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Abstract

We present new necessary and sufficient conditions for the existence of

fixed points in a finite system of coupled phase oscillators on a complete

graph. We use these conditions to derive bounds on the critical coupling.

1 Introduction

The phenomenon of synchronization arises in a wide variety of application areas
across neuroscience, biology, engineering and physics [6, 17, 2, 16, 5]. As such,
the identification and study of structures and mechanisms that support the
onset of synchronized behaviour is a key issue in the theory of interconnected
dynamical systems. In particular, there has been a great deal of interest across
the mathematics, physics and engineering communities in the development and
analysis of simple mathematical models of synchronization [9, 19, 20, 3, 21, 22].

To date, one of the most widely-studied frameworks for the analysis of
synchronization is the so-called Kuramoto model of phase coupled oscillators
[10, 23]. In fact, this model has been used in numerous applications in the
chemical and biological sciences, and its basic properties have been analysed
using a combination of numerical and analytical techniques [11, 23, 24, 1]. The
basic Kuramoto model is comprised of a system of coupled oscillators, which
may have different natural frequencies, where the coupling between two oscilla-
tors is given by a weighted sinusoidal function of the difference of their phases.
The weights used in the model are typically taken to be the same for all pairs of
oscillators and are given by the ratio of a fixed parameter, the coupling strength,
to the network size.

The aspect of the Kuramoto model that has attracted most attention to date
is the manner in which the onset of synchronization depends on the strength
of coupling between the oscillators. For instance, at very low values of the
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coupling strength, little or no synchronization is observed. As the coupling
strength is increased, some partial synchronization appears in the network up
to a threshold value of the coupling strength, referred to here as the critical
coupling, at which fully synchronized behaviour emerges [9, 3]. The mechanism
of (de)synchronization in finite populations of oscillators has been described in
considerable detail [13, 12]. In particular, when the coupling strength drops
below its critical value and as it continues to decrease, the system undergoes a
series of so called frequency-splitting bifurcations. At each such bifurcation, the
ensemble of oscillators subdivides into smaller and smaller groups of oscillators
with identical average frequency, until eventually all oscillators oscillate at their
own intrinsic frequency. A detailed analysis of this behaviour for a system with
three oscillators was given in [13]. While the aforementioned contributions focus
on the behaviour of the system in the subcritical coupling regime, the present
paper studies globally phase-locked solutions, which by definition only exist in
the supercritical coupling regime.

Another aspect of the Kuramoto model to have attracted attention recently
is the emergence of phase chaos [14, 18] in systems of dimension four and higher.
A generic feature of coupled oscillator systems, phase chaos in the Kuramoto
model is most prominent in systems with relatively low dimension (comprising
between ten and fifteen oscillators) [14]. Again this phenomenon can only exist
in the subcritical coupling regime, and we shall not further consider it here.

In the original Kuramoto model, it is assumed that all pairs of oscillators in
the network are connected with the same coupling strength [10]. This type of
coupling is referred to as ‘all-to-all’ coupling and corresponds to a network in
which the underlying graph is complete [4]. Extensions of the Kuramoto model
to lattices [8] and rings [20] have also been considered, and more recently the dy-
namics of coupled oscillators on networks with small-world [27, 7] and scale-free
[15] topologies have started to attract a lot of interest. More generally, there
are many fundamental questions relating to the interplay between a network’s
topology and dynamical processes taking place on it which are still unanswered.
The work described in [6], which proposes an extension of group-based symme-
try, using the so-called groupoid formalism, as a means of classifying possible
behaviours for networked dynamical systems, is particularly noteworthy in this
context.

Many of the recent results concerned with the dynamics and synchronization
of coupled oscillators have either been based on numerical simulations or else
have been derived for the limiting case of networks of infinite size. In contrast,
relatively few rigorous results are available for finite-size networks [23, 9]. In this
paper, we shall be concerned with synchronization in finite systems of coupled
oscillators. Specifically: we shall establish (new) necessary and sufficient con-
ditions for the existence of fixed points in a finite system of coupled oscillators
(see also [25, 26]); compute bounds on the critical coupling strength for such
systems; and provide insights into the number of fixed points possible under
strong coupling. Our analysis is in the spirit of the work presented in [9, 3],
and places particular emphasis on the existence of fixed points. Of course, the
stability of such fixed points is also a topic of great interest, and has been con-
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sidered in [9, 19, 20, 3]. However, we shall not explicitly address the question
of stability in the current paper.

The outline of the paper is as follows. In Section 2, we introduce the Ku-
ramoto model, and review some of its basic properties. Here, we also give a
formal definition of the critical coupling, which is essentially the lowest value of
the coupling strength for which fixed points exist. In Section 3, we show that
fixed points will always exist for sufficiently strong coupling (essentially prov-
ing that the critical coupling is a finite number), and then, in Section 4 provide
lower bounds on the critical coupling. Section 5 contains necessary and sufficient
conditions for the existence of fixed points, which are then used in Section 6 to
describe an algorithm for computing the critical coupling. Section 7 contains a
numerical example to illustrate the results of the paper and finally, in Section 8
we present our concluding remarks.

2 Mathematical Preliminaries and The Kuramoto

model

2.1 Basic Notation

Throughout the paper, R (C) denotes the field of real (complex) numbers, R
N

(CN ) denotes the vector space of all N -tuples of real (complex) numbers, and
R
N×N (CN×N ) denotes the space of N ×N matrices with entries in R (C). i is

used to denote the complex number satisfying i2 = −1. For a vector x ∈ R
N ,

xi denotes the ith entry of x. Also, 1N denotes the vector in R
N , all of whose

entries are equal to one.
We shall use V to denote the projection matrix in R

N×N given by

[Vij ] :=

{

N−1
N

j = i

− 1
N

j 6= i
, i, j = 1, . . . , N, (1)

and V R
N shall denote the image of R

N under V . Formally,

V R
N := {x ∈ R

N :

N
∑

j=1

xj = 0}.

2.2 The Basic Kuramoto Model

The basic Kuramoto model of phase-coupled oscillators under the assumption
of all-to-all coupling is given by

θ̇i = ωi +
k

N

N
∑

j=1

sin(θj − θi), i = 1, . . . , N. (2)

Here, θi(·) ∈ R (S1) and ωi ∈ R respectively denote the phase and intrinsic (or
natural) frequency of oscillator i, and the constant k ∈ R+ is a global coupling
coefficient.
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This model can be described more compactly in vector notation as

θ̇ = ω + kf(θ) (3)

where θ(t) := (θ1(t), . . . , θN (t)), ω := (ω1, . . . , ωN ), and the mapping f : R
N 7→

R
N is given by

f(ξ) = (f1(ξ), . . . , fN (ξ)),

fi(ξ) :=
1

N

N
∑

j=1

sin(ξj − ξi) 1 ≤ i ≤ N. (4)

The assumption of all-to-all coupling is naturally very restrictive, and ought to
be relaxed in order for this work to be more directly applicable to the modelling
of biological systems, or most engineering systems for that matter. Work to-
wards this end is underway and we hope to be able to present some results in
the near future. Meanwhile, in this paper, we shall focus exclusively on configu-
rations with all-to-all coupling. First of all, we recall some fundamental notions
in the theory of synchronized oscillators.

