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ON THE ENERGY OF SUPERCONDUCTORS IN LARGE
AND SMALL DOMAINS

MATTHIAS KURZKE AND DANIEL SPIRN

Abstract. We study the Ginzburg-Landau energy functional for supercon-
ductors in an applied magnetic field. We focus on asymptotically large or
small domains and establish the asymptotic behavior of the energy as a func-
tion of the Ginzburg-Landau parameter, applied magnetic field and domain
size. For a large class of domain sizes, we calculate the critical field strength
where vortex nucleation becomes energetically favorable, and describe the
vorticity of minimizers. For supercritical magnetic field strengths, we recover
the energy of a classical Abrikosov vortex lattice. Our findings generalize sev-
eral known results of Sandier and Serfaty for domains of fixed size.
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1. Introduction

We study minimizers of the Ginzburg-Landau energy functional

(1.1) Ggl(u, A) =
1

2

∫
U`

∣∣( 1
κ
∇− iA

)
u
∣∣2 + |curl A−Hex|2 +

1

2

(
1− |u|2

)2
dx

where the domain contains a distinguished length-scale `. To be precise, we
assume that U ⊂ R2 is a given bounded domain with smooth boundary and
U` = `U , a dilation of this domain.

The functional is defined for an order parameter u : U → C whose modulus
describes the local density of superconducting Cooper pairs and for a magnetic
field potential A : U → R2 with curl A = h, the induced magnetic field. The
physical parameters in (1.1) are the length scale `, the applied magnetic field
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2 M. KURZKE, D. SPIRN

strength Hex, and the Ginzburg-Landau parameter κ. The two-dimensional
energy (1.1) corresponds to superconductors with a cylindrical symmetry and
a magnetic field in the perpendicular direction.

Since we are interested in the effect of domain size on the energy of super-
conducting samples, we scale out the factor ` and study functionals for various

choices of ` defined over the same domain U . Setting x′ = x
`
, ũ = u(x

`
), Ã = κ`A,

hex = κ`2Hex, then

Ggl(u, A) =
1

2κ2

∫
U

∣∣∇ eAũ
∣∣2 +

1

`2

∣∣∣curl Ã− hex

∣∣∣2 + κ2`2
(
1− |ũ|2

)2
dx′.

Dropping the tildes and primes and using ε = 1
`κ

, we are thus lead to study the
asymptotics of

(1.2) Gε(u, A) =
1

2

∫
U

|∇Au|2 +
1

`2
|curl A− hex|2 +

1

2ε2

(
1− |u|2

)2
dx

for different choices of ` = `ε, where `ε → `0 ∈ [0, +∞] as ε → 0. Finally, we
can recover the original energy asymptotics

Ggl =
Gε

κ2

via a change of variables. All results of ours in the following will be stated in
terms of ε, `, and hex.

We will study type II superconductors (κ →∞). This corresponds to ε → 0
if ` � 1

ε
, which will be implied by other assumptions throughout this article.

Under this limit minimizers will start to energetically favor the formation of
vortices once the applied magnetic field grows large enough.

The asymptotics of (1.2) with ` ≡ 1, i.e.

(1.3)
1

2

∫
U

|∇Au|2 + |curl A− hex|2 +
1

2ε2

(
1− |u|2

)2
dx

under the asymptotic limit ε → 0 has been widely studied in the past decade
and a half.

1.1. Background results. In the last 15 years, there has been considerable
progress made in the mathematical understanding of the Ginzburg-Landau
model. A major step has been the groundbreaking work of Bethuel-Brezis-
Hélein [3] on the related functional without gauge term, the so-called BBH
functional

(1.4) Eε(u) =
1

2

∫
U

|∇u|2 +
1

2ε2
(1− |u|2)2,

and much of the analysis for the full gauge-invariant functional Gε is based on
analysis of Eε. We can only sketch some of the developments for the static
Ginzburg-Landau model with magnetic field and refer the reader to the recent
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monograph [15] by Sandier and Serfaty, which contains a thorough treatment
of vortex solutions and critical fields for vortex nucleation for (1.3).

We mention some works that are of particular relevance to the topic of this
article. The first rigorous treatment of (1.3) in the ε → 0 limit can be found
in Bethuel-Riviere [4], who discovered many important features of the standard
Ginzburg-Landau functional. Serfaty [19, 20] built on this work and gave the
first rigorous treatment of the critical field question by a study of local mini-
mizers close to the critical field. The technique used assumptions on the BBH
energy (1.4) to obtain an a priori bound on the number of vortices. Using the
“vortex ball construction” of Sandier [14] and Jerrard [7], a key ingredient in
most of the later research, Sandier-Serfaty [18] were then able to show that the
global minimizer below the critical field is indeed vortex-free and |uε| is bounded
away from zero.

The structure of global minimizers with an unbounded number of vortices
and with external field of order hex = O(|log ε|) was analyzed by Sandier-Serfaty
in [17]. This result, combined with a Jacobian compactness theorem [8], was
rephrased by Jerrard and Soner [9] in the framework of Γ-convergence. The limit
problem is equivalent to a certain obstacle problem, and the limiting vorticity
(after rescaling with |log ε|) is constant in the set where the obstacle is active.

For asymptotically larger applied magnetic fields (|log ε| � hex � 1
ε2 ), the

vortices fill the whole domain as an Abrikosov-type lattice with uniform limiting
density of vortices. This was established by Sandier-Serfaty [16].

There are few results as of yet on the influence of the domain size on the
behavior of the functional. Aftalion and Dancer [1] studied critical points of
(1.1). For small domains (` < C min(1, C

κ
)), they showed that any solution

that is not the normal solution (where u ≡ 0) will be bounded away from zero,
regardless of the external field. For the special case where the domain is a ball,
U` = B`(0), they showed that solutions in small domains are necessarily radially
symmetric, and there exists a critical field of order O(1

`
) such that above this

field, only the normal solution exists, while a unique superconducting solution
exists below this threshold.

A numerical study was performed by Aftalion and Du [2], who studied the
response of a superconductor to the raising and lowering of the external field
depending on Ginzburg-Landau parameter κ and domain size. They found bi-
furcation diagrams in several distinct regimes, including a critical line separating
type I and type II behavior.

There have also been a few results that study (1.3) with applied magnetic
fields and domain dependence between hc2 and hc3 , the regime associated with
surface superconductivity. However, we restrict ourselves to field strengths
asymptotically below hc2 , hence we do not attempt to review results within
this class of field strengths.
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There are similarities between the Ginzburg-Landau energy (1.2) and the
Chern-Simons-Higgs energy

(1.5) Gcsh(u, A) =
1

2

∫
U

|∇Au|2 +
µ2

4

|curl A− hex|2

|u|2
+

1

ε2
|u|2

(
1− |u|2

)2
dx

for an applied magnetic field, hex, and a bounded, simply connected domain,
U ⊂ R2. The Chern-Simons-Higgs model is an anyon theory that is of interest
in connection with high-temperature superconductors and the quantum Hall
effect. For an overview of the study in the self-dual case µ = ε, see Yang [22].

For |u| ≤ 1 with |u| ≈ 1 on ∂U , the authors proved several results of a similar
nature to those found here: For hex = H|log ε| and Gcsh(uε, Aε) = O(|log ε|2), we
were able to show Γ-convergence results for the cases µ = µε → µ0 ∈ (0,∞], see
[11, 12]. These enabled us to calculate the critical field for vortex nucleation.
The main ingredient in these results is a compactness proof that relates the
Jacobian of u, J(u) = det∇u, to the energy

Ecsh(u) =
1

2

∫
U

|∇u|2 +
1

ε2
|u|2(1− |u|2).

Using this compactness result from [11] and an energy decomposition, we showed
Γ-convergence for finite µ in [11] and for µ →∞ in [12]. For µ → 0, we gave an
explicit counterexample that illustrates why this method, using a decomposition
and bounds for Ecsh, fails in this case. However, we were later able to show that
for hex much larger than the critical field, and under certain restrictions on µ,
the energy of minimizers scale in the same fashion as the energy of an Abrikosov
type lattice just as for the Ginzburg-Landau energy (1.3), see [13].

All of our results here carry over from the Chern-Simons-Higgs energy (1.5)
under the assumptions above. In particular, we can extend the results of our
previous articles [11, 12, 13] and understand vortices in non-selfdual CSH for
a wider range of parameters and in more detail. Results for (1.2) in the next
subsection can be related to results for (1.5) by simply setting ` = 2

µ
.

1.2. Main results. In this subsection, we list our main theorems on the be-
haviour of minimizers for various parameter regimes. These results, most of
which are generalizations of known results from the last section, provide a par-
tial solution to Open Problem 1 of [15].

Our first result is the calculation of the first critical field where minimizers
of the Ginzburg-Landau energy start to have vortices. This field is O(|log ε|) if
the domains stay bounded and O(`2|log ε|) if the domains are unbounded and
` is bounded by a power of |log ε|:

Theorem 1.1. There exists a sequence of critical fields hc1(ε) such that any
minimizer of the Ginzburg-Landau functional with hex < hc1(ε) − o(|log ε|) is
vortex-free, while any minimizer with hex > hc1(ε) + o(|log ε|) has vortices.
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As ε → 0, the critical field hc1(ε) satisfies the following expansion: If `ε → `0

with 0 ≤ `0 < ∞, then

(1.6)
hc1(ε)

|log ε|
→ H1(`0),

where

(1.7) H1(`0) =
1

2 maxU |y`0 |
,

where y`0 is the solution of

−∆y`0 + `2
0y`0 + 1 = 0

with Dirichlet boundary conditions y`0 = 0 on ∂U .
Finally, if `ε →∞ and `ε ≤ |log ε|γ for any fixed γ > 0, then

(1.8)
hc1(ε)

`2
ε|log ε|

→ 1

2

as ε → 0. Therefore, the critical field scales as hc1 = `2ε|log ε|
2

in this regime of
domain sizes.

For small or bounded domains Theorem 1.1 follows from adapting the proof of
Sandier and Serfaty [18], where ` ≡ 1. Formally examining the resulting critical

field (1.7), one finds H1(`0) → `20
2

as `0 → ∞, so we expect that hc1 = `2ε|log ε|
2

for any `ε → +∞ and `ε � 1√
ε|log ε| , see the discussion before Lemma 2.7. We

give a proof for the case of large (but not too large) domains in Section 2, see
Proposition 2.1 for details.

The following results can be used to characterize the minimizers of (uε, Aε)
for external fields of order O(|log ε|) and small or bounded domains. The first
step is a Γ-convergence result that relates Gε(uε, Aε) to a simpler functional
that no longer involves ε. We skip some of the detailed convergence statements
for ease of presentation. The full statement is given in Theorem 3.1.

Theorem 1.2. As ε → 0, the functional 1
|log ε|2 Gε is Γ-convergent to G(v, a),

where the limit functional G is given by

(1.9) G(v, a) :=
1
2

∫
U
|v − a|2 + 1

`20
| curl a−H|2 + 1

2
‖curl v‖M if `0 > 0

1
2

∫
U
|v − a|2 + 1

2
‖curl v‖M if `0 = 0 and curl a = H

+∞ else,

under a convergence that includes
(

1
|log ε|(iuε,∇uε)− 1

|log ε| |u|
2Aε

)
⇀ (v−a) and

1
|log ε|Aε ⇀ curl a in L2.
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Since Γ-convergence and the compactness we have here imply that minimizers
of Gε and of G approximate each other, we study minimizers of G to gain insight
into the structure of minimizers of Gε.

