a0 + b0) + ∂x

∫ t

0

ds e∂2
x(t−s)

(
c+u(s)2 − c−T −2v(s)2

)

+ T −1Ru[z](t) + c3∂x

∫ t

0

ds e∂2
x(t−s)T −1

(
(T u(s))(T −1v(s))

)
, (3.6)

v(t) = e∂2
xt(a0 − b0) + ∂x

∫ t

0

ds e∂2
x(t−s)

(
c−v(s)2 − c+T 2u(s)2

)

+ T Rv [z](t) − c3∂x

∫ t

0

ds e∂2
x(t−s)T

(
(T u(s))(T −1v(s))

)
. (3.7)

Note that, but for the presence of the second lines in (3.6) and (3.7), these expressions are precisely Duhamel’s formula
for the solution of the model problem (1.7), written in terms of u = T −1u+ and v = T u−. The next step is to write

u = u? + RN
u = u0 + u1 + RN

u and v = v? + RN
v = v0 + v1 + RN

v ,

considering RN
u and RN

v as new ‘unknowns’ and

u0(x, t) =
1√

1 + t
g+
0 ( x√

1+t
) , u1(x, t) =

N∑

n=1

1

(1 + t)1−
1

2n+1

d+
n g+

n ( x√
1+t

)

v0(x, t) =
1√

1 + t
g−0 ( x√

1+t
) and v1(x, t) =

N∑

n=1

1

(1 + t)1−
1

2n+1

d−n g−n ( x√
1+t

)

(3.8)

for some coefficients {d±
n }N

n=1 and functions {g±
n }N

n=0 to be determined later.

We now use

u2 = (u − u?)(u + u?) + u2
? = RN

u (u + u?) + u2
1 + 2u0u1 + u2

0 ,

v2 = (v − v?)(v + v?) + v2
? = RN

v (v + v?) + v2
1 + 2v0v1 + v2

0 ,

(T u)(T −1v) = (T RN
u )T −1

(v + v?

2

)
+ (T −1RN

v )T
(u + u?

2

)
+ (T u?)(T −1v?) .

Since

g+
0 (x) = u0(x, 0) , u1(x, 0) =

N∑

n=1

d+
n g+

n (x) ,

g−0 (x) = v0(x, 0) and v1(x, 0) =

N∑

n=1

d−n g−n (x) ,

10



we find that RN
u and RN

v satisfy

RN
u (t) = e∂2

xt(a0 + b0 − g+
0 )

+

[
e∂2

xtu0(0) + c+∂x

∫ t

0

ds e∂2
x(t−s)u0(s)

2

]
− u0(t)

+

[
e∂2

xtu1(0) + 2c+∂x

∫ t

0

ds e∂2
x(t−s)u0(s)u1(s)

]
− u1(t)

− c−

[
∂x

∫ t

0

ds e∂2
x(t−s)T −2

(
(v0(s)

2 + 2v0(s)v1(s))
)]

−
N∑

n=1

e∂2
xtd+

n g+
n

+ R̃u[z,RN ](t) + T −1Ru[z](t) , (3.9)

RN
v (t) = e∂2

xt(a0 − b0 − g−0 )

+

[
e∂2

xtv0(0) + c−∂x

∫ t

0

ds e∂2
x(t−s)v0(s)

2

]
− v0(t)

+

[
e∂2

xtv1(0) + 2c−∂x

∫ t

0

ds e∂2
x(t−s)v0(s)v1(s)

]
− v1(t)

− c+

[
∂x

∫ t

0

ds e∂2
x(t−s)T 2

(
(u0(s)

2 + 2u0(s)u1(s))
)]

−
N∑

n=1

e∂2
xtd−n g−n

+ R̃v [z,RN ](t) + T Rv [z](t) , (3.10)

where

R̃u[z,RN ](t) = c+E0[h1,u + h3,u](t) − c−E−2[h1,v + h3,v](t) + c3E−1[h2 + h4](t) ,

R̃v [z,RN ](t) = c−E0[h1,v + h3,v](t) − c+E2[h1,u + h3,u](t) − c3E1[h2 + h4](t) ,

with R
N = (RN

u , RN
v ),

Eσ[h](t) = ∂x

∫ t

0

ds e∂2
x(t−s) T σh(s) and

h1,u = RN
u (u + u?) , h3,u = u2

1 , h2 = (T RN
u )T −1

(v + v?

2

)
+ (T −1RN

v )T
(u + u?

2

)

h1,v = RN
v (v + v?) , h3,v = v2

1 , h4 = (T u?)(T −1v?) .

Note that we can write (3.9) and (3.10) as R
N = F [z,RN ]. If we now consider z fixed, we can interpret R

N =
F [z,RN ] as an equation for R

N which can be solved via a contraction mapping argument. Namely, we will prove
that if ‖z‖ ≤ Cε0, RN 7→ F [z,RN ] defines a contraction map inside the ball

‖RN
u ‖2, 34−ε + ‖DRN

u ‖2, 54−ε + ‖RN
v ‖2, 34−ε + ‖DRN

v ‖2, 54−ε ≤ C (3.11)

for ε = 2−N−2, provided {g±
n }N

n=0 and {d±
n }N

n=1 are appropriately chosen.

Basically, we will choose u0, v0, u1 and v1 in such a way that the second and third lines of (3.9) and (3.10) vanish. Note
that if, for instance, we set the second, respectively third lines of (3.9) and (3.10) equal to zero, the resulting equalities
are nothing but Duhamel’s formulae for Burger’s equations for u0 and v0, respectively for linearized Burger’s equations
for u1 and v1. Properties of solutions to these types of equations are studied in detail in Section 4 below.

Once u0, v0, u1 and v1 are fixed, the time convolutions in the fourth lines of (3.9) and (3.10) can then be viewed as
the solution of inhomogeneous heat equations with very specific inhomogeneous terms. Properties of solutions to this
type of equations are studied in detail in Section 5 below.
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Assuming all results of Section 4 and 5, we now explain how to proceed to prove that F [z,RN ] defines a contraction
map.

