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Abstract

We show how to exploit symmetries of a graph to efficiently compute the fastest mixing
Markov chain on the graph (i.e., find the transition probabilities on the edges to minimize the
second-largest eigenvalue modulus of the transition probability matrix). Exploiting symmetry
can lead to significant reduction in both the number of variables and the size of matrices in the
corresponding semidefinite program, thus enable numerical solution of large-scale instances that
are otherwise computationally infeasible. We obtain analytic or semi-analytic results for partic-
ular classes of graphs, such as edge-transitive and distance-transitive graphs. We describe two
general approaches for symmetry exploitation, based on orbit theory and block-diagonalization,
respectively. We also establish the connection between these two approaches.

Key words. Markov chains, eigenvalue optimization, semidefinite programming, graph au-
tomorphism, group representation.

1 Introduction

In the fastest mixing Markov chain problem, we choose the transition probabilities on the edges
of a graph to minimize the second-largest eigenvalue modulus of the transition probability matrix.
In [BDX04] we formulated this problem as a convex optimization problem, in particular as a
semidefinite program. Thus it can be solved, up to any given precision, in polynomial time by
interior-point methods. In this paper, we show how to exploit symmetries of a graph to make the
computation more efficient.

1.1 The fastest mixing Markov chain problem

We consider an undirected graph G = (V, E) with vertex set V = {1, . . . , n} and edge set E and
assume that G is connected. We define a discrete-time Markov chain on the vertices as follows.
The state at time t will be denoted X(t) ∈ V, for t = 0, 1, . . .. Each edge in the graph is associated
with a transition probability with which X makes a transition between the two adjacent vertices.
This Markov chain can be described via its transition probability matrix P ∈ Rn×n, where

Pij = Prob ( X(t + 1) = j | X(t) = i ), i, j = 1, . . . , n.
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Note that Pii is the probability that X(t) stays at vertex i, and Pij = 0 for {i, j} /∈ E (transitions
are allowed only between vertices that are linked by an edge). We assume that the transition
probabilities are symmetric, i.e., P = P T , where the superscript T denotes the transpose of a
matrix. Of course this transition probability matrix must also be stochastic:

P ≥ 0, P1 = 1,

where the inequality P ≥ 0 means elementwise, and 1 denotes the vector of all ones.
Since P is symmetric and stochastic, the uniform distribution (1/n)1T is stationary. In addition,

the eigenvalues of P are real, and no more than one in modulus. We denote them in non-increasing
order

1 = λ1(P ) ≥ λ2(P ) ≥ · · · ≥ λn(P ) ≥ −1.

We denote by µ(P ) the second-largest eigenvalue modulus (SLEM) of P , i.e.,

µ(P ) = max
i=2,...,n

|λi(P )| = max {λ2(P ), −λn(P )}.

This quantity is widely used to bound the asymptotic convergence rate of the distribution of the
Markov chain to its stationary distribution, in the total variation distance or chi-squared distance
(e.g., [DS91, DSC93]). In general the smaller µ(P ) is, the faster the Markov chain converges. For
more background on Markov chains, eigenvalues and rapid mixing, see, e.g., the text [Bré99].

In [BDX04], we addressed the following problem: What choice of P minimizes µ(P )? In other
words, what is the fastest mixing (symmetric) Markov chain on the graph? This can be posed as
the following optimization problem:

minimize µ(P )
subject to P ≥ 0, P1 = 1, P = P T

Pij = 0, {i, j} /∈ E .
(1)

Here P is the optimization variable, and the graph is the problem data. We call this problem the
fastest mixing Markov chain (FMMC) problem. This is a convex optimization problem, in particu-
lar, the objective function can be explicitly written in a convex form µ(P ) = ‖P−(1/n)11T ‖2, where
‖ · ‖2 denotes the spectral norm of a matrix. Moreover, this problem can be readily transformed
into a semidefinite program (SDP):

minimize s
subject to −sI � P − (1/n)11T � sI

P ≥ 0, P1 = 1, P = P T

Pij = 0, {i, j} /∈ E .

(2)

Here I denote the identity matrix, and the variables are the matrix P and the scalar s. The symbol
� denotes matrix inequality, i.e., X � Y means Y − X is positive semidefinite.

There has been some follow-up work on this problem. Boyd, Diaconis, Sun, Xiao ([BDSX06])
proved analytically that on an n-path the fastest mixing chain can be obtained by assigning the same
transition probability half at the n − 1 edges and two loops at the two ends. Roch ([Roc05]) used
standard mixing-time analysis techniques (variational characterizations, conductance, canonical
paths) to bound the fastest mixing time. Gade and Overton ([GO06]) have considered the fastest
mixing problem for a nonreversible Markov chain. Here, the problem is non-convex and much
remains to be done. Finally, closed form solutions of fastest mixing problems have recently been
applid in statistics to give a generalization of the usual spectral analysis of time series for more
general discrete data. see [Sal06].
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1.2 Exploiting problem structure

The SDP formulation (2) means that the FMMC problem can be efficiently solved using standard
SDP solvers, at least for small or medium size problems (with number of edges up to a thousand
or so). General background on convex optimization and SDP can be found in, e.g., [NN94, VB96,
WSV00, BTN01, BV04]. The current SDP solvers (e.g., [Stu99, TTT99, YFK03]) mostly use
interior-point methods which have polynomial time worst-case complexity.

When solving the SDP (2) by interior-point methods, in each iteration we need to compute
the first and second derivatives of the logarithmic barrier functions (or potential functions) for
the matrix inequalities, and assemble and solve a linear system of equations (the Newton system).
Let n be the number of vertices and m be the number of edges in the graph (equivalently m is the
number of variables in the problem). The Newton system is a set of m linear equations with m
unknowns. Without exploiting any structure, the number of flops per iteration in a typical barrier
method is on the order max{mn3,m2n2,m3}, where the first two terms come from computing and
assembling the Newton system, and the third term amounts to solving it (see, e.g., [BV04, §11.8.3]).
(Other variants of interior-point methods have similar orders of flop count.)

Exploiting problem structure can lead to significant improvement of solution efficiency. As for
many other problems defined on a graph, sparsity is the most obvious structure to consider here. In
fact, many current SDP solvers already exploit sparsity. However, as a well-known fact, exploiting
sparsity alone in interior-point methods for SDP has limited effectiveness. The sparsity of P , and
the sparsity plus rank-one structure of P − (1/n)11T , can be exploited to significantly reduce the
complexity of assembling the Newton system, but typically the Newton system itself is dense. The
computational cost per iteration can be reduced to order O(m3), dominated by solving the dense
linear system (see analysis for similar problems in, e.g., [BYZ00, XB04, XBK07]).

In addition to using interior-point methods for the SDP formulation (2), we can also solve the
FMMC problem in the form (1) by subgradient-type (first-order) methods. The subgradients of
µ(P ) can be obtained by computing the extreme eigenvalues and associated eigenvectors of the
matrix P . This can be done very efficiently by iterative methods, specifically the Lanczos method,
for large sparse symmetric matrices (e.g., [GL96, Saa92]). Compared with interior-point methods,
subgradient-type methods can solve much larger problems but only to a moderate accuracy (they
don’t have polynomial-time worst-case complexity). In [BDX04], we used a simple subgradient
method to solve the FMMC problem on graphs with up to a few hundred thousand edges. More
sophisticated first-order methods for solving large-scale eigenvalue optimization problems and SDPs
have been reported in, e.g., [HR00, BM03, Nem04, LNM04, Nes05]. A successive partial linear
programming method was developed in [Ove92].

In this paper, we focus on the FMMC problem on graphs with large symmetry groups, and
show how to exploit symmetries of the graph to make the computation more efficient. A result by
Erdős and Rényi [ER63] states that with probability one, the symmetry group of a (suitably defined)
random graph is trivial, i.e., it contains only the identity element. Nevertheless, many of the graphs
of theoretical and practical interest, particularly in engineering applications have very interesting,
and sometimes very large, symmetry groups. Symmetry reduction techniques have been explored
in several different contexts, e.g., dynamical systems and bifurcation theory [GSS88], polynomial
system solving [Gat00, Wor94], numerical solution of partial differential equations [FS92], and Lie
symmetry analysis in geometric mechanics [MR99]. In the context of optimization, a class of SDPs
with symmetry has been defined in [KOMK01], where the authors study the invariance properties
of the search directions of primal-dual interior-point methods. In addition, symmetry has been
exploited to prune the enumeration tree in branch-and-cut algorithms for integer programming
[Mar03], and to reduce matrix size in a spectral radius optimization problem [HOY03].
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Closely related to our approach in this paper, the recent work [dKPS07] considers general SDPs
that are invariant under the action of a permutation group, and developed a technique based
on matrix ∗-representation to reduce problem size. This technique has been applied to simplify
computations in SDP relaxations for graph coloring and maximal clique problems [DR07], and to
strengthen SDP bounds for some coding problems [Lau07].

For the FMMC problem, we show that exploiting symmetry allows significant reduction in both
number of optimization variables and size of matrices. Effectively, they correspond to reducing m
and n, respectively, in the flop counts for interior-point methods mentioned above. The problem
can be considerably simplified and is often solvable analytically by only exploiting symmetry. We
present two general approaches for symmetry exploitation, based on orbit theory [BDPX05] and
block-diagonalization [GP04], respectively. We also establish the connection between these two
approaches.

1.3 Outline

In §2, we explain the concepts of graph automorphisms and the automorphism group (symmetry
group) of a graph. We show that the FMMC problem always attains its optimum in the fixed-point
subset of the feasible set under the automorphism group. This allows us to only consider a number
of distinct transition probabilities that equals the number of orbits of the edges. We then give
a formulation of the FMMC problem with reduced number of variables (transition probabilities),
which appears to be very convenient in subsequent sections.

In §3, we give closed-form solutions for the FMMC problem on some special classes of graphs,
namely edge-transitive graphs and distance-transitive graphs. Along the way we also discuss FMMC
on graphs formed by taking Cartesian products of simple graphs.

In §4, we first review the orbit theory for reversible Markov chains, and give sufficient conditions
on constructing an orbit chain that contain all distinct eigenvalues of the original chain. This orbit
chain is usually no longer symmetric but always reversible. We then solve the fastest reversible
Markov chain problem on the orbit graph, from which we immediately obtain optimal solution to
the original FMMC problem.

In §5, we review some group representation theory and show how to block diagonalize the linear
matrix inequalities in the FMMC problem by constructing a symmetry-adapted basis. The resulting
blocks usually have much smaller sizes and repeated blocked can be discarded in computation.
Extensive examples in §4 and §5 reveal interesting connections between these two general symmetry
reduction methods.

