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Boundary homogenization and reduction of dimension
in a Kirchhofl-Love plate

Dominique Blanchard, Antonio Gaudiello and Taras A. Mel'nyk

Abstract

We investigate the asymptotic behavior, as € tends to 07, of the transverse dis-
placement of a Kirchhoff-Love plate composed of two domains QF U Q_, contained
in the (z1,z2)-coordinate plane and depending on ¢ in the following way. The first
domain Q7 is a thin strip with vanishing height h. (in direction x2), as ¢ tends to
0". The second one 2 is a comb with fine teeth, having small cross section ew and
constant height, e-periodically distributed (in direction x1) on the upper side of the
thin strip (see Figure 1). The structure is assumed clamped on the top of the teeth,
with a free boundary elsewhere, and subjected to a transverse load. As € tends to 0T,
we obtain a ”continuum” bending model of rods in the limit domain of the comb, while
the limit displacement is independent of x9 in the rescaled (with respect to h.) strip.
We show that the displacement in the strip is equal to the displacement on the base
of the teeth, if h. > £*. While, if the strip is thin enough (i.e. h. ~ €*), we show
that microscopic oscillations of the displacement in the strip, between the basis of the
teeth, may produce a limit average field different from that on the base of the teeth,
i.e. a discontinuity in the transmission condition may appear in the limit model.

Résumé

Cet article concerne le comportement asymptotique de la flexion d’une structure
bidimensionnelle élastique Q7 UQ- (contenue dans le plan (1, z2) et sous I'hypothese de
Kirchhoff-Love) dont la géométrie dépend d’un petit parametre e de la fagon suivante
(voir la Figure 1). Le domaine Q7 est une bande d’épaisseur h. (dans la direction x2)
qui tend vers 0 avec €. Le second domaine QI est consitué d’un ensemble de créneaux
bidimensionnels e-périodiquement répartis dans la direction x; et de hauteur constante
dans la direction x9. La structure est encastrée aux sommets des créneaux, libre sur le
reste de la frontiere et elle est soumise & un champ de forces transverses. A la limite
nous obtenons un ” continuum” de modeles de poutres en flexion dans le domaine rempli
asymptotiquement par les créneaux et un déplacement constant en xo dans la bande
(mise & 1’échelle par rapport & h.). Nous démontrons que si k. > €%, le déplacement
dans la bande est égal a celui de la base des créneaux. Par contre, si I'épaisseur de
la bande est de l'ordre de £, des oscillations microscopiques du déplacement dans la
bande entre les bases des créneaux induisent une discontinuité dans la condition de
transmission du déplacement pour le modele limite.

Keywords: Kirchhoff-Love plate, rough boundary, thick junctions, homogenization, dimen-
sion reduction.
2000AMS subject classifications: 74K20, 35B27.



1 Statement of the problem and main results

Let w =]a,b], with 0 < a < b < 1, ¢,d €]0,400[, and {e} and {h.} be two sequences of
positive numbers converging to zero. For every ¢, consider the three-dimensional plate with
small thickness ¢ > 0 and with middle surface QF U Q- C R? (see Figure 1), where

OF = |J  (ew+tek)x[0,d]
{keN: eb+ck<c}

is a comb with fine teeth of small cross section ew and constant height d, e-periodically
distributed on the upper basis of the thin strip:

Q. =10, ¢[x] = he, 0],

which has a vanishing height h. and constant basis. Moreover, denote with I'. the top of the
teeth of the middle surface:

.= |J  (ew+ek)x{d}.

{keN: ebtck<c}

ew

fixed

C
h ' ' | The

Figure 1: the middle surface of our three-dimensional plate.

t t
When the plate is clamped on I', x] ~3'5 {, with a free boundary on (9(2. UQ-) — I'.)

t 1
}—5, 3 [, and it is subjected to a transverse load, the Kirchhoff-Love equation satisfied by



the transverse displacement U, of the middle surface QF UQC is given by (see pages 205207
n [13])

( Et3
12(1 — )

U.=0,U.=0onT,,

AU, = F.in QF UuQ_,

AU, + (1 — p) (2nan02 ,,U. — n302 U. — n302,U:) =0

T1T2

(1.1)
on A(QF UQD)\T

O AU + (1 — p)0; [nan (8§2U5 — 8§1U5) (n? — n3)o? U] =0

T1T2

\ on (T UQD)\ T,
where F. € L*(Q" U ) represents the transverse load, Qt =]0,c[x]0,d] is the "limit
domain” of the comb, n = (nj,n2) and 7 denote the exterior unit normal and the unit

1
tangent to QF U Q- respectively, u € }O, 5{ is the Poisson ratio and E > 0 is the Young

modulus of the plate. In the following, M will denote the flexural rigidity modulus of the

plate, i.e.
Et?

