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Abstract

Let q be a prime power and r = 0, 1 . . . , q − 3. Using the Latin squares obtained by

multiplying each entry of the addition table of the Galois field of order q by an element

distinct from zero, we obtain the incidence matrices of projective planes and the incidence

matrices of (q − r)-regular bipartite graphs of girth 6 and q2 − rq − 1 vertices in each partite

set. Moreover, in this work two Latin squares of order q − 1 with entries belonging to

{0, 1, . . . , q}, not necessarily the same, are defined to be quasi row-disjoint if and only if

the cartesian product of any two rows contains at most one pair (x, x) with x 6= 0. Using

these quasi row-disjoint Latin squares we find (q−1)-regular bipartite graphs of girth 6 with

q2 − q − 2 vertices in each partite set. Some of these graphs have the smallest number of

vertices known so far among the regular graphs with girth 6.

Keywords: Incidence matrices, Latin squares, projective plane, girth, cages.

1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges are

considered. Unless otherwise stated, we follow the book by Godsil and Royle [13] and the book

by Lint and Wilson [15] for terminology and definitions.

Let G = (V (G), E(G)) be a graph with vertex set V = V (G) and edge set E = E(G). The

girth of a graph G is the number g = g(G) of edges in a smallest cycle. The degree of a vertex

v ∈ V is the number of vertices adjacent to v. A graph is called regular if all the vertices have

the same degree. A cage is a k-regular graph with girth g having the smallest possible number

of vertices. Simply counting the number of vertices in the distance partition with respect to a
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1



vertex yields a lower bound n0(k, g) on the number of vertices in a cage n(k, g), with the precise

form of the bound depending on whether g is even or odd.

n0(k, g) =

{

1 + k + k(k − 1) + . . . + k(k − 1)(g−3)/2 if g is odd;

2(1 + (k − 1) + . . . + (k − 1)g/2−1) if g is even.
(1)

Biggs [6] call excess of a k-regular graph G the difference |V (G)| − n0(k, g). Cages have been

studied intensely since they were introduced by Tutte [21] in 1947. Erdős and Sachs [10] proved

the existence of a graph for any value of the regularity k and the girth g, thus most of the work

carried out has been focused on constructing a smallest one [1, 3, 5, 8, 11, 12, 18, 16, 17, 23].

Biggs is the author of an impressive report on distinct methods for constructing cubic cages

[7]. Royle [20] keeps a web-site in which all the cages known so far appear. More details about

constructions on cages can be found in the survey by Wong [23] or in the survey by Holton and

Sheehan [14].

It is conjectured that cages with even girth are bipartite [19, 23]. If the vertices of a bipartite

graph are ordered in such a way that the vertices of one partite set come first, then the adjacency

matrix can be written in the form

A =

(

0 N

N> 0

)

. (2)

An incidence graph is a bipartite graph in which the elements of one partite set are declared

as lines and the elements of the other partite set are declared as points. The terminology for

incidence graphs is geometric. A point and a line are said to be incident if they are adjacent,

thus the submatrix N of (2) is called an incidence matrix of the bipartite graph. If the number

of points and the number of lines coincide, then N is clearly a square matrix. An incidence

matrix N defines a partial plane when

- any line has at least two points, and

- two points are incident with at most one line.

Consequently, two lines of a partial plane have at most one point in common. The corresponding

bipartite graph is called the incidence graph of the partial plane. Clearly the incidence graph of

a partial plane has even girth g ≥ 6.

In this work we are interested in the construction of k-regular bipartite graphs of girth 6 with

small excess. When the degree k = pn + 1, where q = k − 1 = pn is a prime power, (k, 6)-cages

are obtained as the incidence graphs of projective planes of order q = k − 1. A projective plane

is a partial plane satisfying the following conditions:

(i) Any two lines meet at a single point.

(ii) Any two points lie on a single line.

(iii) There exists a set of four points no three of which are collinear.
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As a consequence of these conditions, it follows that a projective plane has q2 + q + 1 lines and

q2 + q + 1 points, thus it is said to have order q. The incidence graph of a projective plane is a

(q + 1)-regular bipartite graph with diameter 3 and girth six. It has q2 + q + 1 vertices in each

partite set, and then this graph is a (q + 1, 6)-cage because its order achieves the lower bound

given in (1).

One way for obtaining a projective plane when q is a prime power, is to consider the three

dimensional vector space F
3
q over the field Fq with q elements. The points are the 1-dimensional

subspaces and the lines are the 2-dimensional subspaces. A point is incident with a line if the

1-dimensional is contained in the 2-dimensional subspace. It is not hard to see that there are

(q3−1)/(q−1) = q2 +q+1 points and the same number of lines, so this structure is a projective

plane denoted by PG(2, q). For more details on this construction of projective planes, see for

example [4, 13, 15].

