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NONLINEAR OPTIMAL CONTROL VIA OCCUPATION

MEASURES AND LMI-RELAXATIONS

JEAN B. LASSERRE, DIDIER HENRION, CHRISTOPHE PRIEUR,

AND EMMANUEL TRÉLAT

Abstract. We consider the class of nonlinear optimal control problems (OCP)
with polynomial data, i.e., the differential equation, state and control con-
straints and cost are all described by polynomials, and more generally for
OCPs with smooth data. In addition, state constraints as well as state and/or
action constraints are allowed. We provide a simple hierarchy of LMI (lin-
ear matrix inequality)-relaxations whose optimal values form a nondecreasing
sequence of lower bounds on the optimal value. Under some convexity assump-
tions, the sequence converges to the optimal value of the OCP. Preliminary
results show that good approximations are obtained with few moments.

1. INTRODUCTION

Solving a general nonlinear optimal control problem (OCP) is a difficult chal-
lenge, despite powerful theoretical tools are available, e.g. the maximum principle
and Hamilton-Jacobi-Bellman (HJB) optimality equation. The problem is even
more difficult in the presence of state and/or control constraints. State constraints
are particularly difficult to handle, and the interested reader is referred to Capuzzo-
Dolcetta and Lions [7] and Soner [39] for a detailed account of HJB theory in the
case of state constraints. There exist many numerical methods to compute the so-
lution of a given optimal control problem; for instance, multiple shooting techniques
which solve two-point boundary value problems as described, e.g., in [40, 34], or
direct methods, as, e.g., in [41, 12, 13], which use, among others, descent or gradient-
like algorithms. To deal with optimal control problems with state constraints, some
adapted versions of the maximum principle have been developed (see [25, 32], and
see [14] for a survey of this theory), but happen to be very hard to implement in
general.

On the other hand, the OCP can be written as an infinite-dimensional linear
program (LP) over two spaces of measures. This is called the weak formulation of
the OCP in Vinter [44] (stated in the more general context of differential inclusions).
The two unknown measures are the state-action occupation measure (o.m.) up to
the final time T , and the state o.m. at time T . The optimal value of the resulting
LP always provides a lower bound on the optimal value of the OCP, and under
some convexity assumptions, both values coincide; see Vinter [44] and Hernandez-
Hernandez et al. [23] as well.
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The dual of the original infinite dimensional LP has an interpretation in terms of
”subsolutions” of related HJB-like optimality conditions, as for the unconstrained
case. The only difference with the unconstrained case is the underlying function
space involved, which directly incorporate the state constraints. Namely, the func-
tions are only defined on the state constraint set .

An interesting feature of this LP approach with o.m.’s is that state constraints,
as well as state and/or action constraints are all easy to handle; indeed they simply
translate into constraints on the supports of the unknown o.m.’s. It thus provides
an alternative to the use of maximum principles with state constraints. However,
although this LP approach is valid for any OCP, solving the corresponding (infinite-
dimensional) LP is difficult in general; however, general LP approximation schemes
based on grids have been proposed in e.g. Hernandez and Lasserre [21].

This LP approach has also been used in the context of discrete-time Markov
control processes, and is dual to Bellman’s optimality principle. For more details the
interested reader is referred to Borkar [4], Hernandez-Lerma and Lasserre [18, 19, 22]
and many references therein. For some continuous-time stochastic control problems
(e.g., modeled by diffusions) and optimal stopping problems, the LP approach has
also been used with success to prove existence of stationary optimal policies; see for
instance Cho and Stockbridge [8], Helmes and Stockbridge [15], Helmes et al. [16],
Kurtz and Stockbridge [27], and also Fleming and Vermes [11]. In some of these
works, the moment approach is also used to approximate the resulting infinite-
dimensional LP.

Contribution. In this paper, we consider the particular class of nonlinear
OCP’s with state and/or control constraints, for which all data describing the prob-
lem (dynamics, state and control constraints) are polynomials. The approach also
extends to the case of problems with smooth data and compact sets, because poly-
nomials are dense in the space of functions considered; this point of view is detailed
in §4. In this restricted polynomial framework, the LP approach has interesting ad-
ditional features that can be exploited for effective numerical computation. Indeed,
what makes this LP approach attractive is that for the class of OCPs considered:

• Only the moments of the o.m.’s appear in the LP formulation, so that we
already end up with countably many variables, a significant progress.

• Constraints on the support of the o.m.’s translate easily into either LP or SDP
(Semi Definite Programming) necessary constraints on their moments. Even more,
for (semi-algebraic) compact supports, relatively recent powerful results from real
algebraic geometry make these constraints also sufficient.

• When truncating to finitely many moments, the resulting LP or SDP’s are
solvable and their optimal values form a monotone nondecreasing sequence (indexed
by the number of moments considered) of lower bounds on the optimal value of the
LP (and thus of the OCP).

Therefore, based on the above observations, we propose an approximation of the
optimal value of the OCP via solving a hierarchy of SDPs (or linear matrix inequal-
ities, LMIs)that provides a monotone nondecreasing sequence of lower bounds on
the optimal value of the weak LP formulation of the OCP. In adddition, under some
compactness assumption of the state and control constraint sets, the sequence of
lower bounds is shown to converge to the optimal value of the LP, and thus the
optimal value of the OCP when the former and latter are equal.
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As such, it could be seen as a complement to the above shooting or direct meth-
ods, and when the sequence of lower bounds converges to the optimal value, a test
of their efficiency. Finally this approach can also be used to provide a certificate of
unfeasibility. Indeed, if in the hierarchy of LMI-relaxations of the minimum time
OCP, one is infeasible then the OCP itself is infeasible. It turns out that some-
times this certificate is provided at an early stage in the hierarchy, i.e. with very
few moments. This is illustrated on two simple examples.

In a pioneering paper, Dawson [10] had suggested the use of moments in the LP
approach with o.m.’s, but results on the K-moment problem by Schmüdgen [38] and
Putinar [37] were either not available at that time. Later, Helmes and Stockbridge
[15] and Helmes, Röhl and Stockbridge [16] have used LP moment conditions for
computing some exit time moments in some diffusion model, whereas for the same
models, Lasserre and Prieto-Rumeau [29] have shown that SDP moment conditions
are superior in terms of precision and number of moments to consider; in [30],
they have extended the moment approach for options pricing problems in some
mathematical finance models. More recently, Lasserre, Prieur and Henrion [31]
have used the o.m. approach for minimum time OCP without state constraint.
Preliminary experimental results on Brockett’s integrator example, and the double
integrator show fast convergence with few moments.

2. Occupation measures and the LP approach

2.1. Definition of the optimal control problem. Let n and m be nonzero
integers. Consider on R

n the control system

(2.1) ẋ(t) = f(t, x(t), u(t)),

where f : [0, +∞)×R
n×R

m −→ R
n is smooth, and where the controls are bounded

measurable functions, defined on intervals [0, T (u)] of R
+, and taking their values

in a compact subset U of R
m. Let x0 ∈ R

n, and let X and K be compact subsets
of R

n. For T > 0, a control u is said admissible on [0, T ] whenever the solution x(·)
of (2.1), such that x(0) = x0, is well defined on [0, T ], and satisfies

(2.2) (x(t), u(t)) ∈ X × U a.e. on [0, T ],

and

(2.3) x(T ) ∈ K.

Denote by UT the set of admissible controls on [0, T ].
For u ∈ UT , the cost of the associated trajectory x(·) is defined by

(2.4) J(0, T, x0,u) =

∫ T

0

h(t, x(t), u(t))dt + H(x(T )),

where h : [0, +∞)× R
n × R

m −→ R and H : R
n → R are smooth functions.

Consider the optimal control problem of determining a trajectory solution of
(2.1, starting from x(0) = x0, satisfying the state and control constraints (2.2), the
terminal constraint (2.3), and minimizing the cost (2.4). The final time T may be
fixed or not.

If the final time T is fixed, we set

(2.5) J∗(0, T, x0) := inf
u∈UT

J(0, T, x0,u),
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and if T is free, we set

(2.6) J∗(0, x0) := inf
T>0, u∈UT

J(0, T, x0,u),

Note that a particular OCP is the minimal time problem from x0 to K, by letting
h ≡ 1, H ≡ 0. In this particular case, the minimal time is the first hitting time of
the set K.