S D)
The weak formulation of Problem (1.1) is the following one (see pages 205-207 in [13]):
((U. e H*(QFUQD), U.=0,U.=0o0nT,,

(1.2)

M AUAV + (1 —p) (202 ,,U. 03,V — 02 U. 02,V — 02, U. 02 V) da =

12 12

QFuos R T (1.3)

/ F.Vdr, YV €H*(QUQ):V=08,V=0o0nT..
( Jafuas

The goal of our paper is to study the asymptotic behavior of Problem (1.3), as € tends
to zero. To this aim, by following an idea of P.G. Ciarlet (see [9]), Problem (1.3) can be
reformulated on a domain independent of h., through appropriate rescalings mapping -
into the fixed rectangle: Q= =]0, ¢[x] — 1,0[. Namely, by setting

{ (z ; F.(x), a.e. x € QF, (1.4)
) =

fe(x) = Fo(xq, hewy), ae. z €07,

(
( Ua( ) a.e. T € Q;r’
{ (z) = Uc(x1, hexa), ae. x € Q7

and Q. = QF UQ~, it turns out that u. belongs to the following space:
Vo= {ve HY(Q.) : vt € H*(QF), v- € H*(Q),

v=0, Dv=0onT,, O,v" =030,v" on X\ I, h.0p,v" =00,,v" on X\ I},

3



where v = v ., v7 =y, ¥ =]0,c[x{0}. Moreover, u. is the unique solution of the
following proble;n:

;

us. € Vg,

M AuAv+ (1 —p) (202, u. 02

2 2 2 2
o eV — O Ue 05,0 — O3 ue axlv) dr+

of
2 L 2 L,
+Mh, 0y, Ue + ﬁﬁmua 0,,v+ ﬁamv dx+ (1.5)
Q- € € ’
L o L o 2 1 [ 2
+M(1 — p)he Qh—QWCQuE h—Oxmv — amuaﬁamv — ﬁamua 0, vdr =

= fevdz + h, fevdz, Yv e V..
L OF Q-

The study of the asymptotic behavior of Problem (1.5) will be performed under the
following assumption:

felye — f strongly in L*(QF),
 rascis (1.6)
hefe), — g strongly in L*(€27),

as ¢ tends to zero. Moreover, the following spaces will be involved:
wW2(Q) ={ve L*(QF) : d,,ve L), B2 ve L’ (), v=0,v=00nT}, (L7)
where I' =)0, ¢[x {d}, and

H2,.(10,1])) = {v e H*(0,1]) : v(0) = v(1), v'(0) =v'(1)},

per

with v’ denoting the first derivative of v. Remark that H,.(]0, 1[) is the closure of Cp¢,([0,1])
with respect to the H?(]0, 1[)-norm, where C5¢,.([0,1]) is the set of functions in C*°(R) which
are l-periodic.

In the sequel, ¥ denotes the zero-extension to Q% of any function v defined in a subset
of QT and

lw| =b—a, (1.8)
We will show that the limit problem depends on

4

hi%;_ =1 €0, 400 (1.9)

and f£]1 g(x1,x9)dxy. Precisely, the following main result will be proved:

Theorem 1.1. Let u. be the unique solution of Problem (1.5). Let W?(Q") be the space
defined in (1.7). Assume (1.6) and (1.9). Then,

U — |w|u weakly in W?(Q),

4



8/3%\1/% — —plwl|02, u weakly in L*(Q),

e~

92 u. — 0 weakly in L*(QF),

riw €

as € — 0, where u is the unique solution of the following problem:
((we W?(Qh),

HEtg/a?a?d wl [ fode+
w|— u var = |w v axr
12 Jq Gt P o0 (1.10)

c 0
+/ (/ g(SUl?.fUQ)dQ:Q) v(xy,0)dr; Yo € W(QT),
\ 0

-1

1
with |w| defined in (1.8), p 6}0, 5[ the Poisson ratio, E > 0 the Young modulus and t
denoting the small thickness of the 3d plate (see Problem (1.1)), and f and g given by (1.6).
Moreover,

3
||az2u6||L2(Q*) < che,

(2= < ch?,

1
wll‘guEHLZ(Qf) < ChEQ, H@%Zus

20y

for every e, where ¢ is a constant independent of €, and
1
Us — Uy, +/ vo dyy weakly in L*(27), (1.11)
0

as e — 0, where vg = 0 if | = 0 in (1.9), while, if | €]0, +o0[, v (= vo(x1,y1)) is the unique
solution of the following problem:

;

Uy € LQ(]Och H2 (]07 1[))7

per
vo(21,y1) = 0 in |0, c[xw,

Et31 ) )
ﬁf aylvo(fl,%)aylw(ih y1)d901d?/1 =
10,¢[x]0,1]

0
= / (/ 9(9517372)‘1952) @ (w1, y1) dordyy,
10,¢[x]0,1[ \J -1

Vi € L*()0,c[, H2,.(]0,1])) : ¢ (z1,51) = 0 in |0, c[xw,

per

(1.12)

\

with w,, denoting the trace on ¥ of the solution u of (1.10). Furthermore, the convergence



of the energies holds:

Et
im {— [ 8 200 ) (08, 20 ) et
of

e—0 | 12(1 — p?)
Bt 21
—he — =02 € 2 5 d -
+12(1—H2) /Q_ hgﬁmu 8x1u> x}

Et3 1
12 (‘W‘/ |02, ul*dx + 7/ ‘8jlvo(w1,y1)‘2da:1dy1) ,
Q+ 10,¢[x]0,1]

where oo - 0 means 0.