2.3 The order parameter

Let D denote the complex unit disc {z ∈ C : |z| ≤ 1}. Then define r : R
N 7→ D,

by:

r(ξ) :=
1

N

N
∑

j=1

eiξj . (5)

Let r−1(z) := {ξ ∈ R
N : r(ξ) = z} denote the preimage of r, and note that the

preimage is nonempty for all z ∈ D provided N ≥ 2. We introduce the notation
R0 := r−1(0). Then, for ξ ∈ R

N , we may express r(ξ) in polar coordinates:

r(ξ) =

{

R(ξ)eiψ(ξ) ξ ∈ R
N\R0

0 ξ ∈ R0

. (6)

Here, R : R
N 7→ [0, 1] and ψ : R

N\R0 7→ [0, 2π) are respectively defined as

R(ξ) :=

√

√

√

√

√





1

N

N
∑

j=1

sin(ξj)





2

+





1

N

N
∑

j=1

cos(ξj)





2

, (7)

and

ψ(ξ) := arctan

(

1
N

∑N
j=1 sin(ξj)

1
N

∑N
j=1 cos(ξj)

)

. (8)
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R(θ)

ψ(θ)

Figure 1: The order parameter r(θ) := R(θ)eiψ(θ) is defined as the centroid
(closed circle) of the set of unit vectors (open circles) associated with the phases
of the oscillators.

The following properties of the maps R(·) and ψ(·) follow immediately from
Eqn. (5):

R(ξ + c1N ) :=

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ei(ξj+c)

∣

∣

∣

∣

∣

∣

= |eic|R(ξ) = R(ξ) ∀ξ ∈ R
N ; (9)

ψ(ξ + c1N ) = ψ(ξ) + c mod 2π ∀ξ ∈ R
N\R0. (10)

In the physics literature, r(·) is known as the order parameter, and is used to
characterize the amount of order or synchronization in the system (2). The
idea is to think of the phase θj of oscillator j as a unit vector eiθj in C; the
order parameter then corresponds to the geometric centroid of the set of vectors
{eiθj : j = 1, . . . , N}, as illustrated in Figure 1. The magnitude of the order
parameter, given by R(θ), serves as a measure of the order in the system, in the
sense that the closer the vectors are to being perfectly aligned, the closer R(θ)
is to its maximal value 1, while vectors that are far from alignment will give rise
to values of R(θ) significantly smaller than 1.

It follows from (6) that for ξ ∈ R
N\R0,

R(ξ) = e−iψ(ξ)r(ξ) (11)

=
1

N

N
∑

j=1

ei(ξj−ψ(ξ)). (12)

Equating real and imaginary parts in (11), we immediately see that for ξ ∈
R
N\R0:

R(ξ) =
1

N

N
∑

j=1

cos(ψ(ξ) − ξj); (13)

N
∑

j=1

sin(ψ(ξ) − ξj) = 0. (14)
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Both of these identities shall prove useful throughout the paper.
Before proceeding, note that the function f : R

N 7→ R
N given by (4) can be

written in terms of the functions R(·) and ψ(·) as

fi(ξ) :=

{

R(ξ) sin(ψ(ξ) − ξi) ξ ∈ R
N\R0

0 ξ ∈ R0

, (15)

for 1 ≤ i ≤ N .

2.4 Fixed points and global phase-locking

Let 〈ω〉 denote the sample mean of the natural frequencies, 〈ω〉 := 1
N

∑N
j=1 ωj .

Similarly, let 〈θ(t)〉 denote the mean phase of a solution of (2) at time t. In
general, 〈ω〉 and 〈θ(t)〉 will be non-zero. However, we shall now show that
for the study of phase-locked solutions of (2), we may assume without loss of
generality that 〈ω〉 = 0, 〈θ(t)〉 = 0 for t ≥ t0. This helps to simplify the analysis
of phase-locked solutions of (2), as it allows us to transform the problem into a
question of fixed point existence for a lower-dimensional system.

Consider the new coordinates

xi(t) := θi(t) − 〈θ(t)〉, i = 1, . . . , N. (16)

Then x(t) := V θ(t). Similarly, define Ω := V ω. In the new coordinates, the
system dynamics are given by:

ẋ = Ω + kf(x), x(t) ∈ V R
N , (17)

where f(·) is defined in (4).
The key point here is that as 〈Ω〉 = 0, V R

N is invariant under (17). To
avoid confusion, we shall use x(t) to denote solutions to the system (17) on
V R

N , while θ(t) shall be used to denote solutions to the original Kuramoto
system (2) on R

N . Our main concern for the remainder of the paper is to find
conditions on k and Ω under which the system (17) has one or more fixed points
in the sense of the following definition.

Definition 1 (fixed point) Given ω ∈ R
N , let Ω := V ω. We say that x ∈

V R
N is a fixed point (of the system (17)) if

kf(x) = −Ω. (18)

There is a natural correspondence between fixed points of (17) and phase-
locked solutions of (2). In fact, for every fixed point x∗ ∈ V R

N there is a
1-dimensional manifold M := {θ ∈ R

N : θ = x∗ + 〈ω〉t, t ∈ R} that is invariant
under the original system dynamics (2). More precisely, let x∗ be a fixed point
and let θ0 ∈ R

N be such that V θ0 = x∗. Then the solution θ(t) of the system (2)
with initial condition θ(t0) = θ0 satisfies

θi(t) − θj(t) = θ0i − θ0j (19)
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for all t ≥ t0 and all (i, j). In other words, a fixed point in the sense of Defini-
tion 1 corresponds to a situation in which each oscillator is phase-locked to every
other and moves at constant speed θ̇i = 〈ω〉. We shall refer to this phenomenon
as global phase-locking. In the literature, it is also known as full (or complete)
synchronization. See also [9].

2.5 Critical coupling

We next define the notion of critical coupling , which is central to the work of
the rest of the paper. Essentially, the critical coupling is the smallest k for which
the system (17) has at least one fixed point. Formally, we have the following
definition.

Definition 2 Given ω ∈ R
N , let Ω := V ω. We define the critical coupling, kc,

as follows:

kc := inf
k

{

k ∈ R+ : ∃x ∈ V R
N s.t. kf(x) = −Ω

}

. (20)

Note that this definition of the critical coupling, which is equivalent to that
of KL in [9], does not coincide with the traditional notion used in the physics
literature. Indeed, the traditional notion of critical coupling is defined in terms
of the lowest value of k for which there exists at least one solution x(t), t ≥
t0, and a constant c ∈ (0, 1] such that R(x(t)) = c for all t ≥ t0 (so called
stationary or steady solutions [23]). Note that these solutions are not necessarily
fixed points, although, in finite dimensions, the probability of finding stationary
solutions that are not fixed points is vanishingly small. In his original analysis,
Kuramoto showed that in the limiting case when N tends to infinity, stationary
solutions always exist for large enough k, provided the distribution of natural
frequencies is symmetric. Our definition, although more restrictive in a sense,
does not impose any restriction on the shape of the distribution of natural
frequencies other than that it should have compact support. In fact, it follows
from the result of Lemma 4 below that, if the distribution of natural frequencies
does not have compact support, then the critical coupling will exceed any finite
number with probability tending to 1 as N tends to infinity. In this paper we
shall therefore focus on distributions with compact support.

3 Existence of fixed points under strong cou-

pling

In this section we shall show that, provided the distribution of intrinsic frequen-
cies has compact support, the critical coupling given in Definition 2 is always
finite. Following on from this, in the next section, we shall derive a number of
lower bounds for the value of the critical coupling. There are two steps in the
derivation given here: first, we characterize the fixed points of the homogeneous
system

ẋ = kf(x). (21)
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Then, in the second step, we use a perturbation argument to show that for every
fixed point of the homogeneous system, we can find an open set containing it,
such that, under strong enough coupling, the original system (17) has a unique
fixed point on this set. As a first step, the following lemma characterises the
fixed points of the homogeneous system.

Lemma 1 Let f(·) be given by (4) and ξ ∈ R
N . We have that f(ξ) = 0 if and

only if one or both of the following conditions are satisfied

(a) R(ξ) = 0;

(b) sin(ξi − ξj) = 0 for all (i, j).

Proof: Sufficiency of conditions (a) and (b) follows from (15) and (4) re-
spectively. To prove necessity, suppose f(ξ) = 0 and R(ξ) 6= 0 (if R(ξ) = 0 we
are done). It follows that sin(ψ(ξ) − ξi) = 0 for all i. This implies that there
exist integers ki ∈ Z, i = 1, 2, . . . N such that ψ(ξ) − ξi = kiπ for all i, and we
have that ξi − ξj = (kj − ki)π. We conclude that sin(ξi − ξj) = 0 for all (i, j).