In §6, we conclude the paper by pointing out some possible future work.

2 Symmetry analysis

In this section we explain the basic concepts that are essential in exploiting graph symmetry, and
derive our result on reducing the number of optimization variables in the FMMC problem.

2.1 Graph automorphisms and classes

The study of graphs that possess particular kinds of symmetry properties has a long history. The
basic object of study is the automorphism group of a graph, and different classes can be defined
depending on the specific form in which the group acts on the vertices and edges.

An automorphism of a graph G = (V, E) is a permutation σ of V such that {i, j} ∈ E if and
only if {σ(i), σ(j)} ∈ E . The (full) automorphism group of the graph, denoted by Aut(G), is the set
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Figure 1: The graph on the left side is edge-transitive, but not vertex-transitive. The one on the
right side is vertex-transitive, but not edge-transitive.

of all such permutations, with the group operation being composition. For instance, for the graph
on the left in Figure 1, the corresponding automorphism group is generated by all permutations of
the vertices {1, 2, 3}. This group, isomorphic to the symmetric group S3, has six elements, namely
the permutations 123 → 123 (the identity), 123 → 213, 123 → 132, 123 → 321, 123 → 231, and
123 → 312. Note that vertex 4 cannot be permuted with any other vertex.

Recall that an action of a group G on a set X is a homomorphism from G to the set of all
permutations of the elements in X (i.e., the symmetric group of degree |X |). For an element
x ∈ X , the set of all images g(x), as g varies through G, is called the orbit of x. Distinct orbits
form equivalent classes and they partition the set X . The action is transitive if for every pair of
elements x, y ∈ X , there is a group element g ∈ G such that g(x) = y. In other words, the action
is transitive if there is only one single orbit in X .

A graph G = (V, E) is said to be vertex-transitive if Aut(G) acts transitively on V. The action
of a permutation σ on V induces an action on E with the rule σ({i, j}) = {σ(i), σ(j)}. A graph
G is edge-transitive if Aut(G) acts transitively on E . Graphs can be edge-transitive without being
vertex-transitive and vice versa; simple examples are shown in Figure 1.

A graph is 1-arc-transitive if given any four vertices u, v, x, y with {u, v}, {x, y} ∈ E , there
exists an automorphism g ∈ Aut(G) such that g(u) = x and g(v) = y. Notice that, as opposed to
edge-transitivity, here the ordering of the vertices is important, even for undirected graphs. In fact,
a 1-arc transitive graph must be both vertex-transitive and edge-transitive, and the reverse may
not be true. The 1-arc-transitive graphs are called symmetric graphs in [Big74], but the modern
use extends this term to all graphs that are simultaneously edge- and vertex-transitive. Finally,
let δ(u, v) denote the distance between two vertices u, v ∈ V. A graph is called distance-transitive
if, for any four vertices u, v, x, y with δ(u, v) = δ(x, y), there is an automorphism g ∈ Aut(G) such
that g(u) = x and g(v) = y.

The containment relationship among the four classes of graphs described above is illustrated
in Figure 2. Explicit counterexamples are known for each of the non-inclusions. It is generally
believed that distance-transitive graphs have been completely classified. This work has been done
by classifying the distance-regular graphs. It would take us too far afield to give a complete
discussion. See the survey in [DSC06, Section 7].

The concept of graph automorphism can be naturally extended to weighted graphs, by requiring
that the permutation must also preserve the weights on the edges (e.g., [BDPX05]). This extension
allows us to exploit symmetry in more general reversible Markov chains, where the transition
probability matrix is not necessarily symmetric.
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Figure 2: Classes of symmetric graphs, and their inclusion relationship.

2.2 FMMC with symmetry constraints

A permutation σ ∈ Aut(G) can be represented by a permutation matrix Q, where Qij = 1 if
i = σ(j) and Qij = 0 otherwise. The permutation σ induces an action on the transition probability
matrix by σ(P ) = QPQT . We denote the feasible set of the FMMC problem (1) by C, i.e.,

C = {P ∈ Rn×n | P ≥ 0, P1 = 1, P = P T , Pij = 0 for {i, j} /∈ E}.

This set is invariant under the action of graph automorphism. To see this, let h = σ(i) and k = σ(j).
Then we have

(σ(P ))hk = (QPQT )hk =
∑

l

(QP )hlQkl = (QP )hj =
∑

l

QhlPlj = Pij.

Since σ is a graph automorphism, we have {h, k} ∈ E if and only if {i, j} ∈ E , so the sparsity
pattern of the probability transition matrix is preserved. It is straightforward to verify that the
conditions P ≥ 0, P1 = 1, and P = P T , are also preserved under this action.

Let F denote the fixed-point subset of C under the action of Aut(G); i.e.,

F = {P ∈ C | σ(P ) = P, σ ∈ Aut(G)}.

We have the following theorem (see also [GP04, Theorem 3.3]).

Theorem 2.1. The FMMC problem always has an optimal solution in the fixed-point subset F .

Proof. Let µ⋆ denote the optimal value of the FMMC problem (1), i.e., µ⋆ = inf{µ(P )|P ∈ C}.
Since the objective function µ is continuous and the feasible set C is compact, there is at least one
optimal transition matrix P ⋆ such that µ(P ⋆) = µ⋆. Let P denote the average over the orbit of P ⋆

under Aut(G)

P =
1

|Aut(G)|
∑

σ∈Aut(G)

σ(P ⋆).

This matrix is feasible because each σ(P ⋆) is feasible and the feasible set is convex. By construction,
it is also invariant under the actions of Aut(G). Moreover, using the convexity of µ, we have
µ(P ) ≤ µ(P ⋆). It follows that P ∈ F and µ(P ) = µ⋆.

As a result of Theorem 2.1, we can replace the constraint P ∈ C by P ∈ F in the FMMC
problem and get the same optimal value. In the fixed-point subset F , the transition probabilities
on the edges within an orbit must be the same. So we have the following corollaries:
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Corollary 2.2. The number of distinct edge transition probabilities we need to consider in the
FMMC problem is at most equal to the number of orbits of E under Aut(G).

Corollary 2.3. If G is edge-transitive, then all the edge transition probabilities can be assigned the
same value.

Note that the holding probability at the vertices can always be eliminated using Pii = 1−∑j Pij .
So it suffices to only consider the edge transition probabilities.

2.3 Formulation with reduced number of variables

From the results of the previous section, we can reduce the number of optimization variables in the
FMMC problem from the number of edges to the number of edge orbits under the automorphism
group. Here we give an explicit parametrization of the FMMC problem with the reduced number
of variables. This parametrization is also the precise characterization of the fixed-point subset F .

Recall that the adjacency matrix of a graph with n vertices is a n×n matrix A whose entries are
given by Aij = 1 if {i, j} ∈ E and Aij = 0 otherwise. Let νi be the valency (degree) of vertex i. The
Laplacian matrix of the graph is given by L = Diag(ν1, ν2, . . . , νn) − A, where Diag(ν) denotes a
diagonal matrix with the vector ν as its diagonal. Extensive account of the Laplacian matrix and
its use in algebraic graph theory are provided in, e.g., [Mer94, Chu97, GR01].

Suppose that there are N orbits of edges under the action of Aut(G). For each orbit, we define
an orbit graph Gk = (V, Ek), where Ek is the set of edges in the kth orbit. Note that the orbit graphs
are disconnected (there are disconnected vertices) if the original graph is not edge-transitive. Let
Lk be the Laplacian matrix of Gk. Note that the diagonal entries (Lk)ii equals the valency of node i
in Gk (which is zero if vertex i is disconnected with all other vertices in Gk).

By Corollary 2.2, we can assign the same transition probability on all the edges in the k-th orbit.
Denote this transition probability by pk and let p = (p1, . . . , pN ). Then the transition probability
matrix can be written as

P (p) = I −
N
∑

k=1

pkLk. (3)

This parametrization of the transition probability matrix automatically satisfies the constraints
P = P T , P1 = 1, and Pij = 0 for {i, j} ∈ E . The entry-wise nonnegative constraint P ≥ 0 now
translates into

pk ≥ 0, k = 1, . . . , N
N
∑

k=1

(Lk)ii pk ≤ 1, i = 1, . . . , n

where the first set of constraints are for the off-diagonal entries of P , and the second set of con-
straints are for the diagonal entries of P .

It can be verified that the parametrization (3), together with the above inequality constraints,
is the precise characterization of the fixed-point subset F . Therefore we can explicitly write the
FMMC problem restricted to the fixed-point subset as

minimize µ
(

I −∑N
k=1 pkLk

)

subject to pk ≥ 0, k = 1, . . . , N
∑N

k=1(Lk)ii pk ≤ 1, i = 1, . . . , n.

(4)
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Later in this paper, we will also need the corresponding SDP formulation

minimize s

subject to −sI � I −∑N
k=1 pkLk − (1/n)11T � sI

pk ≥ 0, k = 1, . . . , N
∑N

k=1(Lk)ii pk ≤ 1, i = 1, . . . , n.

(5)

3 Some analytic results

For some special classes of graphs, the FMMC problem can be considerably simplified and often
solved by only exploiting symmetry. In this section, we give some analytic results for the FMMC
problem on edge-transitive graphs, Cartesian product of simple graphs, and distance-transitive
graphs (a subclass of edge-transitive graphs). The optimal solution is often expressed in terms of
the eigenvalues of the adjacency matrix or the Laplacian matrix of the graph. It is interesting to
notice that even for such highly structured class of graphs, neither the maximum-degree nor the
Metropolis-Hastings heuristics discussed in [BDX04] give the optimal solution. Throughout, we use
α⋆ to denote the common edge weight of the fastest mixing chain and µ⋆ to denote the optimal
SLEM.

3.1 FMMC on edge-transitive graphs

Theorem 3.1. Suppose the graph G is edge-transitive, and let α be the transition probability as-
signed on all the edges. Then the optimal solution of the FMMC problem is

α⋆ = min

{

1

νmax
,

2

λ1(L) + λn−1(L)

}

(6)

µ⋆ = max

{

1 − λn−1(L)

νmax
,

λ1(L) − λn−1(L)

λ1(L) + λn−1(L)

}

, (7)

where νmax = maxi∈V νi is the maximum valency of the vertices in the graph, and L is the Laplacian
matrix defined in §2.3.

Proof. By definition of an edge-transitive graph, there is a single orbit of edges under the actions
of its automorphism group. Therefore we can assign the same transition probability α on all the
edges in the graph (Corollary 2.3), and the parametrization (3) becomes P = I − αL. So we have

λi(P ) = 1 − αλn+1−i(L), i = 1, . . . , n

and the SLEM

µ(P ) = max{λ2(P ), −λn(P )}
= max{1 − αλn−1(L), αλ1(L) − 1}.