It is possible to associate a stochastic or deterministic OCP with an abstract
infinite dimensional linear programming (LP) problem P together with its dual
P∗ (see for instance Hernández-lerma and Lasserre [18] for discrete-time Markov
control problems, and Vinter [44], Hernandez et al. [23] for deterministic optimal
control problems, as well as many references therein). We next describe this LP
approach in the present context.

2.2. Notations and definitions. For a topological space X , let M(X ) be the
Banach space of finite signed Borel measures on X , equipped with the norm of
total variation, and denote by M(X )+ its positive cone, that is, the space of finite
measures on X . Let C(X ) be the Banach space of bounded continuous functions on
X , equipped with the sup-norm. Notice that when X is compact Hausdorff, then
M(X ) ≃ C(X )∗, i.e., M(X ) is the topological dual of C(X ).

Let Σ := [0, T ]×X, S := Σ×U, and let C1(Σ) be the Banach space of functions
ϕ ∈ C(Σ) that are continuously differentiable. For ease of exposition we use the
same notation g (resp. h) for a polynomial g ∈ R[t, x] (resp. h ∈ R[x]) and its
restriction to the compact set Σ (resp. K).

Next, with u ∈ U, let A : C1(Σ) → C(S) be the mapping

(2.7) ϕ 7→ Aϕ(t, x, u) :=
∂ϕ

∂t
(t, x) + 〈f(t, x, u),∇xϕ(t, x)〉.

Notice that ∂ϕ/∂t + 〈∇xϕ, f〉 ∈ C(S) for every ϕ ∈ C1(Σ), because both X and U

are compact, and f is understood as its restriction to S.
Next, let L : C1(Σ) → C(S) × C(K) be the linear mapping

(2.8) ϕ 7→ Lϕ := (−Aϕ, ϕT ),

where ϕT (x) := ϕ(T, x), for all x ∈ X. Obviously, L is continuous with respect to
the strong topologies of C1(Σ) and C(S) × C(K).

Both (C(S),M(S)) and (C(K),M(K)) form a dual pair of vector spaces, with
duality brackets

〈h, µ〉 =

∫

h dµ, ∀ (h, µ) ∈ C(S) ×M(S),

and

〈g, ν〉 =

∫

g dν, ∀ (g, ν) ∈ C(K) ×M(K)

.
Let L∗ : M(S) × M(K) → C1(Σ)∗ be the adjoint mapping of L, defined by

(2.9) 〈(µ, ν),Lϕ〉 = 〈L∗(µ, ν), ϕ〉,

for all ((µ, ν), ϕ) ∈ M(S) × M(K) × C1(Σ).

Remark 2.1. (i) The mapping L∗ is continuous with respect to the weak topolo-
gies σ(M(S) ×M(K), C(S) × C(K)), and σ(C1(Σ)∗, C1(Σ)).
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(ii) Since the mapping L is continuous in the strong sense, it is also continu-
ous with respect to the weak topologies σ(C1(Σ), C1(Σ)∗) and σ(C(S) ×
C(K),M(S) ×M(K)).

(iii) In the case of a free terminal time T ≤ T0, it suffices to redefine L :
C1(Σ) → C(S) × C([0, T0] × K) by Lϕ := (−Aϕ, ϕ). The operator L∗ :
M(S)×M([0, T0]×K) → C1(Σ)∗ is still defined by (2.9), for all ((µ, ν), ϕ) ∈
M(S) × M([0, T0] × K) × C1(Σ).

For time-homogeneous free terminal time problems, one only needs func-
tions ϕ of x only, and so Σ = S = X×U and L : C1(Σ) → C(S) × C(K).

2.3. Occupation measures and primal LP formulation. Let T > 0, and let
u = {u(t), 0 ≤ t < T } be a control such that the solution of (2.1), with x(0) = x0,
is well defined on [0, T ]. Define the probability measure νu on R

n, and the measure
µu on [0, T ]× R

n × R
m, by

νu(D) := ID [x(T )], D ∈ Bn,(2.10)

µu(A × B × C) :=

∫

[0,T ]∩A

IB×C [(x(t), u(t))] dt,(2.11)

for all rectangles (A×B ×C), with (A, B, C) ∈ A×Bn ×Bm, and where Bn (resp.
Bm) denotes the usual Borel σ-algebra associated with R

n (resp. R
m), and A the

Borel σ-algebra of [0, T ], and IB(•) the indicator function of the set B.
The measure µu is called the occupation measure of the state-action (determin-

istic) process (t, x(t), u(t)) up to time T , whereas νu is the occupation measure of
the state x(T ) at time T .

Remark 2.2. If the control u is admissible on [0, T ], i.e., if the trajectory x(·)
satisfies the constraints (2.2) and (2.3), then νu is a probability measure supported
on K (i.e. νu ∈ M(K)+), and µu is supported on [0, T ]×X×U (i.e. µu ∈ M(S)+).
In particular, T = µu(S).

Conversely, if the support of µu is contained in S = [0, T ] × X × U and if
µu(S) = T , then (x(t), u(t)) ∈ X × U for almost every t ∈ [0, T ]. Indeed, with
(2.11),

T =

∫ T

0

IX×U [(x(s), u(s))] ds

⇒ IX×U [(x(s), u(s))] = 1 a.e. in [0, T ],

and hence (x(t), u(t)) ∈ X×U, for almost every t ∈ [0, T ]. If moreover the support
of νu is contained in K, then x(T ) ∈ K. Therefore, u is an admissible control on
[0, T ].

Then, observe that the optimization criterion (2.5) now writes

J(0, T, x0,u) =

∫

K

H dνu +

∫

S

h dµu = 〈(µu, νu), (h, H)〉,

and one infers from (2.1), (2.2) and (2.3) that

(2.12)

∫

K

gT dνu − g(0, x0) =

∫

S

(

∂g

∂t
+ 〈∇xg, f〉

)

dµu,

for every g ∈ C1(Σ) (where gT (x) ≡ g(T, x) for every x ∈ K), or equivalently, in
view of (2.8) and (2.9),

〈g,L∗(µu, νu)〉 = 〈g, δ(0,x0)〉, ∀g ∈ C1(Σ).
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This in turn implies that
L∗(µu, νu) = δ(0,x0).

Therefore, consider the infinite-dimensional linear program P

(2.13) P : inf
(µ,ν)∈∆

{〈(µ, ν), (h, H)〉 | L∗(µ, ν) = δ(0,x0)}

(where ∆ := M(S)+ ×M(K)+). Denote by inf P its optimal value and minP is
the infimum is attained, in which case P is said to be solvable. The problem P is
said feasible if there exists (µ, ν) ∈ ∆ such that L∗(µ, ν) = δ(0,x0).

Note that P is feasible whenever there exists an admissible control.
The linear program P is a rephrasing of the OCP (2.1)–(2.5) in terms of the

occupation measures of its trajectories (t, x(t), u(t)). Its dual LP reads

(2.14) P∗ : sup
ϕ∈C1(Σ)

{〈δ(0,x0), ϕ〉 | Lϕ ≤ (h, H)}

where

Lϕ ≤ (h, H) ⇔

{

Aϕ(t, x, u) + h(t, x, u) ≥ 0 ∀(t, x, u) ∈ S

ϕ(T, x) ≤ H(x) ∀x ∈ K
.

Denote by supP∗ its optimal value and maxP∗ is the supremum is attained, i.e. if
P∗ is solvable.

Discrete-time stochastic analogues of the linear programs P and P∗ are also
described in Hernández-Lerma and Lasserre [18, 19] for discrete time Markov control
problems. Similarly see Cho and Stockbridge [8], Kurtz and Stockbridge [27], and
Helmes and Stcokbridge [16] for some continuous-time stochastic problems.

Theorem 2.3. If P is feasible, then:

(i) P is solvable, i.e., inf P = minP ≤ J(0, T, x0).
(ii) There is no duality gap, i.e., supP∗ = minP.
(iii) If moreover, for every (t, x) ∈ Σ, the set f(t, x,U) ⊂ R

n is convex, and the
function

v 7→ gt,x(v) := inf
u∈U

{ h(t, x, u) : v = f(t, x, u)}

is convex, then the OCP (2.1)–(2.5) has an optimal solution and

supP∗ = inf P = minP = J∗(0, T, x0).

For a proof see §5.4. Theorem 2.3(iii) is due to Vinter [44].

3. Semidefinite programming relaxations of P

The linear program P is infinite dimensional, and thus, not tractable as it
stands. Therefore, we next present a relaxation scheme that provides a sequence of
semidefinite programming, or linear matrix inequality relaxations (in short, LMI-
relaxations) {Qr}, each with finitely many constraints and variables.

