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Abstract

We consider the one-dimensional Willmore equation subject to Navier boundary conditions,
i.e. the position and the curvature are prescribed on the boundary. In a previous work, ex-
plicit symmetric solutions to symmetric data have been constructed. Within a certain range of
boundary curvatures one has precisely two symmetric solutions while for boundary curvatures
outside the closure of this range there are none. The solutions are ordered; one is “small”, the
other “large”. In the first part of this paper we address the stability problem and show that the
small solution is (linearized) stable in the whole open range of admissible boundary curvatures,
while the large one is unstable and has Morse index 1. A second goal is to investigate whether
the small solution is minimal for the corresponding Willmore functional. It turns out that for a
certain subrange of admissible boundary curvatures the small solution is the unique minimum,
while for curvatures outside that range the minimum is not attained. As a by–product of our ar-
gument we show that for any admissible function there exists a symmetric function with smaller
Willmore energy.

1 Introduction

Recently, Willmore surfaces (see[W]) and the related flow attracted quite some attraction, see e.g.
[BK, KS1, KS2, KS3, MS, Sn, St], [DD] for numerical studies and [P, DKS] for elastic curves, which
are the one-dimensional analoga. The mentioned work is concerned with closed surfaces and curves
while only very few results concerning boundary value problems are available. Quite recently,
Schätzle [Sch] considered Willmore surfaces with boundary, which are subject to the constraint to
be submanifolds of S

n and which satisfy Dirichlet type boundary conditions.
In order to gain some more insight in general boundary conditions for the “free” Willmore

equation, in [DG] we had a look at the one-dimensional case, where in some situations, almost
explicit solutions can be found for suitable boundary value problems. For further background
information and references, see [DG] and also [Nit]. In [DG], we were interested in Willmore
graphs and studied among others the Navier boundary value problem with symmetric data α ∈ R

for the one-dimensional Willmore equation:






1√
1+u′(x)2

d
dx

(

κ′(x)√
1+u′(x)2

)

+ 1
2κ

3(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0, κ(0) = κ(1) = −α.
(1)
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Here

κ(x) =
d

dx

(

u′(x)
√

1 + u′(x)2

)

=
u′′(x)

(1 + u′(x)2)3/2
(2)

denotes the curvature of the graph of u at the point (x, u(x)). Solutions of (1) are critical points
of the modified one-dimensional Willmore functional

W̃α(u) =

∫

graph(u)

(

κ(x)2 + 2ακ(x)
)

ds(x) =

∫ 1

0

(

κ(x)2 + 2ακ(x)
)
√

1 + u′(x)2 dx, (3)

with u ∈ H2(0, 1)∩H1
0 (0, 1). The boundary conditions u(0) = u(1) = 0 are formulated by working

in the space H1
0 , while the curvature boundary conditions κ(0) = κ(1) = −α arise as natural

boundary conditions since also the admissible testing functions only have to be in H2 ∩ H1
0 . By

reflection it is sufficient to consider
α ≥ 0.

As for symmetric solutions of (1), in [DG], we proved the following result:

Proposition 1 ([DG, Theorem 1]). There exists αmax = 1.343799725 . . . such that for 0 < α <
αmax, the Navier boundary value problem (1) has precisely two smooth (graph) solutions u in the
class of smooth functions that are symmetric around x = 1

2 . If α = αmax one has precisely one
such solution, for α = 0 one only has the trivial solution and no such solutions exist for α > αmax.

Both solutions are positive and one of these solutions is larger than the other. The small
solutions are ordered with respect to α while the large ones become smaller for increasing α, see
Figure 1. For the bifurcation diagram, see Figure 2.
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Figure 1: Solutions of the Navier boundary value problem (1) for α = 0.2, α = 1 and α = 1.34 (left
to right)

It is an obvious conjecture that for 0 ≤ α < αmax the small solutions are (linearized) stable.
This property was left open in [DG], and to prove it is the first goal of this paper.

Theorem 1. Assume that 0 ≤ α < αmax, and that u is the symmetric small solution of the Navier
boundary value problem (1). Then, this solution is linearized stable, i.e. the spectrum of the (self
adjoint) linearization of (1) around u is contained in (0,∞).