Theorem 1.3. If (v0, a0) is a minimizer of (1.9) and `0 > 0, then z0 =
`−2
0 (curl a0−H) is the unique minimizer of the following obstacle problem: Min-

imize

(1.10) F`0,H(z) =
1

2

∫
U

|∇z|2 + `2
0z

2 + 2zH

in the admissible class

(1.11) K = {z ∈ H1
0 (U) : z ≥ −1

2
a.e. in U}.

The limit (v0, a0) satisfies the following additional properties:

`−2
0 curl(curl a0 −H) + a0 = v0 in U

curl a0 −H = 0 on ∂U

−1

2
≤ z0 ≤ 0

curl v0 ≥ 0

spt(curl v0) ⊂
{

z0 = −1

2

}
.

In the case where `0 = 0, we have curl a0 = H, and obtain a slightly differ-
ent obstacle problem: Let y0 be the solution of −∆y0 = curl v0 − H with zero
boundary conditions. Then y0 is the unique minimizer of

(1.12) F0,H(y) =
1

2

∫
U

|∇y|2 + 2yH

in the admissible class

(1.13) K =

{
y ∈ H1

0 (U) : y ≥ −1

2
a.e. in U

}
.

Moreover, curl v0 ≥ 0, and spt(curl v0) ⊂ {y0 = −1
2
}.

This theorem, proved later as Theorem 3.3, implies again the results on
the first critical field: When the obstacle is not active, the minimizer satis-
fies curl v = 0. This happens if and only if H < H1(`0) with the same fields as
above. However, since we rescaled the vorticity to obtain convergence, this only
shows that an approximating sequence (uε, Aε) has at most o(|log ε|) vortices,
a result that is weaker than the “no vortices below the critical field” obtained
in Theorem 1.1.

Finally, we study minimizers of the Ginzburg-Landau functional with a very
large (supercritical) applied external magnetic field and obtain energy asymp-
totics of a uniform vortex lattice:
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Theorem 1.4. Assume that

(1.14) max{1, `2}|log ε| � hex �
1

ε2
,

then minimizing sequence {uε, Aε} satisfies:

(1.15) Gε(uε, Aε) =
1

2
|U |hex log

1

ε
√

hex

(1− oε(1)) .

Furthermore, the vortex density is uniform in the limit, see Proposition 5.3 for
a precise statement.

The proof of Theorem 1.4 is divided into an upper bound Proposition 4.1 and
a lower bound part Proposition 5.1. For the lower bound, we follow Sandier-
Serfaty [16] using employing the co-area formula with the vortex-ball method;
however, we use a more careful estimates that refines a lower bound on the
magnetic field part of the energy term. This allows us to establish the asymp-
totics for the full range of supercritical applied magnetic fields. In particular
our lower bound depends on lower bound Lemma 5.6 and Lemma 5.7 that takes
into account the length scale ` versus the size of the vortex ball r. Such care is
not so important in the ` ≡ 1 case, but crucial in the ` →∞ case.

We compute the upper bound with a simplified approach using Fourier series
(Proposition 4.1). A refined version of the upper bound, (4.2), motivates our
conjecture on the behavior close to the critical field for large domains.

Remark 1.5. For `ε → ∞ and hex = O(`2|log ε|), we do not yet have a rig-
orous result on the structure of minimizers. However, we expect from formal
calculations that a uniform lattice, as those constructed in Section 4, should be
minimizing.

1.3. Discussion. We conclude the introduction with several unresolved ques-
tions regarding asymptotics of (1.2). There is still work to do to complete the
answer to Problem 1 in [15]. In particular, a complete phase diagram for the
minimizing behavior depending on κ, `, and hex should be given, including the
cross-over between type I and type II behavior that happens for κ` = O(1), and
the results of Aftalion and Du [2] should be made fully rigorous. For such a
study, it would also be necessary to understand local minimizers and hysteresis
phenomena for slowly changing fields.

It is an interesting problem to further study beginning vortex nucleation
close to the critical field in the large domain limit, ` → +∞. Based on the
construction of Proposition 4.1 and the structure of the Meissner state, we
expect that minimizers exhibit a uniform vortex lattice that fills the whole
domain. However, vortices will be far apart and interact only weakly, making
this a subtle problem. Finally, it would be interesting to study (1.2) with
applied fields in the “intermediate range”, recently undertaken for (1.3) in [15].
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For states with few vortices in large domains, we similarly expect very slow
motion for the gradient flow, as vortices will move in an almost flat potential.

2. Critical field calculation

In this section we establish Theorem 1.1. The proof of Theorem 1.1 for
` → [0, +∞) follows from a direct insertion of `−2 in the magnetic field term
of (1.3) and following the proof found in [19, 18]. However, when ` → +∞, a
simple scaling argument fails, and we need to be more careful. In the following
we show that for a substantial class of large-domain asymptotics, the critical
field strength is indeed

hc1 =
`2

2
|log ε|+ o(|log ε|),

as suggested by the formal analysis of the scaled renormalized energy.

Proposition 2.1. Let ` → +∞ with ` ≤ C|log ε|γ for any fixed γ ∈ R+ and
suppose (u, A) is a minimizer over the Ginzburg-Landau energy (1.2). Then

the first critical field for vortex nucleation is hc1 = `2

2
|log ε| = 1

2
|log ε|2γ+1. In

particular for hex < `2

2
|log ε|, any minimizer will be satisfy |u| ≥ 3

4
for all ε

sufficiently small, and for hex > `2

2
|log ε| any minimizer must have a vortex.

Remark 2.2. Although we establish the conjectured critical field for ` = |log ε|γ,
we believe the critical field should be true over length scales up to ` ≤ C√

ε|log ε| .

In particular, the more refined vortex ball estimates found in [10, 15] should
be powerful enough to handle larger domains, but in the interest of brevity
we consider only `’s of the form ` = C|log ε|γ. We establish Proposition 2.1
by using the explicit vortex structure that exists for these intermediate-sized
domains.

The Euler-Lagrange equations of (1.2)

0 = ∇2
Au +

1

ε2
u
(
1− |u|2

)
0 = curl curl A + `2jA(u)

(2.1)

in U and n · ∇Au = 0 and curl A = hex on ∂U . Setting the Coulomb gauge we
see that

div A = 0 in U n · A = 0 on ∂U.

Solutions to (2.1) satisfy the maximum principle

(2.2) ‖u‖L∞(U) ≤ 1,

the proof of which can be found in [4, 16].
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The key to establishing Proposition 2.1 is a good energy decomposition. In
order to establish this decomposition we use the following result of Sandier-
Serfaty that supplies the vortex structure for our range of `’s. Their result,
based on the method of Jerrard [7] and Jerrard-Soner [8] is:

Proposition 2.3 (Sandier-Serfaty[18]). Let u : U → C be such that |∇u| ≤ C
ε

and that Eε(u) ≤ C|log ε|M for M ≥ 2 a fixed number. Then, for any α > 0
there exists disjoint balls {Bri

}i∈I of radii ri such that for sufficiently small ε,

(1) {|u| < 3
4
} ⊂ ∪i∈IBri

(2) card I ≤ C|log ε|M
(3) ri ≤ C

|log ε|α

(4) if Bri
⊂ U and di = deg(u, ∂Bri

), then

(2.3)

∫
Bri

eε(u)dx ≥ π |di| (|log ε| −O(log |log ε|)) .

Remark 2.4. The result in [18] is restricted to energies of the size Eε(u) ≤
K|log ε|2; however, the same proof holds for the higher energies in the assump-
tions found in Proposition 2.1.

We now state our energy decomposition, in the spirit of Bethuel-Riviere,
Serfaty, and Sandier-Serfaty, [4, 19, 16].

Proposition 2.5. Let (u, A) be a minimizer where A satisfies the Coulomb
gauge and ` = C|log ε|γ. Let A = hex∇⊥ξ` +∇⊥ζ where ξ` satisfies

− 1

`2
∆2ξ` + ∆ξ` = 0 in U

∆ξ` = 1 on ∂U

ξ` = 0 on ∂U,

(2.4)

then

Gε(u, A) ≥
∑
i∈I

∫
Bri

eε(u)dx +
1

`2

∫
U

|∆ζ|2 + G0

+ 2πhex

∑
i∈I

diξ`(ai)−
C

|log ε|

(2.5)

where G0 = Gε(1, hex∇⊥ξ`). Here the vortex balls Bri
and degrees di are defined

via Proposition 2.3

We prove several intermediate lemmas before attempting the proof of Propo-
sition 2.5. The first facts we establish are on the scaled London equation. This
limiting equation for the stream function of the magnetic field potential is the
expected Meissner solution.
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Lemma 2.6. Let ξ` be a solution of (2.4) with ` � 1, then

(2.6) − 1

`2
≤ ξ` ≤ 0

and

(2.7) sup
x∈U

|ξ`| =
1

`2
(1− o`(1)) .

Further,

(2.8) ‖ξ`‖H2 ≤ C and ‖∇ξ`‖L∞ ≤ C

where C depends only on U .

Proof. These results are similar to results found in [4, 19, 21] for ` ≡ 1. If
∆ξ` = h` in U and ξ` = 0 on ∂U , then h` satisfies

− 1

`2
∆h` + h` = 0 in U

h` = 1 on ∂U.
(2.9)

If we let χ = ξ` − 1
`2

(h` − 1), then ∆χ = ∆ξ` − 1
`2

∆ (h` − 1) = h` − 1
`2

∆h` = 0
in U and χ = 0 on ∂U . Therefore, χ ≡ 0, thus

(2.10) ξ` =
1

`2
(h` − 1) .

Applying the maximum principle to (2.9) yields 0 < h` < 1. In particular if
a minimum occurs at a point xm in the interior of U then 0 < 1

`2
∆h`(xm) =

h`(xm), and by the boundary condition we see h` ≥ 0. On the other hand if
the maximum occurs at a point xM in the interior of U then 0 > 1

`2
∆h`(xM) =

h`(xM), and by the boundary condition h` ≤ 1. Applying this to (2.10) yields
(2.6).

Next, using the boundary conditions on ξ`,

0 =

∫
U

ξ`

[
− 1

`2
∆2ξ` + ∆ξ`

]
=

∫
U

1

`2
∇ξ` · ∇∆ξ` − |∇ξ`|2

=

∫
∂U

1

`2
∂nξ −

∫
U

[
1

`2
|∆ξ`|2 + |∇ξ`|2

]
thus by (2.9), (2.10), and the bound on h`,∫

U

1

`2
|∆ξ`|2 + |∇ξ`|2 =

1

`2

∫
U

∆ξ` =
1

`2

∫
U

h` ≤
1

`2
|U |.

This implies ‖ξ`‖H2(U) ≤ 2
√
|U | and (2.8) by Sobolev embedding.

Set z` = ∂`h` then z` satisfies

∆z` − `2z` = 2`h` ≥ 0
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in U and z` = 0 on ∂U . By the maximum principle z` ≤ 0; hence, h` is
monotonically decreasing in ` for all x ∈ U . Since h` is bounded below by −1
then h`(x) = −1 + o`(1) for all x ∈ U ′ b U . Thus max |ξ`| = 1

`2
(1− o`(1)) by

(2.10). �

In order to use Proposition 2.3 we need to establish a bound on Eε(u), see
(1.4). As we see below, the BBH energy can be much larger than the Ginzburg-
Landau energy Gε(u, A), since the magnetic field term in the energy can absorb
large induced fields, generated by a large number of vortices. We have

Lemma 2.7. Let (u, A) be a minimizer of the Ginzburg-Landau energy. Suppose
hex ≤ C`2|log ε| ≤ C

ε
and Gε(u, A) ≤ K`2|log ε|2 then

(2.11) Eε(u) ≤ C`4|log ε|2

and

(2.12) ‖A‖H1(U) ≤ C`2|log ε| and ‖A‖H2(U) ≤ C`3|log ε|.