Obviously, the requirement on {g±
n }N

n=0 and {d±
n }N

n=1 is that the first four lines in (3.9) and (3.10) satisfy (3.11). This
is achieved in the following way:

1. The first line of (3.9), respectively of (3.10) satisfies (3.11) for any g±
0 such that the total mass of g±

0 is equal to
that of a0 ± b0, provided a0 ± b0 and g±0 satisfy ‖x2(a0 ± b0)‖2 < ∞ and ‖x2g±0 ‖2 < ∞. This fixes the total
mass of g±

0 . Note also that we need the estimate ‖x2(a0 ± b0)‖2 < ∞. There is no smallness assumption here,
which is to be expected since generically ‖x2(a(·, t)±b(·, t))‖2 will grow as t → ∞. Note on the other hand that
Proposition 7 shows that ‖x2(a(·, t)± b(·, t))‖2 remains finite for all t < ∞, so requiring ‖x2(a0 ± b0)‖2 < ∞
is acceptable.

2. We can set the second lines in (3.9) and (3.10) equal to zero by picking for u0 and v0 any solution of Burger’s
equations

∂tu0 = ∂2
xu0 + c+∂x(u0)

2 and ∂tv0 = ∂2
xv0 + c−∂x(v0)

2

(or of the corresponding heat equations if either c+ or c− happen to be zero). In Proposition 12, we will prove
that there exist unique functions u0 and v0 of the form given in (3.8) that satisfy the conditions of item 1 above
(total mass and decay properties). This uniquely determines u0 and v0.

3. We can also set the third lines in (3.9) and (3.10) equal to zero, by picking any solutions u1 and v1 of linearized
Burger’s equations

∂tu1 = ∂2
xu1 + 2c+∂x(u0u1) and ∂tv1 = ∂2

xv1 + 2c−∂x(v0v1) . (3.12)

In Proposition 12, we will also prove that there is a choice of functions {g±
n }N

n=1 such that u1 and v1 in (3.8)
satisfy (3.12) for any choice of the coefficients {d±

n }N
n=1. Furthermore, in Proposition 12, we will prove that the

choice of functions can be made in such a way that g±
n (x) have Gaussian tails as x → ∓∞ and algebraic tails

as x → ±∞. This actually completely determines g±
n (x) up to multiplicative constants (this last indeterminacy

will be removed when the coefficients {d±
n }N

n=1 are fixed).

4. We then further decompose the terms involving g±
n in the fourth lines in (3.9) and (3.10) as g±

n (x) = fn(∓x) +
R±

n (x). The definition and properties of fn(x) are given in Lemma 10. In particular, in Proposition 12, we will
prove that R±

n (x) have zero total mass and Gaussian tails as |x| → ∞, which implies that e∂2
xtR±

n also satisfy
(3.11).

5. Finally, in Section 5, we will prove that the time convolution part of the fourth lines in (3.9) and (3.10) can be
split into linear combinations of e∂2

xtfn(∓x) with n = 1 . . .N + 1 plus a remainder that satisfies (3.11). The
coefficients {d±

n }N
n=1 can then be set recursively by requiring that all the terms with n = 1 . . .N coming from

the time convolution are canceled by those coming from item 4 above. This can always be done because the
coefficient of e∂2

xtfm(∓x) in the time convolution part of the fourth lines in (3.9) and (3.10) depends only on
g±0 if m = 1 and on d±

m−1 if m > 1. The only term that cannot be set to zero is the last term in the linear
combination (the one with n = N + 1), which is the one that ‘drives’ the equations and fixes ε = 2−N−2.

The procedure outlined in 1-5 takes care of the first four lines in (3.9) and (3.10). We will then prove in Section 7 that
the terms R{u,v}[z] satisfy (3.11) and that

1∑

α=0

‖DαR̃{u,v}[z,R
N ]‖2, 34+ α

2 −ε ≤ Cε0

1∑

α=0

‖Dα
R

N‖2, 34+ α
2 −ε + C , (3.13)

1∑

α=0

‖Dα(R̃{u,v}[z,R
N
1 ] − R̃{u,v}[z,R

N
2 ])‖2, 34+ α

2 −ε ≤ Cε0

1∑

α=0

‖Dα(RN
1 −R

N
2 )‖2, 3

4+ α
2 −ε . (3.14)

This finally proves that F [z,RN ] defines a contraction map and that the solution of R
N = F [z,RN ] satisfies (3.11),

which completes the proof of Theorems 2 and 8.
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4 Burger’s type equations

In this section, we consider particular solutions of Burger’s type equations

∂tu0 = ∂2
xu0 + γ∂xu2

0 (4.1)

∂tu
±
n = ∂2

xu±
n + 2γ∂x(u0u

±
n ) (4.2)

of the form

u0(x, t) = 1√
1+t

g0(
x√
1+t

) and u±
n (x, t) = 1

(1+t)
1− 1

2n+1
g±n ( x√

1+t
) . (4.3)

We will show that for fixed M(u0) =
Z

∞

−∞

dx u0(x, t) =
Z

∞

−∞

dx g0(x) small enough, there is a unique choice of g0 and

g±n such that g±
n (x) = fn(∓x) + R±

n (x), where

fn(z) =

∫ ∞

z

dξ
ξe−

ξ2

4

(ξ − z)1−
1

2n

(4.4)

and R±
n has zero mean and Gaussian tails as |x| → ∞. In particular, g±

n (x) decays algebraically as x → ±∞, as is
apparent from (4.4).

Before proceeding to our study of (4.1) and (4.2), we prove key properties of the functions fn.

Lemma 10 Fix 1 ≤ n < ∞. The function fn is the unique solution of

∂2
zfn(z) + 1

2z∂zfn(z) + (1 − 1
2n+1 )fn(z) = 0 , with

fn(0) = 2
1

2n Γ( 1+2−n

2 ) and lim
z→∞

z−1+ 1
2n e

z2

4 fn(z) < ∞ .
(4.5)

It satisfies
Z

∞

−∞

dz fn(z) = 0 and there exists a constant C(n) such that

sup
z∈R

2∑

m=0

ρ 1
2n −m,1+m− 1

2n
(z)|∂m

z

(
zfn(z) + 2∂zfn(z)

)
| ≤ C(n)

sup
z∈R

3∑

m=0

ρ 1
2n −1−m,2+m− 1

2n
(z)|∂m

z fn(z)| ≤ C(n) ,

(4.6)

where

ρp,q(z) =

{
(1 + z2)

p
2 e

z2

4 if z ≥ 0

(1 + z2)
q
2 if z ≤ 0

.