To minimize µ(P ), we let 1 − αλn−1(L) = αλ1(L) − 1 and get α = 2/(λn−1(L) + λn−1(L)).
But the nonnegativity constraint P ≥ 0 requires that the transition probability must also satisfy
0 < α ≤ 1/νmax. Combining these two conditions gives the optimal solution (6) and (7).

We give two examples of FMMC on edge-transitive graphs.
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Figure 3: The cycle graph Cn with n = 9.

3.1.1 Cycles

The first example is the cycle graph Cn; see Figure 3. The Laplacian matrix is

L =



















2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1

−1 0 0 · · · −1 2



















which has eigenvalues

2 − 2 cos
2kπ

n
, k = 1, . . . , n.

The two extreme eigenvalues are

λ1(L) = 2 − 2 cos
2⌊n/2⌋π

n
, λn−1(L) = 2 − 2 cos

2π

n

where ⌊n/2⌋ denotes the largest integer that is no larger than n/2, which is n/2 for n even or
(n − 1)/2 for n odd. By Theorem 3.1, the optimal solution to the FMMC problem is

α⋆ =
1

2 − cos 2π
n − cos 2⌊n/2⌋π

n

(8)

µ⋆ =
cos 2π

n − cos 2⌊n/2⌋π
n

2 − cos 2π
n − cos 2⌊n/2⌋π

n

. (9)

When n → ∞, the transition probability α⋆ → 1/2 and the SLEM µ⋆ → 1 − 2π2/n2.

3.1.2 Complete bipartite graphs

The complete bipartite graph, denoted Km,n, has two subsets of vertices with cardinalities m and n
respectively. Each vertex in a subset is connected to all the vertices in the other subset, and is not
connected to any of the vertices in its own subset; see Figure 4. Without loss of generality, assume
m ≤ n. So the maximum degree is νmax = n. This graph is edge-transitive but not vertex-transitive.
The Laplacian matrix of this graph is

L =

[

nIm −1m×n

−1n×m mIn

]

9
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Figure 4: The complete bipartite graph Km,n with m = 3 and n = 4.

where Im denotes the m by m identity matrix, and 1m×n denotes the m by n matrix whose
components are all ones. For n ≥ m ≥ 2, this matrix has four distinct eigenvalues m + n, n, m and
0, with multiplicities 1, m− 1, n− 1 and 1, respectively (see §5.3.1). By Theorem 3.1, the optimal
transition probability on the edges and the corresponding SLEM are

α⋆ = min

{

1

n
,

2

n + 2m

}

(10)

µ⋆ = max

{

n − m

n
,

n

n + 2m

}

. (11)

3.2 Cartesian product of graphs

Many graphs we consider can be constructed by taking Cartesian product of simpler graphs. The
Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is a graph with vertex set V1 ×V2,
where two vertices (u1, u2) and (v1, v2) are connected by an edge if and only if u1 = v1 and
{u2, v2} ∈ E2, or u2 = v2 and {u1, v1} ∈ E1. Let G1 ⊕ G2 denote this Cartesian product. Its
Laplacian matrix is given by

LG1⊕G2 = LG1 ⊗ I|V1| + I|V2| ⊗ LG2 (12)

where ⊗ denotes the matrix Kronecker product ([Gra81]). The eigenvalues of LG1⊕G2 are given by

λi(LG1) + λj(LG2), i = 1, . . . , |V1|, j = 1, . . . , |V2| (13)

where each eigenvalue is obtained as many times as its multiplicity (e.g., [Moh97]). The adjacency
matrix of the Cartesian product of graphs also has similar properties, which we will use later for
distance-transitive graphs. Detailed background on spectral graph theory can be found in, e.g.,
[Big74, DCS80, Chu97, GR01].

Combining Theorem 3.1 and the above expression for eigenvalues, we can easily obtain solutions
to the FMMC problem on graphs formed by taking Cartesian product of simple graphs.

3.2.1 Two-dimensional meshes

Here we consider the two-dimensional mesh with wraparounds at two ends of each row and column,
see Figure 5. It is the Cartesian product of two copies of Cn. We write it as Mn = Cn ⊕ Cn. By
equation (13), its Laplacian matrix has eigenvalues

4 − 2 cos
2iπ

n
− 2 cos

2jπ

n
, i, j = 1, . . . , n.
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Figure 5: The two-dimensional mesh with wraparounds Mn with n = 4.

By Theorem 3.1, we obtain the optimal transition probability

α⋆ =
1

3 − 2 cos 2⌊n/2⌋π
n − cos 2π

n

and the smallest SLEM

µ⋆ =
1 − 2 cos 2⌊n/2⌋π

n + cos 2π
n

3 − 2 cos 2⌊n/2⌋π
n − cos 2π

n

When n → ∞, the transition probability α⋆ → 1/4 and the SLEM µ⋆ → 1 − π2/n2.

3.2.2 Hypercubes

The d-dimensional hypercube, denoted Qd, has 2d vertices, each labeled with a binary word with
length d. Two vertices are connected by an edge if their words differ in exactly one component
(see Figure 6). This graph is isomorphic to the Cartesian product of d copies of K2, the complete
graph with two vertices. The Laplacian of K2 is

LK2 =

[

1 −1
−1 1

]

,

whose two eigenvalues are 0 and 2. The one-dimensional hypercube Q1 is just K2. Higher dimen-
sional hypercubes are defined recursively:

Qk+1 = Qk ⊕ K2, k = 1, 2, . . . .

By equation (12), their Laplacian matrices are

LQk+1
= LQk

⊗ I2 + I2k ⊗ LK2, k = 1, 2, . . . .

Using equation (13) recursively, the Laplacian of Qd has eigenvalues 2k, k = 0, 1, . . . , d, each with

multiplicity
(

d
k

)

. The FMMC is achieved for:

α⋆ =
1

d + 1
, µ⋆ =

d − 1

d + 1
.

This solution has also been worked out, for example, in [Moh97].
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Figure 6: The hypercubes Q1, Q2 and Q3.

3.3 FMMC on distance-transitive graphs

Distance-transitive graphs have been studied extensively in the literature (see, e.g., [BCN89]).
In particular, they are both edge- and vertex-transitive. In previous examples, the cycles and the
hypercubes are actually distance-transitive graphs; so are the bipartite graphs when the two parties
have equal number of vertices.

In a distance-transitive graph, all vertices have the same valency, which we denote by ν. The
Laplacian matrix can be written as L = νI − A, with A being the adjacency matrix. Therefore

λi(L) = ν − λn+1−i(A), i = 1, . . . , n.

We can substitute the above equation in equations (6) and (7) to obtain the optimal solution in
terms of λ2(A) and λn(A).

Since distance-transitive graphs usually have very large automorphism groups, the eigenvalues
of the adjacency matrix A (and the Laplacian L) often have very high multiplicities. But to solve
the FMMC problem, we only need to know the distinct eigenvalues; actually, only λ2(A) and λn(A)
would suffice. In this regard, it is more convenient to use a much smaller matrix, the intersection
matrix, which has all the distinct eigenvalues of the adjacency matrix.

Let D be the diameter of the graph. For a nonnegative integer k ≤ D, choose any two vertices u
and v such that their distance satisfies δ(u, v) = k. Let ak, bk and ck be the number of vertices
that are adjacent to u and whose distance from v are k, k + 1 and k − 1, respectively. That is,

ak = |{w ∈ V | δ(u,w) = 1, δ(w, v) = k}|
bk = |{w ∈ V | δ(u,w) = 1, δ(w, v) = k + 1}|
ck = |{w ∈ V | δ(u,w) = 1, δ(w, v) = k − 1}|.

For distance-transitive graphs, these numbers are independent of the particular pair of vertices u
and v chosen. Clearly, we have a0 = 0, b0 = ν and c1 = 1. The intersection matrix B is the
following tridiagonal (D + 1) × (D + 1) matrix

B =

















a0 b0

c1 a1 b1

c2 a2
. . .

. . .
. . . bD−1

cD aD

















.

Denote the eigenvalues of the intersection matrix, in decreasing order, as η0, η1, . . . , ηD.
These are precisely the (D + 1) distinct eigenvalues of the adjacency matrix A (see, e.g., [Big74]).
In particular, we have

λ1(A) = η0 = ν, λ2(A) = η1, λn(A) = ηD.

12



The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. The optimal solution of the FMMC problem on a distance-transitive graph is

α⋆ = min

{

1

ν
,

2

2ν − (η1 + ηD)

}

(14)

µ⋆ = max

{

η1

ν
,

η1 − ηD

2ν − (η1 + ηD)

}

. (15)

Next we give solutions for the FMMC problem on several families of distance-transitive graphs.

3.3.1 Complete graphs

The case of the complete graph with n vertices, usually called Kn, is very simple. It is distance-
transitive, with diameter D = 1 and valency ν = n − 1. The intersection matrix is

B =

[

0 n − 1
1 n − 2

]

,

with eigenvalues η0 = n − 1, η1 = −1. Using equations (14) and (15), the optimal parameters are

α⋆ =
1

n
, µ⋆ = 0.

The associated matrix P = (1/n)11T has one eigenvalue equal to 1, and the remaining n − 1
eigenvalues vanish. Such Markov chains achieve perfect mixing after just one step, regardless of
the value of n.

3.3.2 Petersen graph

The Petersen graph, shown in Figure 7, is a well-known distance-transitive graph with 10 vertices
and 15 edges. The diameter of the graph is D = 2, and the intersection matrix is

B =





0 3 0
1 0 2
0 1 2





with eigenvalues η0 = 3, η1 = 1 and η2 = −2. Applying the formula (14) and (15), we obtain

α⋆ =
2

7
, µ⋆ =

3

7
.

3.3.3 Hamming graphs

The Hamming graphs, denoted H(d, n), have vertices labeled by elements in the Cartesian product
{1, . . . , n}d, with two vertices being adjacent if they differ in exactly one component. By the
definition, it is clear that Hamming graphs are isomorphic to the Cartesian product of d copies
of the complete graph Kn. Hamming graphs are distance-transitive, with diameter D = d and
valency ν = d (n − 1). Their eigenvalues are given by ηk = d (n − 1) − kn for k = 0, . . . , d. These
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Figure 7: The Petersen graph.

can be obtained using an equation for eigenvalues of adjacency matrices, similar to (13), with the
eigenvalues of Kn being n − 1 and −1. Therefore the FMMC has parameters:

α⋆ = min

{

1

d (n − 1)
,

2

n (d + 1)

}

µ⋆ = max

{

1 − n

d(n − 1)
,

d − 1

d + 1

}

.