Proof. We first establish a uniform H1 estimate on A. From the assumption on
the energy ∫

|h− hex|2 ≤ K`4|log ε|2,

hence from the bound on hex we see that

‖h‖L2(U) ≤ C`2|log ε|.

Since div A = 0 and n · A = 0 on ∂U , there exists ξ such that ∇⊥ξ = A and
ξ = 0 on ∂U . From standard elliptic estimates we get ‖ξ‖H2(U) ≤ C`2|log ε|.
Thus

‖A‖H1(U) ≤ C`2|log ε|.

Decomposing 1
2
|∇Au|2 = 1

2
|∇u|2 − A · j(u) + 1

2
A2 |u|2, we control the cross

term via

A · j(u) ≤ 1

4

∣∣∣∣j(u)

|u|

∣∣∣∣2 + A2 |u|2

≤ 1

4

∣∣∣∣j(u)

|u|

∣∣∣∣2 + A2 + 2ε2A4 +
1

8ε2

(
1− |u|2

)2
.
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Therefore, from the algebraic bounds, the estimate on A, and Sobolev embed-
ding

Gε(u, A) ≥ Eε +
1

2`2
‖h− hex‖2 −

[
1

2
Eε(u) +

∫
U

A2 + 2ε2A4

]
≥ 1

2
Eε(u)− C

[
‖A‖2

H1(U) + ε2 ‖A‖4
H1(U)

]
≥ 1

2
Eε(u)− C`4|log ε|2 − Cε2`8|log ε|4.

The upper bound on Eε(u) follows.
In order to establish higher bounds on A we use the Euler-Lagrange equation

−∇⊥h = `2jA(u). Therefore,

‖∇h‖L2(U) ≤ `2 ‖∇Au‖L2(U) ‖u‖L∞(U) ≤ C`3|log ε|,

and hence (2.8). �

The fact that Eε(u) can have a much larger energy than Gε(u, A) is an essen-
tial difference in the large ` asymptotics. It implies a more complicated global
vortex structure. Given the energy bound on Eε(u), we can split apart the full
Ginzburg-Landau energy into its chief components. We start with an initial
energy splitting.

Lemma 2.8. We can decompose Gε(u, A) = Gε(u,∇⊥ξ) = Gε(u, hex∇⊥ξ` +
∇⊥ζ) as

Gε(u, A) ≥ 1

2

∫
U

∣∣∇u− iu∇⊥ξ
∣∣2 +

1

2ε2

(
1− |u|2

)2
+

1

2`2

∫
U

|∆ξ|2

+

∫
U

(
∇u,−ihex∇⊥ξ`u

)
+ G0 − C

|log ε|

(2.13)

Proof. We decompose the energy in a series of steps.

Our first step is to compute the approximate energy of the Meissner state
via the method of Serfaty [19]. Since div A = 0 and n · A = 0 in ∂U then we
can write A = ∇⊥ξ with ξ = 0 on ∂U and so ∆ξ = h. We further decompose
∇⊥ξ as ∇⊥ξ = hex∇⊥ξ` +∇⊥ζ where ζ = ∆ζ = 0 on ∂U and where ξ` satisfies
(2.4). Consider now the Meissner energy associated to G0 = Gε(1, hex∇⊥ξ`).
We compute the form of the Meissner energy, setting (u0, A0) = (1, hex∇⊥ξ`).
Then

Gε(u0, A0) =
1

2

∫
U

|∇A0u0|2 +
1

`2
|curl A0 − hex|2 +

1

2ε2

(
1− |u0|2

)2
=

h2
ex

2

∫
U

|∇ξ`|2 +
1

`2
|∆ξ` − 1|2
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Multiplying ξ` against − 1
`2

∆2ξ` + ∆ξ` and integrating over U yields∫
U

|∇ξ`|2 +
1

`2
|∆ξ`|2 dx =

1

`2

∫
U

∆ξ`.

We use the above identity to rewrite the Meissner energy as

G0 =
1

2

∫
U

h2
ex |∇ξ`|2 +

h2
ex

`2
|∆ξ`|2 +

h2
ex

`2
− 2

h2
ex

`2
∆ξ`

= −h2
ex

2

∫
U

[
|∇ξ`|2 +

1

`2
|∆ξ`|2

]
+

h2
ex

2`2
|U | .

(2.14)

Therefore the Meissner energy is of order O(h2
ex

`2
).

Next we write

1

2

∫
U

|∇Au|2 =
1

2

∫
U

∣∣∇u− ihex∇⊥ξ`u− i∇⊥ζu
∣∣2

=
1

2

∫
U

∣∣∇u− i∇⊥ζu
∣∣2 +

h2
ex

2

∫
U

|u|2
∣∣∇⊥ξ`

∣∣2 +

+

∫
U

(
∇u− i∇⊥ζu,−ihex∇⊥ξ`u

)
and ∫

U

(
∇u− i∇⊥ζu,−ihex∇⊥ξ`u

)
=

∫
U

(
∇u,−ihex∇⊥ξ`u

)
+ hex

∫
U

|u|2∇ξ` · ∇ζ.

Therefore, we can write the Ginzburg-Landau energy as

Gε(u, A) =
1

2

∫
U

∣∣∇u− i∇⊥ζu
∣∣2 +

1

2ε2

(
1− |u|2

)2
+

∫
U

(
∇u,−ihex∇⊥ξ`u

)
+

h2
ex

2

∫
U

(
|u|2 − 1

) ∣∣∇⊥ξ`

∣∣2 + hex

∫
U

(
|u|2 − 1

)
∇ξ` · ∇ζ

+
1

2`2

∫
U

|h− hex|2 +
h2

ex

2

∫
U

∣∣∇⊥ξ`

∣∣2 + hex

∫
U

∇ξ` · ∇ζ.

(2.15)

The terms in the third line of (2.15) are small since

h2
ex

∫
U

(
|u|2 − 1

)
|∇ξ`|2 ≤ Ch2

ex ‖∇ξ`‖2
L∞

∥∥1− |u|2∥∥
L2 ≤ Cεh2

exE
1
2
ε (u)

≤ Cε`6|log ε|3 ≤ Cε|log ε|6γ+3 ≤ C

|log ε|
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and

hex

∫
U

(
|u|2 − 1

)
∇ξ` · ∇ζ ≤ Chex ‖∇ξ`‖L∞ ‖∇ζ‖L2

∥∥1− |u|2∥∥
L2

≤ Cεhex

∥∥A− hex∇⊥ξ`

∥∥
L2 E

1
2
ε (u)

≤ Cε`2|log ε|
(
`2|log ε|+ `2|log ε|

)
`2|log ε|

≤ Cε|log ε|6γ+3 ≤ C

|log ε|
.

For the fourth line of (2.15) we have

1

2`2

∫
U

|h− hex|2 +
h2

ex

2

∫
U

∣∣∇⊥ξ`

∣∣2 + hex

∫
U

∇ξ` · ∇ζ

=
1

2`2

∫
U

|hex∆ξ` − hex + ∆ζ|2 +
h2

ex

2

∫
U

|∇ξ`|2 + hex

∫
U

∇ξ` · ∇ζ

=
h2

ex

2`2

∫
|∆ξ` − 1|2 +

h2
ex

2

∫
|∇ξ`|2 +

1

2`2

∫
|∆ζ|2

+
hex

`2

∫
(∆ξ` − 1) ∆ζ + hex

∫
∇ξ` · ∇ζ.

Multiplying ζ against (2.4) and integrating over U we have

0 = − 1

`2

∫
U

∆ζ (∆ξ` − 1)−
∫

U

∇ξ` · ∇ζ,

then

1

2`2

∫
U

|h− hex|2 +
h2

ex

2

∫
U

∣∣∇⊥ξ`

∣∣2 + hex

∫
U

∇ξ` · ∇ζ

= G0 +
1

2`2

∫
U

|∆ζ|2 .

(2.16)

Combining (2.15), the bounds on the third line, and (2.16) yields (2.13).
�

We can now prove Proposition 2.5 by carefully extracting the concentration of
the Ginzburg-Landau energy against the magnetic field potential ξ`. Note that
there are potentially an unbounded number of vortices, so we need to extract
good decay on each vortex ball.

Proof of Proposition 2.5. We follow the approach in [18] for ` ≡ 1. The first step
is to establish the concentration in the cross term

∫
∇⊥ξ` · j(u). In particular

we claim

(2.17)

∣∣∣∣∣
∫

U

(
∇u,−ihex∇⊥ξ`u

)
− 2πhex

∑
i∈I

diξ`(ai)

∣∣∣∣∣ ≤ C

|log ε|
.
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where aj is the center of the vortex ball Bri
and I is the vortex ball collection.

Step 1. Since Eε(u) ≤ C`4|log ε|2 ≤ C|log ε|4γ+2 and hex = C`2|log ε| =
C|log ε|2γ+1then by Proposition 2.3 we have balls {Bri

}i∈I such that

{|u| < 3

4
} ⊂ ∪i∈IBri

card I ≤ C|log ε|4γ+2 ri ≤
C

|log ε|10γ+6

if Bri
⊂ U and di = deg(u, ∂Bri

) then∫
Bri

eε(u)dx ≥ π |di| (|log ε| −O(log |log ε|)) .

where we chose α = 10γ + 6 in Proposition 2.3. Therefore,∣∣∣∣∣
∫
∪IBri

(
∇u,−ihex∇⊥ξ`u

)∣∣∣∣∣ ≤ (card I) hex ‖∇u‖L2 max
i∈I

ri

≤ C|log ε|8γ+4−α ≤ C

|log ε|

Setting Ũ = U\ ∪i∈I Bri
then for v = u

|u| we have∫
eU
(
∇u,−ihex∇⊥ξ`u

)
= hex

∫
eU ∇ξ` × j(v) + hex

∫
eU ∇ξ` × (j(u)− j(v)) .

The second term is small, using (2.8) and (2.11), since

hex

∫
eU ∇ξ` × (j(u)− j(v)) ≤ hex

∥∥∇⊥ξ`

∥∥
L∞

∫
eU
∣∣∣∣j(u)− j(u)

|u|2

∣∣∣∣
≤ Chex

∫
eU
|j(u)|
|u|

||u|2 − 1|
|u|

≤ CεhexEε(u)

≤ Cε|log ε|6γ+3 =
C

|log ε|

where we used |u| ≥ 1
2

in Ũ in the second line. Therefore,

(2.18)

∣∣∣∣∫eU
(
∇u,−ihex∇⊥ξ`u

)
− hex

∫
eU ∇ξ` × j(v)

∣∣∣∣ ≤ C

|log ε|
.

Next for J = {i such that Bri
⊂ U} we claim we can extract the following

bound:

(2.19)

∣∣∣∣∣hex

∫
Bri

∇ξ` × j(v)− 2πhexdiξ`(ai)

∣∣∣∣∣ ≤ C

|log ε|4γ+3
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For Ωi = Bri
∩ {x ∈ U such that |u| ≤ 1

2
} then Ωi ∩ ∂Bri

= ∅. Since |u| ≥ 1
2

in
Ωi then by Stokes’ theorem,

hex

∣∣∣∣∣
∫

∂Bri

(ξ` − ξ`(ai)) j(v) · τ −
∫

∂Ui

(ξ` − ξ`(ai)) j(v) · τ

∣∣∣∣∣
= hex

∣∣∣∣∫
Bi\Ui

∇ξ` × j(u)

∣∣∣∣ ≤ Chex ‖∇ξ`‖L∞ ‖∇u‖L2 ri

≤ C|log ε|4γ+2−α ≤ C

|log ε|4γ+3 ,

thus

hex

∣∣∣∣∣
∫

∂Bri

(ξ` − ξ`(ai)) j(v) · τ −
∫

∂Ωi

(ξ` − ξ`(ai)) j(v) · τ

∣∣∣∣∣
≤ C

|log ε|4γ+3 .