Observing that these linearizations are the second variation of the functional W̃α, this proves
that the small solution is a local minimum of the functional W̃α in H2 ∩H1

0 (0, 1). Furthermore, we
will show that on 0 < α < αmax, the large solutions are unstable. More precisely we know:

Theorem 2. Assume that 0 < α < αmax, and that u is the symmetric large solution of the
Navier boundary value problem (1). Then, this solution is unstable and has Morse index 1, i.e.
one eigenvalue of the (self adjoint) linearization of (1) is negative while the remaining spectrum is
contained in (0,∞).
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Figure 2: Bifurcation diagram for (1): The extremals value of the solution u(1/2) (left) and of the
derivative u′(0) (right) plotted over α

We emphasize that no symmetry assumptions are made in the discussion of the linearizations
of (1).

A further important question is whether the small solutions are not only a local but also a
global minimum of the functional W̃α.

Theorem 3. There exists α∗ = 1.132372323 . . . ∈ (0, αmax) such that for 0 ≤ α ≤ α∗ the small
solution u is the unique global minimum of the functional W̃α in the class H2 ∩ H1

0 (0, 1). If
α∗ < α ≤ αmax the infimum of W̃α in H2 ∩H1

0 (0, 1) is not attained and in that case

inf
v∈H2∩H1

0
(0,1)

W̃α(v) =

(

∫

R

1

(1 + τ2)5/4
dτ

)2

− 2απ.

The main idea of proving Theorem 3 consists in reducing the minimization of W̃α over H2 ∩
H1

0 (0, 1) to the minimization of a function of two variables. As a by–product of this approach we
shall see that the infimum of the Willmore energy in H2∩H1

0 (0, 1) coincides with the infimum in the
subspace M of functions that are symmetric around x = 1/2, i.e for every function in H2∩H1

0 (0, 1),
there exists a symmetric function with the same or smaller Willmore energy. This is remarkable
since we deal with a fourth order problem and the well–known symmetrization procedures do not
apply.

Theorem 4. Let M be the class of functions in H2∩H1
0 (0, 1), which are symmetric around x = 1/2.

Then we have

inf
v∈H2∩H1

0
(0,1)

W̃α(v) = inf
v∈M

W̃α(v).
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2 Linearized stability

To prove Theorem 1 we describe in more detail how the symmetric solutions to (1) were obtained
in [DG].

In what follows, the function

G : R →
(

−c0
2
,
c0
2

)

, G(s) :=

∫ s

0

1

(1 + τ2)5/4
dτ, (4)

c0 =

∫

R

1

(1 + τ2)5/4
dτ = B

(

1

2
,
3

4

)

= 2.396280469 . . . ,

plays a crucial role. It is straightforward to see thatG is strictly increasing, bijective with G′(s) > 0.
So, also the inverse function

G−1 :
(

−c0
2
,
c0
2

)

→ R (5)

is strictly increasing, bijective and smooth with G−1(0) = 0.

Lemma 1 ([DG, Lemma 4]). Let u ∈ C4([0, 1]) be a function symmetric around x = 1/2. Then u
solves the Willmore equation in (1) iff there exists c ∈ (−c0, c0) such that

∀x ∈ [0, 1] : u′(x) = G−1
( c

2
− cx

)

. (6)

For the curvature, one has that

κ(x) = − c

4

√

1 +G−1
(

c
2 − cx

)2
. (7)

Moreover, if we additionally assume that u(0) = u(1) = 0, then one has

u(x) =
2

c 4

√

1 +G−1
(

c
2 − cx

)2
− 2

c 4

√

1 +G−1
(

c
2

)2
(c 6= 0). (8)

In order to solve the Navier boundary value problem (1), in [DG], we had to study the function

h : (−c0, c0) → R, h(c) =
c

4

√

1 +G−1
(

c
2

)2
. (9)

The range of h is precisely the set of α, for which the Navier boundary value problem (1) has
a smooth symmetric graph solution. The number of solutions c of the equation α = h(c) is the
number of such solutions of the boundary value problem.

Lemma 2 ([DG, Lemma 6]). We have h > 0 in (0, c0), h < 0 in (−c0, 0), limcրc0 h(c) =
limcց−c0 h(c) = 0. The function h is odd and has precisely one local maximum in cmax =
1.840428142 . . . and one local minimum in cmin = −cmax. The corresponding value is αmax =
h(cmax) = 1.343799725 . . ..