Let R[x] = [x1, . . . xn] (resp. R[t, x, u] = R[t, x1, . . . xn, u1, . . . , um]) denote the
set of polynomial functions of the variable x (resp., of the variables t, x, u).

Assume that X and K (resp., U) are compact semi-algebraic subsets of R
n (resp.

of R
m), of the form

X := {x ∈ R
n | vj(x) ≥ 0, j ∈ J},(3.1)

K := {x ∈ R
n | θj(x) ≥ 0, j ∈ JT },(3.2)

U := {u ∈ R
m | wj(u) ≥ 0, j ∈ W},(3.3)
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for some finite index sets JT , J and W , where vj , θj and wj are polynomial func-
tions. Define

(3.4) d(X,K,U) := max
j∈J1, l∈J, k∈W

(deg θj , deg vl, deg wk).

To highlight the main ideas, in this section we assume that f , h and H are
polynomial functions, that is, h ∈ R[t, x, u], H ∈ R[x], and f : [0, +∞)×R

n×R
m →

R
n is polynomial, i.e., every component of f satisfies fk ∈ R[t, x, u], for k = 1, . . . , n.

3.1. The underlying idea. Observe the following important facts.
The restriction of R[t, x] to Σ belongs to C1(Σ). Therefore,

L∗(µ, ν) = δ(0,x0) ⇔ 〈g,L∗(µ, ν)〉 = g(0, x0), ∀g ∈ R[t, x],

because Σ being compact, polynomial functions are dense in C1(Σ) for the sup-
norm. Indeed, on a compact set, one may simultaneously approximate a function
and its (continuous) partial derivatives by a polynomial and its derivatives, uni-
formly (see [24] pp. 65-66). Hence, the linear program P can be written

P :

{

inf
(µ,ν)∈∆

{〈(µ, ν), (h, H)〉

s.t. 〈g,L∗(µ, ν)〉 = g(0, x0), ∀g ∈ R[t, x],

or, equivalently, by linearity,

(3.5) P :

{

inf
(µ,ν)∈∆

{〈(µ, ν), (h, H)〉

s.t. 〈Lg, (µ, ν)〉 = g(0, x0), ∀ g = (tp xα); (p, α) ∈ N × N
n.

The constraints of P,

(3.6) 〈Lg, (µ, ν)〉 = g(0, x0), ∀ g = (tp xα); (p, α) ∈ N × N
n,

define countably many linear equality constraints linking the moments of µ and ν,
because if g is polynomial then so are ∂g/∂t and ∂g/∂xk, for every k, and 〈∇xg, f〉.
And so, Lg is polynomial.

The functions h, H being also polynomial, the cost 〈(µ, ν), (h, H)〉 of the OCP
(2.1)–(2.5) is also a linear combination of the moments of µ and ν.

Therefore, the linear program P in (3.5) can be formulated as a LP with count-
ably many variables (the moments of µ and ν), and countably many linear equality
constraints. However, it remains to express the fact that the variables should be
moments of some measures µ and ν, with support contained in S and K respectively.

At this stage, one will make some (weak) additional assumptions on the poly-
nomials that define the compact semi-algebraic sets X,K and U. Under such
assumptions, one may then invoke recent results of real algebraic geometry on the
representation of polynomials positive on a compact set, and get necessary and
sufficient conditions on the variables of P to be indeed moments of two measures
µ and ν, with appropriate support. We will use Putinar’s Positivstellensatz [37]
described in the next section, which yields SDP constraints on the variables.

One might also use other representation results like e.g. Krivine [26] and Vasilescu
[43], and obtain linear constraints on the variables (as opposed to SDP constraints).
This is the approach taken in e.g. Helmes et al. [16]. However, a comparison of the
use of LP-constraints versus SDP constraints on a related problem [29] has dictated
our choice of the former.
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Finally, if g in (3.6) runs only over all monomials of degree less than r, one then
obtains a corresponding relaxation Qr of P, which is now a finite-dimensional SDP
that one may solve with public software packages. At last, one lets r → ∞.

3.2. Notations, definitions and auxiliary results. For a multi-index α =
(α1, . . . , αn) ∈ N

n, and for x = (x1, . . . , xn) ∈ R
n, denote xα := xα1

1 · · ·xαn
n . Con-

sider the canonical basis {xα}α∈Nn (resp., {tpxαuβ}p∈N,α∈Nn,β∈Nm) of R[x] (resp.,
of R[t, x, u]).

Given two sequences y = {yα}α∈Nn and z = {zγ}γ∈N×Nn×Nm of real numbers,
define the linear functional Ly : R[x] → R by

H(:=
∑

α∈Nn

Hαxα) 7→ Ly(H) :=
∑

α∈Nn

Hαyα,

and similarly, define the linear functional Lz : R[t, x, u] → R by

h 7→ Lz(h) :=
∑

γ∈N×Nn×Nm

hγ zγ =
∑

p∈N,α∈Nn,β∈Nm

hpαβ zpαβ,

where h(t, x, u) =
∑

p∈N,α∈Nn,β∈Nm hpαβ tpxαuβ.

Note that, for a given measure ν (resp., µ) on R (resp., on R ×R
n ×R

m), there
holds, for every H ∈ R[x] (resp., for every h ∈ R[t, x, u]),

〈ν, H〉 =

∫

R

Hdν =

∫

R

∑

Hαxαdν =
∑

Hαyα = Ly(H),

where the real numbers yα =
∫

xαdν are the moments of the measure ν (resp.,
〈µ, h〉 = Lz(h), where z is the sequence of moments of the measure µ).

Definition 3.1. For a given sequence z = {zγ}γ∈N×Nn×Nm of real numbers, the
moment matrix Mr(z) of order r associated with z, has its rows and columns
indexed in the canonical basis {tpxαuβ}, and is defined by

(3.7) Mr(z)(γ, β) = zγ+β, γ, β ∈ N × N
n × N

m, |γ|, |β| ≤ r,

where |γ| :=
∑

j γj . The moment matrix Mr(y) of order r associated with a given

sequence y = {yα}α∈Nn , has its rows and columns indexed in the canonical basis
{xα}, and is defined in a similar fashion.

Note that, if z has a representing measure µ, i.e., if z is the sequence of moments
of the measure µ on R×R

n ×R
m, then Lz(h) =

∫

hdµ, for every h ∈ R[t, x, u], and
if h denotes the vector of coefficients of h ∈ R[t, x, u] of degree less than r, then

〈h, Mr(z)h〉 = Lz(h
2) =

∫

h2 dµ ≥ 0.

This implies that Mr(z) is symmetric nonnegative (denoted Mr(z) � 0), for every
r. The same holds for Mr(y).

Conversely, not every sequence y that satisfies Mr(y) � 0 for every r, has a
representing measure. However, several sufficient conditions exist, and in particular
the following one, due to Berg [3].

Proposition 3.2. If y = {yα}α∈Nn satisfies |yα| ≤ 1 for every α ∈ N
n, and

Mr(y) � 0 for every integer r, then y has a representing measure on R
n, with

support contained in the unit ball [−1, 1]n.

We next present another sufficient condition which is crucial in the proof of our
main result.
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Definition 3.3. For a given polynomial θ ∈ R[t, x, u], written

θ(t, x, u) =
∑

δ=(p,α,β)

θδ tpxαuβ ,

define the localizing matrix Mr(θ z) associated with z, θ, and with rows and columns
also indexed in the canonical basis of R[t, x, u], by

(3.8) Mr(θ z)(γ, β) =
∑

δ

θδ zδ+γ+β γ, β ∈ N × N
n × N

m, |γ|, |β| ≤ r.

The localizing matrix Mr(θ y) associated with a given sequence y = {yα}α∈Nn is
defined similarly.

Note that, if z has a representing measure µ on R × R
n × R

m with support
contained in the level set {(t, x, u) : θ(t, x, u) ≥ 0}, and if h ∈ R[t, x, u] has degree
less than r, then

〈h, Mr(θ, z)h〉 = Lz(θ h2) =

∫

θh2 dµ ≥ 0.

Hence, Mr(θ z) � 0, for every r.
Let Σ2 ⊂ R[x] be the convex cone generated in R[x] by all squares of polynomials,

and let Ω ⊂ R
n be the compact basic semi-algebraic set defined by

(3.9) Ω := {x ∈ R
n | gj(x) ≥ 0, j = 1, . . . , m}

for some family {gj}
m
j=1 ⊂ R[x].