(2.20)

On the other hand since |u| = 1
2

on ∂Ωi we find

hex

∣∣∣∣∫
∂Ωi

(ξ` − ξ`(ai)) j(v) · τ
∣∣∣∣

= hex

∣∣∣∣∫
∂Ωi

(ξ` − ξ`(ai))
j(u)

|u|2
· τ
∣∣∣∣ = 4hex

∣∣∣∣∫
∂Ωi

(ξ` − ξ`(ai)) j(u) · τ
∣∣∣∣

= 4hex

∣∣∣∣∫
Ωi

curl [(ξ` − ξ`(ai)) j(u)]

∣∣∣∣
≤ 4hex

∣∣∣∣∫
Ωi

∇ξ` × j(u)

∣∣∣∣+ 8hex

∣∣∣∣∫
Ωi

(ξ` − ξ`(ai)) J(u)

∣∣∣∣
≤ Chex ‖∇ξ`‖L∞ ‖∇u‖L2 ri + Chex ‖∇ξ`‖L∞ ‖∇u‖2

L2 ri

≤ C|log ε|4γ+2−α + C|log ε|6γ+3−α ≤ C

|log ε|4γ+3 ;

and consequently, since card I ≤ C|log ε|4γ+2 and
∫

∂Bri
ξ`(ai)j(v) · τ = 2πdi,

then

(2.21)
∑
i∈J

∣∣∣∣∣hex

∫
∂Bri

ξ`j(v) · τ − hex

∫
∂Bri

ξ`(ai)j(v) · τ

∣∣∣∣∣ ≤ C

|log ε|
.
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Finally, for the balls that intersect ∂U , I\J . Since ξ` = 0 on ∂U then for
Ωi = Bi ∩ {x ∈ U such that |u| ≤ 1

2
} we follow the above argument and see∣∣∣∣∣hex

∫
∂Bri∩U

ξ`j(v) · τ

∣∣∣∣∣ ≤
∣∣∣∣hex

∫
∂(Ωi∩U)

ξ`j(v) · τ
∣∣∣∣+ C

|log ε|4γ+3

≤ 4hex

∣∣∣∣∫
Ωi∩U

∇ξ` × j(v) + 2ξ`J(v)

∣∣∣∣+ C

|log ε|4γ+3

≤ C

|log ε|4γ+3 .

Combining this estimate along with card I ≤ C|log ε|4γ+2 and (2.21) yields es-
timate (2.17).

Step 2. We bound
∫

U

∣∣∇u− i∇⊥ζu
∣∣2 ≥ ∫∪i∈IBri

|∇u|2 − C
|log ε| . In particular∫

U

∣∣∇u− i∇⊥ζu
∣∣2 ≥ ∫

∪i∈IBri

∣∣∇u− i∇⊥ζu
∣∣2

=

∫
∪i∈IBri

|∇u|2 − 2∇⊥ζ · j(u) + |∇ζ|2 |u|2 .

¿From (2.12) we see ‖A‖L∞(U) ≤ C ‖A‖H2(U) ≤ C|log ε|3γ+2, thus∣∣∣∣∣
∫
∪i∈IBri

∇⊥ζ · j(u)

∣∣∣∣∣ ≤ (card I)
∥∥A− hex∇⊥ξ`

∥∥
L∞
‖∇u‖L2 max

i∈I
ri

≤ C|log ε|4γ+2 (|log ε|3γ+2 + |log ε|2γ+1) |log ε|2γ+1|log ε|−α

≤ C|log ε|9γ+5−α ≤ C

|log ε|
,

and so

(2.22)

∫
U

∣∣∇u− i∇⊥ζu
∣∣2 ≥ ∫

∪i∈IBri

|∇u|2 .

Combining (2.13) with (2.17) and (2.22) yields (2.5).
�

We are finally in the position to establish the

Proof of Proposition 2.1. The first part of the proof establishes that a minimiz-

ing sequence must be in the Meissner state when hex < `2|log ε|
2

.
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Step 1. From Proposition 2.5 and the minimality of (u, A)

G0 ≥ Gε(u, A)

≥
∑
i∈I

∫
Bri

eε(u)dx +
1

2`2

∫
U

|∆ζ|2 + G0 + 2πhex

∑
i∈I

diξ`(ai)−
C

|log ε|
.

Therefore, since ξ` ≤ 0, we use (2.7) and lower bound (4) in Proposition 2.3 to
get

π
∑
i∈I

|di| (|log ε|+ O(log |log ε|)) ≤ 2πhex

∑
i∈I

di |ξ`(ai)|

≤ 2πhex

(∑
i∈I

|di|

)
max |ξ`|

≤

(∑
i∈I

|di|

)
2π

hex

`2
(1− o`) .

So if
∑

i∈I |di| 6= 0 then

hex ≥
`2

2
(|log ε|+ O(log |log ε|)) .

Hence, for hex < `2

2
|log ε| then either deg(u, ∂Bri

) = 0 or Bri
∩ U 6= ∅. It is

straightforward to show from this point that |u| ≥ 3
4

in U , see [3, 4].

Step 2. We now complete the proof of the critical field strength. In particular

we show that if hex > `2|log ε|
2

then there must be a vortex. We prove this by
contradiction. Let (uε, Aε) be a minimizing sequence with

∑
j∈J |dj| = 0 then

we claim Gε(u, A) ≥ Gε(1, hex∇⊥ξ`)− C
|log ε| .

In order to get better bounds on ∇⊥ζ = A−hex∇⊥ξ`, we replace lower bound
(2.22) with

1

2

∫
U

∣∣∇u− i∇⊥ζu
∣∣2 ≥ 1

2

∫
U

|∇u|2 − 2j(u) · ∇⊥ζ + |∇ζ|2 − C

|log ε|
,

where we used the argument for the estimate of the third line of (2.15) in the
proof of Lemma 2.8. By (2.8) and (2.12) we see that ζ is continuous. Since
there are no nontrivial-degree vortex balls, then by an argument identical to
the proof of (2.17) we have the lower bound

Gε(u, A) ≥ Eε(u) + G0 +
1

2

∫
U

|∇ζ|2 +
1

`2
|∆ζ|2 − C

|log ε|
.

Since (u, A) is an energy minimizer, G0 ≥ Gε(u, A), and so Eε(u)+ 1
2

∫
U
|∇ζ|2 ≤

C
|log ε| . Even more so, the boundary condition ζ = 0 implies ζ → 0 and Eε(u) → 0
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as ε → 0. We see that

(2.23) Gε(u, A) ≥ G0 − C

|log ε|
,

when
∑

j∈J |dj| = 0.

To prove that Gε(u, A) is no longer the Meissner state, we construct a se-
quence of functions (uε, Aε) which have lower energy than the Meissner energy

when hex > `2|log ε|
2

. Set Aε = hex∇⊥ξ` +∇⊥ζ, where ξ` is defined in (2.4) and

(2.24) − 1

`2
∆2ζ + ∆ζ = 2πδa in U ∆ζ = ξ` = 0 on ∂U

To define uε = ρεe
iϕε we set ∇ϕε = Aε + 1

`2
∇⊥ curl Aε and

ρε =

{
0 |x− a| ≤ ε

2
1 |x− a| ≥ ε

.

Then for any BR ⊃ {a},
∫

∂BR
∂τϕε =

∫
BR

hε − 1
`2

∆hε = 2π, which cor-

rectly quantizes the phase. A straightforward calculation shows that Eε(uε) ≤
π log diam U

ε
+ C ≤ π|log ε| + C, where C is a fixed constant. The arguments

in Section 4 contain more refined upper bound calculations; however, they are
similar in spirit.

Following Step 1 of the proof of Proposition 2.5 yields

1

2

∫
U

A2
ε |uε|2 +

1

`2
|curl Aε − hex|2

≤ h2
ex

2

∫
U

|∇ξ`|2 +
1

`2
|∆ξ` − hex|2 +

1

2

∫
U

|∇ζ|2 +
1

`2
|∆ζ|2 +

C

|log ε|
.

Again we decompose
∥∥∇u− i∇⊥ζu

∥∥2

L2(U)
= ‖∇u‖2

L2(U)−
∫

j(u)·∇⊥ζ+
∥∥∇⊥ζu

∥∥2

L2(U)
,

and a a similar calculation as in Step 1 shows

Gε(uε, Aε) ≤ Eε(uε)−
∫

U

j(uε) · ∇⊥ (hexξ` + ζ) + G0

+
1

2

∫
U

|∇ζ|2 +
1

`2
|∆ζ|2 +

C

|log ε|

≤ G0 + π|log ε| − 2πhex

`2
(1− o`(1)) + C

+
1

2

∫
U

|∇ζ|2 +
1

`2
|∆ζ|2 + 2πζ(a),

where we used (2.7) in the last inequality. Multiplying (2.24) by ζ and inte-
grating over U shows 2πζ(a) = −

∫
U
|∇ζ|2 + 1

`2
|∆ζ|2 < 0, hence 1

2

∫
U
|∇ζ|2 +
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1
`2
|∆ζ|2 + 2πζ(a) < 0. Therefore,

Gε(uε, Aε) ≤ G0 + π|log ε| − 2πhex

`2
(1− o`(1)) + C.

Since hex > `2|log ε|
2

, then there exists δ > 0, bounded away from zero, such that

π|log ε| − 2πhex

`2
(1− o`(1)) + C < C − δ|log ε| < 0 for ε small enough, thus

Gε(uε, Aε) ≤ G0 + δ|log ε|.

Therefore, a vortex-less configuration cannot be minimizing in the hex > `2|log ε|
2

regime. �

Remark 2.9. For values of hex well above the critical field, we expect the min-
imizers to be similar to the functions constructed in the proof of (4.2) in Sec-
tion 4.

Remark 2.10. The proof of the critical field for `0 ∈ [0, +∞) proceeds in the
same way as for the proof of Proposition 2.1 and can be done by a suitable
modification of the method in [18]. Since we handled the more difficult case
` → +∞ such that `ε = |log ε|γ for some γ ∈ R+, we leave out the proof for the
case `ε → `0 ∈ [0, +∞).

3. Obstacle problem for small and bounded domains

In this section, we study the functional (1.2) where `ε → `0 ∈ [0,∞), i.e. for
shrinking or bounded domains U` in the critical scaling of energy and magnetic
field.

The following result is a generalization of Theorem 1.3 in [9] (where it is
proved for ` = 1). Closely related results in the context of the Chern-Simons-
Higgs energy were shown by the authors in [11, Theorem 1.3] and [12, Theorem
3]. We state the theorem in its gauge-invariant form.