Remark 1 It is not hard to see that conditions (a) and (b) in Lemma 1 are mu-
tually exclusive if and only if the dimension N is odd. We shall prove necessity.
Suppose conditions (a) and (b) both hold and suppose furthermore that N is odd.
Then for all (i, j) we have that either cos(ξi − ξj) = 1 or cos(ξi − ξj) = −1.

We write R2(ξ) = 1
N2

∑

i,j cos(ξi− ξj) = 1
N2

(

N + 2
∑

i,j>i cos(ξi − ξj)
)

. Since

R(ξ) = 0 by assumption, it follows that 2
∑

i,j>i cos(ξi − ξj) = −N . The left
hand side evaluates to an even integer. By assumption, the number on the right
hand side is odd. We arrive at a contradiction and conclude that if N is odd,
conditions (a) and (b) cannot both hold.

Next we shall prove that the fixed points of our N -dimensional system (17)
can be found by solving a system of N − 1 equations in as many variables. We
have the following result:

Lemma 2 Let p ∈ {1, . . . , N} and let x∗ ∈ V R
N . Then x∗ is a fixed point

of (17) if and only if kfi(x
∗) = −Ωi for i 6= p.

Proof: The proof of necessity is trivial. To prove sufficiency, recall that

N
∑

j=1

(Ωj + kfj(x)) = 0 for all x ∈ R
N . (22)

Now suppose kfi(x) = −Ωi for all i 6= p. Then it follows from (22) that
Ωp + kfp(x) = 0. In other words, it follows that kfi(x) = −Ωi for all i. We
conclude that x is a fixed point.
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Let x∗ ∈ V R
N be a fixed point of the homogeneous system (21) such that

R(x∗) 6= 0. We shall now show that locally, in a neighborhood of x∗, the system
of equations















−Ω1 = kf1(x1, . . . , xN−1,−
∑N−1
j=1 xj)

...
...

−ΩN−1 = kfN−1(x1, . . . , xN−1,−
∑N−1
j=1 xj)

(23)

has a unique solution, provided k is large enough. It follows directly from
Lemma 2 that every solution of (23) defines a fixed point and, conversely, that
every fixed point satisfies (23). We proceed as follows. Let x∗ ∈ V R

N . We
define the Jacobian J(x∗), as follows:

[Jij(x
∗)] :=

∂fi(x1, . . . ,−
∑N−1
j=1 xj)

∂xj

∣

∣

∣

∣

∣

x=x∗

, (24)

where i, j = 1, . . . , N − 1. We have the following result:

Lemma 3 Let f(·) be given by (4) and suppose that x∗ ∈ V R
N satisfies f(x) =

0 and R(x) 6= 0. Then det(J(x∗)) 6= 0.

Proof: Let x∗ be a fixed point of the homogeneous system and suppose
R(x∗) 6= 0. Then by Lemma 1, we have that sin(x∗j − x∗i ) = 0 for all (i, j), and
it follows that

cos(x∗j − x∗i ) = cos((x∗j − x∗s) − (x∗i − x∗s))

= cos(x∗j − x∗s) cos(x∗i − x∗s) (25)

for all s and all (i, j). The claim is that J(x∗) is nonsingular. To prove this, we
proceed as follows. From the definition, we have that

Jij(x
∗) =

{

−∑N−1
m=1,m 6=i cos(x∗m − x∗i ) − 2 cos(x∗N − x∗i ) i = j

cos(x∗j − x∗i ) − cos(x∗N − x∗i ) i 6= j
. (26)

Using the aforementioned identity, setting s = N , we rewrite (26), as follows,

Jij(x
∗) =

{

−
(

∑N−1
m=1,m 6=i cos(x∗m − x∗N ) + 2

)

cos(x∗i − x∗N ) i = j
(

cos(x∗j − x∗N ) − 1
)

cos(x∗i − x∗N ) i 6= j
.(27)

Inspection shows that the rank of J(x∗) is invariant under permutations of the
components of x∗. Hence we can assume, without loss of generality, that there
exists ρ ∈ {0, . . . , N − 1}, such that

cos(x∗j − x∗N ) =

{

−1, 1 ≤ i ≤ ρ

+1, ρ+ 1 ≤ i ≤ N
(28)
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Under this assumption J(x∗) takes the form

J(x∗) =

(

A 0
C B

)

(29)

where A and B are square matrices of dimension ρ×ρ and (N−1−ρ)×(N−1−ρ)
respectively. It follows that J(x∗) is nonsingular if and only if A and B are
nonsingular. Inspection shows that A = (N − 2ρ)I + 211T and B = (2ρ−N)I.
It follows that A or B is singular if and only if N = 2ρ. In case N is odd, this
condition is never satisfied. In case N is even this condition, combined with (25)
and the fact that R2(x) = 1

N2

∑

i,j cos(xi − xj), implies that R(x∗) = 0, which
contradicts our starting assumption. We conclude that, under the hypotheses
of the lemma, J is nonsingular. This concludes the proof.

Let Π : R
N−1 7→ V R

N , be given as

(Π(y))i :=

{

yi for i = 1, 2, . . . N − 1;

−∑N−1
j=1 yj for i = N.

(30)

and note that Π has an inverse Π−1 that is defined everywhere in V R
N . We are

now ready to state the main result:

Theorem 1 Let f(·) be given by (4) and x∗ ∈ V R
N be such that f(x∗) = 0

and R(x∗) 6= 0. Also, let Ω ∈ V R
N . Then there exists K ∈ R, and an open

set U ∈ R
N−1 such that (a) Π−1(x∗) is an interior point of U ; and (b) for all

k > K, the system of equations (23) has a unique solution on U .

Proof: Define y∗ := Π−1(x∗), and let g : R
N−1 7→ R

N−1 be given as

gi(y) := fi(y1, . . . , yN−1,−
∑N−1
j=1 yj), i = 1, . . . , N − 1. Note that g(y∗) = 0.

Also, by Lemma 3, we have that det(∂g
∂y

(y∗))| 6= 0. Under these conditions,

the Inverse Function Theorem says that there exists an open set U ⊂ R
N−1

containing y∗ such that g|U : U 7→ g(U) is a diffeomorphism. By continuity
(and bijectivity) of g−1 there exists δ > 0 such that for all z ∈ R

N−1 satisfying
‖z‖ < δ, the equation g(y) = z has a unique solution on U . Now let z be given
as zi := −Ωi/k. Since, by assumption, maxi |Ωi| <∞, it follows that, provided
k is large enough, the system of equations {kgi(y) = −Ω : i = 1, . . . , N − 1} has
a unique solution on U . This concludes the proof.

As alluded to earlier, there is a unique correspondence between solutions
of (23) and the fixed points of the system (17). Indeed, by Lemma 2 we have
that if y is a solution of (23), then Π−1(y) is a fixed point, and conversely, if y is
a fixed point, then Π(y) is a solution of (23). Thus, an immediate consequence
of Theorem 1 is that for large enough k, the system (23) will have at least one
fixed point. In other words, Theorem 1 tells us that the critical coupling, kc, is
always finite.

Note furthermore that the proof of Theorem 1 does not require detailed
knowledge of the coupling function g and that, as such, its applicability is not
restricted to networks with all-to-all coupling. To illustrate this, consider the
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case of a 4-cycle, where g is given as

g1(y) =
1

4
sin(y2 − y1) +

1

4
sin(−2y1 − y2 − y3)

g2(y) =
1

4
sin(y3 − y2) +

1

4
sin(y1 − y2)

g3(y) =
1

4
sin(−2y3 − y1 − y2) +

1

4
sin(y2 − y3). (31)

We have that g(0) = 0 and det(∂g
∂y

(0)) = − 1
4 6= 0. This implies that for k

large enough, the system of equations {kgi(y) = −Ωi : i = 1, 2, 3} has a unique
solution on some open set containing the origin.