Definition 3.4. The set Ω ⊂ R
n defined by (3.9) satisfies Putinar’s condition if

there exists u ∈ R[x] such that u = u0 +
∑m

j=1 ujgj for some family {uj}
m
j=0 ⊂ Σ2,

and the level set {x ∈ R
n | u(x) ≥ 0} is compact.

Putinar’s condition is satisfied if e.g. the level set {x : gk(x) ≥ 0} is compact
for some k, or if all the gj’s are linear, in which case Ω is a polytope. In addition,
if one knows some M such that ‖x‖ ≤ M whenever x ∈ Ω, then it suffices to add
the redundant quadratic constraint M2 −‖x‖2 ≥ 0 in the definition (3.9) of Ω, and
Putinar’s condition is satisfied (take u := M2 − ‖x‖2).

Theorem 3.5 (Putinar’s Positivstellensatz [37]). Assume that the set Ω defined by
(3.9) satisfies Putinar’s condition.

(a) If f ∈ R[x] and f > 0 on Ω, then

(3.10) f = f0 +

m
∑

j=1

fj gj,

for some family {fj}
m
j=0 ⊂ Σ2.

(b) Let y = {yα}α∈Nn be a sequence of real numbers. If

(3.11) Mr(y) � 0 ; Mr(gj y) � 0, j = 1, . . . , m; ∀ r = 0, 1, . . .

then y has a representing measure with support contained in Ω.



10JEAN B. LASSERRE, DIDIER HENRION, CHRISTOPHE PRIEUR, AND EMMANUEL TRÉLAT

3.3. LMI-relaxations of P. Consider the linear program P defined by (3.5).
Since the semi-algebraic sets X,K and U defined respectively by (3.1), (3.2)

and (3.3) are compact, with no loss of generality, we assume (up to a scaling of the
variables x, u and t) that T = 1, X,K ⊆ [−1, 1]n and U ⊆ [−1, 1]m.

Next, given a sequence z = {zγ} indexed in the basis of R[t, x, u] denote z(t),
z(x) and z(u) its marginals with respect to the variables t, x and u, respectively.
These sequences are indexed in the canonical basis of R[t], R[x] and R[u] repectively.
For instance, writing γ = (k, α, β) ∈ N × N

n × N
n,

{z(t)} = {zk,0,0}k∈N; {z(x)} = {z0,α,0}α∈Nn ; {z(u)} = {z0,0,β}β∈Nm .

Let r0 be an integer such that 2r0 ≥ max (deg f, deg h, deg H, 2d(X,K,U)),
where d(X,K,U) is defined by (3.4). For every r ≥ r0, consider the LMI-relaxation

(3.12) Qr :















































inf
y,z

Lz(h) + Ly(H)

Mr(y), Mr(z) � 0
Mr−deg θj

(θj y) � 0, j ∈ J1

Mr−deg vj
(vj z(x)) � 0, j ∈ J

Mr−deg wk
(wk z(u)) � 0, k ∈ W

Mr−1(t(1 − t) z(t)) � 0
Ly(g1) − Lz(∂g/∂t + 〈∇xg, f〉) = g(0, x0), ∀g = (tpxα)
with p + |α| − 1 + deg f ≤ 2r

,

whose optimal value is denoted by inf Qr.

OCP with free terminal time. For the OCP (2.6), i.e., with free terminal time
T ≤ T0, we need adapt the notation because T is now a variable. As already men-
tioned in Remark 2.1(iii), the measure ν in the infinite dimensional linear program
P defined in (2.13), is now supported in [0, T0]×K (and [0, 1]×K after re-scaling)
instead of K previously. Hence, the sequence y associated with ν is now indexed in
the basis {tpxα} of R[t, x] instead of {xα} previously. Therefore, given y = {ykα}
indexed in that basis, let y(t) and y(x) be the subsequences of y defined by:

y(t) := {yk0}k, k ∈ N; ; y(x) = {y0α}, α ∈ N
n.

Then again (after rescaling), the LMI-relaxation Qr now reads

(3.13) Qr :



























































inf
y,z

Lz(h) + Ly(H)

Mr(y), Mr(z) � 0
Mr−r(θj)(θj y) � 0, j ∈ J1

Mr−r(vj)(vj z(x)) � 0, j ∈ J
Mr−r(wk)(wk z(u)) � 0, k ∈ W
Mr−1(t(1 − t) y(t)) � 0
Mr−1(t(1 − t) z(t)) � 0
Ly(g) − Lz(∂g/∂t + 〈∇xg, f〉) = g(0, x0), ∀g = (tpxα)
with p + |α| − 1 + deg f ≤ 2r

.

The particular case of minimal time problem is obtained with h ≡ 1, H ≡ 0.
For time-homogeneous problems, i.e., when h and f do not depend on t, one may

take µ (resp. ν) supported on X × U (resp. K), which simplifies the associated
LMI-relaxation (3.13).

The main result is the following.
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Theorem 3.6. Let X,K ⊂ [−1, 1]n, and U ⊂ [−1, 1]m be compact basic semi-
algebraic-sets respectively defined by (3.1), (3.2) and (3.3). Assume that X,K
and U satisfy Putinar’s condition (see Definition (3.4)), and let Qr be the LMI-
relaxation defined in (3.12). Then,

(i) inf Qr ↑ minP as r → ∞;
(ii) if moreover, for every (t, x) ∈ Σ, the set f(t, x,U) ⊂ R

n is convex, and the
function

v 7→ gt,x(v) := inf
u∈U

{ h(t, x, u) | v = f(t, x, u)}

is convex, then inf Qr ↑ minP = J∗(0, T, x0), as r → ∞.

The proof of this result is postponed to the Appendix in Section §5.5.

3.4. The dual Q∗
r. We describe the dual of the LMI-relaxation Qr which is also

a semidefinite program, denoted Q∗
r , and relate Q∗

r with the dual P∗ of P, defined
in (2.14).

Let s(r) be the cardinal of the set Vr := {(k, α) ∈ N × N
n | k + |α| ≤ r − r0},

and given λ ∈ R
s(r), let Λr ∈ R[t, x] be the polynomial

(t, x) 7→ Λr(t, x) :=
∑

(k,α)∈Vr

λkα tkxα.

Consider the semidefinite program:

(3.14) Q∗
r :







































































sup
q0,qx

j
,qy

k
,l0,lj ,Λr

Λr(0, x0),

h + AΛr = q0 t(1 − t) +
∑

k∈W qu
k wk +

∑

j∈J qx
j vj ,

H − Λr(1, .) = l0 +
∑

j∈J1
lj θj,

q0 ∈ R[t], qu
k ∈ R[u], qx

j ∈ R[x], lj ∈ R[x]

{q0, q
x
j , qu

k , l0, lj} s.o.s. (sums of squares polynomials), and
deg ljθj , deg qx

j vj , deg qu
kwk, deg q0 ≤ 2r − 2; deg l0 ≤ 2r.

.

The LMI Q∗
r is a reinforcement of P∗ in the following sense:

• the unknown function ϕ ∈ C1(Σ) is now replaced with a polynomial Λr ∈
R[t, x] of degree less than 2r;

• the constraint −Aϕ ≤ h for (t, x, u) ∈ S, is now replaced with the constraint
h + AΛr ≥ 0 on S and the polynomial h + AΛr ≥ 0 which is nonnegative
on S, has Putinar’s representation q0 t(1 − t) +

∑

k∈W qu
k wk +

∑

j∈J qx
j vj ;

• the constraint ϕ1 ≤ H for x ∈ K, is replaced with the constraint H −
Λr(1, .) ≥ 0 on K, and the polynomial H − Λr(1, .) which is nonnegative
on K, has Putinar’s representation l0 +

∑

j∈J1
lj θj .

Assume that Q∗
r is solvable. A natural question is to know whether or not we

can use an optimal solution

q0, q
x
j , qy

k , l0, lj , Λr
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of Q∗
r to obtain some information on an optimal solution of P. The most natural

idea is to look for the zero set in S of the polynomial

(t, x, u) 7→ q0 t(1 − t) +
∑

k∈W

qu
kwk +

∑

j∈J

qx
j vj .

Indeed, under the assumptions of Theorem 3.6, if supQ∗
r = inf Qr, then Λr(0, x0) ≈

inf Qr ≈ minP = supP∗, and so, the polynomial Λr ∈ R[t, x] seems to be a good
candidate to approximate a nearly optimal solution ϕ ∈ C1(Σ) of P∗.