Theorem 3.1. Let (uε, Aε) be a sequence with Gε(uε, Aε) ≤ K|log ε|2 and as-
sume that hex satisfies hex

|log ε| → H for some H ≥ 0 and `ε → `0 ∈ [0,∞). Define

the following rescaled quantities:

aε :=
1

|log ε|
Aε

vε :=
1

|log ε|
(iuε,∇uε)

wε := vε − |uε|2aε

Then curl aε is weakly compact in L2(U), and wε is weakly compact in Lp for
1 ≤ p < 2. Furthermore, wε

|uε| converges weakly in L2 if and only if wε converges

weakly, and the weak limits are equal.
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Any weak limit of (wε, curl aε) can be expressed in the form (v− a, curl a) for
some (v, a) ∈ L2(U ; R2) × H1(U ; R2) such that curl v is a Radon measure. In
addition, we have the following Γ− lim inf inequality:

lim inf
ε→0

1

|log ε|2
Gε(uε, Aε) ≥ G(v, a),

where the limit functional G is given by

(3.1) G(v, a) :=
1
2

∫
U
|v − a|2 + 1

`20
| curl a−H|2 + 1

2
‖curl v‖M if `0 > 0

1
2

∫
U
|v − a|2 + 1

2
‖curl v‖M if `0 = 0 and curl a = H

+∞ else.

Conversely, for every (v, a) ∈ L2(U ; R2)×H1(U ; R2) such that curl v is a Radon
measure there exists approximating sequences (ũε, Ãε) such that the convergences
above hold, and such that

(3.2) lim
ε→0

1

|log ε|2
Gε(ũε, Ãε) = G(v, a).

Proof. It suffices to check the theorem for sequences (uε, Aε) that satisfy the
Coulomb gauge condition div Aε = 0 in U , A · ν = 0 on ∂U , since G(uε, Aε) =
G(uεe

iχ, Aε + ∇χ) and the quantities wε and curl aε are invariant under this
gauge transformation. The limit functional G(v, a) also has the gauge invariance
G(v +∇χ, a +∇χ) = G(v, a).

¿From the energy bound Gε(uε, Aε) ≤ K|log ε|2 we infer that∫
U

| curl aε −H|2 ≤ 2K`2
ε ≤ C,

since `ε is bounded, and together with div aε = 0 this implies ‖aε‖H1(U) ≤ C

and via Sobolev embedding ‖Aε‖Lp(U) ≤ Cp|log ε| for p ≥ 1.

We can now establish that the BBH energy Eε(uε) is bounded, using the
following decomposition:

|∇Au|2 = |∇u|2 − 2j(u) · A + |u|2|A|2

which implies that

Eε(uε) ≤ Gε(uε, Aε) +

∫
U

|j(uε) · Aε|.
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As in [9], we can estimate the cross term via

|j(uε) · Aε| ≤
1

4
|∇uε|2 + |uε|2|Aε|2

≤ 1

4
|∇uε|2 +

(
|uε|2 − 1

)
|Aε|2 + |Aε|2

≤ 1

4
|∇uε|2 +

1

8ε2

(
1− |uε|2

)2
+ 2ε2|Aε|4 + |Aε|2

≤ 1

2
Eε(uε) + Cε2|log ε|4 + C|log ε|2,

and it follows that Eε(uε) ≤ C|log ε|2. We are therefore able to use the com-
pactness results of [9] that show compactness for vε and the estimate

lim inf
ε→0

Eε(uε) ≥
1

2

∫
U

|v|2 +
1

2
‖curl v‖M .

It is then not difficult to show the lower bound for the full energy using the
same decomposition as above and the weak convergence of aε implied by the
bounds.

The Γ-limsup property (3.2) can be shown as follows: Given a limit (v, a)
with div a = 0, we set Ãε = a|log ε| and construct ũε as in Section 7 of [9]. It
is then easy to see that the claimed convergence holds, using the Γ-convergence
result for Eε from [9] and the same decomposition as above. �

Remark 3.2. Note that compactness for vε only holds due to our choice of
gauge. The representative ũε = uεe

iχε corresponds to ṽε = vε + 1
|log ε|∇χε,

and so vε and ṽε need not have the same compactness properties. The limit
functional G(v, a) also has the gauge invariance G(v +∇χ, a +∇χ) = G(v, a).
If `ε → ∞, the compactness argument for aε fails, since we only know that∫

U
| curl aε − H|2 ≤ K`2

ε, so this sequence need not be bounded. The example
given in [12, Theorem 5], which also holds for (1.2), shows that also vε need not
be compact in this case, even if div Aε = 0. In fact we construct a sequence
of (vε, aε) with bounded energy but ‖vε‖L2(U) & log `ε → +∞ by constructing
a set of vortices that concentrate about a single point. Therefore, the energy
splitting approach of [9] is insufficient to treat the case of large domains.

As in [17], we can characterize the minimizers of the limit functional. We
obtain, following the presentation of [9]:

Theorem 3.3. If (v0, a0) is a minimizer of G and `0 > 0, then z0 = `−2
0 (curl a0−

H) is the unique minimizer of the following obstacle problem: Minimize

F`0,H(z) =
1

2

∫
U

|∇z|2 + `2
0z

2 + 2zH
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in the admissible class

K = {z ∈ H1
0 (U) : z ≥ −1

2
a.e. in U}.

The limit (v0, a0) satisfies the following additional properties:

`−2
0 curl(curl a0 −H) + a0 = v0 in U

curl a0 −H = 0 on ∂U

−1

2
≤ z0 ≤ 0

curl v0 ≥ 0

spt(curl v0) ⊂
{

z0 = −1

2

}
.

In the case where `0 = 0, we have curl a0 ≡ H and obtain a slightly differ-
ent obstacle problem: Let y0 be the solution of −∆y0 = curl v0 − H with zero
boundary conditions. Then y0 is the unique minimizer of

F0,H(y) =
1

2

∫
U

|∇y|2 + 2yH

in the admissible class

K =

{
y ∈ H1

0 (U) : y ≥ −1

2
a.e. in U

}
.

Moreover, curl v0 ≥ 0, and spt(curl v0) ⊂ {y0 = −1
2
}.

Proof. We only prove the part for `0 = 0; the first half can be shown by a
completely straightforward insertion of `−2 into the argument of [9]. Our proof
of the second half also follows the structure of their argument.

For a Radon measure µ ∈ H−1, define the vector field vµ ∈ L2(U ; R2) by
curl vµ = µ and div vµ = 0. We decompose µ as µac + µsing into an absolutely
continuous and a singular part. Setting g(t, µ) = G(v0 + tvµ, a), we calculate

0 ≤ lim
t→0+

g(t, µ)− g(0, µ)

t
=

∫
U

(v0 − a0, v
µ) +

1

2

∫
U

sgn(µ0)dµac +
1

2

∥∥µsing
∥∥ (U).

Integrating by parts and using the definition of y0, we see that∫
U

(v0 − a0, v
µ) =

∫
U

y0µ

so we obtain

(3.3) 0 ≤
∫

U

(
y0 +

1

2
sgn(µ0)

)
dµac +

∫
U

(
y0 +

1

2
sgn(µ)

)
dµsing

and similarly by one-sided differentiation in the opposite direction

(3.4) 0 ≥
∫

U

(
y0 +

1

2
sgn(µ0)

)
dµac +

∫
U

(
y0 −

1

2
sgn(µ)

)
dµsing.
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Together, (3.3) and (3.4) imply, due to the arbitrariness of µac and µsing, that
|y0| ≤ 1

2
everywhere and y0 = −1

2
sgn(µ0) in spt µ0. It follows that for any

smooth function ϕ with ϕ(z) = 0 for z ≤ 0 and ϕ′(z) ≥ 0, there holds∫
U

ϕ(y0)dµ0 = −ϕ(
1

2
)µ−0 (U),

where µ−0 denotes the negative part in the Hahn decomposition of µ0. Since
µ0 = −∆y0 + H, we can integrate by parts and obtain∫

U

ϕ(y0)dµ0 =

∫
U

ϕ′(y0)|∇y0|2 + ϕ(y0)H ≥ 0,

and we conclude that µ−0 (U) = 0 so µ0 ≥ 0.
To see that y0 is a solution of the obstacle problem, we take any y ∈ K and

compare using |v|2 − |w|2 ≥ 2(v − w) · w and integration by parts

F0,H(y)− F0,H(y0) ≥
∫

U

∇(y − y0) · ∇y0 + (y − y0)H =

∫
U

(y − y0)dµ0.

Now y0 = −1
2

on spt(µ0), so (y − y0) ≥ 0 on spt(µ0) for all y ∈ K . It follows
that y0 is a minimizer of the obstacle problem. Standard theory [6] can now be
used to show uniqueness of y0. �

Remark 3.4. We believe the family of obstacle problems in Theorem 3.3 can
be studied in the framework of Brezis-Serfaty [5], who examine the obstacle
problem arising from (1.3).

Corollary 3.5. Let (v0, a0) be a minimizer of G(v, a). Then curl v0 = 0 for
H < H1(`0) and curl v0 6= 0 for H > H1(`0), where H1(`0) is given by

(3.5) H1(`0) =
1

2 maxU |y`0 |
,

where y`0 is the solution of

−∆y`0 + `2
0y`0 + 1 = 0

with Dirichlet boundary conditions y`0 = 0 on ∂U .

Remark 3.6. We reiterate that the function H1 in (3.5) satisfies 2H1(`0)

`20
→ 1 as

`0 →∞.

Remark 3.7. In the case where U = B1(0) is a ball, the function H1 can be
written down explicitly since the solutions of −∆y + αy + 1 = 0 with Dirichlet
boundary conditions are given by known special functions. Denoting by I0 the
modified Bessel function of zeroeth order, we have that

H1(`0) =
`2
0I0(`0)

2(I0(`0)− 1)
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Since I0(x) ∼ ex
√

2πx
as x → ∞ and I0(x) = 1 + x2

4
+ O(x4) as x → 0, it is easy

to see that this matches the claimed behavior at zero and infinity.

4. Upper bound for vortex lattices

In this section, we construct good comparison sequences that correpond to
vortex lattices and calculate their energy.

Proposition 4.1. Assume ε < C√
hex

and ε → 0. There exists a sequence of

functions (uε, Aε) such that the Ginzburg-Landau energy satisfies

(4.1) Gε(uε, Aε) ≤ hex
|U |
2

(
log

1√
hexε

+ C

)
.

If hex − `2|log ε|
2

= S � 1 and hex ≤ 1
ε2 then there exists a sequence of functions

with Ginzburg-Landau energy

(4.2) Gε(uε, Aε) ≤
|U |
2

(
S
(∣∣∣log

(
ε max(

√
S, `)

)∣∣∣+ C
)

+
`2

4
|log ε|2

)
.

Remark 4.2. If `2 ≥ Khex then

Gε(1, 0) ≤ hex
|U |
2K

.

In particular, there is a constant K > 0 such that our vortex lattice construction
is not minimizing for `2 ≥ Khex.

Remark 4.3. Under the assumptions for the upper bound (4.2), the trivial
Meissner-like state (u, A) = (1, 0) has the energy

|U |
2

(
S2

`2
+ S|log ε|+ `2

4
|log ε|2

)
.

Since | log(ε max(`,
√

S))| ≤ |log ε| − C, the vortex lattice state with O(S) vor-
tices is energetically favorable compared to (u, A) = (1, 0). Consult Proposi-
tion 2.1 for a more detailed statement regarding the first critical field for vortex
nucleation.