Proof. We first note that fn can be written as

fn(z) =

∫ ∞

0

dξ
(ξ + z)e−

(ξ+z)2

4

ξ1− 1
2n

= −2

∫ ∞

0

dξ ξ
1

2n −1∂ξ

(
e−

(z+ξ)2

4

)
. (4.7)

This shows that fn solves (4.5) since, defining Lf ≡ ∂2
zf + 1

2z∂zf + (1 − 1
2n+1 )f , we find

Lfn(z) =

∫ ∞

0

dξ
[

ξ
1

2n ∂2
ξ

(
e−

(z+ξ)2

4

)
− 1

2n+1 (−2)ξ
1

2n −1∂ξ

(
e−

(z+ξ)2

4

)]
= 0 .
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Obviously, fn(z) is finite for all finite z, so we only need to prove that fn satisfies the correct decay properties as
|z| → ∞ so that (4.6) holds. It is apparent from (4.4) that fn decays like a (modified) Gaussian as z → ∞ and

algebraically as z → −∞. Furthermore, substituting f(z) = C|z|p1 and f(z) = C|z|p2e−
z2

4 into Lf = 0 shows that
the only decay rates compatible with Lf = 0 are p1 = −2 + 1

2n and p2 = 1− 1
2n .

We now complete the proof of the decay estimates (4.6). Let Fn,m(ξ, z) = ∂m
z ((ξ + z)e−

(ξ+z)2

4 ) and Gn,m(ξ, z) =
∂m

z (zFn(ξ, z) + 2∂zFn(ξ, z)).

We first consider the case z > 0 and note that Fn,m and Gn,m satisfy

|Fn,m(ξ, z)| ≤ |Fn,m(0, z)| and |Gn,m(ξ, z)| ≤ |Gn,m(0, z)|
for all ξ ≥ 0 if z ≥ z0 for some z0 large enough. We thus get, e.g.

|fn(z)| =

∣∣∣∣
∫ ∞

0

dξ Fn,0(ξ, z)ξ
1

2n −1

∣∣∣∣ ≤ |Fn,0(0, z)|
∫ z−1

0

dξ ξ
1

2n −1 + z1− 1
2n

∫ ∞

z−1

dξ |Fn,0(ξ, z)| ≤ Cz1− 1
2n e−

z2

4 .

The estimates on |∂m
z (zfn(z)+2∂zfn(z))| and |∂1+m

z fn(z)| when z > 0 and m ≥ 1 can be done in exactly the same
way; hence we omit the details.

We now consider the case z < 0 and note that Fn,m and Gn,m satisfy

|Fn,m(ξ, z)| ≤ |Fn,m(− z
2 , z)| and |Gn,m(ξ, z)| ≤ |Gn,m(− z

2 , z)|
for all 0 ≤ ξ ≤ − z

2 if z ≤ −z0 for some z0 large enough. We thus find (integrating by parts in the second integral
below)

|fn(z)| =

∣∣∣∣
∫ ∞

0

dξ Fn,0(ξ, z)ξ
1

2n −1

∣∣∣∣ ≤ |Fn,0(− z
2 , z)|

∫ − z
2

0

dξ ξ
1

2n −1 +

∣∣∣∣
∫ ∞

− z
2

dξ Fn,0(ξ, z)ξ
1

2n −1

∣∣∣∣

≤ C|z| 1
2n −1e−

z2

16 + 2
(
1 − 1

2n

)∫ ∞

− z
2

dξ e−
(ξ+z)2

4 ξ
1

2n −2 ≤ C|z| 1
2n −2 .

Since the remaining estimates can again be done in exactly the same way, we omit the details. It only remains to show
that fn(z) has zero total mass. This follows from

∫ ∞

−∞
dz fn(z) = ( 1

2 − 1
2n+1 )−1

∫ ∞

−∞
dz Lfn(z) = 0 ,

since ∂2
zfn, z∂zfn and fn are all integrable over R.

Remark 11 Using the representation (4.7), splitting the integration interval into [0, 2−n
2 ) and [2−

n
2 ,∞), integrating

by parts and letting n → ∞, one can prove that

lim
n→∞

2−nfn(z) = ze−
z2

4 ,

which shows that the constant C(n) in (4.6) grows at most like 2n.

We can now study in detail the solutions of (4.1) and (4.2) that are of the form (4.3):

Proposition 12 Fix 1 ≤ n < ∞. For all α, γ ∈ R with |αγ| small enough, there exist unique functions u0 and u±
n of

the form (4.3) that solve (4.1) and (4.2), with g0 satisfying

∫ ∞

−∞
dz g0(z) = α ,

3∑

m=0

e
z2

4

(
√

1 + z2)m
|∂m

z g0(z)| ≤ C|α|
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and with g±
n (z) = fn(∓z) + R±

n (z), where R±
n satisfy

∫ ∞

−∞
dz R±

n (z) = 0 and sup
z∈R

3∑

m=0

e
z2

4

(
√

1 + z2)1+m− 1
2n

|∂m
z R±

n (z)| ≤ C|αγ| .

Proof. The (unique) solution of (4.1) of the form u0(x, t) = 1√
1+t

g0(
x√
1+t

) satisfying
Z

∞

−∞

dz g0(z) = α is given by

g0(z) =
tanh(αγ

2 )e−
z2

4

γ
√

π(1 + tanh(αγ
2 )erf( z

2 ))
.