Lastly, note that continuity of g−1 implies that the fixed points of the original
system (17) will converge to the fixed points of the homogeneous system (21)
as k tends to infinity.

4 Lower bounds on the critical coupling

In the previous section we showed that the critical coupling is finite, provided
the oscillator’s intrinsic frequencies are finite. In the present section we shall
investigate in more detail the relation between the distribution of intrinsic fre-
quencies and the critical coupling. In particular, we shall derive various lower
bounds and discuss some of these bound’s implications for the system’s dynamic
behaviour.

First, let us observe that kc (Definition 2) is lower bounded by the l∞ norm
of Ω:

kc ≥ ‖Ω‖∞ := max
i

|ωi − 〈ω〉|. (32)

This follows trivially from inspection of Eqn. (17). In order to derive another
lower bound, we shall need the following result:

Lemma 4 Let f(·) be given by (4). Then:

1. For all x ∈ R
N ,

‖f(x)‖2 ≤
√

NR2(x) (1 −R2(x)); (33)

2. If N is even, then for every c ∈ [0, 1] there exists x ∈ V R
N such that

R(x) = c and ‖f(x)‖2 =
√

NR2(x) (1 −R2(x));

3. If N is odd, then inequality (33) is strict for all x ∈ R
N such that 0 <

R(x) < 1.

Proof: Part 1. Observe that inequality (33) is trivially satisfied when
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x ∈ R0. Suppose therefore that x ∈ R
N\R0. Then by definition

‖f(x)‖2
2 :=

N
∑

j=1

(fj(x))
2

= R2(x)
N
∑

j=1

sin2(ψ(x) − xj), (34)

where ψ(x) and R(x) are the phase and magnitude of the order parameter, pre-
viously defined in (8) and (7) respectively. Introducing the shorthand notation
zi(x) := cos(ψ(x) − xi), and using (13) we now rewrite (34), as follows:

‖f(x)‖2
2 =





1

N

N
∑

j=1

zj(x)





2
N
∑

j=1

(

1 − zj(x)
2
)

. (35)

To derive the desired inequality we pick a c ∈ [0, 1] and maximize ‖f(x)‖2 over
the set {x ∈ R

N : R(x) = c}. We shall not solve this optimization problem
directly, but take an indirect route by considering another, easier optimization
problem, whose solution will then give us an upper bound on the solution to
the first problem. Then we shall show that, under certain conditions, the two
solutions coincide.

To this end, let c ∈ (0, 1] and consider the constrained optimization problem

OPT 1:
maximize

∑N
j=1

(

1 − zj(x)
2
)

subject to 1
N

∑N
j=1 zj(x) = c, x ∈ R

N\R0

Note that the constraint is feasible for all values of c in the specified interval. We
shall denote the solution to OPT 1 as s1(c). Next consider a second optimization
problem,

OPT 2:
maximize

∑N
j=1

(

1 − y2
j

)

subject to 1
N

∑N
j=1 yj = c, y ∈ R

N .

and let the solution to this problem be denoted as s2(c). We then have that
s2(c) ≥ s1(c) for all c ∈ (0, 1]. In other words, the solution to OPT 1 is
upper bounded by the solution to OPT 2. The solution to OPT 2 can be
found by means of standard Lagrange multiplier techniques. The optimum
s2(c) = N

(

1 − c2
)

, is attained when yi = c for all i. We conclude that

max
{x∈RN :R(x)=c}

‖f(x)‖2
2 ≤ Nc2

(

1 − c2
)

, (36)

and hence,
‖f(x)‖2 ≤

√
NR(x)

√

1 −R2(x). (37)
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for all x ∈ R
N .

Part 2. To prove the second part of the theorem, let c ∈ (0, 1] and note that
s1(c) = s2(c) if and only there exists x ∈ R

N\R0 such that

cos(ψ(x) − xi) = c (38)

for all i. Suppose N is even and let x be given as

xi :=

{

arccos(c) i = 1, . . . , N2
− arccos(c) i = N

2 , . . . , N.
(39)

Then
∑N
j=1 xj = 0, and, by definition, x ∈ V R

N . Moreover, ψ(x) = 0, and
cos(ψ(x) − xi) = c for all i. This completes the second part.

Part 3. To prove the third part, let N be odd and suppose there exists
x ∈ R

N such that Condition (38) is satisfied. Then it follows from the identity
sin2(ψ(x) − xi) + cos2(ψ(x) − xi) = 1 that there must exist a ∈ {−1, 1}N
such that sin(ψ(x) − xi) = ai

√
1 − c2 for all i. By Identity (14), we have that

∑

j sin(ψ(x) − xj) = 0, which, assuming c 6= 1, implies that
∑N
j=1 aj = 0. But

this cannot be true unless N is even. Thus we arrive at a contradiction and we
conclude that if N is odd then s2(c) > s1(c) for all c such that 0 < c < 1. This
concludes the proof.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

R(x) →

1 √
N
‖f

(x
)‖

2
→

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

R(x) →

1 √
N
‖f

(x
)‖

2
→

(a) N = 3 (b) N = 4

Figure 2: Scatter plot of 1√
N
‖f(x)‖2 for N = 3 (left panel) and N = 4 (right

panel). The phases x were drawn from a uniform distribution. The solid black
line in both panels is the upper bound R(x)

√

1 −R2(x).

Figure 2 illustrates the result of Lemma 4. When N = 4 (even), the lower
bound is attained at every value of R(x), which shows that the given bound is
the tightest possible. However, as illustrated in the left panel, when N = 3, the
bound is never attained except on the set {x ∈ R

N : R(x) ∈ {0, 1}}. It can be
shown however that in the limit of large N the given bound is arbitrarily tight,
even for odd N , in the sense that for every c ∈ [0, 1],

min
{x∈R2m+1:R(x)=c}

1√
2m+ 1

∣

∣

∣‖f(x)‖2 −
√

(2m+ 1)c2 (1 − c2)
∣

∣

∣

13



tends to zero as m tends to infinity.
Lemma 4 has some interesting implications. For instance, it can provide

insight into the rate at which solutions of a homogeneous system of Kuramoto
oscillators ((2) with ωi = 0 for 1 ≤ i ≤ N) on R

N converge to fixed points, . To
see this, consider the homogeneous system

{

θ̇(t) = kf(θ(t))
θ(t0) = θ0

, (40)

where θ0 ∈ R
N . We shall compute the time derivative of the magnitude squared

of the order parameter, L(·) := R2(·), and show that this derivative is: (i) non-
negative along solutions of (40); (ii) bounded from above by a certain function
D(t) for every t. We proceed as follows [9]. By definition,

dL(θ(t))

dt
:=

L(θ)

∂θ
θ̇(t) =

L(θ)

∂θ
kf(θ(t)).

Using the identity
∂L(θ)

∂θ
=

2

N
[f(θ)]

T
,

it follows that
dL(θ(t))

dt
=

2k

N
‖f(θ(t))‖2

2, (41)

which shows that the time-derivative is positive everywhere, except at the equi-
libria, where it is zero. It follows that the magnitude of the order parameter
is a nondecreasing function of time. Based on the observation that the time-
derivative of L is positive almost everywhere (the set of equilibria having mea-
sure zero), we formulate the following conjecture, [3, 9]:

Conjecture 1 For almost all initial conditions θ0, the solution θ(t) to the ho-
mogeneous system (40) has the property that limt→∞R(θ(t)) = 1.

In agreement with Conjecture 1, one can prove that, for the homogeneous
system, the global phase-locking manifold M := {θ ∈ R

N : θi = θj for all i, j}
is (locally) asymptotically stable. However, the existence of other invariant
manifolds, not contained in M, implies that M is not globally asymptotically
stable. We conjecture that M is ‘almost globally asymptotically stable’, in the
sense that its region of attraction is the entire space minus a set of measure
zero.