2

1
azlus + ﬁa:%ZUE
3

1

Proof. Theorem 1.1 is an immediate consequence of Proposition 3.1, Corollary 3.2, Proposi-
tion 4.1 and Proposition 4.2 (see Section 3 and Section 4), by setting vo(z1,y1) = uo(x1, 1) —
u),, (21,0) in ]0, ¢[xw, and by recalling definition (1.2).

The convergences of the energies is obtained by passing to the limit, as € tends to zero,
in (1.5) with v = u., and by making use of assumption (1.6), of the convergences of {u.}_,
and of the equation satisfied by v and vy. O]

Remark 1.2. Problem (1.10) and Problem (1.12) are the weak formulation of the following
problems:

( Et3 0%
LV Ot
12 0x} fon €,
0
U= 8_:Z =0onl,
5 (1.13)
U
8_335 = O on Z,
Pu 12 0
-7 d by




and for a.e. x1 €]0, |

;

Et31 0% 0
EiW;(:ﬁ’yl) = /_1 g(l’l,x2>dx2 fOT n 6]070’{7

Et31 0% 0
0(9317241) = / g(z1, z2)dxy for yy €]b, 1],

12 1 oyt 1
B dvg B B vy -
vo(x1,a) = o (x1,a) = vo(x1,b) = o (z1,b) =0,
vo(21,0) = vo(21, 1),
(1.14)

02}0 0@0
a 70 = a3 ) 1 9
oy (xl ) Oy (xl )
821)0 821)0

= 1
8y% (371,0) ay% (:Eh )7
83’00 331)0
8_yi))(x170) = 8—y;13($1, 1)7

| vo(z1,91) = 0 for y1 € w =la, b,

respectively.
The solution of Problem (1.14) can be explicitly computed, by solving a linear system of
8 equations with 8 unknowns. Then, for a.e. xy €|0,c|, it results that
(1 2 o [°
@ = U= b [ glon e for € 0.l

-1

vo(x1, 1) = § 0 foryr € w = [a, b], (1.15)

l 0
st == u)? [ glos s fory clb1),

-1

and consequently

1
/ Uo(iﬂlayl)dyl =
0

l i+g+a_2+a_3+a_4+a_5_é_2;tb_a2b_2a3b_ﬂ+
26130 "6 3 '3 "6 30 6 3 3 6 (1.16)
b2 a’t? v 2ab® a? bt abt B 0
yab a7 T - / dzs.
—|-3+a +a“b” + 3 3 3 3 +6—|— G 30} 719(%,932) T2



In the limit domain QF of the comb, we obtain a continuum bending model of rods sub-
jected to a force f, clamped on the upper side I', and subjected on the lower side 3 to applied
forces but without applied momentum. The forces on ¥ depend on the limit density g of
the transverse loads on the thin strip (27, and on the measure of the cross section w of the
reference tooth. The force f depends on the limit of the transverse loads on the teeth.

The limit solution meets a Dirichlet transmission condition between Q7 and the rescaled
strip Q= if he > %, or if h. ~ ¢* and fi)l g(z1,29)dze = 0 a.e. in |0,c|. While, if the strip
is thin enough and the transverse loads on the thin strip are strong enough, i.e. h. ~ &*
and fi)l g(x1,29)dxy # 0 in a subset of 0, c[ with positive measure, a discontinuity in the
Dirichlet transmission condition appears. Roughly speaking, this means that microscopic
oscillations of the displacement in the strip, between the basis of the teeth of QF, produce
a limit average field different from that on the base of the teeth. Point out that (1.15)
provides that fol vo(z1,y1) dyr # 0 in a subset of ]0,c[ with positive measure if and only if
f31 g(x1, z2)dzy # 0 in the same subset. Consequently, by taking into account the definition
of g in (1.6), for obtaining the additional term in (1.11) when h, ~ *, it is necessary that the
transverse loads in the thin strip QC are strong enough to avoid that lii%(ha fQE |F.|?dx) = 0.

For instance, if F. = ¢ in QZ, the additional term in the displacement of the strip
intervenes when o = 1 and it is given by formula (1.16) with g = 1, it does not appears when
a<1.