In this work we present an alternative way to construct projective planes of order a prime

power, and other partial planes whose incidence graphs are k-regular bipartite graphs of girth 6

with small excess. Let us recall that a Latin square of order q is a q× q matrix with entries from

a set of q symbols such that each symbol occurs exactly once in each row and exactly once in

each column. Using the Latin squares obtained by multiplying each entry of the addition table

of the Galois field of order q by an element distinct from zero, we obtain the incidence matrices

of projective planes and the incidence matrices of (q − r)-regular bipartite graphs of girth 6 and

q2 − rq − 1 vertices in each partite set. q-regular bipartite graphs with q a prime power and

2(q2 − 1) vertices of girth 6 have recently been obtained in [1]. We also improve this result for

r = 1, finding (q − 1)-regular bipartite graphs of girth 6 with 2(q2 − q − 2) vertices. To do this

we use a family of Latin squares called quasi row-disjoint, a property that will be introduced in

the last section. It follows from (1) that the (q − 1)-regular bipartite graphs constructed in this

work have an excess |V (G)| − n0(q − 1, 6) = 2(2q − 5). And the (q − r)-regular bipartite graphs

for r ≥ 2 have an excess of |V (G)|−n0(q− r, 6) = 2(rq + q− r2 − r− 2) = 2(q− r)(r +1)− 4. In

fact, some of these graphs have the smallest number of vertices known so far among the regular

graphs with girth 6.

2 C4-free set of matrices

Throughout this work let [[n]] denote the set of non negative integers {0, 1, . . . , n} and (n]] =

[[n]] \ {0} = {1, . . . , n}. Let A be a matrix or order α × β whose elements are subsets of [[n]].

Let Px(A) be a matrix of zeros and ones of the same order as A that satisfies

(Px(A))ij = 1 if and only if x ∈ Aij .

Thus, Px(A) is called the position matrix of the symbol x in A. The position matrices of all the

symbols in A different from zero give rise to the following (0, 1)-matrix P(A) of order α × nβ

called position matrix of A:

[P(A)] = [P1(A) · · ·Pn(A)].
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Let {A1, A2, . . . , As} be a family of s matrices of the same number of columns whose elements
are subsets of [[n]]. Then the (0, 1)-matrix spanned by the position matrices of all of them











P(A1)

P(A2)
...

P(As)











=











P1(A
1) · · · Pn(A1)

P1(A
2) · · · Pn(A2)

...

P1(A
s) · · · Pn(As)











, (3)

is said to be the position matrix of the family F = {A1, A2, . . . , As}. The next example shows
two matrices of order 2× 2 whose elements are subsets of [[2]] and the position matrix of them.
From now on, if there is no confusion the 1-sets will be indicated as integers.

A1 =

(

1 1

2 2

)

, A2 =

(

{1, 2} 0

0 {1, 2}

)

,

(

P(A1)

P(A2)

)

=









1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1









. (4)

As already mentioned in the introduction, our main aim is to obtain incidence matrices of

bipartite k-regular graphs of girth 6 with small excess. Such incidence matrices shall be incidence

matrices of partial planes. A basic known fact is that a (0, 1)-matrix N is the incidence matrix

of a partial plane if N is free of any submatrix J2 of order 2 × 2 full of ones. Then, to achieve

our purpose we propose the following definitions.

Definition 2.1 A family of matrices F = {A1, A2, . . . , As} of the same number of columns

whose elements are subsets of [[n]] is said to be C4-free if the position matrix of F does not

contain a sub-matrix J2 of order 2 × 2 full of ones.

Notice that the position matrix of {A1, A2} in (4) is free of J2, then according to Definition

2.1, the set {A1, A2} is C4-free.

Let In be the identity matrix and denote by SIn the matrix obtained from In replacing each

one with a subset S of (n]]. It is also clear that the position matrix of SIn is the incidence

matrix of a partial plane consisting of n parallel lines. The above example (4) is a particular

case of the following helpful remark.

Remark 2.1 Let A be any C4-free matrix of n columns whose entries are 1-sets of [[n]] and S

a subset of (n]]. Then the set {A,SIn} is C4-free.

Proof: Note that Px(SIn) = In for each symbol x in S. Therefore, the position matrix of the

set {A,SIn} is J2-free because the entries of A are 1-sets.

Our immediate concern is to obtain some method for constructing families of C4-free matrices

in such a way the position matrix of all of them will be a J2-free (0, 1)-matrix.

4



Let us recall that two Latin squares L1 and L2 of order n with n distinct symbols are

orthogonal if all the n2 pairs of L1 ×L2 are distinct. The (1,3) conjugate of a Latin square L of

order n on n symbols denoted by (1, 3)L is defined by ((1, 3)L)ij = a if and only if (L)aj = i; that

is to say, the (1,3) conjugate of L is obtained by interchanging the roles of rows and symbols.

Theorem 2.1 Let L and Q be two Latin squares of order n both with entries from (n]]. If L

and Q are orthogonal, then their (1,3) conjugates form a family {(1, 3)L, (1, 3)Q} C4-free.