For our next result, we shall need the concept of a dominating function,
which is defined as follows:

Definition 3 Let h, g : R 7→ R and let I ⊂ R be some interval. We say that h
dominates g on I if h(t) ≥ g(t) for all t ∈ I. In that case we call h a dominating
function for g on I.

Our next result states that L(θ(t)) is dominated by a certain scalar function
D(t) that depends only on θ0. In order to prove this result, we need the following
two lemmas.

14



Lemma 5 Let θ(·) be a solution of the homogeneous system (40) and suppose
L̇(θ(t′)) = 2kL(θ(t′)) (1 − L(θ(t′))) for some t′ ∈ R. Then

L̇(θ(t)) = 2kL(θ(t)) (1 − L(θ(t))) for all t ≥ t′.

Proof: Recall that L̇(θ(t)) = 2k
N
‖f(θ(t))‖2

2. It follows from the proof of
Lemma 4 that ‖f(θ(t′))‖2

2 = NL(θ(t′)) (1 − L(θ(t′))) for some t′ ∈ R if and only
if one or two of the following conditions hold: (a) L(θ(t′)) = 0; (b) N is even

and there exists a permutation θ̂(t′) of θ(t′) such that

cos(θ̂i(t
′) − θ̂1(t

′)) = 1, i = 1, 2, . . . ,
N

2
(42)

cos(θ̂i(t
′) − θ̂N (t′)) = 1, i =

N

2
+ 1, . . . , N (43)

If L(θ(t′)) = 0, we have that L(θ(t)) = 0 for all t ≥ t′ and the result follows

trivially. Now suppose Conditions (42) and (43) hold. It follows that
˙̂
θi(t

′) =
˙̂
θj(t

′) for i, j ≤ N
2 and i, j > N

2 , and hence

d

dτ

(

cos(θ̂i(τ) − θ̂j(τ))
)∣

∣

∣

τ=t′
= 0, i, j ≤ N

2
; i, j >

N

2

In other words, if θ̂(·) satisfies Conditions (42) and (43) for some t′, it satis-
fies (42) and (43) for all t ≥ t′. This concludes the proof.

Lemma 6 Let h, g : R 7→ R be such that for every x0 ∈ R, the systems
{

ẋ = h(x)
x(0) = x0

,

{

ẋ = g(x)
x(0) = x0

have unique solutions in C1[0,∞). Let these solution be denoted xh(t;x0) and
xg(t;x0), respectively. Suppose there exists a, b ∈ R, a 6= b, such that

h(x) > g(x) ≥ 0

for all x ∈ (a, b) ⊂ R. Then for every x0 ∈ (a, b), we have that

xh(t;x0) ≥ xg(t;x0) (44)

for all t ∈ I, where I ⊂ R is defined as

I :=

{

[0,mint{xh(t;x0) = b}) when {xh(t;x0) = b} 6= ∅;
[0,∞) otherwise.

(45)

Proof: Under the hypotheses of the lemma we have that h(x0) > g(x0),
and it follows that for small enough t, xh(t) > xg(t) (omitting the argument x0

for notational convenience). Note also that xh and xg are increasing whenever
xh(t;x0) < b and xg(t;x0) < b respectively. Now suppose there exists t2 > 0
such that xg(t2) > xh(t2) and xg(t2) < b. Then by continuity there exists
t1 < t2 such that a < xh(t1) = xg(t1) < b and h(xh(t1)) ≤ g(xg(t1)). Define
x′ := xh(t1) = xg(t1). It follows that g(x′) ≥ h(x′), which contradicts our
starting hypothesis. We conclude that xh(t) ≥ xg(t) for all t ∈ I.
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We have the following result:

Corollary 1 Let θ(·) be a solution to the homogeneous system (40) with initial
condition θ(t0) = θ0. Then

D(t) :=
1

1 − e−2k(t−t0)
(

L(θ0)−1
L(θ0)

) (46)

is a dominating function for L(θ(t)) on [t0,∞).

Proof: By Lemma 4 we have that L̇(θ(t)) ≤ 2kL(θ(t)) (1 − L(θ(t))) for
all t. We claim that, on [t0,∞), L(θ(t)) is dominated by the solution y(t) of the
ODE

{

ẏ = 2ky(1 − y)
y(t0) = L(θ0)

(47)

which is given as

y(t) =
1

1 − e−2k(t−t0)
(

L(θ0)−1
L(θ0)

) , t ≥ t0. (48)

To prove this, suppose L̇(θ(t)) = 2kL(θ(t)) (1 − L(θ(t))) for some t ≥ t0 and let
t′ denote the smallest such t (in case L̇(θ(t)) < 2kL(θ(t)) (1 − L(θ(t))) for all
t ≥ t0, the result follows immediately from Lemma 6). Then by Lemma 5, we
have that L̇(θ(t)) = 2kL(θ(t)) (1 − L(θ(t))) for all t ≥ t′, and it follows that

L(θ(t))|L(θ(t′))=a =
1

1 − e−2k(t−t′) (a−1
a

) , t ≥ t′. (49)

One can easily verify that L(θ(t))|L(θ(t′))=a is nondecreasing as a function of a

for all t ≥ t′ (and a ∈ [0, 1]). Now let l be an upper bound for L(θ(t′)). It follows
that 1

1−e−2k(t−t′)( l−1
l )

is a dominating function for L(θ(t)) on the interval [t′,∞).

To compute an upper bound for L(θ(t′), we proceed as follows. By definition
of t′, we have that L̇(θ(t)) < 2kL(θ(t)) (1 − L(θ(t))) for all t < t′. It follows
from Lemma 6 that

L(θ(t)) ≤ 1

1 − e−2k(t−t0)
(

L(θ0)−1
L(θ0)

) , t0 ≤ t < t′ (50)

By continuity, we have that

L(θ(t′)) ≤ 1

1 − e−2k(t′−t0)
(

L(θ0)−1
L(θ0)

) .

Using the upper bound 1

1−e−2k(t′−t0)
�

L(θ0)−1

L(θ0)

� for L(θ(t′)), it follows from (49)

that

L(θ(t)) ≤ 1

1 − e−2k(t−t0)
(

L(θ0)−1
L(θ0)

) , t ≥ t′ (51)
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Combining (50) and (51), we arrive at the desired result. This concludes the
proof.

Figure 3 shows the graph of L(θ(t)) and that of the dominating function
D(t)—Eqn. (46) for a particular realization of the initial condition θ0. In this
example, N = 100 and k = 2. We observe that, in agreement with Conjecture 1,
the solution converges to a globally phase-locked state, that is L((θ(t)) → 1.
Note that convergence can be very slow depending on the choice of initial con-
dition. Indeed, for any T ∈ R and any ǫ > 0, we can find δ > 0 such that if
L(θ0) < δ then L(θ(t)) < ǫ for all t ≤ t0 + T . The upshot of this is that if
the initial condition θ0 is selected by drawing from a uniform distribution and
the number of oscillators is large, then L(θ0) is likely to be small, and as a
consequence convergence to the stable equilibrium is likely to be slow. In the
limit case when N tends to infinity, we have that L(θ0) tends to zero with prob-
ability 1 and the time required for L(θ(t)) to exceed some given finite threshold
diverges to infinity.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

t→

↑
L(θ(t))

Figure 3: Numerical simulation of the homogeneous system (40) with N = 100
oscillators and coupling coefficient k = 2: time evolution of L(θ(t)) := R2(θ(t))
(solid line) and the dominating function D(t)—Eqn. (46) (dashed line).