As regards the Laplacian, in [6] the authors prove that h. ~ €2 is a critical size for the
thickness of the thin domain. In particular, if he < €2, they give an example in which g = 0
and the sequence {ug|__}. is not even bounded in L*(Q2™). In our paper, as regard the case
h. < €*, we think that a deterministic limit model may hardly be expected, but we have not
an example to validate it.

In what concerns the original Problem (1.3), the result below immediately follows from
Theorem 1.1:

Corollary 1.3. Let U. be the solution of Problem (1.3), under the assumptions of Theorem
1.1, with { f.}. defined by (1.4).
Then, it results that .
U. — |w|u weakly in W?(Q1),

5%?U/a — —plw|dZ, u weakly in L*(Q7),

02 U. — 0 weakly in L*(QT),

122

1 1 c 1
llil(l) o] Q,U dxr = /0 <u|2+/ vody1> dxq,

R - - 2 — —
lim /@CQUd:v llir[l)m ’ﬂ/ 92 4, Ueda = lli%m ‘ﬁ/ 0,,Ucdr = 0‘v’0z< ‘v’6<

1

where v is the weak solution of Problem (1.18), w), denotes the trace of u on 3, and vy =0
if 1 = 0 in (1.9), while, if | €]0,4+00], vo (= vo(z1,91)) is the solution of Problem (1.14).



Furthermore, the energies converge in the sense that

: Et3 2 2 2 2 2
limy (m /Qm AV + 201 = ) (102, Uef = 82, U. 82, U.) dor ) =
Et

1 2
E (|w|/ |8§2u|2dx + 7/ laslvg(xl,yl)‘ d]?ldyl) s
Qt 10,¢[x]0,1[

where oo - 0 means 0.

For the study of multi-structures, we refer to [8], [10], [18], [19], [24], [25], [27] and the
references quoted therein.

Boundary-value problems involving rough boundaries or interfaces appear in many fields
of physics and engineering sciences, such as the scattering of acoustic waves on small periodic
obstacles, the free vibrations of strongly nonhomogeneous elastic bodies, the behavior of flu-
ids over rough walls, or of coupled fluid-solid periodic structures. For the study of boundary
homogenization for highly oscillating boundaries we refer to [2], [3], [4], [5], [6], [7], [11], [12],
[14], [15], [17], [20], [21] and [22]. In particular we recall that the asymptotic behavior of
a monotone nonlinear second order Neumann problem, with growth p — 1 (p €]1,400]), in
an analogous multidomain of RY (N > 2), as considered in this paper, is studied in [5] and
[6]. The authors prove that h. = eP is a critical size for the thickness of the thin domain.
Precisely, if e? < h., the limit solution meets a Dirichlet transmission condition between
the limit domain of the region with oscillating boundary and the upper side of the rescaled
thin domain. If e? ~ h,, a discontinuity in the Dirichlet transmission condition may occur.
While, if e > h,, a deterministic limit model may hardly be expected.

As regards the asymptotic behavior of a fourth order problem in a thin multidomain
we refer to [16] and the references quoted therein. In [16] the authors consider a thin
multidomain of RY (N > 2) consisting (e.g. in a 3D setting) of a only one vertical rod upon
a horizontal disk. In this thin multidomain they introduce a bulk energy density of the kind
W (D?U), where W is a convex function with growth p €]1, +o00[. By assuming that the two
volumes tend to zero with same rate, under suitable boundary conditions, they show that
the limit problem (well posed in the union of the limit domains) is uncoupled if 1 < p < %,
"partially” coupled if % <p< N —1, and coupled if N —1 < p.

Our paper is organized as follows: in Section 2, by making use of some results in [5],
some a priori norm-estimates for the solution of Problem (1.5) are obtained. In Section 3,
these estimates provide some convergence results in L?-norm, in the weak topology of L?, or
in the setting of the two-scale convergence method, proposed by G. Nguetseng in [23] and
developed by G. Allaire in [1]. Finally, in Section 4, the limit problem is derived by making
use of the method of oscillating test functions, introduced by L. Tartar in [26].

2 A prior: norm-estimates

Define
2w 851121}
D*(v) = . ve QD)
6§1x20 65211

9



1
02 v — 0% v
1 hE 12

D2(v) = . weHHQ);
[P [P
h—agxlmQU ﬁale)
&€
for every ¢. This section is devoted to prove the following a priori norm-estimates:

Proposition 2.1. Let u. be the solution of Problem (1.5). Assume (1.9) and (1.6). Then,
there exists a constant ¢ such that

To prove Proposition 2.1, the following result is required.

||ua||H2(Q€+) <c (2.1)

<cg, (2.2)

hZ D2(u,
) .

for every €.