Proof: Suppose (L)ab = i, (L)cd = i and (Q)ab = k. Since L and Q are orthogonal, then

the row x for which (Q)xd = k is never equals c. The (1,3) conjugates are ((1, 3)L)ib = a,

((1, 3)L)id = c, ((1, 3)Q)kb = a and ((1, 3)Q)kd = x, with x 6= c. Therefore, the position matrix

of {(1, 3)L, (1, 3)Q} is J2-free because

(

(Pa((1, 3)L))ib (Pc((1, 3)L))id
(Pa((1, 3)Q))kb (Pc((1, 3)Q))kd

)

=

(

1 1

1 0

)

.

Let q be a prime power and Fq the Galois field of order q. A set of q−1 mutually orthogonal

Latin squares (MOLS) of order q with entries [[q − 1]] are obtained according to the following

rule (see [15]):

(Lu)ij = ui + j, u, i, j ∈ Fq, u 6= 0. (5)

Let Lu
q be the matrix as defined in (5) but the symbol zero is replaced with q. Clearly, the set

{Lu
q : u ∈ Fq \ {0}} is a set of q − 1 mutually orthogonal Latin squares (MOLS) of order q with

entries in (q]]. As a consequence of Theorem 2.1 we obtain the following result.

Theorem 2.2 Let q be a prime power and Fq the Galois field of order q. Then the following

assertions hold:

(i) For each u ∈ Fq, u 6= 0 define the matrix Σu
q by (Σu

q )ij = u(i+ j) for i, j ∈ Fq, i 6= −j, and

q otherwise. Then {Σu
q : u ∈ Fq, u 6= 0} is C4-free.

(ii) For each u ∈ Fq, u 6= 0 define the matrix Υu
q by (Υu)ij = u(i + j)−1 for i, j ∈ Fq, i 6= −j,

and q otherwise. Then {Υu
q : u ∈ Fq, u 6= 0} is C4-free.

(iii) Let Σu,Υu be the Latin squares obtained from Σu
q and Υu

q respectively, by replacing symbol

q with zero. If M is the position matrix of {Σu : u ∈ Fq, u 6= 0}, then the transpose of M

is the position matrix of {Υu : u ∈ Fq, u 6= 0}.
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Proof: (i) Let a = u(i + j) for u, i, j ∈ Fq, u 6= 0, i 6= −j. Then the entry (a, j) of the (1,3)

conjugate of the Latin square Σu is ((1, 3)Σu)aj = i = u−1a − j; and for i = −j we have

((1, 3)Σu)qj = −j because (Σu)−j,j = q. According to (5) the family {(1, 3)Σu : u ∈ Fq, u 6= 0}

is a set of q − 1 MOLS of order q with entries from (q]]. Hence by Theorem 2.1 we obtain that

{Σu : u ∈ Fq, u 6= 0} is C4-free. Thus point (i) is valid.

(ii) Let b = u(i + j)−1 for u, i, j ∈ Fq, u 6= 0, i 6= −j. Then the entry (b, j) of the (1,3)

conjugate of the Latin square Υu is ((1, 3)Υu)bj = i = ub−1 − j; and for i = −j we have

((1, 3)Υu)qj = −j because (Υu)−j,j = q. Then {Υu
q : u ∈ Fq, u 6= 0} is a set of q − 1 MOLS of

order q with entries from (q]] and again by Theorem 2.1 we conclude point (ii).

(iii) Let Px(Σu) be the position matrix of the element x in Σu, and observe that Px(Σu) is

a symmetric matrix because (Px(Σu))ij = 1 if and only if u(i + j) = x, i, j, x, u ∈ Fq, u, x 6= 0.

Similarly let Px(Υw) denote the position matrix of element x in Υw, which is also symmetric.

According to (3), the position matrix of {Σu : u ∈ Fq, u 6= 0} is

M =











P1(Σ
1) · · · Pq−1(Σ

1)

...
...

...

P1(Σ
q−1) · · · Pq−1(Σ

q−1)











,

and the position matrix of {Υu : u ∈ Fq, u 6= 0} is

MD =











P1(Υ
1) · · · Pq−1(Υ

1)

...
...

...

P1(Υ
q−1) · · · Pq−1(Υ

q−1)











.

To see that MD is the transpose of M let us show that the column x of M is the row x of MD,

i.e. let us show that Px(Σw) = Pw(Υx). Since (Px(Σw))ij = 1 if and only if w(i + j) = x, then

i 6= −j because x 6= 0, hence w = x(i + j)−1 yielding (Pw(Υx))ij = 1. Therefore the theorem is

valid.

3 Method

Let us call array of r symbols and n columns the matrix of order r × n

Or,n =













1 · · · 1

2 · · · 2
...

...
...

r · · · r













.