In particular, we have

3∑

m=0

e
z2

4

(
√

1 + z2)m
|∂m

z g0(z)| ≤ C|α| . (4.8)

We next note that substituting (4.3) into (4.2) gives

0 = ∂2
zg±n (z) + 1

2z∂zg
±
n (z) + (1 − 1

2n+1 )g±n (z) + 2γ∂z(g0(z)g±n (z))

≡ Lg±n (z) + 2γ∂z(u0(z)g±n (z)) . (4.9)

We formally have (using integration by parts)
∫ ∞

−∞
dz g±n (z) = ( 1

2 − 1
2n+1 )−1

∫ ∞

−∞
dz Lg±n (z) + 2γ∂z(u0(z)g±n (z)) = 0 , (4.10)

which shows that g±
n have zero total mass, provided the formal manipulations above are justified, i.e. provided g±

n and
its derivatives decay fast enough so that the integrals are convergent.

As is easily seen, fn(z) and fn(−z) are two linearly independent solutions of Lf = 0, whose general solution can
thus be written as c1fn(z) + c2fn(−z). Using the variation of constants formula, we get that the solution of (4.9)
satisfies the integral equation

g±n (z) = fn(z)

(
c±1 + 2γ

∫ z

0

dξ
fn(−ξ)∂ξ(g0(ξ)g±

n (ξ))
W (ξ)

)
+ fn(−z)

(
c±2 − 2γ

∫ z

0

dξ
fn(ξ)∂ξ(g0(ξ)g±

n (ξ))
W (ξ)

)
,

where the Wronskian W (z) is given by W (z) = fn(z)∂zfn(−z)−fn(−z)∂zfn(z) and c±1 and c±2 are free parameters.

Note that W (z) satisfies ∂zW (z) = − z
2W (z) and hence W (z) = W (0)e−

z2

4 for some W (0) 6= 0. We now set c±1
and c±2 in such a way that (after integration by parts), we have

g±n (z) = fn(∓z) + R[g±
n ](z) , (4.11)

R[g±n ](z) = γ
W (0)fn(z)

∫ z

−∞
dξ e

ξ2

4 (ξfn(−ξ) + 2∂ξfn(−ξ))g0(ξ)g
±
n (ξ)

+ γ
W (0)fn(−z)

∫ ∞

z

dξ e
ξ2

4 (ξfn(ξ) + 2∂ξfn(ξ))g0(ξ)g
±
n (ξ) .

Using Lemma 10 and (4.8), it is then easy to show that for |αγ| small enough, (4.11) defines a contraction map in the
norm

|f |2− 1
2n

≡ sup
z∈R

(
√

1 + z2)2−
1

2n |f(z)| .

15



Namely, we have the improved decay rates

sup
z∈R

1∑

m=0

e
z2

4

(
√

1 + z2)1+m− 1
2n

|∂m
z R[g±n ](z)| ≤ C|αγ| |g±

n |2− 1
2n

.

This shows that (4.11) has a (locally) unique solution among functions with |f |2− 1
2n

≤ c0 if |αγ| is small enough. In
particular, there holds

sup
z∈R

1∑

m=0

e
z2

4

(
√

1 + z2)1+m− 1
2n

|∂m
z R[g±n ](z)| ≤ C|αγ| ,

from which we deduce, using again (4.11) and Lemma 10, that |Dg±
n |3− 1

2n
≤ c1 and thus

sup
z∈R

e
z2

4

(
√

1 + z2)3−
1

2n

|∂2
zR[g±n ](z)| ≤ C|αγ| .

Iterating this procedure shows that |Dmg±n |2+m− 1
2n

≤ cm and that

sup
z∈R

3∑

m=0

e
z2

4

(
√

1 + z2)1+m− 1
2n

|∂m
z R[g±n ](z)| ≤ C|αγ|

as claimed. In turn, this proves that the formal manipulations in (4.10) are justified, so that the functions g±
n (z)

have zero total mass, which shows that the remainders R[g±
n ](z) have zero total mass as claimed since R[g±

n ](z) =
g±n (z) − fn(±z) and since both g±

n (z) and fn(z) have zero total mass.

5 Inhomogeneous heat equations

In this section, we consider solutions of inhomogeneous heat equations of the form

∂tu = ∂2
xu + ∂x

(
(1 + t)

1
2n − 3

2 f
(

x−2σt√
1+t

))
, u(x, 0) = 0 , (5.1)

where f is a regular function having Gaussian decay at infinity. Solutions of (5.1) satisfy

Theorem 13 Let 1 ≤ n < ∞, σ = ±1, Ξ(x) = e
x2

8 , M(f) =
Z

∞

−∞

dz f(z) and

un(x, t) = σ

(1+t)
1− 1

2n+1

2−1− 1
2n√

4π
fn( −σx√

1+t
) with fn(z) =

∫ ∞

z

dξ
ξe−

ξ2

4

(ξ − z)1−
1

2n

. (5.2)

The solution u of (5.1) satisfies

‖u − M(f) un‖2, 3
4

? + ‖D(u − M(f) un)‖2, 5
4

? ≤ C

2∑

m=0

‖ΞDmf‖∞ , (5.3)

for all f such that the r.h.s. of (5.3) is finite.

Remark 14 Note that while u → M(f)un as t → ∞ in the Sobolev norm (5.3), it does not do so in spatially weighted
norms such as L2(R, x2dx), as un has infinite spatial moments for all times, while all moments of u are bounded for
finite time.
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Proof. We first define

F (ξ) =

∫ ξ

−∞
dz

(
f(z) − M(f) e−

z2

4√
4π

)
with M(f) =

∫ ∞

−∞
dz f(z) (5.4)

and note that F satisfies

‖D3F‖1 +
2∑

m=0

‖ρDmF‖1 +
2∑

m=1

‖DmF‖2 ≤ C

2∑

m=0

‖ΞDmf‖∞ , (5.5)

where ρ(x) =
√

1 + x2. Namely, we first note that ‖ρF‖1 ≤ ‖F̂‖2 + ‖F̂ ′′‖2 and F̂ (k) = (ik)−1(f̂(k) − f̂(0)e−k2

).
Then, since ‖Ξf‖∞ < ∞ implies that f̂ is analytic, F̂ is regular near k = 0. The proof of (5.5) now follows from
elementary arguments.