We now turn to the proof of Proposition 4.1. We present a novel approach
to estimate the energy of a vortex lattice. As we are looking for periodic vortex
lattices, it is natural to use Fourier series. On the unit cell of our lattice, we
investigate solutions of

(4.3) −α∆h + h = 2πδε in KL

with homogeneous Neumann boundary conditions. Here KL =
(
−L

2
, L

2

)2
for

some L > 0. This is equivalent to looking at LZ2-periodic solutions in R2. For
δε we use the Dirac sequence

δε(x) =
1

4ε2
χ(−ε,ε)(x1)χ(−ε,ε)(x2),
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where χA is the characteristic function of a set A ⊂ R. We assume 2ε < L. We
obtain the following results on the lattice:

Proposition 4.4. There exists a C > 0 such that for any L, ε with ε < L
2

there
exists a periodic function h such that −`−2∆h + h = δε and

(4.4)

∫
KL

`−4|∇h|2+`−2|h−hex|2 ≤ 2π log
1

max(`, L−1)ε
+C+L2

(
hex −

2π

L2

)2

.

Proof. We calculate the energy∫
KL

α2|∇h|2 + `−2|h− hex|2.

It will become apparent later that we should use α = `−2.
We use double Fourier series as follows. For f ∈ L2(KL) and k ∈ Z2, set

ak =
1

L2

∫
KL

f(x)e−iγk·x

where γ = 2π
L

. Then f can be reconstructed as

f(x) =
∑
k∈Z2

ake
iγk·x

By Plancherel’s theorem we have∫
KL

|f |2 = L2
∑
k∈Z2

|ak|2.

It is standard that ∇f corresponds to the series (iγkak) and ∆f to the series
(−γ2|k|2ak). Solving the equation (4.3) therefore corresponds to

(αγ2|k|2 + 1)ak = bk

where bk are the Fourier coefficients for δε.
We calculate these coefficients. Set k = (k1, k2). If k1k2 6= 0 then

bk =
2π

4ε2L2

4 sin(γk1ε) sin(γk2ε)

γ2k1k2

In other cases we have

b(m,0) = b(0,m) =
2π

4ε2L2

4ε sin(γmε)

γm

and finally b0 = 2π
L2 .

To simplify notation we write this using sinc(x), the continuous continuation
of sin x

x
, which yields

bk =
2π

L2
sinc(γk1ε) sinc(γk2ε).
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Since a0 = b0 = 2π
L2 , we have that∫
|h− hex|2 = L2

∑
k 6=0

|ak|2 + L2

(
2π

L2
− hex

)2

.

We want to calculate

E = L2
∑

k∈Z2\0

(α2γ2|k|2 + α)|ak|2 + L2

(
2π

L2
− hex

)2

.

Using the expressions obtained for bk above, it follows that we have

E =
4π2

L2

∑
k∈Z2\0

α

α|γ|2|k|2 + 1
sinc2(γεk1) sinc2(γεk2) + L2

(
2π

L2
− hex

)2

.

We split up the double sum as follows. First, consider k = (k1, k2) with 1 ≤
|k| ≤ 1

γε
. For these terms we estimate | sinc | ≤ 1. We label this part of the

energy E1, and so

E1 ≤
4π2

L2

∑
K1

α

αγ2|k|2 + 1
.

Now we compare the sum with an integral. For any decreasing function f , we
have ∑

1≤|k|≤A

f(|k|) ≤
∫ A+ 1√

2

1− 1√
2

f(r)2πrdr

and so

E1 ≤
4π2

L2

∫ 1
γε

+c

1−c

2παr

1 + αγ2r2
dr =

4π2

L2γ2

(
2π

2
log(αγ2x2 + 1)

) ∣∣∣x= 1
γε

+c

x=1−c

where c = 1√
2
. As 4π2

L2γ2 = 1, we obtain

E1 ≤
2π

2
log

α
ε2 + 2cαγ

ε
+ c2 + 1

αγ2(1− c)2 + 1
.

We distinguish two cases. If αγ2 ≤ 1, we estimate the denominator as ≥ 1 and
obtain

E1 ≤
2π

2
log

α

ε2
+ C ≤ 2π log

√
α

ε
+ C.

In the case where αγ2 ≥ 1, we estimate the denominator as ≥ Cαγ2 and obtain

E1 ≤
2π

2
log

1

γ2ε2
+ C ≤ 2π log

1

γε
+ C

if αγ > ε.
We still need to deal with the frequencies k with |k| ≥ 1

γε
. We use that

sinc2(x) sinc2(y) ≤ 2
r2 , which can be seen as follows. Assume without loss of
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generality that |x| ≤ |y|. Then r2 = x2 + y2 ≤ 2y2. Estimating | sinc(x)| ≤ 1
and | sinc(y)| ≤ 1

y
, we see that sinc2(x) sinc2(y) ≤ 1

y2 ≤ 2
r2 as claimed.

To calculate the energy contribution E2 of those k with |k| ≥ 1
γε

, we again

replace the sum by an integral. Using the sinc bound, we see that

E2 ≤
4π2

L2

∫ ∞

1
γε
−c

4παr

(αr2γ2 + 1)γ2r2ε2
.

We estimate this using 4π2L−2γ−2 = 1 as

E2 ≤ C

∫ ∞

1
γε
−c

1

γ2ε2r3
dr ≤ C

γ2ε2
· 1

( 1
γε
− c)2

and for 1
γε

> 2c, we obtain that E2 ≤ C. The claim follows using the definitions.
�

Choosing L = 2π
hex

in (4.4) implies the following upper bound:

Corollary 4.5. If ε < 1
2
√

hex
then there exists a periodic function h with period

L =
√

2π
hex

such that −`−2∆h + h = δε and∫
KL

`−4|∇h|2 + `−2|h− hex|2 ≤ 2π log
1

max(`,
√

hex)ε
+ C.

Furthermore, for any L > 2ε there exists h with −`−2∆h + h = δε and∫
KL

`−4|∇h|2 + `−2|h−hex|2 ≤ 2π log
1

max(`,
√

hex)ε
+C +L2`−2

(
2π

L2
− hex

)2

.

Remark 4.6. This can be easily extended to ε ≤ C√
hex

for any C that is bounded

independently of ε, `, and hex by choosing ε̃ = 2ε
C

and constructing with ε̃
instead of ε.

To construct a pair (u, A) from h, we do the following. To define the modulus
ρ, we set

ρ(r) =


0 r < ε

√
2

r−ε
√

2
ε

ε
√

2 < r < ε(1 +
√

2)

1 r > ε(1 +
√

2)

.

We take any A with curl A = h. Outside Bε
√

2, we define u as ρeiϕ, where

∇ϕ−A = α∇⊥h. This is possible since for any simple closed curve Γ ⊂ KL\Bε
√

2

with Γ = ∂G we have

(4.5)

∫
Γ

∂ϕ

∂τ
=

∫
Γ

(A · τ − α
∂h

∂ν
=

∫
G

(−∆h + h) =

{
2π if G ⊃ Bε

√
2

0 else.
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On KL, we can therefore estimate

(4.6)
1

2

∫
KL

|(∇− iA)u|2 + `−2|h− hex|2 +
1

2ε2
(1− ρ2)2

≤ 1

2

∫
KL

ρ2`−4|∇h|2 + `−2|h− hex|2 + |∇ρ|2 +
1

2ε2
(1− ρ2)2

≤ C + π log
1

max(`,
√

hex)ε
.

We are now in the position to establish the

Proof of Proposition 4.1. This will be done in two steps.

Step 1. We use the above construction to build an h in R2 and to define
a periodic ρε corresponding to the lattice. As the equivalent of (4.5) holds in
all of R2, we can define (u, A) in all of R2 such that (4.6) holds on every cell
of the lattice. All we need to do is choose a proper origin for our lattice: for
any a ∈ KL we can set (ua(z), Aa(z)) = (u(z − a), A(z − a)), which has energy
density gla(z) = gl(z − a), where gl(z) = 1

2
|(∇ − iA)u|2(z) + `−2| curl A(z) −

hex|2 + 1
2ε2 (1− |u(z)|2)2. Integrating over the unit cell, we see that∫

KL

Gε(u
a
ε , A

a
ε ; U)da =

∫
KL

∫
U

gla(z)dzda = |U |Gε(u, A; KL)

The mean value theorem shows that there exists a such that G(ua, Aa; U) ≤
|U |
|KL|

G(u, A; KL) and since |KL| = hex

2π
, this finishes the proof of (4.1).

Step 2. We follow the argument in Step 1; however, we choose a lattice of

size L =
√

2π
S

, which is optimal up to logarithmic terms. Since hex ≤ ε−2 and

S � 1 we have 2ε ≤ L � 1 we can follow the same construction as above and
obtain for the energy after choosing a suitable origin

G(uε, Aε; U) ≤ |U |
2|KL|

(
2π log

1

max(
√

S, `)ε
+ C + L2`−2

∣∣∣∣hex −
2π

L2

∣∣∣∣)
=
|U |
2

(
S

2π

(
2π log

1

max(
√

S, `)ε
+ C

)
+ `−2

(
1

2
`2|log ε|

)2
)

=
|U |
2

(
S log

1

max(
√

S, `)ε
+ C +

1

4
`2|log ε|2

)
since hex − 2π

L2 = hex − S = 1
2
`2|log ε|. This completes the proof of (4.2). �
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5. Lower bound for vortex lattices

We now establish the energy lower bound for supercritical magnetic fields.
These lower bounds are valid for a broad regime of length-scales `. Our method
revisits the approach in [16] and makes a very careful use of the length scale
versus vortex ball size that is crucial in the ` →∞ case (and not crucial in the
` → [0, +∞) case).

Proposition 5.1. Assume that

(5.1) max{1, `2}|log ε| � hex �
1

ε2
,

then minimizing sequence {uε, Aε} satisfies:

• when `2 � 1
ε2|log ε| and `2 ≤ hex then

(5.2) Gε(uε, Aε) ≥
1

2
|U |hex log

1

ε
√

hex

(1− oε(1))

• when |log ε| � `2 � 1
ε2|log ε| and hex ≤ `2 then

(5.3) Gε(uε, Aε) ≥
1

2
|U |hex log

1

ε`
(1− oε(1)) .

Remark 5.2. We note that for our supercritical fields, hex 6≤ `2, due to (5.1);
however, we include (5.3) since it points to our conjectured energy strength for
hex − hc1 � 1, but hc1 6� hex, see (4.2). We also note that the hypothesis
`2|log ε| � hex is used in (5.22).

Furthermore, we can show that µε = 2π
hex

∑
dεδaj

⇀ dx, the Lebegue measure

on R2. This ensures some uniformity of vorticity in the limit, i.e. the limiting
measure converges to the uniform measure and hence vorticity is spread out
uniformly in the limit.

Proposition 5.3. Let uε, Aε be a minimizer then there exists a disjoint set of
balls {Brk

(ak)}N
i=1 with

rk ≤ h
− 1

2
ex and

∑
rk ≤ |Ω|h

1
2
ex

such that |uε| ≥ 1
2

on ∂Brk
(ak). If dk = deg(uε, ∂Brk

(ak)) then

(5.4)
2π

hex

∑
dkδak

⇀M dx,

the Lebesgue measure on Ω as ε → 0.

The proof of Proposition 5.3 follows from establishing a good radius for each
vortex ball where the vortex structure is well-defined, and since the argument
is a straightforward adaptation of arguments of [16] and the proof of Proposi-
tion 5.1, we leave out the proof.
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To establish Proposition 5.1 we emulate the approach in Sandier-Serfaty [16].
Let K ⊂ U be a subset of U . Then

GK =

∫
K

gε(uε, Aε)dx

and we set ωt = {x ∈ K : ρ(x) < t}. Finally, we assume we have a good energy
bound on the square. We choose squares K of side length δ = δ(ε) → 0 so that
the following scalings hold:

Vε � hexδ
2 � min{hex, V

2
ε }(5.5)

where

(5.6) Vε = log

(
1

ε max{`,
√

hex}

)
.