When r = n the array is denoted by On. It is easy to see that Or,n is a C4-free matrix defined on

(r]]. Let (k]]In denotes the matrix obtained from the identity matrix In of order n by replacing

each one with the set (k]].
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The following theorem is a consequence of Theorem 2.2, and gives a general method for

constructing the desired k-regular bipartite graphs of girth 6 when k = q, q + 1. The position

matrix of Oq,n will play an important role in what follows, and as in the above sections it will

be denoted by [P(Oq,n)].

Theorem 3.1 Let q be a prime power and Fq a finite Galois field of q elements. Let us consider

the Latin squares Σu = [u(i + j)] with u, i, j ∈ Fq, u 6= 0, and the Latin squares Σu
q obtained

from Σu by replacing 0 with q. Then the following assertions hold:

(i) Assume q ≥ 3. The position matrix of {Σ1
q ,Σ

2
q, . . . ,Σ

q−1
q , (q]]Iq} (given by (3)) is the

incidence matrix of a q-regular bipartite graph of girth 6 and q2 vertices in each partite

set.

(ii) The position matrix A of {Σ1
q ,Σ

2
q , . . . ,Σ

q−1
q , (q]]Iq , Oq} is the incidence matrix of an affine

plane of order q.

Let jq+1 be the row-matrix of order 1 × (q + 1) full of ones. The following (0, 1)-matrix

A P(Oq+1,q)
>

0 · · · 0 jq+1

(6)

is the incidence matrix of a projective plane of order q.

(iii) Let M be the position matrix of {Σ1,Σ2, . . . ,Σq−2, (q − 1]]Iq, Oq−1,q}. Then

[M | P(Oq−1,q)
>] is the incidence matrix of a q-regular bipartite graph of girth 6 and q2−1

vertices in each partite set.

Proof: (i) From Theorem 2.2 we know that {Σu
q : u ∈ Fq \{0}} is C4-free, and moreover, by Re-

mark 2.1, we know that {(q]]Iq,Σ
u
q} is C4-free. Thus it follows that F = {Σ1

q,Σ
2
q , . . . ,Σ

q−1
q , (q]]Iq}

is a C4-free family, that is, the position matrix N of F is free of J2. Since each matrix of F

has q symbols in each one of its rows, then there are q ones in each row of N . On the other

hand, the position matrix B of {Σ1,Σ2, . . . ,Σq−1} is a submatrix of N obtained by deleting

the q last rows and the q last columns of N . From item (iii) of Theorem 2.2, it follows that

the transpose B> of B is the position matrix of {Υ1,Υ2, . . . ,Υq−1}. By the definition of the

matrices Υu it is clear that there are q − 1 ones in each row of B>. Therefore B has also q − 1

ones in each column, hence N has q ones in each column, thus N is the incidence matrix of a

q-regular bipartite graph of q2 vertices in each partite set of girth 6 (notice that the number of

vertices of the constructed graphs is strictly less than the lower bound given in (1) for g = 8).

(ii) From Theorem 2.2 and by Remark 2.1, it follows that the position matrix A of

{Σ1
q,Σ

2
q , . . . ,Σ

q−1
q , (q]]Iq, Oq} is free of J2, and clearly, there are q ones in each row of A. By

item (i) we know that the position matrix of {Σ1
q ,Σ

2
q, . . . ,Σ

q−1
q , (q]]Iq} has order q2 × q2 and q

ones in each row and column. Consequently, the matrix A has order (q2 + q)× q2 and has q ones

in each row and q +1 ones in each column. Hence, considering the rows of A as lines of a partial
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plane and the columns as points, the matrix A may be seen as the incidence matrix of an affine

plane of order q. Thus a projective plane can be obtained by adding q + 1 points (columns) and

one new line (row) containing them. The q + 1 points correspond to the last q + 1 columns of

(6) and the new line is the last row.

(iii) The position matrix M of {Σ1,Σ2, . . . ,Σq−2, (q − 1]]Iq, Oq−1,q} is a submatrix of the

block A of (6). Indeed, Σu is obtained by replacing q with 0 in Σu
q . This is equivalent to deleting

in A the last q columns. Moreover, now matrix Σq−1 is not considered, which is equivalent to

deleting in A the q rows corresponding to the position matrix of Σq−1. And take Oq−1,q instead

of Oq is the same as deleting in A the last row. Therefore [M |P(Oq−1,q)
>] is a submatrix of (6)

and so is free of J2. This (0, 1)-matrix has q2 − 1 rows and (q2 − q) + (q − 1) = q2 − 1 columns

and, by construction there are q ones in each row and in each column. Hence, it is the incidence

matrix of a q-regular bipartite graph of q2 − 1 vertices in each partite set and girth 6 (notice

that the number of vertices of the constructed graphs is strictly less than the lower bound given

in (1) for g = 8).

To illustrate the method contained in Theorem 3.1, let us consider the first cases q = 2, 3, 4.