Lemma 2.2. There exists a constant ¢ such that

2 2 2 2 —
[0]l720-) < ¢ (”UHLQ(E\an) + 2100, 0] 20y + HaﬂmvHL?(Qf)) , YweHY(QT);  (23)

2 2 2
o200 < ¢ (loles) + 10e0lar)) Vo€ HY QD) (2.4

||v||§{2(93) <c HDZUH?LQ(Q?))AL , Ywe{veH* Q) : v=0, Dv=0onT.}; (2.5)

for every €.
Proof. The proof of inequality (2.3) is performed in the proof of Proposition 3.3 in [5]. Easy
computations give inequalities (2.4) and (2.5). O

Proof of Proposition 2.1. In the sequel, ¢ denotes any positive constant independent of ¢.
By choosing v = u. in (1.5), it results that

2 2 2
]\4/+ |8§1u6‘ + {832%} + 2002 ue 02 ue +2(1 — ) }0;332%‘ dx+
Qe
h Pl |02 ] +ouo? u L2 Lor
+M € | xlua} + ﬁ o Ue + 2M xy Ue ﬁ o Ue + 2(1 - lu) h_ z1zo Ue Tr =
Q- € e €

= fauadx + ha fauadx7
of Q-

for every . Consequently, by taking into account that —a? — 5% < 2a, for o, 3 € R, and
by making use of assumption (1.6), one obtains that

/m 102 wa? 4 |02 — |0 — | 2(1 — 1) |2, ] it

2
K ‘831%’2 K

+2(1 — p)

2

1 2 1 2
ﬁal‘guﬁ h_a’cwzuf dr <
€ €

1 2
ﬁamua
€

+m/|xﬂ£+
o

< ¢ (el pzqap) + el 2oy

10



for every ¢, that is
2 2
||D2ua“(L2(Q;r)>4 + ha HDEUEH(LQ(Q—)f <c <||u€||L2(Qj) + ||u5||L2(Q—)>? (26)

for every ¢.
On the other hand, by applying (2.3) three times and by recalling that 0,,u; = he0,,ut
on ¥\ 0€., one obtains that

2 2 2 2
Hue”m(m) <c ||u€||L2(E\8Q£) +é? 10 e[ 72 a-) T ||8962u6||L2(Q* <
( )
2
< c|lucllzamo0.) T

+052 (”8117“65”22(2\895) + e’ HagluinQ + H w1z U HiQ(Q—)) -

o (100 [ 22wy, + € 102 mstel oy + 11020 aan))
= <||u€||i2(2\895) +é? ||ax1“e||22(2\895) + Hhaawzu;r”;@\ans)) +

4 2 2 2 2 2 2
+c (8 H8$1U’SHL2 +€ H w12y Y HL2(Q*) + Hamuf”L?(Q*)) ’
for every e, from which, by virtue of (2.4), it follows that
2 2
el z20-) < € llucllzr) +
2

e
h23x2ug

.

et 2 2 2
+Ch5 h_anal’lua”L?(Q) 8381962

2 (2.7)
L2 (Q7) 2(Q)) ’
for every ¢.

By combining (2.6) with (2.7), by making use of (2.5) and by assuming that the limit
(1.9) is finite, one has that

1
[t 320ty + he | D2ue| 2oy <C(”“€”H2(n+ + he || D2uc[{ 2 >4>2’

for every e, which provides estimates (2.1) and (2.2). O

Corollary 2.3. Let u. be the solution of Problem (1.5). Assume (1.9) and (1.6). Then,
there exists a constant ¢ such that

“52851“6”9(9*) =¢ (2.8)
‘ — 074,y e <c, (2.9)
e 1207

11



1
—5 03, ue <c, (2.10)
he 12(07)
1
—5 Oy Ue <c, (2.11)
he L2(@-)
€0z, ue | 20y S ¢, (2.12)
||u€||L2(Q*) <c (2.13)

for every e.

Proof. Estimates (2.8), (2.9) and (2.10) follow immediately from estimate (2.2). By combin-
ing estimate (2.2) with inequalities (2.3) and (2.4), and by recalling that d,,u. = h.0,,ut
on X\ 0L, it is easy to obtain (2.11), (2.12) and (2.13). O

3 Convergence results

The a priori norm-estimates of the solution u. of Problem (1.5) provide the following con-
vergence result:

Proposition 3.1. Let u. be the solution of Problem (1.5). Let W?(Q2%) be the space defined
in (1.7). Assume (1.6) and (1.9). Then,

3
||al‘2u5||L2(Q—) S Ché, (31)

|2 JS ety [0 g < b (32

1502u5HL2(Q—
for every ¢, where ¢ is a constant independent of €. Moreover, there exist a subsequence of

{e}, still denoted by {e}, u € W?(Q"), n,¢ € L*(QF), uo(= uo(z1,11)) € L*(]0,c[, H},.(]0,1]))
and §(= £((z1,22), (y1,92))) € L*(Q7x]0,1[*) such that

U, — |wlu weakly in W?(QF), (3.3)
8;2?/115 — 0 weakly in L*(Q1), (3.4)
N T2
02, ue = C weakly in L*(Q7), (3.5)
{u_ }e two-scale converges to uy, (3.6)
{e0,,u; }e two-scale converges to 0, uy, (3.7)
{202 u_ }e two-scale converges to 0 ug, (3.8)
1 5