We also assume

(5.7) GK ≤ hexδ
2Vε,

otherwise our lower bound would directly follow. Let Θ(t) =
∫

K\ωt
|∇ϕ− A|2 dx

where u = ρeiϕ. Then following [14]∫
K

gε(u, A)dx =
1

2

∫ ∞

0

[∫
∂ωt∩K

|∇ρ|+ (1− t2)2

2ε2 |∇ρ|
dl − t2Θ′(t)

]
dt

+
1

2`2

∫
K

|h− hex|2dx

by the co-area formula. Therefore, integration by parts on the third term yields∫
K

gε(u, A)dx ≥
∫ 1

0

[∫
∂ωt∩K

|∇ρ|
2

+
(1− t2)2

4ε2|∇ρ|
dl

+t

[∫
K\ωt

|∇ϕ− A|2dx +
1

2`2

∫
K

|h− hex|2 dx

]]
dt.

or

(5.8) GK =

∫
K

gε(u, A)dx ≥
∫ 1

0

a(t) + 2tb(t)dt

with

a(t) =

∫
∂ωt∩K

|∇ρ|
2

+
(1− t2)

2

4ε2 |∇ρ|
dl(5.9)

b(t) =
1

2

∫
K\ωt

|∇ϕ− A|2 dx +
1

2`2

∫
K

|h− hex|2dx.(5.10)

We now use the following result of [16] to bound
∫ 1

0
a(t)dt from below.
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Lemma 5.4 (Sandier-Serfaty,[16]). There exists a constant C such that

(5.11)

∫ 1

0

a(t)dt ≥ C

∫ 1

ε
δ

r(Ωt) (1− t2)

ε
dt

where Ωt = {x ∈ K such that ρ(x) < t}.

Proof. This lemma follows from Sandier-Serfaty [16]. �

In order to bound b(t) we use the following variation of a covering argument
developed in [16]. In our case we have a modified regime of radii in which our
function f(r, R) is increasing and takes into account the limiting behavior of `.

Lemma 5.5. Assume V ⊂ R2 is open and ω ⊂ R2 is compact. Assume
v : V \ω → S1 and A : V → R2. Then for any σ ≥ r(ω) such that
σ ≤ min{1, 4

3`
, 1

3
√

hex
} there exists a family {Bi} of disjoint disks of radii ri

such that

(1)
∑

ri = σ
(2) ω ⊂ ∪Bi ⊂ Ω1

(3) Letting h = curl A and v = eiϕ, then

1

2

∫
Bi\ω

|∇ϕ− A|2 +
1

2`2

∫
Bi

|h− hex|2 ≥ π |di|

(
log

min{1, 1
`
, 1√

hex
}

r(Bi)
− C

)+

where di is the winding number of v restricted to ∂Bi, if Bi b Ω1 ∩ V ,
and zero otherwise.

The proof of Lemma 5.5 follows from the two lemmas below. The first lemma
takes full advantage of r

`

∫
Br

h2dx term in the lower bound - which is not fully

used in [16, 15], see inequality (5.12).

Lemma 5.6. Let v : BR\Br → S1 and A : BR → R2. Then for all hex > 0 and
0 < r < R < min{1

2
, 1

`
},

1

2

∫
BR\Br

|∇ϕ− A|2 +
R− r

2

1

`

∫
Br

|h− hex|2

≥ π |d|
(

log
R

r
− `

2
(R− r)− hex

2

(
R2 − r2

))
where d is the winding number of v = eiϕ restricted to any circle ∂Bs, r < s < R.
Furthermore, the function

f(r, R) = log
R

r
− `

2
(R− r)− hex

2

(
R2 − r2

)
is increasing in R for 0 < r < R ≤ min{1, 4

3`
, 1

3
√

hex
}.
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Proof. This proof is based on the argument in [14]. Set

g(t) =
1

2

∫
∂Bt

∣∣∣∣∂ϕ

∂τ
− A · τ

∣∣∣∣2 +
1

2`

∫
Bt

|h− hex|2

then ∫
BR\Br

ggl(u, A)dx ≥ 1

2

∫
BR\Br

|∇ϕ− A|2 +
1

2`2
(R− r)

∫
Br

|h− hex|2

≥
∫ R

r

g(t)dt.

Let αt =
∫

Bt
h then

2πd = αt −
∫

∂Bt

∂ϕ

∂τ
− A · τ

and so by Cauchy-Schwarz∫
∂Bt

∣∣∣∣∂ϕ

∂τ
− A · τ

∣∣∣∣2 ≥ 1

2πt
(2πd− αt)

2 .

Second, ∫
Bt

|h− hex|2 ≥
1

πt2
(
αt − πt2hex

)2
so

g(t) ≥ 1

4πt
(2πd− α)2 +

1

2`πt2
(
α− πt2hex

)2
which we minimize over α. Note that if f(x) = 1

a
(c− x)2 + 1

b
(d− x)2 then

the minimum occurs at x = bc+ad
a+b

or f(x) ≥ (c−d)2

a+b
. Applying this to the above

inequality yields

g(t) ≥ (2πd− πt2hex)
2

4πt + 2`2πt2
=

(2πd)2 − 4π2dt2hex + π2t4h2
ex

4πt
(
1 + `

2
t
)

≥
(

πd2

t
− πt |d|hex

)(
1 +

`

2
t

)−1

.

We compute the lower bound. Suppose 0 < t < 1 then 0 < `
2
t < `

2
, and if

0 < t ≤ min{1, 2
`
} then 0 < `

2
t ≤ 1. This implies(

1 +
`

2
t

)−1

≥ 1− `

2
t > 0

for all 0 < t ≤ min{1
2
, 1

`
}. Therefore,

g(t) ≥
(

πd2

t
− πt |d|hex

)(
1− `

2
t

)
≥ π |d|

(
1

t
− `

2
− thex

)
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and so ∫ R

r

g(t)dt ≥ π |d|
(

log
R

r
− `

2
(R− r)− hex

2

(
R2 − r2

))
for 0 < r < R < min{1

2
, 1

`
}.

We now show that f(r, R) is increasing on the claimed interval. Set γ = `
4
,

then f ′(r, x) = 1
x
− 2γ − hexx ≥ 0 for all x up to√

4γ2

h2
ex

+ 4
hex
− 2γ

hex

2
=

√
γ2 + hex − γ

hex

=
1√

γ2 + hex + γ
.

If γ ≥
√

hex, then γ2 > hex and f(x) is increasing up to x = 1√
γ2+hex+γ

≥
1√

2γ2+γ
= 1

γ
1√
2+1

≥ 1
3γ

. On the other hand if γ ≤
√

hex, then γ2 ≤ hex and

f(x) is increasing up to x = 1√
γ2+hex+γ

≥ 1√
2hex+

√
hex

= 1√
hex

1√
2+1

≥ 1
3
√

hex
.

Combining both estimates yields the lemma. �

Finally, we complete the proof of Lemma 5.7 with the following result that
performs the vortex ball growing / merging process, found in [14]. We remark
the only difference in this result is the potentially smaller interval on which
f(r, ·) is increasing.

Lemma 5.7. Let f(r, R) satisfy the following properties:

(1) f(r, ·) is increasing on [0, min{1, 4
3`

, 1
3
√

hex
}].

(2) f(r, r) = 0, thus f(r, R) ≥ 0 for all r ≤ R ≤ min{1, 4
3`

, 1
3
√

hex
}.

(3) f(r, s) + f(s, R) = f(r, R).

(4) If (0 ≤ ri ≤ Ri) are 2k positive real numbers and di are integers, and

Ri

ri

=
Rj

rj

= α > 1

for all i, j. Then

k∑
i=1

|di| f(ri, Ri) ≥

(
k∑

i=1

|di|

)
f

(
k∑

i=1

ri,

k∑
i=1

Ri

)
.

Proof. The proof is found in [14], see also [16] for example. �

We can now complete the lower bound on b(t).

Proof of Lemma 5.5. This is essentially proved in [16] except for the modified
regime of radii and the consideration of ` in (5.12); however, we include the
argument for the sake of completeness.
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1. We first define the vortex ball growing / merging process. In particular
we have two cases:

(a) If i 6= j and Bi∩Bj = ∅ then grow the balls at a constant rate with the
same centers such that ratio α(s) is constant.

(b) If some B1 ∩ B2 6= ∅, then there is a ball B such that B1 ∪ B2 ⊂ B
for the family at some time s0 and replace them with B. If there is
a B ∩ B3 6= ∅ then enlarge B so that B1 ∪ B2 ∪ B3 ⊂ B and r(B) =
r(B1)+r(B2)+r(B3). Then modify {Bi(s0)} by removing the balls that
have been merged into B and replacing them by B. Then the seed size
of B is the sum of the seed sizes of B1, . . . , Bl. Indeed the B1, . . . , Bl are
disjoint and

r(B)

ε(B)
=

∑l
i=1 r(Bi)∑l
i=1 ε(Bi)

= α(s0)

and so the modified family satisfies the rules. The left over balls in the
family satisfy the criteria, and we inflate the balls via Case 1.

2. Now let d(Bi(s)) be the degree of v restricted to ∂Bi(s) if Bi(s) b V and
zero otherwise then we claim

1

2

∫
Bi(s)\ω

|∇ϕ− A|2 +
1

2`2

∫
Bi(s)

|h− hex|2

≥ 1

2

∫
Bi(s)\ω

|∇ϕ− A|2 +
r(Bi(s))

2`

∫
Bi(s)

|h− hex|2

≥ |d(Bi(s))| f(ε(Bi(s)), r(Bi(s))).

(5.12)

To establish (5.12) we remark the first inequality follows trivially since r(Bi(s)) ≤
σ ≤ 1

`
. Next, we establish the second inequality; note that when s = 0,

ε(Bi(0)) = r(Bi(0)) and f(s, s) = 0. We check that (5.12) holds through
the growth process. Suppose the inequality holds for B = Bi(s) and grows to
B′ = Bi(t) for t > s and B′ b V . Then d(B′) = d(B), ε(B′) = ε(B) and

1

2

∫
B′\ω

|∇ϕ− A|2 +
r(B′)

2`

∫
B′
|h− hex|2

≥ 1

2

∫
B\ω

|∇ϕ− A|2 +
r(B)

2`

∫
B′
|h− hex|2

+
1

2

∫
B′\B

|∇ϕ− A|2 +
r(B′)− r(B)

2`

∫
B′
|h− hex|2

≥ |d| f(ε(B), r(B)) + |d| f(r(B), r(B′)) = |d| f(ε(B′), r(B′))
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On the other hand if we have a merging, we see that for balls {Bi}l
i=1 merged

into B we have

1

2

∫
B\ω

|∇ϕ− A|2 +
r(B′)

2`

∫
B

|h− hex|2

≥
l∑

i=1

1

2

∫
Bi\ω

|∇ϕ− A|2 +
r(Bi)

2`

∫
Bi

|h− hex|2

≥
l∑

i=1

|di| f(ε(Bi), r(Bi))

≥

(
l∑

i=1

|d(ε(Bi))|

)
f

(
l∑

i=1

ε(Bi),
l∑

i=1

r(Bi)

)
≥ |d(B)| f(ε(B), r(B)).

3. Finally, using (5.12) we grow the balls until
∑

i r(Bi) = σ. Since ω ⊂
∪Bi(0) ⊂ Bi(s) and σ < min{1, 1

2`
, 1

2
√

hex
}, then r(Bi(s)) ≤ min{1, 1

2`
, 1

2
√

hex
}.