From now on, if there is no confusion a t-set {x1, x2, . . . , xt} will be denoted as a sequence of

integers x1x2 · · · xt.

Case q = 2, 3. The Latin squares provided by Theorem 2.2, and the incidence matrix

of projective plane PG(2, 2) (called Fano plane) and the incidence matrix of projective plane

PG(2, 3) given in (6) are the following:

Σ1

2
2 1 0 1 1 0 1 0 0
1 2 1 0 0 1 1 0 0

(2]]I2 12 0 1 0 1 0 0 1 0
0 12 0 1 0 1 0 1 0

O2 1 1 1 1 0 0 0 0 1
2 2 0 0 1 1 0 0 1

0 0 0 0 1 1 1

3 1 2 0 1 0 0 0 1 1 0 0 1 0 0 0
Σ1

3
1 2 3 1 0 0 0 1 0 0 0 1 1 0 0 0
2 3 1 0 0 1 1 0 0 0 1 0 1 0 0 0
3 2 1 0 0 1 0 1 0 1 0 0 0 1 0 0

Σ2

3
2 1 3 0 1 0 1 0 0 0 0 1 0 1 0 0
1 3 2 1 0 0 0 0 1 0 1 0 0 1 0 0

123 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0
(3]]I3 0 123 0 0 1 0 0 1 0 0 1 0 0 0 1 0

0 0 123 0 0 1 0 0 1 0 0 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1

O3 2 2 2 0 0 0 1 1 1 0 0 0 0 0 0 1
3 3 3 0 0 0 0 0 0 1 1 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 1 1 1

Note that the diagonal block of order 6 × 4 in the matrix of the left hand is the incidence

matrix of the affine plane AG(2, 2). And the diagonal block of order 12× 9 in the matrix of the

right hand is the incidence matrix of the affine plane AG(2, 3).

When q = 3, Latin square Σ1 is obtained by changing 3 for 0 in Σ1
3, and (2]]I3 is obtained

from (3]]I3 by deleting in the diagonal entries the symbol 3. The incidence matrix [M | P(O2,3)
>]

corresponding to item (iii) of Theorem 3.1 is shown next, and gives the incidence matrix of a

3-regular bipartite graph of girth 6 with 8 vertices in each partite set.
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0 1 2 0 1 0 0 0 1 1 0
Σ1 1 2 0 1 0 0 0 1 0 1 0

2 0 1 0 0 1 1 0 0 1 0
12 0 0 1 0 0 1 0 0 0 1

(2]]I3 0 12 0 0 1 0 0 1 0 0 1
0 0 12 0 0 1 0 0 1 0 1
1 1 1 1 1 1 0 0 0 0 0

O2,3 2 2 2 0 0 0 1 1 1 0 0

Case q = 4. The Latin squares provided by Theorem 2.2 and the incidence matrix of projective

plane PG(2, 4) given in (6) are the following:

4 1 2 3 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0
Σ1

4
1 4 3 2 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0
2 3 4 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0
3 2 1 4 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
4 2 3 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0

Σ2

4
2 4 1 3 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
3 1 4 2 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0
1 3 2 4 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0
4 3 1 2 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

Σ3

4
3 4 2 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0
1 2 4 3 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0
2 1 3 4 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

1234 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
(4]]I4 0 1234 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0

0 0 1234 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0
0 0 0 1234 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O4 2 2 2 2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
3 3 3 3 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1
4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

The diagonal block of order 20 × 16 is the incidence matrix of the affine plane AG(2, 4).

The incidence matrix [M | P(O3,4)
>] corresponding to item (iii) of Theorem 3.1 is shown

next, and gives the incidence matrix of a 4-regular bipartite graph of girth 6 with 15 vertices in

each partite set.

0 1 2 3 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0
Σ1 1 0 3 2 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0

2 3 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0
3 2 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0
0 2 3 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0

Σ2 2 0 1 3 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0
3 1 0 2 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0
1 3 2 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0

123 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1
(3]]I4 0 123 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1

0 0 123 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 123 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

O3,4 2 2 2 2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
3 3 3 3 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
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To give a method for constructing incidence matrices of (q − r)-regular balanced bipartite

graphs, 1 ≤ r ≤ q − 3, of girth 6 with 2(q2 − rq − 1) vertices we need the following notation.