We finally note that it follows from (5.4) that

(1 + t)
1

2n − 3
2 f

(
x−2σt√

1+t

)
= M(f)

(1 + t)
1

2n − 3
2√

4π
e−

(x−2σt)2

4(1+t)

︸ ︷︷ ︸
≡A(x,t)

+ (1 + t)
1

2n −1∂xF
(

x−2σt√
1+t

)

︸ ︷︷ ︸
≡∂xB(x,t)

. (5.6)

The proof of (5.3) is then completed by considering separately the solutions of heat equations with inhomogeneous
terms given by ∂xA(x, t) and ∂2

xB(x, t). This is done in Propositions 15 and 16 below.

Proposition 15 Let σ = ±1, 1 ≤ n < ∞, and let un be defined as in (5.2). The solution u of

∂tu = ∂2
xu + ∂xA , u(x, 0) = 0 , (5.7)

with A defined in (5.6) satisfies

‖u − un‖2, 34
+ ‖D(u − un)‖2, 54

≤ C . (5.8)

Proof. The solution of (5.7) is given by

u(x, t) = ∂x

∫ t

0

ds

∫ ∞

−∞
dy

e−
(x−y)2

4(t−s)

√
4π(t − s)

e−
(y−2σs)2

4(1+s)

√
4π(1 + s)

3
2− 1

2n

. (5.9)

To motivate our result, we note that performing the y-integration and changing variables from s to ξ ≡ 2s−σx√
1+t

in (5.9)
leads to

lim
t→∞

(1 + t)1−
1

2n+1 u(−σz
√

1 + t, t) = lim
t→∞

σ2−1− 1
2n√

4π

∫ 2t√
1+t

+z

z

dξ ξe−
ξ2

4

(ξ−z+ 2√
1+t

)1−
1

2n
= σ2−1− 1

2n√
4π

fn(z) .

More formally, taking the Fourier transform of (5.9) gives

û(k, t) = ike−k2(1+t)

∫ t

0

ds
e2ikσs

(1 + s)1−
1

2n

.

We now use that
∣∣∣∣
∫ t

0

ds
e2ikσs

(1 + s)1−
1

2n

−
∫ t

0

ds
e2ikσs

s1− 1
2n

∣∣∣∣ ≤ C(n) ,

∫ t

0

ds
e2ikσs

s1− 1
2n

= |k|− 1
2n

(
θ(σk)Jn(|k|t) + θ(−σk)Jn(|k|t)

)
,

17



where θ(k) is the Heaviside step function and we defined

Jn(z) =

∫ z

0

ds
e2is

s1− 1
2n

for z ≥ 0. This function satisfies

sup
z≥0

z1− 1
2n |Jn(z) − Jn,∞| ≤ 1

2
for Jn,∞ = lim

z→∞
Jn(z) .

Now define

ûn(k, t) = ike−k2(1+t)|k|− 1
2n

(
θ(σk)Jn,∞ + θ(−σk)Jn,∞

)
. (5.10)

We have

|û(k, t) − ûn(k, t)| ≤ (C(n)|k| + t−1+ 1
2n )e−k2(1+t) ≤ (C(n)|k| + t−

1
2 )e−k2(1+t) , (5.11)

from which (5.8) follows by direct integration. We complete the proof by showing that the inverse Fourier transform
of the function ûn(k, t) defined in (5.10) satisfies

un(x, t) = σ

(1+t)
1− 1

2n+1

2−1− 1
2n√

4π
fn( −σx√

1+t
) for fn(z) =

∫ ∞

z

dξ
ξe−

ξ2

4

(ξ − z)1−
1

2n

. (5.12)

This follows easily from the fact that

ûn(k, t) = (1 + t)−
1
2+ 1

2n+1 ûn(k
√

1 + t, 0) ,

and that, since

fn(z) =

∫ ∞

0

dξ
(z + ξ)e−

(z+ξ)2

4

ξ1− 1
2n

,

we get

σ2−1− 1
2n√

4π
f̂n(−σk) = 2−

1
2n ike−k2

∫ ∞

0

dξ
eikσξ

ξ1− 1
2n

= ike−k2 |k|− 1
2n

∫ ∞

0

dξ
e2isign(kσ)ξ

ξ1− 1
2n

= ike−k2 |k|− 1
2n

(
θ(kσ)Jn,∞ + θ(−kσ)Jn,∞

)
= ûn(k, 0)

as claimed.

Proposition 16 Let σ = ±1, 1 ≤ n < ∞ and ρ(x) =
√

1 + x2. The solution u of

∂tu = ∂2
xu + ∂2

xB , u(x, 0) = 0 , (5.13)

with B defined in (5.6) satisfies

‖u‖2,34
? + ‖Du‖2, 54

? ≤ C

(
‖D3F‖1 +

2∑

m=0

‖ρDmF‖1 +

2∑

m=1

‖DmF‖2

)
(5.14)

for all F for which the r.h.s. of (5.14) is finite.

Proof. We first note that the Fourier transform of u is given by

û(k, t) = −k2

∫ t

0

ds e−k2(t−s)−2ikσsF̂ (k
√

1 + s)(1 + s)
1

2n − 1
2 ,

18



which implies

‖(1 − Q)u‖2, 34
+ ‖(1− Q)Du‖2, 54

≤ C
(
‖DF‖2 + ‖D2F‖2

)
sup

0≤t≤1

∫ t

0

ds√
t − s

.

Here Q is again defined as the characteristic function for t ≥ 1. Next, integrating by parts, we find

û(k, t) =
ikF̂ (k)e−k2t

2σ
− ikF̂ (k

√
1 + t)e−2ikσt

2σ(1 + t)
1
2− 1

2n

+ N̂(k, t)

where N̂(k, t) =
ik

2σ

∫ t

0

ds e−k2(t−s)−2ikσs
(
k2 + ∂s

)(
F̂ (k

√
1 + s)

(1 + s)
1
2− 1

2n

)
.