Hence

f(ε(Bi(s)), r(Bi(s))) ≥
(

log
r(Bi(s))

ε(Bi(s))
− C

)
+

.

Since r(Bi(s))
ε(Bi(s))

=
P

i r(Bi(s))P
i ε(Bi(s))

= σ
r(ω)

, then using (5.12) we have for all Bi b V∫
Bi\ω

|∇ϕ− A|2 +
1

2`2

∫
Bi

|h− hex|2 ≥ |di|
(

log
σ

r(ω)
− C

)
+

,

which proves the lemma. �

We use |log ε| � hex implicitly at many steps in the following

Lemma 5.8. Let K be the square chosen in Lemma 5.4 with sidelength δ and
recall Ωt = {x ∈ K such that ρ(x) < t}. Then for all 0 < t < 1

(5.13) b(t) ≥ π

( ∑
i:BibK

|dBi
|

)(
log

1

r(Ωt) max{`,
√

hex}
− C

)+

and

(5.14) 2πdt ≥ hexδ
2

[(
1− α

δ

)2

− χ

t

√
δ

α
− 2χ

t

√
δ2`2

]

where χ2 = GK

h2
exδ4 and min{1

`
, 1√

hex
} ≤ α ≤ δ

4
.
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Proof. If we take ω = Ωt, v = u
|u| , V = K and σ = min{1, 4

3`
, 1

3
√

hex
} then

Lemma 5.5 and Lemma 5.7 imply

b(t) ≥ π

( ∑
i:BibK

|dBi
|

)(
log

min{1, 1
`
, 1√

hex
}

r(Ωt)
− C

)+

and the difficulty comes in controlling
(∑

i:BibK |dBi
|
)
. Here the interaction be-

tween magnetic field and degree is nontrivial. We now provide an estimate on
the degree via energy bounds.

Step 1. Consider the following minimization problem:

min
A∈H1(K,R2) div A=0

1

2

∫
K\Ωt

|∇ϕ− A|2 dx +
1

2`2

∫
K

|curl A− hex|2 dx

where ϕ = arg u. The minimizer is achieved for some A with h = curl A, and it
satisfies

− 1

`2
∇⊥h = ∇ϕ− A in K\Ωt

with h = hex on ∂K and h = constant in Ωt. On each component ωi of Ωt we
compute the degree around ∂ωi,

2πdi =

∫
∂ωi

∂ϕ

∂τ
dl =

∫
∂ωi

A · τ − 1

`2
τ · ∇⊥h dl

=

∫
ωi

hdx− 1

`2

∫
∂ωi

∂h

∂n
dl.

Furthermore, in K\Ωt then

− 1

`2
∆h + h = 0

and so for some K ′ ⊂ K we have

− 1

`2

∫
∂K′

∂h

∂n
dl +

∫
K′\Ωt

h = −
∑

i

1

`2

∫
∂ωi

∂h

∂n
dl

= −
∑

i

∫
ωi

hdx + 2π
∑

i:ωi⊂K′

di

or

(5.15) 2π
∑

i:ωi⊂K′

di = − 1

`2

∫
∂K′

∂h

∂n
dl +

∫
K′

hdx,

which controls the total degree by the magnetic field.
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Step 2. Consider now for |u| ≥ t then ∇ϕ− A = − 1
`2
∇⊥h and

GK ≥ t2

2

[∫
K\Ωt

∣∣∇ϕ− A
∣∣2 +

1

`2

∫
K

∣∣h− hex

∣∣2 dx

]
≥ t2

2`2

∫
K

1

`2

∣∣∇h
∣∣2 +

∣∣h− hex

∣∣2 dx,

then ∫
K

1

`2

∣∣∇h
∣∣2 +

∣∣h− hex

∣∣2 ≤ 2`2

t2
GK .

Set Kt = {x ∈ K : dist(x, ∂K) > t} then for any min{ 4
3`

, 1
3
√

hex
} ≤ α ≤ δ

4
, the

set T = {t ∈ [0, α] such that ∂Kt ∩ ∪iBi = ∅} has measure at least α
2

since∑
ri = min{ 4

3`
, 1

3
√

hex
}. If we define the set

T ′ =

{
t ∈ T such that

∫
∂Kt

∣∣∣∣∂h

∂n

∣∣∣∣2 dl ≤ 2`2

αt2
GK

}
then by the energy estimate

1

`2

∫ α

0

∫
∂Kt

∣∣∇h
∣∣2 dldt =

1

`2

∫
K\Kα

∣∣∇h
∣∣2 ≤ 2`2

t2
GK

implies there exists t0 ∈ (0, α) such that 0 ≤ t0 ≤ α < δ
4

with ∂Kt0 ∩
⋃

Bi = ∅

and 1
`2

∫
∂Kt0

∣∣∣∂h
∂n

∣∣∣2 dl < 2`2GK

αt2
. Thus

2πdt ≥ 2π
∑

i

dBi
= − 1

`2

∫
∂Kt0

∂h

∂n
dl +

∫
Kt0

hdx

≥
∫

Kt0

hexdx−

∣∣∣∣∣
∫

Kt0

h− hexdx

∣∣∣∣∣−
∣∣∣∣∣ 1`2

∫
∂Kt0

∂h

∂n
dl

∣∣∣∣∣ .
Naively estimating the last two terms by∣∣∣∣∣

∫
Kt0

h− hexdx

∣∣∣∣∣ ≤ ∥∥h− hex

∥∥
L2(Kt0 )

|Kt0|
1
2 ≤

√
GKδ2`2

t2

and ∣∣∣∣∣ 1`2

∫
∂Kt0

∂h

∂n
dx

∣∣∣∣∣ ≤
∥∥∥∥ 1

`2

∂h

∂n

∥∥∥∥
L2(Kt0 )

|∂Kt0|
1
2 ≤

√
GKδ

αt2

yields

2πdt ≥ hexδ
2

[(
1− α

δ

)2

− 1

t

√
GK

h2
exδ

4

δ

α
− 1

t

√
GK

h2
exδ

4
`2δ2

]
.

�
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Remark 5.9. In order to use (5.14) we should have the following estimates hold

α

δ
� 1 δ � 1 χ � 1

χ2δ

α
� 1 χδ` � 1,(5.16)

otherwise the right hand side of (5.14) is zero, and the lower bound fails. Note
that (5.16) implies the rate δ

α
� 1

χ2 , which we use in Lemma 5.10 to choose α

correctly.

We are now able to proof the essential lower bound on the square.

Lemma 5.10. Suppose (5.5) and (5.7) hold, then

(5.17) GK ≥ 1

2
hexδ

2Vε (1− oε(1)) .

Proof. This lower bound is established via estimates in the spirit of [16].

Step 1. We examine a(t) + 2tb(t), using (5.11) and (5.13), and note the sum

is of the form C1r + C2

(
log C3

r
− C4

)+
for r = r(Ωt). The function p(r) =

C1r+C2

(
log C3

r
− C4

)+
has critical points at r = {C2

C1
, C3e

−C4}. Therefore, p(r)
satisfies

p(r) ≥ min

{
C1C3

eC4
, C2 + C2

(
log

C1C3

C2

− C4

)+
}

,

and since x 7→ − log cx is decreasing in x, we have

(5.18) p(r) ≥ C2

(
log

C1C3

C2

− C4

)+

.

We apply to our lower bound with

C1 =
(1− t2)

ε
, C2 = hexδ

2

((
1− α

δ

)2

t− χ min{
√

δ

α
, δ`}

)+

,

C3 = min{1

`
,

1√
hex

}, C4 = C.

¿From Remark 5.9 if (5.16) is satisfied then C2 is nontrivial. From the lower
bound (x− a)+(y − b)+ ≥ xy − xb− ya we have

a(t) + 2tb(t)

≥ −C2 log C2

+ hexδ
2
(
1− α

δ

)2
[
t log

∣∣1− t2
∣∣+ t log

(
1

ε max{`,
√

hex}

)
− Ct

]
− χ min{

√
δ

α
, δ`}

[
log
∣∣1− t2

∣∣+ log

(
1

ε max{`,
√

hex}

)]
.
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First note that −C2 log C2 ≥ −C2 log hexδ
2 since

0 ≤

((
1− α

δ

)2

t− χ min{
√

δ

α
, δ`}

)+

≤ 1.

Furthermore, since 1 � hexδ
2, hence −C2 log C2 ≥ −hexδ

2 log (hexδ
2). We

integrate the above lower bound. Using
∣∣∣∫ 1

0
t log |1− t2| dt

∣∣∣ = 6 log 2− 4 and∣∣∣∫ 1

0
log |1− t2| dt

∣∣∣ = 2 log 2− 2, we find∫ 1

ε
δ

a(t) + 2tb(t)dt

≥ 1

2

(
1− α

δ

)2

hexδ
2 log

(
1

ε max{`,
√

hex}

)
− χ min{

√
δ

α
, δ`} log

(
1

ε max{`,
√

hex}

)
− hexδ

2 log
(
hexδ

2
)

− C

[
χ min{

√
δ

α
, δ`}+ hexδ

2

]
.

(5.19)

We now show that most of the terms in (5.19) are oε(1) compared to the leading
order term 1

2
hexδ

2Vε.

Step 2. We proceed with several comparison arguments that will be grouped
together at the end of this step. ¿From (5.5) we see hexδ

2 � V 2
ε , hence

log (hexδ) � C log Vε � Vε since Vε � 1. Therefore,

(5.20) hexδ
2 log

(
hexδ

2
)
� hexδ

2Vε

Next from (5.1) we have

(5.21)
Vε`

2

hex

≤ Vε

hex

max{`2, 1} � 1.

Recall that χ2 = GK

h2
exδ4 ; therefore,

δ2χ2`2 =
GK`2

δ2h2
ex

≤ C
hexVε`

2

h2
ex

= C
Vε`

2

hex

� C,(5.22)

follows from (5.7) and (5.21).
Note that

χ2 =
GK

h2
exδ

4
≤ Vε

hexδ2
� 1(5.23)
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where we used (5.5), hence χ → 0. ¿From Remark 5.9 we choose α = δχ2γ for
0 < γ < 1

2
, then (5.23) implies both

(5.24)
α

δ
= χ2γ � 1

and

(5.25)
χ2δ

α
= χ2(1−γ) � 1.

Since

(5.26) 1 � Vε � hexδ
2

then using (5.19), (5.20), (5.22), (5.24), (5.25), (5.26), we establish the lower
bound at leading order:

(5.27)

∫ 1

ε
δ

a(t) + 2tb(t)dt ≥ 1

2
hexδ

2Vε (1− oε(1)) .

Using Step 1 then (5.27) becomes∫ 1

0

a(t) + 2tb(t)dt ≥
∫ 1

ε
δ

a(t) + 2tb(t)dt ≥ 1

2
hexδ

2Vε (1− oε(1)) ,

and hence (5.17). �

Proof of Proposition 5.1. We now consider the energy Gε in the entire domain.
From Lemma 5.10 and (5.8)

Gε(uε, Aε) ≥
∑

Ki⊂U

 ∑
GKi

≤hexδ2Vε

GKi
+

∑
GKi

>hexδ2Vε

GKi


≥
∑

Ki⊂U

 ∑
GKi

≤hexδ2Vε

1

2
hexδ

2Vε (1− oε(1)) +
∑

GKi
>hexδ2Vε

1

2
hexδ

2Vε


≥
∑

Ki⊂U

1

2
hexδ

2Vε (1− oε(1))

≥ 1

2
|U |hexVε (1− oε) ,

since for ε small,
∑

Ki⊂U δ2 ≥ |U | (1− oε). �
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