The small solutions correspond precisely to c ∈ (0, cmax), the large ones to c ∈ (cmax, c0). Let us
fix c ∈ (0, c0) with corresponding α = h(c) and solution u given by (8). First we have to calculate
the linearization of (1) around u, i.e. the second variation of the modified Willmore functional W̃α

in u:
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Figure 3: The function c 7→ h(c)

Lemma 3. We have

D2W̃α(u)(ϕ, η) = 2

∫ 1

0

ϕ′′(x)η′′(x)

(1 + u′(x)2)5/2
dx+ 5

∫ 1

0

1 − u′(x)2

(1 + u′(x)2)3/2
κ(x)2ϕ′(x)η′(x) dx

+6α

[

u′(x)ϕ′(x)η′(x)

(1 + u′(x)2)2

]1

0

, ϕ, η ∈ H2 ∩H1
0 (0, 1).

Proof. According to [DG, Lemma 2 and Corollary 1], the first variation of W̃α(u) is given by

DW̃α(u)(ϕ) = 2

∫ 1

0

u′′(x)ϕ′′(x)

(1 + u′(x)2)5/2
dx− 5

∫ 1

0

u′(x)u′′(x)2ϕ′(x)

(1 + u′(x)2)7/2
dx

+2α

[

ϕ′(x)

1 + u′(x)2

]1

0

, ϕ ∈ H2 ∩H1
0 (0, 1).

In order to obtain the second derivative, we consider also η ∈ H2 ∩H1
0 (0, 1) and differentiate the

previous expression with respect to this direction:

D2W̃α(u)(ϕ, η) =
d

dt
DW̃α(u+ tη)(ϕ)|t=0

= 2

∫ 1

0

ϕ′′(x)η′′(x)

(1 + u′(x)2)5/2
dx− 10

∫ 1

0

u′(x)u′′(x)ϕ′′(x)η′(x)

(1 + u′(x)2)7/2
dx

−10

∫ 1

0

u′(x)u′′(x)ϕ′(x)η′′(x)

(1 + u′(x)2)7/2
dx− 5

∫ 1

0

u′′(x)2ϕ′(x)η′(x)

(1 + u′(x)2)7/2
dx

+35

∫ 1

0

u′(x)2u′′(x)2ϕ′(x)η′(x)

(1 + u′(x)2)9/2
dx− 4α

[

u′(x)ϕ′(x)η′(x)

(1 + u′(x)2)2

]1

0

= 2

∫ 1

0

ϕ′′(x)η′′(x)

(1 + u′(x)2)5/2
dx− 5

∫ 1

0

κ(x)2ϕ′(x)η′(x)
√

1 + u′(x)2
dx

−10

∫ 1

0
κ(x) · u′(x)

√

1 + u′(x)2
· 1

(1 + u′(x)2)3/2
· d
dx

(

ϕ′(x)η′(x)
)

dx

+35

∫ 1

0

u′(x)2κ(x)2ϕ′(x)η′(x)

(1 + u′(x)2)3/2
dx− 4α

[

u′(x)ϕ′(x)η′(x)

(1 + u′(x)2)2

]1

0

.
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To proceed further we would like to integrate the third term by parts. Here we will exploit that
u is a solution to (1). In particular, u is smooth and satisfies the Navier boundary data κ(x) =
−α, x ∈ {0, 1}.

D2W̃α(u)(ϕ, η) = 2

∫ 1

0

ϕ′′(x)η′′(x)

(1 + u′(x)2)5/2
dx− 5

∫ 1

0

κ(x)2ϕ′(x)η′(x)
√

1 + u′(x)2
dx

+35

∫ 1

0

u′(x)2κ(x)2ϕ′(x)η′(x)

(1 + u′(x)2)3/2
dx− 4α

[

u′(x)ϕ′(x)η′(x)

(1 + u′(x)2)2

]1

0

−10

[

κ(x)
u′(x)ϕ′(x)η′(x)

(1 + u′(x)2)2

]1

0

+ 10

∫ 1

0

κ′(x)u′(x)ϕ′(x)η′(x)

(1 + u′(x)2)2
dx

+10

∫ 1

0

κ(x)2ϕ′(x)η′(x)

(1 + u′(x)2)3/2
dx− 30

∫ 1

0

κ(x)u′(x)2u′′(x)ϕ′(x)η′(x)