We then note that

‖u − N‖2, 34
+ ‖D(u − N)‖2, 54

≤ C
(
‖F‖1 + ‖DF‖2 + ‖D2F‖2

)
,

and that, defining Ĝ(k) = 1
2∂kF̂ (k), we have N̂(k, t) = N̂0(k, t) + N̂1(k, t) + N̂2(k, t), where

N̂0(k, t) =
ik3

2σ

∫ t

0

ds e−k2(t−s)−2ikσs

(
F̂ (k

√
1 + s)

(1 + s)
1
2− 1

2n

)
,

N̂1(k, t) =
ik2

2σ

∫ t

0

ds e−k2(t−s)−2ikσs

(
Ĝ(k

√
1 + s)

(1 + s)1−
1

2n

)
,

N̂2(k, t) =
ik

2σ

(
1
2n − 1

2

)∫ t

0

ds e−k2(t−s)−2ikσs

(
F̂ (k

√
1 + s)

(1 + s)
3
2− 1

2n

)
.

The procedure is now similar to that outlined in the proof of Theorem 6: split the integration intervals into [0, t
2 ] and

[ t
2 , t] and distribute the derivatives (k-factors) either on the functions F and G, or on the Gaussian. Introducing the

notation

B1

[p1,q1

p2,q2

]
(t) ≡

∫ t
2

0

ds
(1 + s)−q1

(t − s)p1
+

∫ t

t
2

ds
(1 + s)−q2

(t − s)p2
, (5.15)

we then find that

‖QDαN0‖2, 3
4+ α

2
≤ C(‖F‖1 + ‖D2+αF‖1) sup

t≥1
t

3
4+ α

2 B1

[ 7
4+ α

2 ,0
3
4 ,1+ α

2

]
(t) ,

‖QDαN1‖2, 3
4+ α

2
≤ C(‖G‖1 + ‖D1+αG‖1) sup

t≥1
t

3
4 +α

2 B1

[ 5
4+ α

2 , 1
2

3
4 ,1+ α

2

]
(t) ,

‖QDαN2‖2, 34+ α
2

? ≤ C(‖F‖1 + ‖DαF‖1) sup
t≥1

t
3
4 +α

2

ln(2 + t)
B1

[ 3
4+ α

2 ,1
3
4 ,1+ α

2

]
(t)

for α = 0, 1. The proof is completed by a straightforward application of Lemma 18 below, where we consider
generalizations of the function B1 in (5.15) , since those will occur later on in Sections 6 and 7 (see Definition 17
below).

6 Proof of Theorem 6, continued

In view of the estimates (2.6) and (2.8) on eLt and h, respectively, the estimates needed to conclude the proof of
Theorem 6 will naturally involve the functions B0 and B which are defined as follows:
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Definition 17 We define

B0[q](t) =

∫ t

0

ds
e−

t−s
8√

t − s(1 + s)q
,

B
[p1,q1,r1

p2,q2,r2,r3

]
(t) =

∫ t
2

0

ds
(1 + s)−q1

(t − s)p1(t − 1 + s)r1
+

∫ t

t
2

ds
(1 + s)−q2 ln(2 + s)r3

(t − s)p2(t − 1 + s)r2
. (6.1)

These functions satisfy the following estimates:

Lemma 18 Let 0 ≤ p2 < 1, 0 ≤ r2 ≤ 1 − p2, p1, q1, q2, r1 ≥ 0 and r3 ∈ {0, 1}. There exists a constant C such that
for all t ≥ 0 there holds

B0[q1](t) ≤ C(1 + t)−q1 ,

B
[p1,q1,r1

p2,q2,r2,r3

]
(t) ≤ C ln(2 + t)α

{
1

(1+t)β if 0 ≤ p1 ≤ 1
1

tp1−1 (1+t)β−p1+1 if p1 > 1
, (6.2)

where β = min(p1 +min(q1 − 1, 0)+ r1, p2 + q2 + r2 − 1), α = max(δq1,1, δp2+r2,1 + r3) and δi,j is the Kronecker
delta. Furthermore, since

B1

[p1,q1

p2,q2

]
(t) = B

[p1,q1,0

p2,q2,0,0

]
(t) ,

the estimate in (6.2) applies for B1 as well.

Proof. The proof follows immediately from

B0[q1](t) ≤ e−
t
16

∫ t
2

0

ds√
t − s

+
1

( t
2 + 1)q1

∫ t
2

0

ds
e−

s
8√
s

,

B
[p1,q1,r1

p2,q2,r2,r3

]
(t) ≤ 1

( t
2 )p1( t

2 + 1)r1

∫ t
2

0

ds

(1 + s)q1
+

ln(2 + t)r3

( t
2 + 1)q2

∫ t
2

0

ds

sp2(1 + s)r2

and straightforward integrations.

We can now complete the proof of Theorem 6.

Proof of Theorem 6, continued.

First, we recall that our goal is to prove that the map N defined by

N [z](t) =

∫ t

0

ds eL(t−s)
( 0
∂xh(z(s))

)
(6.3)

satisfies ‖N [z]‖ ≤ C for all z ∈ B with ‖z‖ = 1. We have already proved that ‖PDN [z]‖2, 3
4
≤ C. The other

necessary estimates are done as follows:

‖N̂ [z]‖∞,0 ≤ C sup
t≥0

B1

[ 1
2 , 12
1
2 , 12

]
(t) ≤ C ,

‖N [z]‖2, 1
4
≤ C sup

t≥0
(1 + t)

1
4 B1

[ 1
2 , 34
1
2 , 34

]
(t) ≤ C ,

‖PDN [z]‖2, 3
4
≤ C sup

t≥0
(1 + t)

3
4 B1

[ 1, 34
1
2 , 54

]
(t) ≤ C ,
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‖(1 − P)DN [z]‖2, 3
4
≤ sup

t≥0
(1 + t)

3
4 B0[

5
4 ](t) ≤ C ,

‖(1 − Q)PD2N [z]2‖2, 54
? ≤ C‖(1 − Q)PDN [z]2‖2, 34

≤ C‖PDN [z]2‖2, 3
4
≤ C , (6.4)

‖QPD2N [z]2‖2, 54
? ≤ C sup

t≥1

(1+t)
5
4

ln(2+t) B
[ 3

2 , 3
4 ,0

1
2 , 5

4 , 12 ,0

]
(t) ≤ C , (6.5)

‖(1 − P)D2N [z]2‖2, 54
? ≤ sup

t≥0
(1 + t)

5
4 B0[

5
4 ](t) ≤ C . (6.6)

In (6.4), we used the obvious estimates ‖PDf‖2 ≤ ‖Pf‖2 and ‖(1 − Q)f‖2,p ≤ 2p−q‖(1 − Q)f‖2,q if q < p, while
in (6.5), we made use of sup

|k|≤1,t≥0

|k|
√

1 + te−k2t ≤ 1, and finally in (6.6) we used supk∈R
|k|(1 + k2)−

1
2 = 1.