We note that hypercubes (see §3.2.2) are special Hamming graphs with n = 2.

3.3.4 Johnson graphs

The Johnson graph J(n, q) (for 1 ≤ q ≤ n/2) is defined as follows: the vertices are the q-element
subsets of {1, . . . , n}, with two vertices being connected with an edge if and only if the subsets
differ exactly by one element. It is a distance-transitive graph, with

(n
q

)

vertices and 1
2q (n − q)

(n
q

)

edges. It has valency ν = q (n− q) and diameter D = q. The eigenvalues of the intersection matrix
can be computed analytically and they are:

ηk = q (n − q) + k (k − n − 1), k = 0, . . . , q.

Therefore, by Corollary 3.2, we obtain the optimal transition probability

α⋆ = min

{

1

q (n − q)
,

2

qn + n + q − q2

}

and the smallest SLEM

µ⋆ = max

{

1 − n

q(n − q)
, 1 − 2n

qn + n + q − q2

}

.

4 FMMC on orbit graphs

For graphs with large automorphism groups, the eigenvalues of the transition probability matrix
often have very high multiplicities. To solve the FMMC problem, it suffices to work with only
the distinct eigenvalues without consideration of their multiplicities. This is exactly what the
intersection matrix does for distance-transitive graphs. In this section we develop similar tools for
more general graphs. More specifically, we show how to construct an orbit chain which is much
smaller in size than the original Markov chain, but contains all its distinct eigenvalues (with much
fewer multiplicities). The FMMC on the original graph can be found by solving a much smaller
problem on the orbit chain.
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4.1 Orbit theory

Here we review the orbit theory developed in [BDPX05]. Let P be a symmetric Markov chain on
the graph G = (V, E), and H be a group of automorphisms of the graph. Often, it is a subgroup of
the full automorphism group Aut(G). The vertex set V partitions into orbits Ov = {hv : h ∈ H}.
For notational convenience, in this section we use P (v, u), for v, u ∈ V, to denote entries of the
transition probability matrix. We define the orbit chain by specifying the transition probabilities
between orbits

PH(Ov , Ou) = P (v,Ou) =
∑

u′∈Ou

P (v, u′). (16)

This transition probability is independent of which v ∈ O(v) is chosen, so it is well defined and the
lumped orbit chain is indeed Markov.

The orbit chain is in general no longer symmetric, but it is always reversible. Let π(i), i ∈ V,
be the stationary distribution of the original Markov chain. Then the stationary distribution on
the orbit chain is obtained as

πH(Ov) =
∑

i∈Ov

π(i). (17)

It can be verified that
πH(Ov)PH(Ov , Ou) = πH(Ou)PH(Ou, Ov), (18)

which is the detailed balance condition to test reversibility.
The following is a summary of the orbit theory we developed in [BDPX05], which relate the

eigenvalues and eigenvectors of the orbit chain PH to the eigenvalues and eigenvectors of the original
chain P .

• Lifting ([BDPX05, §3.1]). If λ̄ is an eigenvalue of PH with associated eigenvector f̄ , then
λ̄ is an eigenvalue of P with H-invariant eigenfunction f(v) = f̄(Ov). Conversely, every
H-invariant eigenfunction appears uniquely from this construction.

• Projection ([BDPX05, §3.2]). Let λ be an eigenvalue of P with eigenvector f . Define f̄(Ov) =
∑

h∈H f(h−1(v)). Then λ appears as an eigenvalue of PH , with eigenvector f̄ , if either of the
following two conditions holds:

(a) H has a fixed point v∗ and f(v∗) 6= 0.

(b) f is nonzero at a vertex v∗ in an Aut(G)-orbit which contains a fixed point of H.

Equipped with this orbit theory, we would like to construct one or multiple orbit chains that
retain all the eigenvalues of the original chain. Ideally the orbit chains are much smaller in size than
the original chain, with the eigenvalues having much fewer multiplicities. The following theorem
(Theorem 3.7 in [BDPX05]) gives sufficient conditions that guarantee that the orbit chain(s) attain
all the eigenvalues of the original chain.

Theorem 4.1. Suppose that V = O1 ∪ . . .∪OK is a disjoint union of the orbits under Aut(G). Let
Hi be the subgroup of Aut(G) that has a fixed point in Oi. Then all eigenvalues of P occur among
the eigenvalues of {PHi

}K
i=1. Further, every eigenvector of P occurs by lifting an eigenvector of

some PHi
.

Observe that if H ⊆ G ⊆ Aut(G), then the eigenvalues of PH contain all eigenvalues of PG.
This allows disregarding some of the Hi in Theorem 4.1. In particular, it is possible to construct a
single orbit chain that contains all eigenvalues of the original chain. Therefore we have
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(d) Orbit chain under Sm−1 × Sn−1.

Figure 8: Orbit chains of Km,n under different automorphism groups. The vertices labeled Ou and
Ov are orbits of vertices u and v (labeled in Figure 4) under corresponding actions. The vertices
labeled x and y are fixed points.

Corollary 4.2. Suppose that V = O1 ∪ . . .∪Ok is a disjoint union of the orbits under Aut(G), and
H is a subgroup of Aut(G). If H has a fixed point in every Oi, then all distinct eigenvalues of P
occur among the eigenvalues of PH .

Remarks. To find H in the above corollary, we can just compute the corresponding stabilizer,
i.e., compute the largest subgroup of Aut(G) that fixes one point in each orbit. Note that the H
promised by the corollary may be trivial in some cases; see the example in §5.3.6.

We illustrate the orbit theory with the bipartite graph Km,n shown in Figure 4. It is easy to
see that Aut(Km,n) is the direct product of two symmetric groups, namely Sm × Sn, with each
symmetric group permuting one of the two subsets of vertices. This graph is edge-transitive. So
we assign the same transition probability p on all the edges.

The orbit chains under four different subgroups of Aut(Km,n) are shown in Figure 8. The
transition probabilities between orbits are calculated using equation (16). Since the transition
probabilities are not symmetric, we represent the orbit chains by directed graphs, with different
transition probabilities labeled on opposite directions between two adjacent vertices. The full
automorphism group Aut(Km,n) has two orbits of vertices; see Figure 8(a). The orbit graphs under
the subgroups Sm−1 ×Sn (Figure 8(b)) and Sm ×Sn−1 (Figure 8(c)) each contains a fixed point of
the two orbits under Aut(Km,n). By Theorem 4.1, these two orbit chains contain all the distinct
eigenvalues of the original chain on Km,n. Alternatively, we can construct the orbit chain under the
subgroup Sm−1 ×Sn−1, shown in Figure 8(d). This orbit chain contain a fixed point in both orbits
under Aut(Km,n). By Corollary 4.1, all distinct eigenvalues of Km,n appear in this orbit chain. In
particular, this shows that there are at most four distinct eigenvalues in the original chain.
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If we order the vertices in Figure 8(d) as (x, y,Ou, Ov), then the transition probability matrix
for this orbit chain is

PH =









1 − np p 0 (n − 1)p
p 1 − mp (m − 1)p 0
0 p 1 − np (n − 1)p
p 0 (m − 1)p 1 − mp









where H = Sm−1 × Sn−1. By equation (17), its stationary distribution is

πH =

(

1

m + n
,

1

m + n
,

m − 1

m + n
,

n − 1

m + n

)

.

4.2 Fastest mixing reversible Markov chain on orbit graph

Since in general the orbit chain is no longer symmetric, we cannot directly use the convex optimiza-
tion formulation (1) or (2) to minimize µ(PH). Fortunately, the detailed balance condition (18)
leads to a simple transformation that allow us to formulate the problem of finding the fastest
reversible Markov chain as a convex program [BDX04].

Suppose the orbit chain PH contains all distinct eigenvalues of the original chain. Let πH be the
stationary distribution of the orbits, and let Π = Diag(πH). The detailed balance condition (18)
can be written as ΠPH = P T

HΠ, which implies that the matrix Π1/2PHΠ−1/2 is symmetric (and
of course, has the same eigenvalues as PH). The eigenvector of Π1/2PHΠ−1/2 associated with the
maximum eigenvalue 1 is q = (

√

πH(O1), . . . ,
√

πH(Ok)). The SLEM µ(PH) equals the spectral
norm of Π1/2PHΠ−1/2 restricted to the orthogonal complement of the subspace spanned by q. This
can be written as

µ(PH) = ‖(I − qqT )Π1/2PHΠ−1/2(I − qqT )‖2 = ‖Π1/2PHΠ−1/2 − qqT ‖2.

Introducing a scalar variable s to bound the above spectral norm, we can formulate the fastest
mixing reversible Markov chain problem as an SDP

minimize s

subject to −sI � Π1/2PHΠ−1/2 − qqT � sI

PH ≥ 0, PH1 = 1, ΠPH = P T
HΠ

PH(O,O′) = 0, (O,O′) /∈ EH .

(19)

The optimization variables are the matrix PH and scalar s, and problem data is given by the orbit
graph and the stationary distribution πH . Note that the reversibility constraint ΠPH = P T

HΠ can
be dropped since it is always satisfied by the construction of the orbit chain; see equation (18).
By pre- and post-multiplying the matrix inequality by Π1/2, we can write then another equivalent
formulation:

minimize s

subject to −sΠ � ΠPH − πHπT
H � sΠ

PH ≥ 0, PH1 = 1,

PH(O,O′) = 0, (O,O′) /∈ EH .

(20)

To solve the fastest mixing reversible Markov chain problem on the orbit graph, we need the
following three steps.

17



1. Conduct symmetry analysis on the original graph: identify the automorphism graph Aut(G)
and determine the number of orbits of edges N . By Corollary 2.2, this is the number of
transition probabilities we need to consider.

2. Find a group of automorphisms H that satisfies the conditions in Corollary 4.2. Construct
its orbit chain by computing the transition probabilities using equation (16), and compute
the stationary distribution using equation (17). Note that the entries of PH are multiples of
the transition probabilities on the original graph.

3. Solve the fastest mixing reversible Markov chain problem (19). The optimal SLEM µ(P ⋆
H) is

also the optimal SLEM for the original chain, and the optimal transition probabilities on the
original chain can be obtained by simple scaling of the optimal orbit transition probabilities.

We have assumed a single orbit chain that contains all distinct eigenvalues of the original chain.
Sometimes it is more convenient to use multiple orbit chains. Let PHi

, i = 1, . . . ,K, be the
collection of orbit chains in Theorem 4.1. In this case we need to minimize maxi µ(PHi

). This can
be done by simply adding the set of constraints in (19) for every matrix PHi

. For example, for the
complete bipartite graph Km,n, instead of using the single orbit chain in Figure 8(d), we can use
the two orbit chains in Figure 8(b) and Figure 8(c) together, with two sets of constraints in the
SDP (19).