(1 + u′(x)2)3
dx

= 2

∫ 1

0

ϕ′′(x)η′′(x)

(1 + u′(x)2)5/2
dx− 5

∫ 1

0

κ(x)2ϕ′(x)η′(x)
√

1 + u′(x)2
dx

+5

∫ 1

0

u′(x)2κ(x)2ϕ′(x)η′(x)

(1 + u′(x)2)3/2
dx+ 6α

[

u′(x)ϕ′(x)η′(x)

(1 + u′(x)2)2

]1

0

+10

∫ 1

0

κ′(x)u′(x)ϕ′(x)η′(x)

(1 + u′(x)2)2
dx+ 10

∫ 1

0

κ(x)2ϕ′(x)η′(x)

(1 + u′(x)2)3/2
dx.

We infer from (6) and (7) that

∀x ∈ [0, 1] : κ(x)
(

1 + u′(x)2
)1/4

= −c

and hence

∀x ∈ [0, 1] : κ′(x)
(

1 + u′(x)2
)1/4

+
1

2
u′(x)κ(x)2

(

1 + u′(x)2
)3/4

= 0.

Consequently,

D2W̃α(u)(ϕ, η) = 2

∫ 1

0

ϕ′′(x)η′′(x)

(1 + u′(x)2)5/2
dx− 5

∫ 1

0

κ(x)2ϕ′(x)η′(x)
√

1 + u′(x)2
dx

+6α

[

u′(x)ϕ′(x)η′(x)

(1 + u′(x)2)2

]1

0

+ 10

∫ 1

0

κ(x)2ϕ′(x)η′(x)

(1 + u′(x)2)3/2
dx.

This proves our claim.

Looking at η as a test function and plugging in the representation of u in terms of c according
to Lemmas 1 and 2, the linearization of (1) around u reads as follows:































(

ϕ′′(x)
“

1+G−1( c
2
−cx)

2
”5/2

)′′

+ 5
2c

2

(

G−1( c
2
−cx)

2
−1

“

1+G−1( c
2
−cx)

2
”

2ϕ
′(x)

)′

= 0, x ∈ (0, 1),

ϕ(0) = ϕ(1) = 0,
ϕ′′(0)

“

1+G−1( c
2
)
2

”5/2
+ 3

c G−1( c
2
)ϕ′(0)

“

1+G−1( c
2
)
2

”9/4
= 0, ϕ′′(1)

“

1+G−1( c
2
)
2

”5/2
− 3

c G−1( c
2
)ϕ′(1)

“

1+G−1( c
2
)
2

”9/4
= 0.

(10)

For c = 0, the small solution of (1) is u(x) ≡ 0, and D2W̃0(u)(ϕ,ϕ) =
∫ 1
0 ϕ

′′(x)2 dx is positive
definite in H2∩H1

0 (0, 1) with respect to the L2(0, 1)-norm. Since the eigenvalues of the linearization
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depend smoothly on u and u depends smoothly on c, D2W̃α(u)(ϕ,ϕ) remains positive definite for
c increasing from 0 as long as (10) only has the trivial solution ϕ(x) ≡ 0.

We assume that (10) has a solution ϕ and put

χ(x) := ϕ′(x).

Then, there exists a constant A ∈ R such that χ solves the second order differential equation







χ′(x)
(

1 +G−1
(

c
2 − cx

)2
)5/2







′

+
5

2
c2







G−1
(

c
2 − cx

)2 − 1
(

1 +G−1
(

c
2 − cx

)2
)2χ






= c2A.

We introduce more suitable variables:

y = G−1
( c

2
− cx

)

∈
[

−G−1
( c

2

)

, G−1
( c

2

)]

, x =
1

2
− G(y)

c
;

ψ(y) := χ(x) = χ

(

1

2
− G(y)

c

)

χ(x) = ψ
(

G−1
( c

2
− cx

))

;

χ′(x) = −c
(

1 +G−1
( c

2
− cx

)2
)5/4

ψ′
(

G−1
( c

2
− cx

))

and conclude that ψ solves the following boundary value problem:







ψ′′(y) − 5y
2(1+y2)

ψ′(y) + 5(y2−1)
2(1+y2)2

ψ(y) = A, y ∈ (−y0, y0),

ψ′(−y0) + 3y0

1+y2

0

ψ(−y0) = 0, ψ′(y0) − 3y0

1+y2

0

ψ(y0) = 0.
(11)