Let Σu
r be the matrix obtained from Σu by replacing every q − i (i = 1, . . . , r) with 0 except

the value q − r which remains in the first r columns. Let Σq−r−1
r∗ be the matrix of order r × q

consisting of the r rows of Σq−r−1
r having an entry equal to q−r; and let O∗

q−r−1,q be the matrix

obtained from Oq−r−1,q by changing the entries (Oq−r−1,q)st = s for zero in every column t such

that (Σq−r−1
r∗ )ht = s, h = 1, . . . , r. For instance, suppose q = 5 and r = 2. Then

Σ1
2 =

0 1 2 0 0
1 2 0 0 0
2 3 0 0 1
3 0 0 1 2
0 0 1 2 0

Σ2
2 =

0 2 0 1 0
2 0 1 0 0
0 1 0 0 2
1 3 0 2 0
3 0 2 0 1

Σ2
2∗ = 1 3 0 2 0

3 0 2 0 1
O∗

2,5 = 0 1 1 1 0
2 2 0 0 2

Moreover, let (q− r]]I∗q be the matrix obtained from (q− r]]Iq by deleting the symbol q− r from

the entry-sets in the last q − r − 1 columns and by adding the symbol q − r in all the places

(i, r + 1), i = r + 2, . . . , q. And let O∗ be the matrix obtained from Oq−r−2,q by changing the

entries (Oq−r−2,q)ut = u for zero in every column t such that in the row t of Σu
r has a symbol

q − r, i.e., (Σu
r )th = q − r, h = 1, . . . , r. Thus for q = 5 and r = 2 we have

(3]]I∗5 =

123 0 0 0 0
0 123 0 0 0
0 0 123 0 0
0 0 3 12 0
0 0 3 0 12

O∗ = 1 1 0 0 1

Theorem 3.2 Let q ≥ 4 be a prime power and Fq a finite Galois field of q elements, and let r be

an integer such that 1 ≤ r ≤ q−3. Let M be the position matrix of {Σ1
r , . . . ,Σ

q−r−2
r ,Σq−r−1

r∗ , (q−

r]]I∗q , O∗
q−r−1,q} and let M ′ be the matrix obtained from M once eliminated the columns full of

zeros. Then [M ′ | P(O∗)
>] is the incidence matrix of a (q − r)-regular bipartite graph of girth 6

and q2 − rq − 1 vertices in each partite set.

Proof: Note that [M | P(O∗)>] is a matrix free of J2 because it is a submatrix of (6) by changing

some ones for zeros. Besides, M has order (q2− rq−1)× q(q− r), and the last q− r−1 columns

of M are full of zeros, because in the last q − r − 1 columns of each Σu
r we have replaced the

entry q − r with zero. Thus, we consider the matrix M ′ once eliminated from M these columns

full of zeros. Hence M ′ has order (q2−rq−1)× (q(q−r)− (q−r−1)). Furthermore, notice that

each of the q2−rq−q+r+1 columns of M ′ has q−r ones according to the definition of M ′. On

the other hand, the rows of the position matrix corresponding to {Σq−r−1
r∗ , (q − r]]I∗q , O∗

q−r−1,q}

have q−r ones each because of the definition of theses matrices. Therefore, since the value q−r

remains in the first r columns of each Σu
r , u = 1, . . . , q − r − 2, then there are (q − r − 2)(q − r)

rows in M ′ having q − r − 1 ones, and the remaining rows have q − r ones each. By joining

P(O∗)
> to M ′ we put q−r−2 more columns, that due to the definition of O∗ add an additional

one just in the rows which had q − r − 1 ones in M ′. Therefore [M ′ | P(O∗)
>] is the incidence

matrix of a (q − r)-regular bipartite graph with q2 − rq− 1 vertices in each partite set and girth

at least 6. Since the number of vertices of the constructed graphs is strictly less than the lower

bound given in (1) for g = 8, then the girth is 6.
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To illustrate the method of Theorem 3.2 let us consider the first cases q = 4, 5.

Case q = 4 and r = 1. The matrices of Theorem 3.2 and the incidence matrix of a 3-regular

bipartite graph of girth 6 with 11 vertices in each partite set are the following:

0 1 2 0 0 1 0 0 0 0 1 0 0 0 0 0 1

Σ1

1
1 0 0 2 1 0 0 0 0 0 0 1 0 0 0 0 1

2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1

3 2 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0

Σ2

1∗
3 1 0 2 0 1 0 0 0 0 0 1 1 0 0 0 0

123 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

(3]]I∗
4

0 123 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 3 12 0 0 0 1 0 0 0 1 0 0 1 0 0 0

0 3 0 12 0 0 0 1 0 0 0 1 0 1 0 0 0

1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0

O∗
2,4

2 2 2 0 0 0 0 0 1 1 1 0 0 0 0 0 0

The matrix M ′ of Theorem 3.2 is obtained by deleting the columns 11 and 12 full of zeros.

Case q = 5 and r = 2. The matrices of Theorem 3.2 and the incidence matrix of a 3-regular

bipartite graph of girth 6 with 14 vertices in each partite set are the following:

0 1 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
Σ1

2
1 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
2 3 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0
3 0 0 1 2 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1

Σ2

2∗
1 3 0 2 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
3 0 2 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

123 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
(3]]I∗

5
0 123 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 123 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 3 12 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
0 0 3 0 12 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

O∗
2,5

2 2 0 0 2 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

The matrix M ′ of Theorem 3.2 is obtained by deleting the columns 14 and 15 full of zeros.