Let σω :=
√

1
N

∑N
j=1 (ωj − 〈ω〉)2 denote the (sample) standard deviation

associated with the vector of intrinsic frequencies ω. Using Lemma 4 we derive
another lower bound on the critical coupling, as follows:

Corollary 2 The critical coupling kc satisfies

kc ≥ 2σω (52)

Proof: Let x∗ ∈ V R
N be a fixed point of the system (17). Then by definition

k‖f(x∗)‖2 = ‖V ω‖2 =
√
Nσω and by Lemma 4 we have that

‖f(x∗)‖2 ≤
√
N
√

R2(x∗) (1 −R2(x∗)). (53)
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−0.5 0.50
0

0.5

1

↑
R(x∗)

(σω/k) →

Figure 4: Graph associated with inequality (56). For a given value of the ratio
(σω/k), the magnitude of the order parameter R(·), evaluated at a fixed point
x∗, must lie within the striped region.

It is not hard to see that the right hand side of (53) is upper bounded by 1
2

√
N .

It follows that

k ≥
√
Nσω√
N 1

2

= 2σω (54)

This completes the proof.
Note that Corollary 2 is in agreement with the intuition that greater variation in
intrinsic frequencies requires stronger coupling to achieve global phase-locking.

Using Lemma 4 we can compute bounds on the value of the order parameter
evaluated at the fixed points of the system, should they exist. Indeed, suppose
k > kc, then for any fixed point x∗ ∈ V R

N we have that

√

R2(x∗) (1 −R2(x∗)) ≥ σω
k
. (55)

Solving for R(x∗) gives

1

2
− 1

2

√

1 − 4
(σω
k

)2

≤ R2(x∗) ≤ 1

2
+

1

2

√

1 − 4
(σω
k

)2

(56)

The graph associated with inequality (56) is shown in Figure 4.

5 Necessary and Sufficient conditions

In the last section, we derived lower bounds for the critical coupling of the system
(17), which provide necessary conditions for the existence of fixed points. We
next derive conditions that are both necessary and sufficient for fixed points to
exist, and we shall use these results to describe an algorithm for computing the
critical coupling in Section 6.
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Throughout this section, the function f : R
N 7→ RRN is given by (4) and

the set F(k,Ω) is defined as

F(k,Ω) :=
{

x ∈ V R
N : kf(x) = −Ω

}

, k ≥ 0, Ω ∈ V R
N

On F(k,Ω) we introduce a notion of equivalence, as follows.

Definition 4 (Equivalence on F(k,Ω)) Given Ω ∈ V R
N and k ≥ 0, let

x, x′ ∈ F (k,Ω). We say that x and x′ are equivalent (x ≃ x′) if R(x) = R(x′).

To motivate this definition consider the following fact. Let k,Ω be given, and
let s ∈ Z

N be such that
∑N
j=1 sj = 0. If x is a fixed point of the system (17),

then x′ := x + 2sπ is also a fixed point of the system (17) and, in addition,
R(x′) = R(x).

The following theorem provides a necessary and sufficient condition for the
system (17) to have a fixed point, given a particular coupling strength k, and a
particular realization of intrinsic frequencies, Ω.

Theorem 2 Let k > 0 and Ω ∈ V R
N . Then F(k,Ω) 6= ∅ iff there exists

β ∈ [ 1
k
‖Ω‖∞, 1] ⊂ R and a ∈ {−1, 1}N such that

β =
1

N

N
∑

j=1

aj

√

1 −
(

Ωj
kβ

)2

. (57)

Moreover, suppose (a1, β1) and (a2, β2) both satisfy (57) and let x1, x2 ∈ F (k,Ω)
be such that

{

kβi sin(ψ(xi) − xij) = −Ωj
aj cos(ψ(xi) − xij) ≥ 0

, i ∈ {1, 2}, j = 1, 2, . . . N (58)

Then x1 ≃ x2 iff β1 = β2 and
∑N
j=1 (ai − aj)

√

1 −
(

Ωj

kβ1

)2

= 0.

Proof: Suppose Ω 6= 0 (the case Ω = 0 is easy). Let x∗ ∈ V R
N be a

fixed point of (17). By definition, kf(x∗) = −Ω, and since Ω 6= 0, we have that
f(x∗) 6= 0, and consequently R(x∗) 6= 0. It follows that

sin(ψ(x∗) − x∗i ) = − Ωi
kR(x∗)

, i = 1, 2, . . . , N. (59)

Let β := R(x∗). By (59) we have that β ≥ 1
k
‖Ω‖∞. Recall that for all x ∈

R
N\R0, R(x) can be written as

R(x) =
1

N

N
∑

j=1

cos(ψ(x) − xj), (60)

and let ai be given as

ai :=

{

−1 if cos(ψ(x∗) − x∗i ) ≤ 0;

+1 otherwise.
(61)
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Combining (59), (60), and (61), we arrive at

β =
1

N

N
∑

j=1

aj

√

1 −
(

Ωj
kβ

)2

. (62)

This proves necessity. To prove sufficiency, let a ∈ {−1, 1}N be given, and
suppose β ≥ 1

k
‖Ω‖∞ > 0 (again, the case Ω = 0 is easy). Then for every c ∈ R,

the system
{

kβ sin(−yi − c) = −Ωi
ai cos(−yi − c) ≥ 0,

i = 1, 2, . . . , N (63)

has a unique solution y∗ ∈ [−π, π)N . We pick c such that
∑N
j=1 y

∗
j = 0. Since

∑N
j=1 sin(y∗j + c) = 0, it follows that

R(y∗) = R(y∗ + c1) =

∣

∣

∣

∣

∣

∣

N
∑

j=1

cos(y∗j + c)

∣

∣

∣

∣

∣

∣

(64)

From (63), we have that

cos(y∗i + c) = ai

√

1 −
(

Ωi
kβ

)2

i = 1, . . . , N. (65)

Combining (64) and (65), we arrive at

R(y∗) =

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

aj

√

1 −
(

Ωj
kβ

)2
∣

∣

∣

∣

∣

∣

(66)

The second part of the theorem follows easily after noting that if xi satisfies (58)
then R(xi) = βi, i = 1, 2.

Theorem 2 gives us a necessary and sufficient condition for the equation
kf(x) = −Ω to have at least one solution for a given value of k. It is not clear,
however, that there exists a k for which this condition is satisfied. The following
Corollary provides an easy sufficient condition.

Corollary 3 Let k > 0 and Ω ∈ V R
N . Suppose

1

k
‖Ω‖∞ ≤ 1

N

N
∑

j=1

aj

√

1 −
(

Ωj
‖Ω‖∞

)2

. (67)

for some a ∈ {−1, 1}N . Then F(k,Ω) 6= ∅.
Proof: Suppose Ω 6= 0 (again, the case Ω = 0 is easy). Let a ∈ {−1, 1}N .

Define m : [ 1
k
‖Ω‖∞, 1] 7→ R, m(β) := β and n : [ 1

k
‖Ω‖∞, 1] × {−1, 1}N 7→ R,

n(β, a) :=
1

N

N
∑

j=1

aj

√

1 −
(

Ωj
kβ

)2

. (68)
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Since Ω 6= 0 we have that m(1) > n(1, a). Now suppose condition (67) is satis-
fied. Then we have that m( 1

k
‖Ω‖∞) ≤ n( 1

k
‖Ω‖∞, a), and by the Intermediate

Value Theorem there must exist β∗ ∈ [ 1
k
‖Ω‖∞, 1] such that m(β∗) = n(β∗, a).

It follows from Theorem 2 that the system (17) has a fixed point.

Corollary 4 Let Ω ∈ V R
N . Then: (i) the critical coupling kc is finite; (ii) for

large enough coupling, the system (17) has at least 2N−1 fixed points.

Proof: Note that the right hand side of (67) does not depend on k. Hence,
it follows that, provided

1

N

N
∑

j=1

aj

√

1 −
(

Ωj
‖Ω‖∞

)2

> 0, (69)

Condition (67) is always satisfied for large enough k. Furthermore, it follows
easily that if (69) is not satisfied for given a, then it is satisfied for a′ := −a.
This implies (i) that the critical coupling kc is always finite, and (ii) that the set
A+ := {a ∈ {−1, 1}N : Eqn. (69) is satisfied} contains precisely 2N−1 elements
(counting multiplicity), each of which defines a unique (up to equivalence in the
sense of Definition 4) fixed point. This concludes the proof.