Here, we denote

y0 := G−1
( c

2

)

. (12)

To simplify the boundary conditions we make a last change of variables and put

Φ(y) :=
ψ(y)

(1 + y2)3/2
, y ∈ [−y0, y0] (13)

and finally come up with considering the following boundary value problem:

{

(1 + y2)3/2Φ′′(y) + 7
2y(1 + y2)1/2Φ′(y) +

(

y2 + 1
2

)

(1 + y2)−1/2Φ(y) = A, y ∈ (−y0, y0)

Φ′(−y0) = Φ′(y0) = 0.
(14)

We recall the definition of G(y) :=
∫ y
0

1

(1+τ2)5/4
dτ and put

Φ0(y) := −2
1

√

1 + y2
, Φ1(y) :=

1
4
√

1 + y2
, Φ2(y) :=

G(y)
4
√

1 + y2
. (15)

Then, one directly verifies that the general solution of the differential equation in (14) is given by

Φ(y) := A · Φ0(y) + γ1 · Φ1(y) + γ2 · Φ2(y) (16)

with γ1, γ2 ∈ R. Since A ·Φ0(y) + γ1 ·Φ1(y) is even and γ2 ·Φ2(y) is odd, the boundary conditions
in (14) are equivalent to

A · Φ′
0(y0) + γ1 · Φ′

1(y0) = 0 and γ2 · Φ′
2(y0) = 0 (17)
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in turn being equivalent to

γ1 =
4A

4
√

1 + y2
0

and
(

γ2 = 0 or Φ′
2(y0) = 0

)

. (18)

A beautiful coincidence between these solutions and the functions involved in the proof of Theorem 1
can be observed, namely

Φ2(y) =
1

2
h(2G(y)), Φ′

2(y) =
h′(2G(y))

(1 + y2)5/4
. (19)

With the help of these observations we are now ready to conclude the

Lemma 4. For c ∈ [0, c0) \ {cmax}, the boundary value problem (10) only has the trivial solution
ϕ(x) ≡ 0. For c = cmax, it has a one dimensional null space which is spanned by

ϕ(x) =
1

c

∫ G−1( c
2
)

G−1( c
2
−cx)

G(η) dη.

If c = cmax, α = αmax, instabilities will occur first from the corresponding solution u in direction
of this function ϕ, see Figure 4.

Proof. The case c = 0 is obvious and we consider only c ∈ (0, c0). We denote

Φ̃1(y) := Φ0(y) +
4

4
√

1 + y2
0

· Φ1(y) =
2

4
√

1 + y2 · 4
√

1 + y2
0

(

2 −
4
√

1 + y2
0

4
√

1 + y2

)

.

According to (16), we have to study

Φ(y) = AΦ̃1(y) + γ2Φ2(y)

with some suitable A, γ2 ∈ R. Let ϕ be the corresponding solution of (10) which is obtained from Φ
by tracing back the changes of variables and integrating χ. We want to show first that necessarily
A = 0 for any c ∈ [0, c0).

0 = ϕ(1) − ϕ(0) =

∫ 1

0
χ(x) dx =

∫ 1

0
ψ
(

G−1
( c

2
− cx

))

dx

=
1

c

∫ G−1( c
2
)

−G−1( c
2
)
ψ(y)(1 + y2)−5/4 dy =

1

c

∫ G−1( c
2
)

−G−1( c
2
)
Φ(y)(1 + y2)1/4 dy

=
A

c

∫ G−1( c
2
)

−G−1( c
2
)
Φ̃1(y)(1 + y2)1/4 dy +

γ2

c

∫ G−1( c
2
)

−G−1( c
2
)
Φ2(y)(1 + y2)1/4 dy

=
A

c

∫ G−1( c
2
)

−G−1( c
2
)
Φ̃1(y)(1 + y2)1/4 dy

since Φ2 is odd. Hence we may conclude that

0 =
A

c

∫ G−1( c
2
)

−G−1( c
2
)
Φ̃1(y)(1 + y2)1/4 dy

=
2A

c

∫ G−1( c
2
)

−G−1( c
2
)







2
(

1 +G−1
(

c
2

)2
)1/4

− 1

(1 + y2)1/4






dy

=
4A

c
F
(

G−1
( c

2

))

,

8



where F is defined by

F (η) :=
2η

(1 + η2)1/4
−
∫ η

0

1

(1 + s2)1/4
ds.