4.3 Examples

We demonstrate the above computational procedure on orbit graphs with two examples: the graph
Kn-Kn and the complete binary tree. Both examples will be revisited in §5 using the method of
block diagonalization.

4.3.1 The graph Kn-Kn

The graph Kn-Kn consists of two copies of the complete graph Kn joined by a bridge (see Fig-
ure 9(a)). We follow the three steps described in §4.2.

First, it is clear by inspection that the full automorphism group is C2 ⋉ (Sn−1 × Sn−1). The
actions of Sn−1 × Sn−1 are all possible permutations of the two set of n − 1 vertices, distinct from
the two center vertices x and y, among themselves. The group C2 acts on the graph by switching
the two halves. The semi-direct product symbol ⋉ means that the actions of Sn−1 × Sn−1 and C2

do not commute.
By symmetry analysis in §2, there are three edge orbits under the full automorphism group: the

bridging edge between vertices x and y, the edges connecting x and y to all other vertices, and the
edges connecting all other vertices. Thus it suffices to consider just three transition probabilities
p0, p1, and p2, each labeled in Figure 9(a) on one representative of the three edge orbits.

As the second step, we construct the orbit chains. The orbit chain of Kn-Kn under the full
automorphism group is depicted in Figure 9(b). The orbit Ox includes vertices x and y, and the
orbit Oz consists of all other 2(n − 1) vertices. The transition probabilities of this orbit chain are
calculated from equation (16) and are labeled on the directed edges in Figure 9(b). Similarly, the
orbit chain under the subgroup Sn−1×Sn−1 is depicted in Figure 9(c). While these two orbit chains
are the most obvious to construct, none of them contains all eigenvalues of the original chain, nor
does their combination. For the one in Figure 9(b), the full automorphism group does not have a
fixed point either of its orbit Ox or Oz. For the one in 9(c), the automorphism group Sn−1 × Sn−1

has a fixed point in Ox (either x or y), but does not have a fixed point in Oz (note here Oz is the
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(d) Orbit chain under Sn−2 × Sn−1.

Figure 9: The graph Kn-Kn and its orbit chains under different automorphism groups. Here
Ox, Oz , Ou, Ov represent orbits of the vertices x, z, u, v (labeled in Figure 9(a)), respectively, under
the corresponding automorphism groups in each subgraph.
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orbit of z under the full automorphism group). To fix the problem, we consider the orbit chain
under the group Sn−2 × Sn−1, which leave the vertex x, y, and z fixed, while permuting the rest
n − 2 vertices on the left and the n − 1 points on the right, respectively. The corresponding orbit
chain is shown in Figure 9(d). By Corollary 4.2, all distinct eigenvalues of the original Markov
chain on Kn-Kn appear as eigenvalues of this orbit chain. Thus there are at most five distinct
eigenvalues in the original chain no matter how large n is.

To finish the second step, we calculate the transition probabilities of the orbit chain under
H = Sn−2 × Sn−1 using equation (16) and label them in Figure 9(d). If we order the vertices of
this orbit chain as (x, y, z,Ou, Ov), then the transition probability matrix on the orbit chain is

PH =













1 − p0 − (n − 1)p1 p0 p1 (n − 2)p1 0
p0 1 − p0 − (n − 1)p1 0 0 (n − 1)p1

p1 0 1 − p1 − (n − 2)p2 (n − 2)p2 0
p1 0 p2 1 − p1 − p2 0
0 p1 0 0 1 − p1













.

By equation (17), the stationary distribution of the orbit chain is

πH =

(

1

2n
,

1

2n
,

1

2n
,

n − 2

2n
,

n − 1

2n

)

.

As the third step, we solve the SDP (19) with the above parametrization. It is remarkable to
see that we only need to solve an SDP with 4 variables (three transition probabilities p0, p1, p2,
and the extra scalar s) and 5 × 5 matrices no matter how large the graph (the number n) is.

We will revisit this example in §5.3.4 using the block diagonalization method, where we present
an analytic expression for the exact optimal SLEM and corresponding transition probabilities.

4.3.2 Complete binary tree

We consider a complete binary tree with n levels of branches, denoted as Tn. The total number
of nodes is |V| = 2n+1 − 1. The matrix inequalities in the corresponding SDP have size |V| × |V|,
which is clearly exponential in n. However, the binary tree has a very large automorphism group,
of size 2(2n−1). This automorphism group is best described recursively. Plainly, for n = 1, we have
Aut(T1) = S2. For n > 1, it can be obtained by the recursion

Aut(Tk+1) = Aut(Tk) ≀ S2, k = 1, . . . , n − 1,

where ≀ represents the wreath product of two groups (e.g., [JK81]). More specifically, let g = (g1, g2)
and h = (h1, h2) be elements of the product group Aut(Tk) × Aut(Tk), and σ and π be in S2. The
multiplication rule of the wreath product is

(g, σ)(h, π) =
(

(g1hσ−1(1), g2hσ−1(2)), σπ
)

.

This is a semi-direct product Aut(Tk)
2

⋊ S2 (cf. the automorphism group of Kn-Kn). From the
above recursion, the automorphism group of Tn is

Aut(Tn) = S2 ≀ S2 ≀ · · · ≀ S2 (n times).

(The wreath product is associative, but not commutative.) The representation theory of the au-
tomorphism group of the binary tree has been thoroughly studied as this group is the Sylow
2-subgroup of a symmetric group; see [OOR04, AV05].
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(a) Orbit graph and chain under S2 ≀ S2 ≀ S2. (b) Orbit graph under (S2 ≀ S2) × (S2 ≀ S2).

(c) Orbit graph under (S2 × S2) × (S2 ≀ S2). (d) Orbit graph under S2 × (S2 ≀ S2).

Figure 10: Orbit graphs of the complete binary tree Tn (n = 3) under different automorphism
groups. The vertices surrounded by a circle are fixed points of the corresponding automorphism
group.

The orbit graph of Tn under its full automorphism group is a path with n+1 nodes (Figure 10(a),
left). Since there are n orbits of edges, there are n different transition probabilities we need to
consider. We label them as pk, k = 1, . . . , n, from top to bottom of the tree. The corresponding
orbit chain, represented by a directed graph labeled with transition probabilities between orbits,
is shown on the right of Figure 10(a). To simplify presentation, only the orbit graphs are shown
in other subfigures of Figure 10. The corresponding orbit chains should be straightforward to
construct.

The largest subgroup of Aut(Tn) that has a fixed point in every orbit under Aut(Tn) is

Wn =

n−1
∏

k=1

(S2 ≀ · · · ≀ S2) (k times)

where
∏

denotes direct product of groups. The corresponding orbit graph is shown in Figure 10(d)
for n = 3. The number of vertices in this orbit graph is

1 + 2 + · · · + n + (n + 1) =

(

n + 1

2

)

=
1

2
(n + 1)(n + 2),

which is much smaller than 2n+1 − 1, the size of Tn.
From the above analysis, we only need to solve the fastest reversible Markov chain problem on

the orbit graph of size
(n+1

2

)

with n variables p1, . . . , pn. In next section, using the technique of

block diagonalization, we will see that the transition probability matrix of size
(

n+1
2

)

can be further
decomposed into smaller matrices with sizes 1, 2, . . . , n+1. Due to an eigenvalue interlacing result,
we only need to consider the orbit chain with 2n + 1 vertices in Figure 10(b).
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5 Symmetry reduction by block diagonalization

By definition of the fixed-point subspace F (in §2.2), any transition probability matrix P ∈ F
is invariant under the actions of Aut(G). More specifically, for any permutation matrix Q given
by σ ∈ Aut(G), we have QPQT = P , equivalently QP = PQ. In this section we show that this
property allows the construction of a coordinate transformation matrix that can block diagonalize
every P ∈ F . The resulting blocks usually have much smaller sizes and repeated blocks can be
discarded in computation.

The method we use in this section is based on classical group representation theory (e.g.,
[Ser77]). It was developed for more general SDPs in [GP04], and has found applications in sum-
of-squares decomposition for minimizing polynomial functions [Par00, Par03, PS03] and controller
design for symmetric dynamical systems [CLP03]. A closely related approach is developed in
[dKPS07], which is based on a low-order representation of the commutant (collection of invariant
matrices) of the matrix algebra generated by the permutation matrices.

5.1 Some group representation theory

Let G be a group. A representation ρ of G assigns an invertible matrix ρ(g) to each g ∈ G in such
a way that the matrix assigned to the product of two elements in G is the product of the matrices
assigned to each element: ρ(gh) = ρ(g)ρ(h). The matrices we work with are all invertible and are
considered over the real or complex numbers. We thus regard ρ as a homomorphism from g to the
linear maps on a vector space V . The dimension of ρ is the dimension of V . Two representations
are equivalent if they are related by a fixed similarity transformation.

If W is a subspace of V invariant under G, then ρ restricted to W gives a subrepresentation.
Of course the zero subspace and the subspace W = V are trivial subrepresentations. If the repre-
sentation ρ admits no non-trivial subrepresentation, then ρ is called irreducible.

We consider first complex representations, as the theory is considerably simpler in this case.
For a finite group G there are only finitely many inequivalent irreducible representations ϑ1, . . . , ϑh

of dimensions n1, . . . , nh, respectively. The degrees ni divide the group order |G|, and satisfy the
condition

∑h
i=1 n2

i = |G|. Every linear representation of G has a canonical decomposition as a
direct sum of irreducible representations

ρ = m1ϑ1 ⊕ m2ϑ2 ⊕ · · · ⊕ mhϑh,

where m1, . . . ,mh are the multiplicities. Accordingly, the representation space Cn has an isotypic
decomposition

Cn = V1 ⊕ · · · ⊕ Vh (21)

where each isotypic components consists of mi invariant subspaces

Vi = V 1
i ⊕ · · · ⊕ V mi

i , (22)

each of which has dimension ni and transforms after the manner of ϑi. A basis of this decomposition
transforming with respect to the matrices ϑi(g) is called symmetry-adapted and can be computed
using the algorithm presented in [Ser77, §2.6-2.7] or [FS92, §5.2]. This basis defines a change of
coordinates by a matrix T collecting the basis as columns. By Schur’s lemma, if a matrix P satisfies

ρ(g)P = Pρ(g), ∀g ∈ G, (23)
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then T−1PT has block diagonal form with one block Pi for each isotypic component of dimension
mini, which further decomposes into ni equal blocks Bi of dimension mi. That is

T−1PT =







P1 0
. . .