4 Improvement for (q − 1)-regular bipartite graphs of girth 6

In this section we improve Theorem 3.2 for r = 1, finding incidence matrices of (q − 1)-regular

bipartite graphs of girth 6 with q2 − q − 2 vertices in each partite set. To this end we need to

introduce the following definition.

Definition 4.1 Two C4-free matrices A1 and A2 of the same number of columns whose elements

are 1-sets of [[n]] are said to be quasi row-disjoint if and only if the cartesian product of any two

rows (A1)i, (A
2)h contains at most one pair (x, x) ∈ (A1)i × (A2)h with x 6= 0.
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An example of two quasi row-disjoint Latin squares of order 3 × 3, one with entries in (3]]
and the other with entries in [[3]] \ {1} is the following.

L1 =





1 2 3

2 3 1

3 1 2



 L2 =





0 3 2

3 2 0

2 0 3



 . (7)

We can check by superimposing any two rows of L1 and L2, that there is at most one resulting

pair (x, x) with x 6= 0. Then L1 and L2 are quasi row-disjoint.

Theorem 4.1 Let Q1 and Q2 be two C4-free matrices of the same number of columns and

whose elements are 1-sets of [[n]]. Then Q1 and Q2 are quasi row-disjoint if and only the family

{Q1, Q2} is C4-free.

Proof: Let (Q`)i denote the row i of Q`, ` = 1, 2. Assume that (x, x) ∈ (Q1)i × (Q2)h with

x ∈ [[n]], x 6= 0. Then x = (Q1)ij = (Q2)hj or, equivalently (Px(Q1))ij = (Px(Q2))hj = 1, for

some column j, where Px(Q`) is the position matrix of x in Q`.

If Q1 and Q2 are not quasi row-disjoint, then there exists (y, y) ∈ (Q1)i × (Q2)h with

y ∈ [[n]] \ {x, 0}. This implies that (Py(Q
1))ik = (Py(Q

2))hk = 1 with k 6= j, and therefore the

position matrix of {Q1, Q2} contains a submatrix J2, i.e., {Q1, Q2} is not C4-free.

Conversely, if the position matrix of {Q1, Q2} contains J2 as a submatrix, then there exists

y ∈ [[n]]\{x, 0} such that (Py(Q
1))ik = (Py(Q

2))hk = 1, or in other words, y = (Q1)ik = (Q2)hk,

k 6= j. Hence Q1, Q2 are not quasi row-disjoint.

As a consequence of Theorems 2.2, Remark 2.1 and Theorem 4.1, the following corollary is

now clear.

Corollary 4.1 Let q be a prime power and Fq the Galois field of order q. The family {Σu
q : u ∈

Fq} ∪ {(q]]Iq , Oq } is a set of q + 1 quasi row-disjoint matrices of order q with entries in [[q]].

Next, we construct a family of mutually quasi row-disjoint matrices of order q− 1 by adding

to each entry of the product table of the cyclic group (Fq \ {0}, ·) an element of the Galois field

Fq.

Theorem 4.2 Let q ≥ 4 be a prime power and Fq the Galois field of order q. Then the following

assertions are true.

(i) For every u ∈ Fq define the matrix Πu by (Πu)ij = u + ij, i, j ∈ Fq, i, j 6= 0. Then the

family {Πu : u ∈ Fq } is C4-free.
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(ii) For every u ∈ Fq define the matrix Du by (Du)ij = u − ij, i, j ∈ Fq, i, j 6= 0. Then the

family {Du : u ∈ Fq } is C4-free.

(iii) If N is the position matrix of {Πu : u ∈ Fq, u 6= 0}, then the transpose of N is the position

matrix of {Du : u ∈ Fq, u 6= 0}.

(iv) Let N be the position matrix of {Π3, . . . ,Πq−1,Π0, (q − 1]]Iq−1, O2
q−1 }, where O2

q−1 is

the matrix obtained from Oq−1 by deleting the first two rows. Then the (0, 1)-matrix

[N |P(Oq−3,q−1)
>] is the incidence matrix of a (q − 1)-regular bipartite graph of girth 6

and q2 − q − 2 vertices in each partite set.

Proof: (i) Clearly {Πu = [ij +u] : u, i, j ∈ Fq, i, j 6= 0} is a set of q Latin squares of order q−1,

each one with entries from [[q − 1]] \ {u}, because ij + u = u implies i = 0 or j = 0 which is

impossible by definition of Πu. Let us see that they are mutually quasi row-disjoint. Suppose

(Πw)ij = (Πu)kj for some u,w ∈ Fq with u 6= w and i, j, k 6= 0. Therefore

ij + w = kj + u.

If the Latin squares are not quasi row-disjoint, then there exists h 6= j, h 6= 0, such that

(Πw)ih = (Πu)kh, that is,

ih + w = kh + u.