Corollary 5 Let k > 0 and Ω ∈ V R
N . Then F(k,Ω) 6= ∅ if and only if there

exist β ∈ [ 1
k
‖Ω‖∞, 1] such that

β =
1

N

N
∑

j=1

√

1 −
(

Ωj
kβ

)2

.

Proof: The proof of Corollary 3 suggests that if the fixed point equa-
tion (57) does not have a solution, then necessarily

β >
1

N

N
∑

j=1

aj

√

1 −
(

Ωj
kβ

)2

for all β ∈ [ 1
k
‖Ω‖∞, 1] and for all a ∈ {−1, 1}N . Since we have that

1

N

N
∑

j=1

√

1 −
(

Ωj
kβ

)2

≥ 1

N

N
∑

j=1

aj

√

1 −
(

Ωj
kβ

)2

for all a ∈ {−1, 1}N , it follows that the given condition is necessary and sufficient
for the system (17) to have at least one fixed point. This concludes the proof.

The next and final corollary gives us an upper bound on the critical coupling.

Corollary 6 The critical coupling, kc, satisfies:

kc ≤ ‖Ω‖∞
1
N

∑N
j=1

√

1 −
(

Ωj

‖Ω‖∞

)2
. (70)

Proof: Follows directly from Corollary 3.
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6 An algorithm for computing kc

In this section we present a bisection algorithm that will allow us to numerically
evaluate the critical coupling with arbitrary precision. Throughout, we shall
assume that Ω 6= 0. Define I := (‖Ω‖∞,∞), and let pi : I 7→ (0, 1], and
P : I 7→ (0, 1] be given as

pi(u) :=

√

1 −
(

Ωi
u

)2

; P (u) :=
1

N

N
∑

j=1

pj(u) (71)

Also, define h(u; k) : I × R+ 7→ R+,

h(u; k) :=
1

k
u. (72)

From Corollary 5 it follows that the critical coupling is the smallest k for which
the equation P (u) = h(u; k) has at least one solution on I. We have the following
result.

Theorem 3 For all Ω ∈ V R
N , Ω 6= 0, the equation

2
1

N

N
∑

j=1

√

1 −
(

Ωj
u

)2

=
1

N

N
∑

j=1

1
√

1 −
(

Ωj

u

)2
. (73)

has a unique solution u∗ ∈ I, and we have that

kc =
u∗

1
N

∑N
j=1

√

1 −
(

Ωj

u∗

)2

.

(74)

Proof: Observe that, by strict concavity of P and linearity of h( · ; k), the
equation P (u) = h(u; k) can have at most two solutions on I for any k > 0. We
shall now show that, when k = kc, it can have no more than one solution. Since,
by definition of critical coupling, P (u) = h(u; kc) must have at least one solution,
we shall conclude that it has precisely one solution. Let k = kc and suppose there
exist u1, u2 ∈ I, u1 6= u2, such that P (u1) = h(u1; kc) and P (u2) = h(u2; kc).
By strict concavity of P we have that P ( 1

2 (u1 + u2)) > 1
2

(

P (u1) + P (u2)
)

.
Define u′ := 1

2 (u1 + u2) and note that u′ ∈ I. We have that P (u′) > h(u′; kc).
This implies that there exists k′ < kc such that P (u′) = h(u′; k′). But by
definition kc is the smallest k for which P (u) = h(u; k) has a solution. We
arrive at a contradiction and conclude that u1 = u2; or in other words, that the
equation P (u) = h(u; kc) has exactly one solution on I. Denoting this solution
by u∗, it is not hard to see that, at u = u∗, the derivative of P with respect to u
and the derivative of h with respect to u (both of which are defined on the entire
interval I) must coincide. For suppose ∂h

∂u
(u∗) < ∂P

∂u
(u∗), then by continuity

there exists δ > 0 such that h(u; kc) < P (u) for all u such that u− u∗ < δ. Let
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u′ be one such u. It follows that there exists k′ < kc such that P (u′) = h(u′; k′).
This leads to a contradiction and we conclude that h(u; kc) ≥ P (u). By analogy
we have that h(u; kc) ≤ P (u). We conclude that ∂h

∂u
(u∗) = ∂P

∂u
(u∗). That is,

1

kc
=

1

u∗
1

N

N
∑

j=1

(

Ωj

u∗

)2

√

1 −
(

Ωj

u∗

)2
. (75)

Or equivalently,

u∗

kc
=

1

N

N
∑

j=1

(

Ωj

u∗

)2

√

1 −
(

Ωj

u∗

)2

= − 1

N

N
∑

j=1

√

1 −
(

Ωj
u∗

)2

+
1

N

N
∑

j=1

1
√

1 −
(

Ωj

u∗

)2
(76)

Now recall that by definition of u∗, we have that

u∗

kc
=

1

N

N
∑

j=1

√

1 −
(

Ωj
u∗

)2

. (77)

Equating the right hand side of Eqn. (76) with the right hand side of Eqn. (77)
gives

2
1

N

N
∑

j=1

√

1 −
(

Ωj
u∗

)2

=
1

N

N
∑

j=1

1
√

1 −
(

Ωj

u∗

)2
. (78)

This shows that u∗ is a solution to (73). What remains to be shown is that u∗

is the only solution. Define v, w : I 7→ R,

v(u) := 2
1

N

N
∑

j=1

√

1 −
(

Ωj
u

)2

, w(u) :=
1

N

N
∑

j=1

1
√

1 −
(

Ωj

u

)2
,

and note that, on their respective domains, v is strictly monotonically decreasing
while w is strictly monotonically increasing. In addition, note that there exist
a, b ∈ I such that v(a) > w(a) and v(b) < w(b). Hence, by continuity, there
must exist a point u′ ∈ (a, b) ⊂ I such that v(u′) = w(u′). Monotonicity of v
and w implies that this point is unique. It follows that u∗ is the unique solution
of (73) on I. And by (77) we have that

kc =
u∗

1
N

∑N
j=1

√

1 −
(

Ωj

u∗

)2
(79)

This concludes the proof.
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Based on the result of Theorem 3, we define the map K : V R
N\{0} 7→ R+,

K(Ω) =
u∗

1
N

∑N
j=1

√

1 −
(

Ωj

u∗

)2
, (80)

where, as before, u∗ denotes the unique solution of (73) on I, given Ω. Note
that, given any realization of ω such that V ω 6= 0, we have that kc = K(V ω).
We have the following corollary.

Corollary 7

1. For all Ω ∈ V R
N , Ω 6= 0, we have that ‖Ω‖∞ ≤ K(Ω) ≤ 2‖Ω‖∞;

2. there exists Ω ∈ V R
N such that K(Ω) = 2‖Ω‖∞ if and only if N is even;

3. for every ǫ > 0 there exist an positive integer N and Ω ∈ V R
N such that

|K(Ω) − ‖Ω‖∞| < ǫ.

Proof: (Part 1). We show that for all Ω 6= 0, the solution u∗ of equation (73)
satisfies u∗ ≤

√
2‖Ω‖∞. The result then follows easily. Let u′ :=

√
2‖Ω‖∞.

Then we have that

2
1

N

N
∑

j=1

√

1 −
(

Ωj
u

)2

>
1

N

N
∑

j=1

1
√

1 −
(

Ωj

u

)2
for all u > u′

It follows that

K(Ω) ≤ u′

1
N

∑N
j=1

√

1 −
(

Ωj

u′

)2
≤

√
2‖Ω‖∞
1
2

√
2

= 2‖Ω‖∞

for all Ω ∈ V R
N . The lower bound K(Ω) ≥ ‖Ω‖∞ was obtained earlier in

Section 4.