Next, as Q∗
r is an approximation of a weak formulation of the HJB optimality

equation, one may hope that the zero set in S of the polynomial h + AΛr provides
some good information on the possible states x∗(t) and controls u∗(t) at time t in
an optimal solution of the OCP (2.1)–(2.5).

That is, fixing an arbitrary t0 ∈ [0, 1], one may solve the equation
∑

k∈W

qu
k (u)wk(u) +

∑

j∈J

qx
j (x) vj(x) = −q0 t0(1 − t0),

and look for solutions (x, u) ∈ X× U.
All these issues deserve further investigation beyond the scope of the present

paper. However, at least in the minimum time problem for the (state and control
constrained) double integrator example considered in §5.1, we already have some
numerical support for the above claims.

3.5. Certificates of non controllability. For minimum time OCPs, i.e., with
free terminal time T and instantaneous cost h ≡ 1, and H ≡ 0, the LMI-relaxations
Qr defined in (3.13) may provide certificates of non controllability.

Indeed, if for a given initial state x0 ∈ X, some LMI-relaxation Qr in the hierar-
chy has no feasible solution, then the initial state x0 cannot be steered to the origin
in finite time. In other words, inf Qr = +∞ provides a certificate of uncontrolla-
bility of the initial state x0. It turns out that sometimes such certificates can be
provided at cheap cost, i.e., with LMI-relaxations of low order r. This is illustrated
on the Zermelo problem in §5.3.

Moreover, one may also consider controllability in given finite time T , that is,
consider the LMI-relaxations as defined in (3.12) with T fixed, and H ≡ 0, h ≡ 1.
Again, if for a given initial state x0 ∈ X, the LMI-relaxation Qr has no feasible
solution, the initial state x0 cannot be steered to the origin in less than T units of
time. And so, inf Qr = +∞ also provides a certificate of uncontrollability of the
initial state x0.

4. Generalization to smooth optimal control problems

In the previous section, we assumed, to highlight the main ideas, that f , h and
H were polynomials. In this section, we generalize Theorem 3.6, and simply assume
that f , h and H are smooth. Consider the linear program P defined in the previous
section

P :

{

inf
(µ,ν)∈∆

{〈(µ, ν), (h, H)〉

s.t. 〈g,L∗(µ, ν)〉 = g(0, x0), ∀g ∈ R[t, x].

Since the sets X, K and U, defined previously, are compact, it follows from [9]
(see also [24, pp. 65-66]) that f (resp. h, resp. H) is the limit in C1(S) (resp. C1(S),
resp. C1(K)) of a sequence of polynomials fp (resp. hp, resp. Hp) of degree p, as
p → +∞.
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Hence, for every integer p, consider the linear program Pp

Pp :

{

inf
(µ,ν)∈∆

{〈(µ, ν), (hp, Hp)〉

s.t. 〈g,L∗
p(µ, ν)〉 = g(0, x0), ∀g ∈ R[t, x],

the smooth analogue of P, where the linear mapping Lp : C1(Σ) → C(S) × C(K)
is defined by

Lpϕ := (−Apϕ, ϕT ),

and where Ap : C1(Σ) → C(S) is defined by

Apϕ(t, x, u) :=
∂ϕ

∂t
(t, x) + 〈fp(t, x, u),∇xϕ(t, x)〉.

For every integer r ≥ max(p/2, d(X,K,U)), let Qr,p denote the LMI-relaxation
(3.12) associated with the linear program Pp.

Recall that from Theorem 3.6, if K, X and U satisfy Putinar’s condition, then
inf Qr,p ↑ minPp as r → +∞;

The next result, generalizing Theorem 3.6, shows that it is possible to let p tend
to +∞. For convenience, set

vr,p = inf Qr,p, vp = minPp, v = minP.

Theorem 4.1. Let X,K ⊂ [−1, 1]n, and U ⊂ [−1, 1]m be compact semi-algebraic-
sets respectively defined by (3.1), (3.2) and (3.3). Assume that X,K and U satisfy
Putinar’s condition (see Definition (3.4)). Then,

(i) v = lim
p→+∞

lim
r→+∞
2r>p

vr,p = lim
p→+∞

sup
r>p/2

vr,p ≤ J∗(0, T, x0).

(ii) Moreover if for every (t, x) ∈ Σ, the set f(t, x,U) ⊂ R
n is convex, and the

function

v 7→ gt,x(v) := inf
u∈U

{ h(t, x, u) | v = f(t, x, u)}

is convex, then v = J∗(0, T, x0).

The proof of this result is in the Appendix, Section §5.6.
From the numerical point of view, depending on the functions f , h, H , the

degree of the polynomials of the approximate OCP Pp may be required to be large,
and hence the hierarchy of LMI-relaxations (Qr) in (3.12) might not be efficiently
implementable, at least in view of the performances of public SDP solvers available
at present.

Remark 4.2. The previous construction extends to smooth optimal control problems
on Riemannian manifolds, as follows. Let M and N be smooth Riemannian mani-
folds. Consider on M the control system (2.1), where f : [0, +∞)×M ×N −→ TM
is smooth, and where the controls are bounded measurable functions, defined on
intervals [0, T (u)] of R

+, and taking their values in a compact subset U of N . Let
x0 ∈ M , and let X and K be compact subsets of M . Admissible controls are de-
fined as previously. For an admissible control u on [0, T ], the cost of the associated
trajectory x(·) is defined by (2.4), where where h : [0, +∞) × M × N −→ R and
H : M → R are smooth functions.

According to Nash embedding Theorem [33], there exist an integer n (resp. m)
such that M (resp. N) is smoothly isometrically embedded in R

n (resp. R
m). In

this context, all previous results apply.
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This remark is important for the applicability of the method described in this
article. Indeed, many practical control problems (in particular, in mechanics) are
expressed on manifolds, and since the optimal control problem investigated here is
global, they cannot be expressed in general as control systems in R

n (in a global
chart).

5. Illustrative examples

We consider here the minimal time OCP, that is, we aim to approximate the
minimal time to steer a given initial condition to the origin. We have tested the
above methodology on two test OCPs, the double and Brockett integrators, for
which the associated optimal value T ∗ can be calculated exactly. The numerical
examples in this section were processed with our Matlab package GloptiPoly 3 1.

5.1. The double integrator. Consider the double integrator system in R
2

(5.1)
ẋ1(t) = x2(t),
ẋ2(t) = u(t),

where x = (x1, x2) is the state and the control u = u(t) ∈ U , satisfies the constraint
|u(t)| ≤ 1, for all t ≥ 0. In addition, the state is constrained to satisfy x2(t) ≥ −1,
for all t. In this time-homogeneous case, and with the notation of Section 2, we
have X = {x ∈ R

2 : x2 ≥ −1}, K = {(0, 0)}, and U = [−1, 1].

Remark 5.1. The theorem obviously extends, up to scaling, to the case of arbitrary
compact subsets X,K ⊂ R

n and U ⊂ [−1, 1]m.

Observe that X is not compact and so the convergence result of Theorem 3.6
may not hold. In fact, we may impose the additional constraint ‖x(t)‖∞ ≤ M for
some large M (and modify X accordingly), because for initial states x0 with ‖x0‖∞
relatively small with respect to M , the optimal trajectory remains in X. How-
ever, in the numerical experiments, we have not enforced an additional constraint.
We have maintained the original constraint x2 ≥ −1 in the localizing constraint
Mr−r(vj)(vjz(x)) � 0, with x 7→ vj(x) = x2 + 1.

5.1.1. Exact computation. For this very simple system, one is able to compute
exactly the optimal minimum time. Denoting T (x) the minimal time to reach the
origin from x = (x1, x2), we have:

If x1 ≥ 1−x2
2/2 and x2 ≥ −1 then T (x) = x2

2/2+x1 +x2 +1. If −x2
2/2 signx2 ≤

x1 ≤ 1 − x2
2/2 and x2 ≥ −1 then T (x) = 2

√

x2
2/2 + x1 + x2. If x1 < −x2

2/2 signx2

and x2 ≥ −1 then T (x) = 2
√

x2
2/2 − x1 − x2.

5.1.2. Numerical approximation. Table 1 displays the values of the initial state
x0 ∈ X, and denoting inf Qr(x0) the optimal value of the LMI-relaxation (3.13) for
the minimum time OCP (5.1) with initial state x0, Tables 2, 3, and 4 display the
numerical values of the ratii inf Qr(x0)/T (x0) for r = 2, 3 and 5 respectively.