Incidentally, (6.6) is the only place in the above estimates where the (crucial) presence of the extra factor (1 + k2)−
1
2

in the second component of the r.h.s. of (2.6) is used. This concludes the proof of Theorem 6.

7 Remainder estimates

We now make precise the sense in which the semigroup eLt is close to that of (2.3), whose Fourier transform is given
by

eL0t ≡
(

e−k2t+ikt 0

0 e−k2t−ikt

)
. (7.1)

Lemma 19 Let P be the Fourier multiplier with the characteristic function on [−1, 1], and let eLt resp. eL0t be as in
(2.2), resp. (7.1) and S be as in (2.4). Then one has the estimates

sup
t≥0,k∈R

√
1 + te

k2t
2

∣∣∣∣
(

PSeLt − eL0tS
)

i,j

∣∣∣∣ ≤ C , (7.2)

where (PSeLt − eL0tS)i,j denotes the (i, j)-entry in the matrix PSeLt − eL0tS.

Proof. The proof follows by considering separately |k| ≤ 1 and |k| > 1. We first rewrite

PSeLt − eL0tS = P
(
SeLt − eL0tS

)
+ (1 − P)eL0tS .

We then have

sup
t≥0,k∈R

√
1 + te

k2t
2

∣∣∣∣
(

(1 − P)eL0tS
)

i,j

∣∣∣∣ ≤ sup
t≥0,|k|≥1

√
1 + te−

k2t
2 ≤ C .

For |k| ≤ 1, we first compute

eL0tS = e−k2t

(
eikt eikt

e−ikt −e−ikt

)
,

SeLt = e−k2t


cos(kt∆) + 1−ik

∆ i sin(kt∆) cos(kt∆) + 1+ik
∆ i sin(kt∆)

cos(kt∆) − 1+ik
∆ i sin(kt∆) −(cos(kt∆) − 1−ik

∆ i sin(kt∆))


 ,

where we recall that ∆ =
√

1 − k2. We next note that

P| sin(kt∆) − sin(kt)| + P| cos(kt∆) − cos(kt)| ≤ P| cos(kt(∆ − 1)) − 1| + P| sin(kt(∆ − 1))|
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≤ P|
√

1− k2 − 1| |k|t ≤ P|k|3t ,

P|( 1
∆ − 1) sin(kt∆)| ≤ P|

√
1− k2 − 1| |k|t ≤ P|k|3t .

The proof is completed noting that

sup
|k|≤1,t≥0

t
m
2 |k|ne−

k2t
2 ≤ C(n)

for any (finite) 0 ≤ m ≤ n.

We are now in a position to prove that the remainder

R[z](t) =
(
SeLt − eL0tS

)
z0 +

∫ t

0

ds

[
SeL(t−s)

(
0

∂xh(z(s))

)
− eL0(t−s)S

(
0

∂xg0(z(s))

)]

satisfies improved estimates as stated in (3.5):

Theorem 20 Let ε0 be again the (small) constant provided by Theorem 6. Then for all z0 ∈ B0 with |z0| ≤ ε0, the
solution z of (1.1) satisfies

‖R[z]‖2, 3
4

? + ‖DR[z]‖2, 5
4

? ≤ Cε0 . (7.3)

Proof. We first note that
(
SeLt − eL0tS

)
z0 =

(
SPeLt − eL0tS

)
z0 + S(1 − P)eLt

z0 ≡ L1[z0](t) + L2[z0](t) ,

and then use the fact that by Lemma 19, we have

‖DαL1[z0]‖2, 3
4+ α

2
≤ C sup

t≥0
(1 + t)

1
4+ α

2 min
(
‖Dα

z0‖2 , t−
1
4−α

2 ‖ẑ0‖∞
)
≤ C|z0|

for α = 0, 1 and finally

‖L2[z0]‖2, 3
4

+ ‖DL2[z0]‖2, 54
≤ C(‖z0‖2 + ‖Dz0‖2) sup

t≥0
(1 + t)

5
4 e−

t
4 ≤ C|z0| .

This proves

‖
(
SeLt − eL0tS

)
z0‖2, 34

+ ‖D
(
SeLt − eL0tS

)
z0‖2, 54

≤ C|z0|

for all z0 ∈ B0. We then show that

‖R[z](t) −
(
SeLt − eL0tS

)
z0‖2, 34

? + ‖D
(
R[z](t) −

(
SeLt − eL0tS

)
z0

)
‖2, 54

? ≤ C‖z‖2

for all z ∈ B. We only need to prove the estimates for ‖z‖ = 1. We first decompose

R[z](t) −
(
SeLt − eL0tS

)
z0 = SN1[z](t) + SN2[z](t) + N3[z](t) , (7.4)

where

N1[z](t) = (1 − P)

∫ t

0

ds eL(t−s)
(

0
∂xh(z(s))

)
,

N2[z](t) = P

∫ t

0

ds eL(t−s)
(

0
∂xh(z(s)) − ∂xg0(z(s))

)
,
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N3[z](t) =

∫ t

0

ds
(

PSeL(t−s) − eL0(t−s)S
)(

0
∂xg0(z(s))

)
.

We then recall that h(z) satisfies

‖h(z)‖2, 3
4

+ ‖Dh(z)‖2, 5
4
≤ C‖z‖2 ,

which implies

‖N1[z]‖2, 3
4
≤ C sup

t≥0
(1 + t)

3
4 B0[

3
4 ](t) ≤ C , ‖DN1[z]‖2, 5

4
≤ C sup

t≥0
(1 + t)

5
4 B0[

5
4 ](t) ≤ C .