Hence i(j − h) = k(j − h). As j 6= h, then j − h has an inverse respect to the product in the

cyclic group Fq \ {0} yielding i = k, thus u = w which is a contradiction. Therefore Πu and Πw

are quasi row-disjoint, and hence by Theorem 4.1 we conclude that {Πu : u ∈ Fq } is C4-free.

(ii) The proof of this item is the same as the proof of item (i).

(iii) Reasoning as in the proof of item (iii) of Theorem 2.2, it is enough to prove that

Pk(Π
w) = Pw(Dk) for all k,w ∈ Fq, k 6= 0. Since (Pk(Πw))ij = 1 if and only if w + ij = k, hence

w = k − ij if and only if (Pw(Dk))ij = 1. Then (iii) is valid.

(iv) By point (i) we know that {Πu : u ∈ Fq} is C4-free. It is not difficult to see that

Oq−1 is quasi row-disjoint with each Πu, and using Remark 2.1 we obtain that {Πu : u ∈

Fq} ∪ {(q − 1]]Iq−1, Oq−1} is a C4-free family of of q + 2 mutually quasi row-disjoint C4-free

matrices of order (q − 1) × (q − 1) whose entries are subsets of [[q − 1]]. Therefore the position

matrix N of {Π3, . . . ,Πq−1,Π0, (q − 1]]Iq−1, O
2
q−1 } is free of J2.

Moreover, we have for all u ∈ Fq that the entries of Πu belong to [[q − 1]] \ {u}. Hence the

rows of the position matrix of each Πu have q − 2 ones for u 6= 0, and q − 1 ones for u = 0. Let

A be the position matrix of {Π1, . . . ,Πq−1}. From item (iii) it follows that A> is the position

matrix of {D1, . . . ,Dq−1}. This implies that the columns of matrix A have q − 2 ones. Then

deleting the matrices Π1 and Π2 results a submatrix A′ of A which has q − 3 ones in 2(q − 1)

columns and q − 4 ones in the (q − 3)(q − 1) remaining columns. Let B be the position matrix

of {Π0, (q − 1]]Iq−1} which is readily seen that has 2 ones in each column and q − 1 ones in

each row. Therefore joining to A′ the rows of B we obtain a matrix C which has q − 1 ones in

2(q − 1) columns and q − 2 ones in the (q − 3)(q − 1) remaining columns. Finally, adding to
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C the rows of the position matrix of O2
q−1 we obtain the matrix N having q − 1 ones in each

column. Thus, [N |P(Oq−3,q−1)
>] is the incidence matrix of a (q − 1)-regular bipartite graph of

girth 6 and q2 − q − 2 vertices in each partite set.

To illustrate the method contained in Theorem 4.2, let us consider the case q = 4.

Case q = 4. The C4-free quasi row-disjoint matrices provided by Theorem 4.2 and the

incidence matrix of a 3-regular bipartite graph of girth 6 with 10 vertices in each partite set are

the following:

2 1 0 0 1 0 1 0 0 0 0 0 1
Π3 1 0 2 1 0 0 0 0 1 0 0 0 1

0 2 1 0 0 1 0 1 0 0 0 0 1
1 2 3 1 0 0 0 1 0 0 0 1 0

Π0 2 3 1 0 0 1 1 0 0 0 1 0 0
3 1 2 0 1 0 0 0 1 1 0 0 0

123 0 0 1 0 0 1 0 0 1 0 0 0
(3]]I3 0 123 0 0 1 0 0 1 0 0 1 0 0

0 0 123 0 0 1 0 0 1 0 0 1 0
O2

3
3 3 3 0 0 0 0 0 0 1 1 1 0

5 Conclusions

We have presented a method providing the incidence matrices of both affine planes and projective

planes of order q, and q-regular bipartite graphs with q2 − 1 vertices in each partite set when q

is a prime power. From these incidence matrices, we obtain the incidence matrices of (q − r)-

regular bipartite graphs of girth 6 having q2 − rq − 1 vertices in each partite set. Furthermore,

using quasi row-disjoint Latin squares we improve this result for r = 1 finding (q − 1)-regular

bipartite graphs of girth 6 with q2−q−2 vertices in each partite set. Table 1 shows a comparison

between the number of vertices of some known smallest graphs [1, 20], and the graphs provided

by the method proved in this work. We only consider degrees k in the interval [q − r, q + 1] in

which the only prime power is q, and q − r is different from a prime power plus one.
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k known (k, 6)-graph Method

7 90 [17] 96

11 240 [1, 22] 240

13 336 [1] 336

15 462 [1] 476

16 504 [1] 510

q prime power

q + 1 2(q2 + q + 1) Projective plane 2(q2 + q + 1)

q 2(q2 − 1) [1] 2(q2 − 1)

q − 1 2(q2 − q − 1) [1] 2(q2 − q − 2)

q − r, r ≥ 2 2(q2 − rq) [2]

2(q2 − rq − 1) [1, 2] 2(q2 − rq − 1)

Table 1: Order of some (minimal) regular graphs of girth 6.
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