In Figures 1, 2, and 3 one displays the level sets of the ratii inf Qr/T (x0) for
r = 2, 3 and 5 respectively. The closer to white the color, the closer to 1 the ratio
inf Qr/T (x0).

Finally, for this double integrator example we have plotted in Figure 4 the level
sets of the function Λ5(x) − T (x) where T (x) is the known optimal minimum time

1 GloptiPoly 3 can be downloaded at www.laas.fr/∼henrion/software
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Table 1. Double integrator: data initial state x0 = (x01, x02)

x01 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x02 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Table 2. Double integrator: ratio inf Q2/T (x0)

second LMI-relaxation: r=2

0.4598 0.3964 0.3512 0.9817 0.9674 0.9634 0.9628 0.9608 0.9600 0.9596 0.9595

0.4534 0.3679 0.9653 0.9347 0.9355 0.9383 0.9385 0.9386 0.9413 0.9432 0.9445

0.4390 0.9722 0.8653 0.8457 0.8518 0.8639 0.8720 0.8848 0.8862 0.8983 0.9015

0.4301 0.7698 0.7057 0.7050 0.7286 0.7542 0.7752 0.7964 0.8085 0.8187 0.8351

0.4212 0.4919 0.5039 0.5422 0.5833 0.6230 0.6613 0.6870 0.7121 0.7329 0.7513

0.0000 0.2238 0.3165 0.3877 0.4476 0.5005 0.5460 0.5839 0.6158 0.6434 0.6671

0.4501 0.3536 0.3950 0.4403 0.4846 0.5276 0.5663 0.5934 0.6204 0.6474 0.6667

0.4878 0.4493 0.4699 0.5025 0.5342 0.5691 0.5981 0.6219 0.6446 0.6647 0.6824

0.5248 0.5142 0.5355 0.5591 0.5840 0.6124 0.6312 0.6544 0.6689 0.6869 0.7005

0.5629 0.5673 0.5842 0.6044 0.6296 0.6465 0.6674 0.6829 0.6906 0.7083 0.7204

0.6001 0.6099 0.6245 0.6470 0.6617 0.6792 0.6972 0.7028 0.7153 0.7279 0.7369

Table 3. Double integrator: ratio inf Q3/T (x0)

third LMI-relaxation: r=3

0.5418 0.4400 0.3630 0.9989 0.9987 0.9987 0.9985 0.9984 0.9983 0.9984 0.9984

0.5115 0.3864 0.9803 0.9648 0.9687 0.9726 0.9756 0.9778 0.9798 0.9815 0.9829

0.4848 0.9793 0.8877 0.8745 0.8847 0.8997 0.9110 0.9208 0.9277 0.9339 0.9385

0.4613 0.7899 0.7321 0.7401 0.7636 0.7915 0.8147 0.8339 0.8484 0.8605 0.8714

0.4359 0.5179 0.5361 0.5772 0.6205 0.6629 0.7013 0.7302 0.7540 0.7711 0.7891

0.0000 0.2458 0.3496 0.4273 0.4979 0.5571 0.5978 0.6409 0.6719 0.6925 0.7254

0.4556 0.3740 0.4242 0.4789 0.5253 0.5767 0.6166 0.6437 0.6807 0.6972 0.7342

0.4978 0.4709 0.5020 0.5393 0.5784 0.6179 0.6477 0.6776 0.6976 0.7192 0.7347

0.5396 0.5395 0.5638 0.5955 0.6314 0.6600 0.6856 0.7089 0.7269 0.7438 0.7555

0.5823 0.5946 0.6190 0.6453 0.6703 0.7019 0.7177 0.7382 0.7539 0.7662 0.7767

0.6255 0.6434 0.6656 0.6903 0.7193 0.7326 0.7543 0.7649 0.7776 0.7917 0.8012

Table 4. Double integrator: ratio inf Q5/T (x0)

fifth LMI-relaxation: r=5

0.7550 0.5539 0.3928 0.9995 0.9995 0.9995 0.9994 0.9992 0.9988 0.9985 0.9984

0.6799 0.4354 0.9828 0.9794 0.9896 0.9923 0.9917 0.9919 0.9923 0.9923 0.9938

0.6062 0.9805 0.9314 0.9462 0.9706 0.9836 0.9853 0.9847 0.9848 0.9862 0.9871

0.5368 0.8422 0.8550 0.8911 0.9394 0.9599 0.9684 0.9741 0.9727 0.9793 0.9776

0.4713 0.6417 0.7334 0.8186 0.8622 0.9154 0.9448 0.9501 0.9505 0.9665 0.9637

0.0000 0.4184 0.5962 0.7144 0.8053 0.8825 0.9044 0.9210 0.9320 0.9544 0.9534

0.4742 0.5068 0.6224 0.7239 0.7988 0.8726 0.8860 0.9097 0.9263 0.9475 0.9580

0.5410 0.6003 0.6988 0.7585 0.8236 0.8860 0.9128 0.9257 0.9358 0.9452 0.9528

0.6106 0.6826 0.7416 0.8125 0.8725 0.9241 0.9305 0.9375 0.9507 0.9567 0.9604

0.6864 0.7330 0.7979 0.8588 0.9183 0.9473 0.9481 0.9480 0.9559 0.9634 0.9733

0.7462 0.8032 0.8564 0.9138 0.9394 0.9610 0.9678 0.9678 0.9696 0.9755 0.9764
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Figure 1. Double integrator: level sets inf Q2/T (x0)

Figure 2. Double integrator: level sets inf Q3/T (x0)

to steer the initial state x to 0; the problem being time-homogeneous, one may take
Λr ∈ R[x] instead of R[t, x]. For instance, one may verify that when the initial state
is in the region where the approximation is good, then the whole optimal trajectory
also lies in that region.

5.2. The Brockett integrator. Consider the so-called Brockett system in R
3

(5.2)
ẋ1(t) = u1(t),
ẋ2(t) = u2(t),
ẋ3(t) = u1(t)x2(t) − u2(t)x1(t),
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Figure 3. Double integrator: level sets inf Q5/T (x0)

x
01

x 02
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Figure 4. Double integrator: level sets Λ5(x)−T (x) and optimal
trajectory starting from x1(0) = x2(0) = 1.

where x = (x1, x2, x3), and the control u = (u1(t), u2(t)) ∈ U , satisfies the con-
straint

(5.3) u1(t)
2 + u2(t)

2 ≤ 1, ∀t ≥ 0.

In this case, we have X = R
3, K = {(0, 0, 0)}, and U is the closed unit ball of R

2,
centered at the origin.

Note that set X is not compact and so the convergence result of Theorem 3.6
may not hold, see the discussion at the beginning of example 5.1. Nevertheless, in
the numerical examples, we have not enforced additional state constraints.
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5.2.1. Exact computation. Let T (x) be the minimum time needed to steer an initial
condition x ∈ R

3 to the origin. We recall the following result of [2] (in fact given
for equivalent (reachability) OCP of steering the origin to a given point x).

Proposition 5.2. Consider the minimum time OCP for the system (5.2) with
control constraint (5.3). The minimum time T (x) needed to steer the origin to a
point x = (x1, x2, x3) ∈ R

3 is given by

(5.4) T (x1, x2, x3) =
θ
√

x2
1 + x2

2 + 2|x3|
√

θ + sin2 θ − sin θ cos θ
,

where θ = θ(x1, x2, x3) is the unique solution in [0, π) of

(5.5)
θ − sin θ cos θ

sin2 θ
(x2

1 + x2
2) = 2|x3|.

Moreover, the function T is continuous on R
3, and is analytic outside the line

x1 = x2 = 0.

Remark 5.3. Along the line x1 = x2 = 0, one has

T (0, 0, x3) =
√

2π|x3|.

The singular set of the function T , i.e. the set where T is not C1, is the line x1 =
x2 = 0 in R

3. More precisely, the gradients ∂T/∂xi, i = 1, 2, are discontinuous at
every point (0, 0, x3), x3 6= 0. For the interested reader, the level sets {(x1, x2, x3) ∈
R

3 | T (x1, x2, x3) = r}, with r > 0, are displayed, e.g., in Prieur and Trélat [36].

5.2.2. Numerical approximation. Recall that the convergence result of Theorem
3.6 is guaranteed for X compact only. However, in the present case X = R

3 is not
compact. One possibility is to take for X a large ball of R

3 centered at the origin
because for initial states x0 with norm ‖x0‖ relatively small, the optimal trajectory
remains in X. However, in the numerical experiments presented below, we have
chosen to maintain X = R

3, that is, the LMI-relaxation Qr does not include any
localizing constraint Mr−r(vj)(vj z(x)) � 0 on the moment sequence z(x).