—50,,u, two-scale converges to &, (3.9)

he .

as e — 0, and

uo (1, Y1) = )y (21,0) in |0, c[xw. (3.10)

12



Proof. Estimates (3.1) and (3.2) follow from estimates (2.11), (2.9) and (2.10). Convergences
(3.3), (3.4) and (3.5) are a consequence of estimate (2.1). Estimates (2.13), (2.12), (2.8),
(3.1) and (3.2) provide convergences (3.6), (3.7) and (3.8) with uy € L*(Q~, HZ,.(]0,1)).
Moreover, uq is independent of x5, too. In fact, it results that

0 =lim Oy Uep (x, ﬂ) dr = — lim UeOpy P <x, ﬂ) dr =
€ 3

e—0 Q- e—0 Q-

[l )0 (o) ded, Vi € C (2 X00.1).
Q= x]0,1]
Convergence (3.9) springs from estimate (2.10). Statement (3.10) can be obtained by arguing
as in the proof of (6.6) in Proposition 6.4 of [6]. O

If I =01in (1.9), then uy can be completely identified in terms of u:

Corollary 3.2. Let u. be the solution of Problem (1.5). Assume (1.9) with [ =0, and (1.6).
Let uw € W2(Q") and ug € L*(]0,c[, H2,.(]0,1])) be satisfying Proposition 3.1. Then,

per
up(w1,91) = )y (21,0) in |0, c[x]0, 1[. (3.11)
Proof. Assumption (1.9) with [ = 0 and estimate (2.2) ensure that
202 u. — 0 strongly in L*(Q27),
as ¢ — 0. Consequently, by virtue of (3.8), it results that
92 ug = 01in ]0, ¢[x]0, 1[. (3.12)
By combining (3.10) with (3.12), one obtains (3.11). O

4 The limit problem

The following proposition is devoted to identify the limit problem in Q7.

Proposition 4.1. Let u. be the solution of Problem (1.5). Assume (1.9) and (1.6). Let
ue W2QT) andn , ( € L*(2T) be satisfying Proposition 3.1. Then,

n=—plw|du ae in QT (4.1)
(=0 ae inQF, (4.2)
and uw € W2(Q7T) is the unique solution of

M|w|(1 — uQ)/ 02,udr vdr = |w| fudx+
o+ o+
0

+/OC </_1g($1,$2) de) o(z1,0)dey Yo € WO, (4.3)

where 1 €0, %[ 1s the Poisson ratio, M > 0 represents the flexural rigidity modulus of the
plate (see Problem (1.5)), and f, g € L*(27) are given by (1.6).
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Proof. At first, claim (4.1) will be proved. To this aim, choose v = %), (ﬂ)cp(xl,xg) as
3

1
test function in (1.5), where 1)y is the 1-periodic function defined by 9y (y1) = 514 (y1 — 1) in

[0,1] and ¢ € C°(Q) (point out that v € C®(QF) ) Co(2F) C V). Then, it results that

M QjAu5<<p+2€1//1 (%)amwsw ( >(921g0—|—81/1 ( )a? )dm—Ir
+M(1 - p) / 202 e (01 (2) Onaip + %001 () 02, y00) ot

M-y / 0wt () e dot (4.4)
_M(1—p) /Q 2 (o+ 200 () duipt 22 (L) i) ot

/ fe€ 2¢1 <pdx

for every . By passing to the limit, as ¢ — 0, in (4.4) and by making use of (3.3), (3.4),
(3.5) and (1.6), it is easy seen that

/ ne + plwldf,updr =0 VYo e C5°(Q),
O+
which provides (4.1).

In the next step, it will be proved that the function ¢ € L?*(QT) is independent of x5. To
this aim, choose v = ey (ﬂ><p(:c1,x2) as test function in (1.5), where 1 is the 1-periodic
€

1 I
function defined by ¥q(y1) = —y1 + 3 in [0,1] and ¢ € C§°(QT) (point out that v € C*(QF)
and supp v C Q7 consequently v € V). Then, it results that

M| A (~20m0+ v () 2,0+ 20 (2) 02,0 dat
+M(1 - p) / 202, ts (—Oumip + et () 02, ) da+

M(1 =y / 02 ety () 02 p dat (4.5)
—M(1-p) /ﬂ e (20np e () 20) ds

/ foctor (2 o,
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for every e. By passing to the limit, as ¢ — 0, in (4.5) and by making use of (3.3), (3.4),
(3.5), (1.6) and (4.1), it is easy seen that