(Part 2.) From the above it follows that K(Ω) = 2‖Ω‖∞ if and only if

2
1

N

N
∑

j=1

√

1 −
(

Ωj
u′

)2

=
1

N

N
∑

j=1

1
√

1 −
(

Ωj

u′

)2

or equivalently, Ω2
i = Ω2

j for all (i, j). It is easy to see that this latter condition is
never satisfied when N is odd (keeping in mind that

∑

j Ωj = 0). Now suppose
N is even and pick any c 6= 0. Define

Ωi :=

{

c i = 1, 2, . . . N2 ;

−c i = N
2 + 1, . . . , N

.
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Then we have that Ω ∈ V R
N . Moreover, Ω2

i = Ω2
j = c2 for all (i, j). It follows

that K(Ω) = 2‖Ω‖∞.
(Part 3.) Let ǫ > 0 be given and suppose N is odd. Pick c 6= 0 and define

Ωi :=

{

0 i = 1, 2, . . . , N − 1;

c i = N.

Then (73) evaluates to

2(N − 1) + 2

√

1 −
( c

u

)2

= (N − 1) +
1

√

1 −
(

c
u

)2
. (81)

and it is not hard to see that as N tends to infinity, the solution u∗ of (81) tends
to c. Indeed, for N ≥ 2 we have

( c

u∗

)2

=
1

2
(N − 1)

(

−1

4
(N − 1) +

1

4

√

(N − 1)2 + 8

)

. (82)

Let ǫ1 > 0, and pick N such that 1
N
< ǫ1 and u∗ < (1 + ǫ1)c. It follows that

1

N

N
∑

j=1

√

1 −
(

Ωj
u∗

)2

< 1 − ǫ1, (83)

and hence

K(Ω) :=
u∗

1
N

∑N
j=1

√

1 −
(

Ωj

u∗

)2
< c

(

1 + ǫ1
1 − ǫ1

)

= c+ 2

(

ǫ1
1 − ǫ1

)

c. (84)

Now let ǫ1 be given as ǫ1 := ǫ
2c+ǫ and choose N accordingly. It follows that

K(Ω) < ‖Ω‖∞ + ǫ. This concludes the proof.
We are now ready to present our algorithm, which, given Ω, will com-

pute u∗ with user-defined precision ǫ > 0 in a finite number of iterations,

n = ⌈log2(
‖Ω‖∞

ǫ
)⌉ + 1.

Algorithm 1

1. a := ‖Ω‖∞, b :=
√

2‖Ω‖∞
2. While (b− a) > ǫ,

3. u := 1
2 (b− a).

4. If





∑

j

√

(

1 − Ωj

u

)2

> 1
2

∑

j
1r�

1−Ωj
u

�2



 then a := u, else b := u.

5. End.

Once we have an estimate û of u∗, we can use (74), replacing u∗ with û, to
estimate kc.
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7 Numerical Example

We illustrate the results presented in this paper by means of a numerical exam-
ple. We consider two systems with N = 20 and N = 200 oscillators respectively,
with frequencies {ΩNi } as depicted in Figure 5. The frequencies in this example

−2

0

1.5

1 20
i→

↑
Ω20
i

0

1
i→

200
−2.5

2.5

↑
Ω200
i

(a) N = 20 (b) N = 200

Figure 5: The vector of frequencies ΩNi := ωNi − 〈ωN 〉, N ∈ {20, 200}, used
in this example. The natural frequencies ωNi were sampled from a normal dis-
tribution with zero mean and unit variance and relabelled in such a way that
ωN1 ≤ ωN2 ≤ . . . ≤ ωNN .

were sampled from a normal distribution with zero mean and unit variance and
relabelled such that ωN1 ≤ ωN2 . . . ≤ ωNN (note that this can be done without
loss of generality). For this particular realization of ω20 (ω200), we have that
‖Ω20‖∞ = 1.7858 (‖Ω200‖∞ = 2.3893) and

1

N

N
∑

j=1

√

1 −
(

Ωj
‖Ω‖∞

)2

= 0.8015 (0.9139).

It follows from Corollary 6 that kc ≤ 2.2281 (2.6145) and by (32), we have
that kc ≥ ‖Ω‖∞ = 1.7858 (2.3893). Figure 7 shows the time evolution of the
magnitude squared of the order parameter, R2(t) (previously denoted as L(t)),
for two different initial conditions and two values of the coupling coefficient,
k = 2.3 and k = 2.65 (k = 2.1 and k = 2.3). We observe that when k is slightly
greater than the known lower bound on kc, the value of R2(t) converges to a
constant and inspection shows that the solution x(t) of the system (17) tends to
a fixed point. On the other hand, when the coupling coefficient is slightly below
the known upper bound on the critical coupling, the trajectories x(t) appear
not to converge. Note that in this case we do not know whether the system (17)
has a fixed point or not, as the condition stated in Corollary 6 is only sufficient
while at the same time the respective coupling strengths exceed their known
lower bounds (1.7858 and 2.3893 respectively). To gain more insight into this
situation let us consider the case N = 20 in some more detail. We fix the
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Figure 6: Case N = 200: time evolution of the magnitude squared of the order
parameter, R2(t), for two different initial condition (indicated by a dashed and
solid line respectively), and two values of k. In the left panel, the value of k
(2.4) is (well) below the known upper bound on kc (2.6145)and the system does
not converge to a fixed point; in the right panel the value of k (2.65) is slightly
above the known upper bound on kc and the system converges to a fixed point,
as expected.

coupling coefficient at k = 2.1, and numerically evaluate the function P 20(k, ·),

P 20(kβ) =
1

20

20
∑

j=1

√

√

√

√1 −
(

Ω20
j

kβ

)2

, (85)

for several values of β in the interval [ 1
k
‖Ω20‖∞, 1]. We repeat the same com-

putation for k = 2.3. The result is shown in Figure 8. We observe that the
equation P 20(kβ) = β does not have a solution on the interval [ 1

k
‖Ω20‖∞, 1]

when k = 2.1, but does have a solution when k = 2.3.
We use Algorithm 1 to compute the ‘exact’ value of the critical coupling to

the fifth significant digit. We find that kc = 2.2198 for the case N = 20 and
kc = 2.6144 for the case N = 200. Note that in both cases, but particularly the
latter, the upper bounds (2.2281 and 2.6145 respectively) provide good estimates
of the true values of the critical coupling.

8 Conclusion

We derived necessary and sufficient conditions for the existence of fixed points in
a finite system of coupled oscillators. In particular, we derived an easy sufficient
condition in terms of the individual oscillator frequencies (Corollary 3), which
we used to compute an upper bound on the critical coupling (Corollary 6).
We showed that when no prior knowledge of the distribution of frequencies is
available, we can still bound the critical coupling in terms of the infinity norm
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0
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(a) k = 2.1 (b) k = 2.3

Figure 7: Case N = 20: time evolution of the magnitude squared of the order
parameter, R2(t), for two different initial condition (indicated by a dashed and
solid line respectively), and two values of k. In the left panel, the value of k (2.1)
is slightly below the known upper bound on kc (2.2281)and the system does not
converge to a fixed point; in the right panel the value of k (2.3) is slightly above
the known upper bound on kc and the system converges to a fixed point, as
expected.

of the frequencies with their mean removed (Corollary 7). These bounds were
shown to be the tightest possible, in the sense that we can find realizations of the
intrinsic frequencies for which the upper bound is attained, and others for which
the critical coupling is arbitrarily close to the lower bound. Finally, we proposed
an efficient algorithm (Algorithm 1) for computing the critical coupling to within
arbitrary bounds in a finite number of steps. In future work we shall seek to
extend the present analysis to complex networks of arbitrary topology, and
investigate more closely the impact of the shape of the distribution of intrinsic
frequencies on the value of the critical coupling. We shall also consider the
important question of stability, and present analytical results for the limit case
when the number of oscillators tends to infinity.
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