Recall that inf Qr ↑ minP as r increases, i.e., the more moments we consider,
the closer to the exact value we get.

In Table 5 we have displayed the optimal values inf Qr for 16 different values of
the initial state x(0) = x0, in fact, all 16 combinations of x01 = 0, x02 = 0, 1, 2, 3,
and x03 = 0, 1, 2, 3. So, the entry (2, 3) of Table 5 for the second LMI-relaxation
is inf Q2 for the initial condition x0 = (0, 1, 2). At some (few) places in the table,
the ∗ indicates that the SDP solver encountered some numerical problems, which
explains why one finds a lower bound inf Qr−1 slightly higher than inf Qr, when
practically equal to the exact value T ∗.

Notice that the upper triangular part (i.e., when both first coordinates x02, x03

of the initial condition are away from zero) displays very good approximations with
low order moments. In addition, the further the coordinates from zero, the best.

For another set of initial conditions x01 = 1 and x0i = {1, 2, 3} Table 6 displays
the results obtained at the LMI-relaxation Q4.

The regularity property of the minimal-time function seems to be an important
topic of further investigation.
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Table 5. Brockett integrator: LMI-relaxations: inf Qr

first LMI-relaxation: r=1
0.0000 0.9999 1.9999 2.9999
0.0140 1.0017 2.0010 3.0006
0.0243 1.0032 2.0017 3.0024
0.0295 1.0101 2.0034 3.0040

Second LMI-relaxation: r=2

0.0000 0.9998 1.9997∗ 2.9994∗

0.2012 1.1199 2.0762 3.0453
0.3738 1.2003 2.1631 3.1304
0.4946 1.3467 2.2417 3.1943

Third LMI-relaxation: r=3

0.0000 0.9995 1.9987∗ 2.9984∗

0.7665 1.3350 2.1563 3.0530
1.0826 1.7574 2.4172 3.2036
1.3804 2.0398 2.6797 3.4077

Fourth LMI-relaxation: r=4

0.0000 0.9992 1.9977 2.9952
1.2554 1.5925 2.1699 3.0478
1.9962 2.1871 2.5601 3.1977
2.7006 2.7390 2.9894 3.4254

Optimal time T ∗

0.0000 1.0000 2.0000 3.0000
2.5066 1.7841 2.1735 3.0547
3.5449 2.6831 2.5819 3.2088
4.3416 3.4328 3.0708 3.4392

Table 6. Brockett integrator: inf Q4 with x01 = 1

fourth LMI-relaxation: r=4
1.7979 2.3614 3.2004
2.3691 2.6780 3.3341
2.8875 3.0654 3.5337

Optimal time T ∗

1.8257 2.3636 3.2091
2.5231 2.6856 3.3426
3.1895 3.1008 3.5456

5.3. Certificate of uncontrollabilty in finite time. Consider the so-called Zer-
melo problem in R

2 studied in Bokanowski et al. [5]

(5.6)
ẋ1(t) = 1 − a x2(t) + v cos θ
ẋ2(t) = v sin θ
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Figure 5. Zermelo problem: uncontrollable states with Q1

with a = 0.1. The state x is constrained to remain in the set X := [−6, 2]×[−2, 2] ⊂
R

2, and we also have the control constraints 0 ≤ v ≤ 0.44, as well as θ ∈ [0, 2π].
The target K to reach from an initial state x0 is the ball B(0, ρ) with ρ := 0.44.

With the change of variable u1 = v cos θ, u2 = v sin θ, and U := {u : u2
1 + u2

2 ≤
ρ2}, this problem is formulated as a minimum time OCP with associated hierarchy
of LMI-relaxations (Qr) defined in (3.13). Therefore, if an LMI-relaxation Qr at
some stage r of the hierarchy is infeasible then the OCP itself is infeasible, i.e., the
initial state x0 cannot be steered to the target K while the trajectory remains in
X.

Figures 5 and 6 display the uncontrollable initial states x0 ∈ X found with
the infeasibility of the LMI-relaxations Q1 and Q2 respectively. With Q1, i.e.
by using only second moments, we already have a very good approximation of
the controllable set displayed in [5], and Q2 brings only a small additional set of
uncontrollable states.



OPTIMAL CONTROL AND LMI-RELAXATIONS 21

Figure 6. Zermelo problem: uncontrollable states with Q2

Appendix

5.4. Proof of Theorem 2.3. We first prove Item (i). Consider the linear program
P defined in (2.13), assumed to be feasible. From the constraint L∗(µ, ν) = δ(0,x0),
one has
∫

K

g(T, x)dν −

∫

S

(

∂g

∂t
(t, x) + 〈

∂g

∂x
(t, x), f(t, x, u)〉

)

dµ = g(0, x0), ∀g ∈ C1(Σ).

In particular, taking g(t, x) = 1 and g(t, x) = T − t, it follows that µ(S) = T and
ν(K) = 1. Hence, for every (µ, ν) satisfying L∗(µ, ν) = δ(0,x0), the pair ( 1

T µ, ν)
belongs to the unit ball B1 of (M(S) ×M(K)). From Banach-Alaoglu Theorem,
B1 is compact for the weak ⋆ topology, and even sequentially compact because B1

is metrizable (see e.g. Hernández-Lerma and Lasserre [20, Lemma 1.3.2]). Since L∗

is continuous (see Remark 2.1), it follows that the set of (µ, ν) satisfying L∗(µ, ν) =
δ(0,x0) is a closed subset of B1∩(M(S)+×M(K)+), and thus is compact. Moreover,
since the linear program P is feasible, this set is nonempty. Finally, since the linear
functional to be minimized is continuous, P is solvable.

We next prove Item (ii). Consider the set

D := {(L∗(µ, ν), 〈(h, H), (µ, ν)〉) | (µ, ν) ∈ M(S)+ ×M(K)+}.

To prove that D is closed, consider a sequence {(µn, νn)}n∈N of M(S)+ ×M(K)+
such that

(5.7) (L∗(µα, να), 〈(h, H), (µα, να)〉) → (a, b),

for some (a, b) ∈ C1(Σ)∗×R. It means that L∗(µn, νn) → a, and 〈(h, H), (µn, νn)〉 →
b. In particular, taking ϕ0 := T − t and ϕ1 = 1, there must hold

µn(S) = 〈ϕ0,L
∗(µn, νn)〉 → 〈ϕ0, a〉, νn(K) = 〈ϕ1,L

∗(µn, νn)〉 → 〈ϕ1, a〉.

Hence, there exist n0 ∈ N and a ball Br of M(S)×M(K), such that (µn, νn) ∈ Br

for every n ≥ n0. Since Br is compact, up to a subsequence (µn, νn) converges
weakly to some (µ, ν) ∈ M(S)+ ×M(K)+. This fact, combined with (5.7) and the
continuity of L∗, yields a = L∗(µ, ν), and b = 〈(h, H), (µ, ν)〉. Therefore, the set D
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is closed.

From Anderson and Nash [1, Theorems 3.10 and 3.22], it follows that there is
no duality gap between P and P∗, and hence, with (i), supP∗ = minP.

Item (iii) follows from Vinter [44, Theorems 2.1 and 2.3], applied to the mappings

F (t, x) := f(t, x, U) , l(t, x, v) := inf
u∈U

{ h(t, x, u) | v = f(t, x, u) },

for (t, x) ∈ R × R
n. �

5.5. Proof of Theorem 3.6. First of all, observe that Qr has a feasible solution.
Indeed, it suffices to consider the sequences y and z consisting of the moments (up
to order 2r) of the occupations measures νu and µu associated with an admissible
control u ∈ U of the OCP (2.1)-(2.5).

Next, observe that, for every couple (y, z) satisfying all constraints of Qr, there
must holds y0 = 1 and z0 = 1. Indeed, it suffices to choose g(t, x) = 1 and
g(t, x) = 1 − t (or t) in the constraint

Ly(g1) − Lz(∂g/∂t + 〈∇xg, f〉) = g(0, x0).

We next prove that, for r sufficiently large, one has |z(x)α| ≤ 1, |z(u)β| ≤ 1,
|z(t)k| ≤ 1, for every k, and |yα| ≤ 1. We only provide the details of the proof for
z(x), the arguments being similar for z(u), z(t) and y.