0 Ph






, Pi =







Bi 0
. . .

0 Bi






. (24)

For our application of semidefinite programs, the problems are presented in terms of real ma-
trices, and therefore we would like to use real coordinate transformations. In fact a generalization
of the classical theory to the real case is presented in [Ser77, §13.2]. If all ϑi(g) are real matrices
the irreducible representation is called absolutely irreducible. Otherwise, for each ϑi with complex
character its complex conjugate will also appear in the canonical decomposition. Since ρ is real
both will have the same multiplicity and real bases of Vi + V̄i can be constructed. So two com-
plex conjugate irreducible representations form one real irreducible representation of complex type.
There is a third case, real irreducible representations of quaternonian type, rarely seen in practical
examples.

In this paper, we assume that the representation ρ is orthogonal, i.e., ρ(g)T ρ(g) = ρ(g)ρ(g)T = I
for all g ∈ G. As a result, the transformation matrix T can also be chosen to be orthogonal. Thus
T−1 = T T (for complex matrices, it is the conjugate transpose). For symmetric matrices the block
corresponding to a representation of complex type or quaternonian type simplifies to a collection
of equal subblocks. For the special case of circulant matrices, complete diagonalization reveals all
the eigenvalues [Dia88, page 50].

5.2 Block diagonalization of SDP constraint

As in §2.2, for every σ ∈ Aut(G) we assign a permutation matrix Q(σ) by letting Qij(σ) = 1 if
i = σ(j) and Qij(σ) = 0 otherwise. This is an n-dimensional representation of Aut(G), which
is often called the natural representation. As mentioned in the beginning of this section, every
matrix P in the fixed-point subset F has the symmetry of Aut(G); i.e., it satisfies the condition (23)
with ρ = Q. Thus a coordinate transformation matrix T can be constructed such that P can be
block diagonalized into the form (24).

Now we consider the SDP (5), which is the FMMC problem formulated in the fixed-point
subset F . In §2.3, we have derived the expression P (p) = I−∑N

k=1 pkLk, where Lk is the Laplacian
matrix for the kth orbit graph and pk is the common transition probability assigned on all edges in
the kth orbit graph. Note the matrix P (p) has the symmetry of Aut(G). Applying the coordinate
transformation T to the linear matrix inequalities, we obtain the following equivalent problem

minimize s

subject to −sImi
� Bi(p) − Ji � sImi

, i = 1, . . . , h

pk ≥ 0, k = 1, . . . , N
∑N

k=1(Lk)ii pk ≤ 1, i = 1, . . . , n

(25)

where Bi(p) correspond to the small blocks Bi in (24) of the transformed matrix T T P (p)T , and Ji

are the corresponding diagonal blocks of T T (1/n)11T T . The number of matrix inequalities h is the
number of inequivalent irreducible representations, and the size of each matrix inequality mi is the
multiplicity of the corresponding irreducible representation. Note that we only need one out of ni

copies of each Bi in the decomposition (24). Since mi can be much smaller than n (the number of
vertices in the graph), the improvement in computational complexity over the SDP formulation (5)
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can be significant (see the flop counts discussed in §1.2). This is especially the case when there
are high-dimensional irreducible representations (i.e., when ni is large; see, e.g., Kn-Kn defined
in §4.3.1).

The transformed SDP formulation (25) needs some further justification. Namely, all the off-
diagonal blocks of the matrix T T (1/n)11T T have to be zero. This is in fact the case. Moreover,
the following theorem reveals an interesting connection between the block diagonalization approach
and the orbit theory in §4.

Theorem 5.1. Let H be a subgroup of Aut(G), and T be the coordinate transformation matrix
whose columns are a symmetry-adapted basis for the natural representation of H. Suppose a Markov
chain P defined on the graph has the symmetry of H. Then the matrix T T (1/n)11T T has the same
block diagonal form as T T PT . Moreover, there is only one nonzero block. Without loss of generality,
let this nonzero block be J1 and the corresponding block of T T PT be B1. These two blocks relate to
the orbit chain PH by

B1 = Π1/2PHΠ−1/2 (26)

J1 = qqT (27)

where Π = Diag(πH), q =
√

πH , and πH is the stationary distribution of PH .

Proof. First we note that P always has a single eigenvalue 1 with associated eigenvector 1. Thus 1

spans an invariant subspace of the natural representation, which is obviously irreducible. The cor-
responding irreducible representation is isomorphic to the trivial representation (which assigns the
scalar 1 to every element in the group). Without loss of generality, let V1 be the isotypic component
that contains the vector 1. Thus V1 is a direct product of H-fixed vectors (each corresponds to a
copy of the trivial representation), and 1 is a linear combination of these vectors.

Let m1 be the dimension of V1, which is the number of H-fixed vectors. We can calculate m1

by Frobenius reciprocity, or “Burnside’s Lemma”; see, e.g., [Ser77]. To do so, we note that the
character χ of the natural representation Q(g), g ∈ H, is the number of fixed points of g, i.e.,

χ(g) = TrQ(g) = FP(g) = #{v ∈ V : g(v) = v}.

“Burnside’s Lemma” says that
1

|H|
∑

g∈H

FP(g) = #orbits.

The left-hand side is the inner product of χ with the trivial representation. It thus counts the
number of H-fixed vectors in V . So m1 equals the number of orbits under H.

Suppose that V = O1 ∪ . . . ∪ Om1 as a disjoint union of H-orbits. Let bi(v) = 1/
√

|Oi| if
v ∈ Oi and zero otherwise. Then b1, . . . , bm1 are H-fixed vectors, and they form an orthonormal
symmetry-adapted basis for V1 (these are not unique). Let T1 = [b1 · · · bm1 ] be the first m1 columns
of T . They are orthogonal to all other columns of T . Since 1 is a linear combination of b1, . . . , bm1 ,
it is also orthogonal to other columns of T . Therefore the matrix T T (1/n)11T T has all its elements
zero except for the first m1×m1 diagonal block, which we denote as J1. More specifically, J1 = qqT

where

q =
1√
n

T T
1 1 =

1√
n

[

bT
1 1 · · · bT

m1
1
]T

=
1√
n

[

|O1|
√

|O1|
· · · |Om1 |

√

|Om1 |

]T

=

[
√

|O1|
n

. . .

√

|Om1 |
n

]T

.

24



1 2 3

4 5 6

7 8 9

Figure 11: A 3 × 3 grid graph.

Note that by (17) the stationary distribution of the orbit chain PH is

πH =

[ |O1|
n

· · · |Om1 |
n

]T

.

Thus we have q =
√

πH . This proves (27).
Finally we consider the relationship between B1 = T T

1 PT1 and PH . We prove (26) by showing

Π−1/2B1Π
1/2 = Π−1/2T T

1 PT1Π
1/2 = PH .

It is straightforward to verify that

Π−1/2T T
1 =

√
n







b′T1
...

b′Tm1






, b′i(v) =







1

|Oi|
if v ∈ Oi

0 if v /∈ Oi

T1Π
1/2 =

1√
n

[

b′′1 · · · b′′m1

]

, b′′i (v) =

{

1 if v ∈ Oi

0 if v /∈ Oi

The entry at the i-th row and j-th column of the matrix Π−1/2T T
1 PT1Π

1/2 are given by

b′Ti Pb′′j =
1

|Oi|
∑

v∈Oi

∑

u∈Oj

P (v, u) =
1

|Oi|
∑

v∈Oi

PH(Oi, Oj) = PH(Oi, Oj).

In the last equation, we have used the fact that PH(Oi, Oj) is independent of which v ∈ Oi is
chosen. This completes the proof.

From Theorem 5.1, we know that B1 contains the eigenvalues of the orbit chain under H.
Other blocks Bi contain additional eigenvalues (not including those of PH) of the orbit chains
under various subgroups of H. (Note that the eigenvalues of the orbit chain under H are always
contained in the orbit chain under its subgroups). With this observation, it is possible to identify
the multiplicities of eigenvalues in orbit chains under various subgroups of Aut(G) by relating to
the decompositions (21), (22) and (24) (some preliminary results are discussed in [BDPX05]).

5.2.1 A running example

As a running example for this section, we consider a Markov chain on a 3×3 grid G, with a total of
9 nodes (see Figure 11). The automorphism group Aut(G) is isomorphic to the 8-element dihedral
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group D4, and corresponds to flips and 90-degree rotations of the graph. The orbits of Aut(G)
acting on the vertices and edges are

{1, 3, 7, 9}, {5}, {2, 4, 6, 8}
and

{{1, 2}, {1, 4}, {2, 3}, {3, 6}, {4, 7}, {7, 8}, {6, 9}, {8, 9}}, {{2, 5}, {4, 5}, {5, 6}, {5, 8}},
respectively. So G is neither vertex- nor edge-transitive.

By Corollary 2.2, we associate transition probabilities a and b to the two edge orbits, respectively.
The transition probability matrix has the form

P =





























1−2a a 0 a 0 0 0 0 0
a 1−2a−b a 0 b 0 0 0 0
0 a 1−2a 0 0 a 0 0 0
a 0 0 1−2a−b b 0 a 0 0
0 b 0 b 1−4b b 0 b 0
0 0 a 0 b 1−2a−b 0 0 a
0 0 0 a 0 0 1−2a a 0
0 0 0 0 b 0 a 1−2a−b a
0 0 0 0 0 a 0 a 1−2a





























.

The matrix P satisfies Q(σ)P = PQ(σ) for every σ ∈ Aut(G). Using the algorithm in [FS92, §5.2],
we found a symmetry-adapted basis for the representation Q, which we take as columns to form

T =
1

2































0 1 0 1 0
√

2 0 0 0
0 0 1 0 −1 0 1 0 1

0 1 0 −1 0 0 0
√

2 0
0 0 1 0 1 0 1 0 −1
2 0 0 0 0 0 0 0 0
0 0 1 0 1 0 −1 0 1

0 1 0 −1 0 0 0 −
√

2 0
0 0 1 0 −1 0 −1 0 −1

0 1 0 1 0 −
√

2 0 0 0































.

With this coordinate transformation matrix, we obtain

T T PT =































1−4b 0 2b
0 1−2a 2a
2b 2a 1−2a−b

1−2a
1−2a−b

1−2a
√

2a√
2a 1−2a−b

1−2a
√

2a√
2a 1−2a−b































.

The 3-dimensional block B1 contains the single eigenvalue 1, and it is related to the orbit chain in
Figure 12 by the equation (26). The corresponding nonzero block of T T (1/n)11T T is

J1 =
1

9





1 2 2
2 4 4
2 4 4



 .
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2a

2a
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Figure 12: The orbit chain of the 3 × 3 grid graph.