Moreover h0(a, b) ≡ f(a, b)∂xb + g(a, b) − g0(a, b) satisfies

‖h0(z)‖1,1 + ‖Dh0(z)‖1, 3
2

? ≤ C‖z‖2 .

Here, we need to consider separately t ∈ [0, 1] and t ≥ 1 when estimating ‖PDN2[z]‖2, 5
4

? . Writing again Q for the
characteristic function for t ≥ 1, we find

‖PN2[z]‖2, 3
4

? ≤ C sup
t≥0

(1+t)
3
4

ln(2+t)B1

[ 3
4 ,1
3
4 ,1

]
(t) ≤ C ,

‖(1− Q)PDN2[z]‖2, 5
4

? ≤ C sup
0≤t≤1

(1 + t)
5
4 B1

[ 3
4 , 3

2
3
4 , 3

2

]
(t) ≤ C ,

‖QPDN2[z]‖2, 5
4

? ≤ C sup
t≥1

(1+t)
5
4

ln(2+t) B
[ 5

4 ,1,0
3
4 , 32 ,0,1

]
(t) ≤ C .

We finally note that

‖g0(z)‖2, 3
4

+ ‖Dg0(z)‖2, 5
4
≤ C‖z‖2 ,

and so, using Lemma 19, we find

‖N3[z]‖2, 3
4

? ≤ sup
t≥0

(1+t)
3
4

ln(2+t) B
[ 1

2 , 34 , 12
1
2 , 34 , 12 ,0

]
(t) ≤ C ,

‖DN3[z]‖2, 5
4

? ≤ sup
t≥0

(1+t)
5
4

ln(2+t) B
[ 1, 34 , 12

1
2 , 54 , 12 ,0

]
(t) ≤ C .

This completes the proof.

It now only remains to prove the estimates (3.13) and (3.14) on the maps R̃{u,v}, where we recall that

R̃u[z,RN ](t) = c+E0[h1,u + h3,u](t) − c−E−2[h1,v + h3,v](t) + c3E−1[h2 + h4](t) ,

R̃v [z,RN ](t) = c−E0[h1,v + h3,v](t) − c+E2[h1,u + h3,u](t) − c3E1[h2 + h4](t) ,

with

Eσ[h](t) = ∂x

∫ t

0

ds e∂2
x(t−s) T σh(s) and

h1,u = RN
u (u + u?) , h3,u = u2

1 , h2 = (T RN
u )T −1

(v + v?

2

)
+ (T −1RN

v )T
(u + u?

2

)

h1,v = RN
v (v + v?) , h3,v = v2

1 , h4 = (T u?)(T −1v?) .

Here, we will only prove that

1∑

α=0

‖DαR̃{u,v}[z,R
N ]‖2, 3

4+ α
2 −ε ≤ Cε0

1∑

α=0

‖Dα
R

N‖2, 34 + α
2 −ε + C . (7.5)
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It is then straightforward to show (3.14), namely that the maps R̃{u,v} are Lipschitz in their second argument; we omit
the details.

To prove (7.5), we first need estimates on h1 = (h1,u, h1,v), h2, h3 = (h3,u, h3,v) and h4. We note that u0 = (u0, v0)
and u1 = (u1, v1) satisfy

‖u0‖1,0 + ‖u1‖1,0 + ‖Du0‖1, 12
+ ‖Du1‖1, 12

≤ C ,

sup
t≥0

(1 + t)
3
2

(
|u0(±t, t)| + |u1(±t, t)|

)
+ (1 + t)2

(
|Du0(±t, t)| + |Du1(±t, t)|

)
≤ C

for some constant C; see Proposition 12. We thus find that

‖h1‖1,1−ε + ‖Dh1‖1, 32−ε + ‖h2‖1,1−ε + ‖Dh2‖1, 3
2−ε ≤ Cε0

1∑

α=0

‖Dα
R

N‖2, 3
4+ α

2 −ε ,

‖h3‖1,1 + ‖Dh3‖1, 3
2

+ ‖h4‖1, 32
+ ‖Dh4‖2,2 ≤ C .

(7.6)

The proof of (7.5) then follows from Proposition 21, which implies that

1∑

α=0

‖DαEσ[h1]‖2, 34+ α
2 −ε + ‖DαEσ [h2]‖2, 34+ α

2 −ε ≤ Cε0

1∑

α=0

‖Dα
R

N‖2, 34+ α
2 −ε ,

1∑

α=0

‖DαEσ[h3]‖2, 3
4+ α

2
? + ‖DαEσ [h4]‖2, 34+ α

2
? ≤ C

for any σ ∈ {−2,−1, 0, 1, 2} if the estimates in (7.6) are satisfied.

Proposition 21 Let ε > 0 and σ ∈ {−2,−1, 0, 1, 2}. Then there holds

1∑

α=0

‖DαEσ[h1]‖2, 3
4+ α

2 −ε ≤ C

1∑

α=0

‖Dαh1‖1,1+ α
2 −ε ,

1∑

α=0

‖DαEσ[h2]‖2, 3
4+ α

2
? ≤ C

1∑

α=0

‖Dαh2‖1,1+ α
2

.

Proof. Let ui = Eσ[hi]. Taking the Fourier transform, we find

ûi(k, t) = ik

∫ t

0

ds e−k2(t−s)+iσksĥi(k, s) .

We can restrict ourselves to
∑1

α=0 ‖Dαh1‖1,1+ α
2
−ε = 1 and

∑1
α=0 ‖Dαh2‖1,1+ α

2
= 1. Then, it follows that

‖Dαu1‖2, 3
4+ α

2 −ε ≤ C sup
t≥0

(1 + t)
3
4+ α

2 −ε B1

[ 3
4+ α

2 ,1−ε
3
4 ,1+ α

2 −ε

]
(t) ≤ C ,

‖Dαu2‖2, 3
4
+ α

2
? ≤ C sup

t≥0

(1+t)
3
4
+ α

2

ln(2+t) B1

[ 3
4+ α

2 ,1
3
4 ,1+ α

2

]
(t) ≤ C

for α = 0, 1 as claimed.
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