/ 2uwl|0z,u0z, ¢ — 2|w|02,udy, 0 — 2(1 — p)COnpdr =0 Vi € C5°(QF),
O+

that is
COpypdr =0 Vo e CF ),
O+

which provides that ( is independent of x,.
In the third step, claim (4.2) will be proved . To this aim, choose

vz () ol)olen) in 0,
€y (%) p(r1) In Q7

as test function in (1.5), where v, is defined as above, ¢ € C*°([0,d]) is such that ¢ = 1 in

d d
lO, Z]’ ¢»=0in {3? d] and ¢ € C§°(]0,¢[) (it is evident that v € V7). Then, it results that

M Aug( 2¢ax1<p+ew2( >¢ o+ ety (%) goa;qa) dz+

of

M=) [ 2020 (<ot et () 00p0a0) dit

~M1—p) |0y () w02 do+

—M(1 - u)/Q 03, u. ( 200, + €ty ( ) ¢ ) dz+ (4.6)
+MhZ / W26 (=201 + 0 (%) 02, ) du+

+Mh§/ h2<92 e ( 20, + €1y ( )a? >d

= [ v (2)opdrt [ hpov () ode

for every e. By passing to the limit, as ¢ — 0, in (4.6) and by making use of (3.3), (3.4),
(3.5), (4.1), (2.2) and (1.6), it is easy seen that

CpOp,pdz =0 Yo e C5°(10,¢]),
O+
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from which, by recalling the assumptions on ¢ and that ( is independent of xs, it follows
that

/0 (o )pla) dr =0 Vo C5o(10, ),

that is (4.2).
Now, the limit problem satisfied by u will be identified. To this aim, choose

¢ in QF,
@(21,0) + hets (05, 0) (2/,0) in Q7

as test function in (1.5), where ¢ € C=(QF), and ¢ = 0, Dy = 0 on I'. Then, it results that

M AuAp + (1 — p) (202, u-02

T1T2 1’11:2
of

— 02 u. 02 — 02 u. 02 ) du+

+Mh§/ (h 821 Ue + 3852 ) ((Gilgo) (21,0) + hexs (8;;962@) (1:1,0)>dx+
- hé

€

+M(1 - p) / 207 3, (03,0,%) (1, 0) d+ (4.7)
0-
—M(1 - ,u)hé-% / — 02 u. ((3:%1@) (21,0) + hexs (82%2@) (x4, 0)> dr =
~ he

— [ oo [ F(el0,0) + by (0r,0) (7. 0) do

for every €. By passing to the limit, as ¢ — 0, in (4.7), by making use of (3.3), (3.4), (3.5),
(4.1), (4.2), (2.2) and (1.6), and by recalling that

Xo+ — |w| weakly in L*(QT),
it is easy seen that
Ml ) [ uitpar =1 [ fodet
o+ r
0 (4.8)
+/ (/ g(x1,2) dx2) p(a1,0)dr; Y € C°(QF) © ¢ =0, Dp=0onT,
0 —1

which, by density arguments, provides that u € W?2(2") is the unique solution of (4.3). O

The following proposition is devoted to identify the limit problem in 2.
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Proposition 4.2. Let u. be the solution of Problem (1.5). Assume (1.9) with | €]0,4o00],
and (1.6). Let ug € L*(]0, c[, H2,,(]0,1[)) be satisfying Proposition 3.1. Then,

per
2

]__
M l’“‘

0

4.9

:/ (/ 9($1,I2>d$2)<P($17y1)d$1dyla ( )
10,¢[x]0,1] \J =1

Vo € L*(]0,¢[, H2,,(]0,1])) : ¢ (z1,51) = 0 in |0, c[xw,

per

/ 851“0(9517yl)ajl@(mhyl)dmldyl =
10,¢[%]0,1{

where 1 €0, %[ 1s the Poisson ratio, M > 0 represents the flexural rigidity modulus of the

plate (see Problem (1.5)), and g € L*(27) is given by (1.6).

Proof. In the sequel, ¢ takes values in a subsequence satisfying Proposition 3.1.
The proof of (4.9) will be performed in two steps.
At first, it will be proved that

/_1/0 §((1, 22), (Y1, Y2) )dzadys = —,ul_%ajluo(xl,yl) a.e. in |0, ¢[x(]0, 1]), (4.10)

where & € L*(Q x]0, 1[?) satisfies Proposition 3.1.
To this aim, choose
0 in QF,
— 3
! h2z3p <x1, E) in O
5

as test function in (1.5), where ¢ (= ¢(z1,91)) € C°(]0,¢[%x(]0,1]) (point out that p(z1,-)
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admits an intrinsic 1—periodic extension on R). Then, it results that