Let Σ2 ⊂ R[x] be the space of sums of squares (s.o.s.) polynomials, and let
Q ⊂ R[x] be the quadratic modulus generated by the polynomials vj ∈ R[x] that
define X, i.e.,

Q := { σ ∈ R[x] | σ = σ0 +
∑

j∈J

σj vj with σj ∈ Σ2, ∀ j ∈ {0} ∪ J}.

In addition, let Q(t) ⊂ Q be the set of elements σ of Q which have a representation
σ0+

∑

j∈J σj vj for some s.o.s. family {σj} ⊂ Σ2 with deg σ0 ≤ 2t and deg σjvj ≤ 2t
for every j ∈ J .

Let r ∈ N be fixed. Since X ⊂ [−1, 1]n, there holds 1 ± xα > 0 on X, for every
α ∈ N

n with |α| ≤ 2r. Therefore, since X satisfies Putinar’ condition (see Definition
3.4), the polynomial x 7→ 1 ± xα belongs to Q (see Putinar [37]). Moreover, there
exists l(r) such that x 7→ 1 ± xα ∈ Q(l(r)) for every |α| ≤ 2r. Of course, x 7→
1 ± xα ∈ Q(l) for every |α| ≤ 2r, whenever l ≥ l(r).

For every feasible solution z of Ql(r) one has

|z(x)α| = | Lz(x
α) | ≤ z0 = 1, |α| ≤ 2r.

This follows from z0 = 1, Ml(r)(z) � 0 and Ml(r)−r(vj)(vj z(x)) � 0, which implies

z0 ± z(x)α = Lz(1 ± xα) = Lz(σ0) +

m
∑

j=1

Lz(x)(σj vj) ≥ 0.

With similar arguments, one redefines l(r) so that, for every couple (y, z) satisfying
the contraints of Ql(r), one has

0 ≤ zk(t) ≤ 1 and |z(x)α|, |z(u)β|, |yα| ≤ 1, ∀ k, |α|, |β| ≤ 2r.

From this, and with l(r) := 2l(r), we immediately deduce that |zγ | ≤ 1 whenever
|γ| ≤ 2r. In particular, Ly(H) + Lz(h) ≥ −

∑

β |Hβ | −
∑

γ |hγ |, which proves that
inf Ql(r) > −∞, and so inf Qr > −∞ for r sufficiently large.
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Let ρ := inf P = minP (by Theorem 2.3), let r ≥ l(r0), and let (zr, yr) be a nearly
optimal solution of Qr with value

(5.8) inf Qr ≤ Lzr(h) + Lyr(H) ≤ inf Qr +
1

r

(

≤ ρ +
1

r

)

.

Complete the finite vectors yr and zr with zeros to make them infinite sequences.
Since for arbitrary s ∈ N one has |yr

α|, |z
r
γ | ≤ 1 whenever |α|, |γ| ≤ 2s, provided r

is sufficiently large, by a standard diagonal argument, there exists a subsequence
{rk} and two infinite sequences y and z, with |yα| ≤ 1 and |zγ | ≤ 1, for all α, γ,
and such that

(5.9) lim
k→∞

yrk
α = yα ∀α ∈ N

n; lim
k→∞

zrk
γ = zγ ∀γ ∈ N × N

n × N
m.

Next, let r be fixed arbitrarily. Observe that Mrk
(yrk) � 0 implies Mr(y

rk) � 0
whenever rk ≥ r, and similarly, Mr(z

rk) � 0. Therefore, from (5.9) and Mr(y
rk) �

0, we deduce that Mr(y) � 0, and similarly Mr(z) � 0. Since this holds for
arbitrary r, and |yα|, |zγ | ≤ 1 for all α, γ, one infers from Proposition 3.2 that y
and z are moment sequences of two measures ν and µ with support contained in
[−1, 1]n and [0, 1]× [−1, 1]n× [−1, 1]m respectively. In addition, from the equalities
yrk

0 = 1 and zrk

0 = 1 for every k, it follows that ν and µ are probability measures
on [−1, 1]n, and [0, 1]× [−1, 1]n × [−1, 1]m.

Next, let (t, α) ∈ N × N
n be fixed, arbitrarily. From

Lyrk (g1) − g(0, x0) − Lzrk (∂g/∂t + 〈∇xg, f〉) = 0, with g = (tpxα),

and the convergence (5.9), we obtain

Ly(g1) − g(0, x0) − Lz(∂g/∂t + 〈∇xg, f〉) = 0, with g = (tpxα),

that is, 〈Lg, (µ, ν)〉 = 〈g, δ(0,x0)〉. Since (t, α) ∈ N × N
n is arbitrary, we have

〈g,L∗(µ, ν)〉 = 〈L g, (µ, ν)〉 = 〈g, δ(0,x0)〉 ∀ g ∈ R[t, x],

which implies that L∗(µ, ν) = δ(0,x0).
Let z(x), z(u) and z(t) denote the moment vectors of the marginals of µ with

respect to the variables x ∈ R
n, u ∈ R

m and t ∈ R, respectively, i.e.,

z(x)α =

∫

xα µ(d(t, x, u)) ∀α ∈ N
n, z(u)β =

∫

uβ µ(d(t, x, u)) ∀β ∈ N
m,

and z(t)k =
∫

tk µ(d(t, x, u)) for every k ∈ N.
With r fixed arbitrarily, and using again (5.9), we also have Mr(θjy) � 0 for

every j ∈ JT , and

Mr(vj z(x)) � 0 ∀ j ∈ J, Mr(wk z(u)) � 0 ∀k ∈ W, Mr(t(1 − t) z(t)) � 0.

Since X, K and U satisfy Putinar’s condition (see Definition 3.4), from Theorem
3.5 (Putinar’s Positivstellensatz), y is the moment sequence of a probability measure
ν supported on K ⊂ [−1, 1]n. Similarly, z(x) is the moment sequence of a measure
µx supported on X ⊂ [−1, 1]n, z(u) is the moment sequence of a measure µu

supported on U ⊂ [−1, 1]m, and z(t) is the moment sequence of a measure µt

supported on [0, 1]. Since measures on compact sets are moment determinate,
it follows that µx, µu, and µt are the marginals of µ with respect to x, u and t
respectively. Therefore, µ has its support contained in S, and from L∗(µ, ν) = δ(0,x0)

it follows that (µ, ν) satisfies all constraints of the problem P.



24JEAN B. LASSERRE, DIDIER HENRION, CHRISTOPHE PRIEUR, AND EMMANUEL TRÉLAT

Moreover, one has

lim
k→∞

inf Qrk
= lim

k→∞
Lzrk (h) + Lyrk (H) (by (5.8))

= Lz(h) + Ly(H) (by (5.9))

=

∫

h dµ +

∫

H dν ≤ ρ = minP.

Hence, (µ, ν) is an optimal solution of P, and minQr ↑ minP (the sequence is
monotone nondecreasing). Item (i) is proved.

Item (ii) follows from Theorem 2.3 (iii). �

5.6. Proof of Theorem 4.1. It suffices to prove that vp → v as p → +∞. For
every integer p, vp = minPp is attained for a couple of measures (µp, νp). As in the
proof of Theorem 2.3, the sequence {(µp, νp)}p∈N is bounded in M(S)+ ×M(K)+,
and hence, up to a subsequence, it converges to an element (µ, ν) of this space for
the weak ⋆ topology.

On the one hand, by definition, L∗
p(µp, νp) = δ(0,x0) for every p. On the other,

L∗
p tends strongly to L∗, and so L∗(µ, ν) = δ(0,x0). Moreover, since (hp, Hp) tends

strongly to (h, H) in C1(S) × C1(K), one has

vp = 〈(µp, νp), (hp, Hp)〉 −→ 〈(µ, ν), (h, H)〉,

and so v ≤ 〈(µ, ν), (h, H)〉. We next prove that v = 〈(µ, ν), (h, H)〉.
Since (µp, νp) is an optimal solution of Pp,

〈(µp, νp), (hp, Hp)〉 ≤ 〈(µ̄, ν̄), (hp, Hp), ∀(µ̄, ν̄) | L∗
p(µ̄, ν̄) = δ(0,x0).

Hence, passing to the limit,

〈(µ, ν), (h, H)〉 ≤ 〈(µ̄, ν̄), (h, H), ∀(µ̄, ν̄) | L∗(µ̄, ν̄) = δ(0,x0),

and so, (µ, ν) is an optimal solution of P, i.e., v = 〈(µ, ν), (h, H)〉. �
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