Next, we substitute the above expressions into the SDP (25) and solve it numerically. Since
there are repeated 2 × 2 blocks, the original 9 × 9 matrix is replaced by four smaller blocks, of
dimension 3,1,1,2. The optimal solutions are

a⋆ ≈ 0.363, b⋆ ≈ 0.2111, µ⋆ ≈ 0.6926.

Interestingly, it can be shown that these optimal values are not rational, but instead algebraic
numbers with defining minimal polynomials:

18157 a5 − 17020 a4 + 6060 a3 − 1200 a2 + 180 a − 16 = 0

1252833 b5 − 1625651 b4 + 791936 b3 − 173536 b2 + 15360 b − 256 = 0

54471µ5 − 121430µ4 + 88474µ3 − 18216µ2 − 2393µ + 262 = 0.

5.3 Examples

We revisit some previous examples with the block diagonalization method, and draw connections
to the method based on orbit theory in §4. We also discuss some additional examples that are
difficult if one uses the orbit theory, but are nicely handled by block diagonalization. In many of
the examples, the coordinate transformation matrix T can be constructed directly by inspection.

5.3.1 Complete bipartite graphs

For the complete bipartite graph Km,n (see Figure 4), This graph is edge-transitive, so we can
assign the same transition probability p on all the edges. The transition probability matrix has the
form

P (p) =

[

(1 − np)Im p1m×n

p1n×m (1 − mp)In

]

We can easily find a decomposition of the associated matrix algebra. It will have three blocks, and
an orthogonal block-diagonalizing change of basis is given by

T =

[

(1/
√

m)1m×1 0 Fm 0
0 (1/

√
n)1n×1 0 Fm

]

where Fn is an n × (n − 1) matrix whose columns are an orthogonal basis of the subspace comple-
mentary to that generated by 1n×1.

In the new coordinates, the matrix T T P (p)T has the following diagonal blocks

[

1 − mp p
√

nm
p
√

nm 1 − np

]

, In−1 ⊗ (1 − mp), Im−1 ⊗ (1 − np).

The 2 × 2 block has eigenvalues 1 and 1 − (m + n)p. The other diagonals reveal the eigenvalue
1 − mp and 1 − np, with multiplicities n − 1 and m − 1, respectively. The optimal solution to the
FMMC problem can be easily obtained as in (10) and (11).
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To draw connections to the orbit theory, we note that the above 2 × 2 block is precisely B1 in
the equation (26), and the corresponding PH is the orbit chain shown in Figure 8(a). In addition
to the two eigenvalues in B1, the extra eigenvalue in the orbit chain of Figure 8(b) is 1 − np, and
the extra eigenvalue in Figure 8(c) is 1 − mp. All these eigenvalues appear in the orbit chain in
Figure 8(d). As we have seen, the block diagonalization technique reveals the multiplicities in the
original chain of the eigenvalues from various orbit chains.

5.3.2 Complete k-partite graphs

The previous example generalizes nicely to the complete k-partite graph Kn1,...,nk
. In this case, the

fixed-point reduced matrix will have dimensions
∑

i ni, and the structure

P (p) =











(1 −
∑

j 6=1 njp1j)In1 p121n1×n2 · · · p1k1n1×nk

p211n2×n1 (1 −∑j 6=2 njp2j)In2 · · · p2k1n2×nk

...
...

. . .
...

pk11nk×n1 pk21nk×n2 · · · (1 −∑j 6=k njpkj)Ink











where the probabilities satisfy pij = pji. There are total
(k
2

)

independent variables.
In a very similar fashion to the bipartite case, we can explicitly write the orthogonal coordinate

transformation matrix

T =







(1/
√

n1)1n1×1 . . . 0 Fn1 . . . 0
...

. . .
...

...
. . .

...
0 . . . (1/

√
nk)1nk×1 0 . . . Fnk






.

The matrix T T P (p)T decomposes into k + 1 blocks: one of dimension k, with the remaining k
blocks each having dimension ni − 1. The decomposition is:











(1 −∑j 6=1 njp1j) p12
√

n1n2 · · · p1k
√

n1nk

p21
√

n2n1 (1 −∑j 6=2 njp2j) · · · p2k
√

n2nk

...
...

. . .
...

pk1
√

nkn1 pk2
√

nkn2 · · · (1 −
∑

j 6=k njpkj)











,

Ini−1 ⊗ (1 −
∑

j 6=i

njpij), i = 1, . . . , k.

These blocks can be substituted into the SDP (25) to solve the FMMC problem.

5.3.3 Wheel graph

The wheel graph consists of a center vertex (the hub) and a ring of n peripheral vertices, each
connected to the hub; see Figure 13. It has total n+1 nodes. Its automorphism group is isomorphic
to the dihedral group Dn with order 2n. The transition probability matrix has the structure

P =



















1 − np p p . . . p p
p 1 − p − 2q q . . . 0 q
p q 1 − p − 2q . . . 0 0
...

...
...

. . .
...

...
p 0 0 . . . 1 − p − 2q q
p q 0 . . . q 1 − p − 2q



















, (28)
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Figure 13: The wheel graph with n = 9 (total 10 nodes).

where p and q are the transition probabilities between the hub and each peripheral vertex, and
between adjacent peripheral vertices, respectively.

For this structure, the block-diagonalizing transformation is given by

T = Diag(1,Fn), [Fn]jk =
1√
n

e
2πı(j−1)(k−1)

n

where Fn is the unitary Fourier matrix of size n×n. As a consequence, the matrix T−1PT is block
diagonal with a 2 × 2 matrix and n − 1 scalars on its diagonal, given by

[

1 − np
√

np√
np 1 − p

]

and
1 − p + (ωk

n + ω−k
n − 2) · q, k = 1, . . . , n − 1

where ωn = e
2πı
n is an elementary n-th root of unity. The 2 × 2 block is B1, which contains

eigenvalues of the orbit chain under Dn (it has only two orbits).
With the above decomposition, we obtain the optimal solution to the FMMC problem in closed

form

p⋆ =
1

n
, q⋆ =

1 − 1
n

2 − cos 2π
n − cos 2⌊n/2⌋π

n

.

The optimal value of the SLEM is

µ⋆ =

(

1 − 1

n

)

cos 2π
n − cos 2⌊n/2⌋π

n

2 − cos 2π
n − cos 2⌊n/2⌋π

n

.

Compared with the optimal solution for the cycle graph in (8) and (9), we see an extra factor
of 1 − 1/n in both the SLEM and the transition probability between peripheral vertices. This is
exactly the factor improved by adding the central hub over the pure n-cycle case.

The wheel graph is an example for which the block diagonalization technique works out nicely,
while the orbit theory leads to much less reduction. Although there are only two orbits under
the full automorphism group, any orbit graph that has a fixed peripheral vertex will have at least
(n + 1)/2 orbits (the corresponding symmetry is the reflection through that vertex).
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5.3.4 Kn-Kn

We did careful symmetry analysis for the graph Kn-Kn in §4.3.1; see Figure 9. The transition
probability matrix on this graph has the structure

P =









C p11 0 0
p11

T 1 − p0 − (n − 1)p1 p0 0
0 p0 1 − p0 − (n − 1)p1 p11

T

0 0 p11 C









where C is a circulant matrix

C = (1 − p1 − (n − 3)p2)In−1 + p21(n−1)×(n−1).

Since circulant matrices are diagonalized by Fourier matrices, we first use the transformation
matrix

T1 =









Fn−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 Fn−1









where Fn−1 is the unitary Fourier matrix of dimension n − 1. This corresponds to block diagonal-
ization using the symmetry group Sn−1 × Sn−1, which is a subgroup of Aut(Kn-Kn). The matrix
T−1

1 PT1 has diagonal blocks

B′
1 =









1 − p1

√
n − 1p1 0 0√

n − 1p1 1 − p0 − (n − 1)p1 p0 0
0 p0 1 − p0 − (n − 1)p1

√
n − 1p1

0 0
√

n − 1p1 1 − p1









and
I2n−4 ⊗ (1 − p1 − (n − 1)p2). (29)

From this we know that P has an eigenvalue 1 − p1 − (n − 1)p2 with multiplicity 2n − 4, and
the remaining four eigenvalues are the eigenvalues of the above 4 × 4 block B′

1. The block B′
1

corresponds to the orbit chain under the symmetry group H = Sn−1 × Sn−1. More precisely,
B′

1 = Π1/2PHΠ−1/2, where Π = Diag(πH), PH and πH are the transition probability matrix and
stationary distribution of the orbit chain shown in Figure 9(c), respectively.

Exploring the full automorphism group of Kn-Kn, we can further block diagonalize B′
1. Let

T = T1





In−2

T2

In−2



 , T2 =
1√
2









1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1









.

The 4 × 4 block B′
1 is decomposed into

[

1 − p1

√
n − 1p1√

n − 1p1 1 − (n − 1)p1

]

,

[

1 − 2p0 − (n − 1)p1

√
n − 1p1√

n − 1p1 1 − p1

]

The first block is B1, which has eigenvalues 1 and 1 − np1. By Theorem 5.1, B1 is related to the
orbit chain under Aut(Kn-Kn) (see Figure 9(b)) by the equation (26). The second 2× 2 block has
eigenvalues

1 − p0 − (1/2)np1 ±
√

(p0 + (1/2)np1)2 − 2p0p1.
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These are the eigenvalues contained in the orbit chain of Figure 9(c) but not in Figure 9(b).
In summary, the distinct eigenvalues of the Markov chain on Kn-Kn are

1, 1 − np1, 1 − p0 − (1/2)np1 ±
√

(p0 + (1/2)np1)2 − 2p0p1, 1 − p1 − (n − 1)p2

where the last one has multiplicity 2n−4, and all the rest have multiplicity 1. To solve the FMMC
problem, we still need to solve the SDP (25). There are three blocks of matrix inequality constraints,
with sizes 2, 2, 1, respectively. Note that the total size is 5, which is exactly the size of the single
matrix inequality in the SDP (19) when we used the orbit theory to do symmetry reduction. As
we mentioned before, the huge reduction for Kn-Kn is due to the fact that it has an irreducible
representation with high dimension 2n − 4 and multiplicity 1 (see [BDPX05, Proposition 2.4]). In
the decomposition (24), this means a block of size 1 repeated 2n − 4 times; see equation (29).