Mh, / 02 u582 gazggo (:cl, 5 >)da:—i—

M

Mh [ 0w (hf 25 (:cl"‘; ))da+

1 Ue 2 T2
Q- h?

—I—Mh/ h23§2 u. 02, <§ T3 (ml,%)>d:r+

+Mh, / — uE—GQ (hgg 2 (xl,%>>dx—|—

p2 Owe e 2 O
(4.11)
2 Lo 3.2 21
+M(1— ,u)ha/ 2-—0; 4, Ue —lem (h§x2g0 (:101, ?>> -
T
[ ot st 0 2)
3 T
—M(1 — p)h. / ﬁ(?gzug o2, (hé’ T2 <a:1, ?1>> dr =
3
—h | fhiade (v, %) dr,
O- 15
for every ¢.
Now, pass to the limit, as € — 0, in each term of (4.11).
From (1.9) with [ €]0, +o00[ and (2.2) it follows that
3 1
lim <hs/ 82 u582 <h§ ggp (xl, >> dx) =
e—0 0- g
(4.12)
— lim (h/ h2 62 .z (h o2 1ol 821y1¢+ e ) (1.= )dw) ~0.
a-
From (1.9) with [ €]0, +o00[ and (3.8) it follows that
. 2 . 2 2 L1 1 392 1 _
(4.13)

= 21;/ ajluo(x17y1)90<l'1,Z/l)dxldyy
10,¢[x]0,1

18



From (1.9) with [ €]0, +oo[ and (3.2) it follows that

lim he h28§2 . ( a% ) (xl, ))dx:

e—0 Jo-
y 1 (114)
—tim [ 0% uad (hE02 o+ 2" 82 e Y dr =0
= 1m o ,Ued 0P+ 2—05, ¥ 5_2 P (ml, ?) Tz = .
From (3.9) it follows that
: T T
liny | 28; u, 2852 (niage (21,2 ) ) do=lim 3T Lo 0.2 (i, = dr =
(4.15)
=2 [ (anaa), () o) o, ), ).
Q~x]0,1]
From (1.9) with [ €]0, —|—oo[ and (3.2) it follows that
. 3 x
lli% . he2— 8;@ U —8;952 ( 2220 (a:l, ?)) dr =
1 (4.16)
1 h2
ling | 402, e T <h§ Ono + =0, g&) <x1, %) dz = 0.
From (1.6) it follows that
lir% h fEh T3P <x1, ) dx = 0. (4.17)
E— O

Then, by passing to the limit, as € — 0, in (4.11) and by making use of (4.12)+ (4.17),
one obtains that

2l_é/ 8§1u0($1,yl)@(flyyl)dxld%*'

10,¢[x]0,1]

+2/ f(($1,332), (yhyz))ﬁp(l’l,yl)d(9€1>$2)d(y1792)+
Q~x]0,1]

—(1 _N)mé/} . [ajluo(xhyl)SD(ﬂ?byl)dI1dfl/1 =0, Vpe CSO(]O,C[X(]O,l[)),
0,c[x]0,1

that is (4.10).
Now, to prove (4.9), choose v = ¢ <a:1, ﬂ), as test function in (1.5), where ¢ (= ¢ (1, 41))
£

€ C™([0,¢],Cr5. ([0,1])) such that ¢ (z1,41) = 0 in [0, ¢] x @. Then, it results that

per

MhE/Q 02 u.0?, (i (21,2 ) )da+Mh. / ﬁﬁius 02 (i (w1, 2) ) dot
—M(l—,u)h/ h28£2u502 (go(xl,%>> dx =h / fa@(m, )dm

19
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for every e.
Pass to the limit, as € — 0, in each term of (4.18).
From (1.9) with [ €]0, +00[ and (3.8) it follows that

lir% h.02 u.02 (gp (xl, ﬂ)) dr =
e— - £

:v1y1

1
1 h?
= lim he %02 u. <h§a2 © + 2—82 © + —82 ) (xla %) dr =

= 7[ . [ajluo(xl,%)a;ﬁo(xhyl)dxldyl.
0,¢[x]0,1

From (1.9) with [ €]0, +o00[, (3.9) and (4.10) it follows that

iy 1, (o 2)

1
_ 1 1 h2 T
= lim —§8§2u5 (hg 3; + 2—8§1y1 5_ y190> <ZL’1, ?) dr =

e—0 Q- hg

1
=/ | [f((mlaxQ)a(y17y2))l_18§1‘p(wlayl)d(xth)d(ylayQ):
0= x]0,1[2 2

:_%/} [x] [851%(1:1’yl)ajlgp(xl’yl)d%dyl-
0,c[x]0,1

From (1.6) it follows that

hm hefep (l‘l, )dx —/ g(x1,x2) 0 (x1,y1) d(x1, T2)dY1 .
—0 Jo- Q= x]0,1]

Then, by passing to the limit, as ¢ — 0, in (4.18) and by making use of (4.19)+

one obtains that

1 4,2
L / 02 (w1, y1) 02 (a1, y1)dwydy, =
l 10,e[x]0,1]

0
= / (/ 9(9517332)d952) @ (w1, y1) dordyy,
10,¢[x]0,1[ \J -1

M

Vo € C* ([0,¢],Cpe. ([0,1])) such that ¢ (z1,51) = 0in [0,c] X @,

per

which provides (4.9), by density arguments.
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