Since now the problem has been reduced to something much more tractable, we can even obtain
an analytic expression for the optimal transition probabilities. The optimal solution for the Kn-Kn

graph (for n ≥ 2) is given by:

p⋆
0 = (

√
2 − 1)

n +
√

2 − 2

n + 2 − 2
√

2
, p⋆

1 =
2 −

√
2

n + 2 − 2
√

2
, p⋆

2 =
n −

√
2

(n − 1)(n + 2 − 2
√

2)
.

The corresponding optimal convergence rate is

µ⋆ =
n − 4 + 2

√
2

n + 2 − 2
√

2
.

For large n, we have µ⋆ = 1 − 6−4
√

2
n + O

(

1
n2

)

. This is quite close to the SLEM of a suboptimal
construction with transition probabilities

p0 =
1

2
, p1 = p2 =

1

2(n − 1)
. (30)

As shown in [BDPX05], the corresponding SLEM is of the order µ = 1 − 1
3n + O

(

1
n2

)

; here we

have 6 − 4
√

2 ≈ 0.3431. The limiting value of the optimal transition probability between the two
clusters is

√
2 − 1 ≈ 0.4142.

5.3.5 Complete binary trees

Since the automorphism groups of the complete binary trees Tn are given recursively (see §4.3.2),
it is also convenient to write the transition probability matrices in a recursive form. We start from
the bottom by considering the last level of branches. If we cut-off the rest of the tree, the last level
has three nodes and two edges with the transition probability matrix

Pn =





1 − 2pn pn pn

pn 1 − pn 0
pn 0 1 − pn



 . (31)

For the tree with n levels Tn, the transition matrix P1 can be computed from the recursion

Pk−1 =





1 − 2pk−1 pk−1e
T
k pk−1e

T
k

pk−1ek Pk − pk−1eke
T
k 0

pk−1ek 0 Pk − pk−1eke
T
k



 , k = n, n − 1 . . . , 2 (32)
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where ek = [1 0 . . . 0], a unit vector in Rtk with tk = 2k+1 − 1.
The coordinate transformations are also best written in recursive form. Let

Tn Diag(1,F2), F2 =
1√
2

[

1 1
1 −1

]

,

and define the matrices

Tk−1 = Diag(1,F2 ⊗ Tk), k = n, n − 1, . . . , 2.

It is clear that all the Tk are orthogonal. It is easy to verify that Tn block-diagonalizes Pn

T T
n PnTn =





1 − 2pn

√
2pn 0√

2pn 1 − pn 0
0 0 1 − pn



 .

In fact Tk block-diagonalizes Pk, and the transformed matrices can be obtained recursively

T T
k−1Pk−1Tk−1 =





1 − 2pk−1

√
2pk−1e

T
k 0√

2pk−1ek T T
k PkTk − pk−1eke

T
k 0

0 0 T T
k PkTk − pk−1eke

T
k





for k = n, n − 1, . . . , 2.
The matrix T T

1 P1T1 has a very special structure. It has n + 1 distinct blocks, each with size
1, . . . , n+1, respectively. Order these blocks with increasing sizes as B1, B2, . . . , Bn+1. The largest
block of size n + 1 is

Bn+1 =

























1−2p1

√
2p1√

2p1 1−p1−2p2

√
2p2√

2p2 1−p2−2p3

√
2p3

. . .
. . .

. . .

√
2pn−1 1−pn−1−2pn

√
2pn√

2pn 1−pn

























.

The matrix Bn is the submatrix of Bn+1 by removing its first row and column. The matrix Bn−1

is the submatrix of Bn+1 by removing its first two rows and first two columns, and so on. The
matrix B1 is just the scalar 1 − pn. The matrix Bn+1 only appears once and it is related by (26)
to the orbit chain in Figure 10(a) (for this example we use Bn+1 instead of B1 for notational
convenience). The eigenvalues of Bn+1 appear in Tn with multiplicity one. For k = 1, . . . , n, the
block Bk is repeated 2n−k times. These blocks, in a recursive form, contain additional eigenvalues
of Tn, and the numbers of their occurrences reveal the multiplicities of the eigenvalues.

More specifically, we note that the orbit chain under the full automorphism group has only one
fixed point — the root vertex (see Figure 10(a)). We consider next the orbit chain that has a fixed
point in the first level of child vertices (the other child vertex in the same level is also fixed). This
is the orbit graph in Figure 10(b), which has 2n+1 vertices. The matrix Bn contains exactly the n
eigenvalues that appear in this orbit chain but not in the one of Figure 10(a). These n eigenvalues
each has multiplicity 2n−n = 1 in Tn. Then we consider the orbit chain that has a fixed point in
the second level of child vertices (it also must have a fixed point in the previous level). This is the
orbit graph in Figure 10(c), which has 3n vertices. The matrix Bn−1 contains exactly the n − 1
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Figure 14: Left: the simplest graph with no symmetry. Right: two copies joined head-to-tail.

eigenvalues that appear in this orbit chain but not in the previous one. These n − 1 eigenvalues
each has multiplicity 2n−(n−1) = 2. In general, for k = 1, . . . , n, the size of the orbit chain that has
a fixed point in the k-th level of child vertices is

(n + 1) + n + · · · + (n + 1 − k)

(it must have a fixed point in all previous levels). Compared with the orbit chain of (k − 1)-th
level, the orbit chain of k-th level contains additional n+1− k eigenvalues. These are precisely the
eigenvalues of the matrix Bn+1−k, and they all appear in Tn with multiplicity 2n−(n+1−k) = 2k−1.

Because of the special structure of B1, . . . , Bn+1, we have the following eigenvalue interlacing
result (e.g., [HJ85, Theorem 4.3.8])

λk+1(Bk+1) ≤ λk(Bk) ≤ λk(Bk+1) ≤ λk−1(Bk) ≤ · · · ≤ λ2(Bk) ≤ λ2(Bk+1) ≤ λ1(Bk) ≤ λ1(Bk+1)

for k = 1, . . . , n. Thus for the FMMC problem, we only need to consider the two blocks Bn+1 and
Bn (note that λ1(Bn+1) = 1). In other words, we only need to consider the orbit chain with 2n + 1
vertices in Figure 10(b). This is a further simplification over the method based on orbit theory.

We conjecture that the optimal transition probabilities are

p⋆
k =

1

3

(

1 −
(

−1

2

)k
)

, k = 1, . . . , n.

Notice that these probabilities do not depend explicitly on n, and so they coincide for any two
binary trees, regardless of the height. With increasing k, the limiting optimal values oscillate
around and converge to 1/3.

5.3.6 An example of Ron Graham

We finish this section with an example raised by Ron Graham. Consider the simplest graph with
no symmetry (Figure 14, left). Take n copies of this six vertex graph and join them, head to tail,
in a cycle. By construction, this 6n vertex graph certainly has Cn symmetry. Careful examination
reveals that the automorphism group is isomorphic to the dihedral group Dn (with order 2n). The
construction actually brings symmetry under reflections in addition to rotations (Figure 14, right).
The orbit graphs under Cn and Dn are shown in Figure 15.
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Figure 15: Left: orbit graph with Cn symmetry. Right: orbit graph with Dn symmetry.

Although the automorphism group of this graph (with 6n vertices) is isomorphic to the ones
of n-cycles (Figure 3) and wheels (Figure 13), finding the symmetry-adapted basis for block-
diagonalization is a bit more involved. This is due to the different types of orbits we have for
this graph. The details of block-diagonalizing this type of graphs is described in [FS92, §3.1]. The
diagonal blocks of the resulting matrix all have sizes no larger than 6 × 6. Numerical experiments
show that for n ≥ 3, the fastest mixing chain seems to satisfy

p⋆
1 = p⋆

4 =
1

2
, p⋆

2 + p⋆
3 =

1

2
.

Intuitively, this 6n vertex graph is the same as modifying a 5n vertex cycle by adding a triangular
bump (with an additional vertex) for every 5 vertices. Recall that for a pure cycle, we have to use a
transition probability that is slightly less than 1/2 to achieve fastest mixing; see equation (8). Here
because of the added bumps, it seems optimal to assign transition probability 1/2 to every edge on
the cycle (p⋆

1 and p⋆
4), except for edges being part of a bump. For the bumps, the probability 1/2

is shared between the original edge on the cycle (p⋆
2) and the edge connecting to the bump points

(p⋆
3). Moreover, we observe that as n increases, p⋆

3 gets smaller and p⋆
2 gets closer to 1/2. So for

large n, the added bump vertices seem to be ignored, with very small probability to be reached;
but once it is reached, it will staying there with high probability.

6 Conclusions

We have shown that exploiting graph symmetry can lead to significant reduction in both the
number of variables and the size of matrices, in solving the FMMC problem. For special classes of
graphs such as edge-transitive and distance-transitive graphs, symmetry reduction leads to closed
form solutions in terms of the eigenvalues of the Laplacian matrix or the intersection matrix. For
more general graphs, we gave two symmetry reduction methods, based on orbit theory and block
diagonalization, respectively.

The method based on orbit theory is very intuitive, but the construction of “good” orbit chains
can be of more art than technique. The method of block diagonalization can be mostly automated
once the irreducible representations of the automorphism groups are generated (for small graphs,
they can be generated using software for computational discrete algebra such as GAP [gro05]).
These two approaches have an interesting connection: orbit theory gives nice interpretation of
the diagonal blocks, while the block diagonalization approach offers theoretical insights about the
construction of the orbit chains.

The symmetry reduction method developed in this paper can be very useful in many combina-
torial optimization problems where the graph has rich symmetry properties, in particular, problems
that can be formulated as or approximated by SDP or eigenvalue optimization problems involving
weighted Laplacian matrices (e.g., [MP93, Goe97]). In addition to the reduction of problem size,
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other advantages of symmetry exploitation includes degeneracy removal, better conditioning and
reliability [GP04].

There is still much to do in understanding how to exploit symmetry in semidefinite program-
ming. The techniques presented in this paper requires a good understanding of orbit theory, group
representation theory and interior-point methods for SDP. It is of practical importance to develop
general purpose methods that can automatically detect symmetries (e.g., the code nauty [McK03]
for graph automorphisms), and then exploit them in computations. A good model here is general
purpose (but heuristic) methods for exploiting sparsity in numerical linear algebra, where symbolic
operations on graphs (e.g., minimum degree permutation) reduce fill-ins in numerical factorization
(e.g., [GL81]). As a result of this work, even very large sparse optimization problems are now rou-
tinely solved by users who are not experts in sparse matrix methods. For exploiting symmetry in
SDP, the challenges include the development of fast methods to detect large symmetry groups (for
computational purposes, it often suffices to recognize parts of the symmetries), and the integration
of algebraic methods (e.g., orbit theory and group representations) and numerical algorithms (e.g.,
interior-point methods).
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