Since F (0) = 0 and

F ′(η) =
2

(1 + η2)1/4
− η2

(1 + η2)5/4
− 1

(1 + η2)1/4

=
1

(1 + η2)1/4
− η2

(1 + η2)5/4
=

1

(1 + η2)5/4
> 0,

we have

F
(

G−1
( c

2

))

> 0.

As a consequence, A = 0 and hence γ1 = 0 by (18) and we are left with considering γ2Φ2. We have
that h′(c) > 0 for c ∈ (0, cmax) and h′(c) < 0 for c ∈ (cmax, c0). By making use of

Φ′
2(y) =

h′(2G(y))

(1 + y2)5/4
,

and the boundary condition γ2Φ
′
2(G

−1(c/2)) = 0, we conclude that γ2 = 0, provided c ∈ (0, c0) \
{cmax}. If c = cmax, then Φ2 is a nontrivial solution of (14). For the corresponding nontrivial
solution ϕ of (10), making use of the boundary conditions ϕ(0) = ϕ(1) = 0 we obtain that

ϕ(x) = γ2
cmax

2

∫ x

0

(

1 +G−1(
cmax

2
− cmaxξ)

2
)5/4

(1 − 2ξ) dξ =
γ2

cmax

∫ G−1( cmax

2
)

G−1( cmax

2
−cmaxx)

G(η) dη.

The proof of Theorem 1 is now immediate. By the preceding lemma we have that on [0, cmax), 0 is
not an eigenvalue of (10). Since D2W̃0(u)(ϕ,ϕ) is positive definite in H2 ∩ H1

0 (0, 1) with respect
to the L2(0, 1)-norm, by continuity, the same holds true for D2W̃α(u)(ϕ,ϕ) for c ∈ [0, cmax), which
is the stated linearized stability of the corresponding small solutions of (1). �

0,2
0

0,40

0,5

0,4

0,1

0,8 1

0,2

0,6

0,3

Figure 4: Profile of the unstable direction in c = cmax
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As an immediate consequence of Theorem 1 we obtain a global existence result for the geometric
flow associated with (1), namely

V = −κss −
1

2
κ3 on Γ(t).

Here, V denotes the upward normal velocity of the evolving graphs Γ(t) = {(x, v(x, t)) |x ∈ [0, 1]}.
The above evolution law then leads to the parabolic initial–boundary value problem (21) below.
The principle of linearized stability as it was proved in great generality by Latushkin, Prüss and
Schnaubelt [LPS, Proposition 16] can be applied to our situation and allows us to obtain global
existence and asymptotic stability for initial data close to a small solution to (1).

Corollary 1. Assume that c ∈ [0, cmax) and let α = h(c) = c
4

q

1+G−1( c
2
)
2

and

u(x) =
2

c 4

√

1 +G−1
(

c
2 − cx

)2
− 2

c 4

√

1 +G−1
(

c
2

)2
(20)

be the corresponding small solution of (1). We fix some p > 5. Then, there exist δ, ρ, C > 0 such
that for v0 ∈W 4,p(0, 1) with v0(0) = v0(1) = 0, κv0

(0) = κv0
(1) = −α and

‖v0 − u‖W 4,p(0,1) ≤ δ,

there exists a global solution v ∈ Lp(0,∞,W 4,p(0, 1)) ∩W 1,p(0,∞, Lp(0, 1)) of the initial Navier
boundary value problem















vt(t,x)√
1+vx(t,x)2

+ 1√
1+vx(t,x)2

d
dx

(

κv,x(t,x)√
1+vx(t,x)2

)

+ 1
2κ

3
v(t, x) = 0, (t, x) ∈ [0,∞) × [0, 1],

v(t, 0) = v(t, 1) = 0, κv(t, 0) = κv(t, 1) = −α, t ∈ [0,∞),
v(0, x) = v0(x), x ∈ [0, 1].

(21)

One has exponential convergence towards the steady state u:

‖v(t, . ) − u( . )‖W 4,p(0,1) ≤ C exp(−ρt) (t ≥ 1). (22)

Remark 1. With similar but simpler techniques and calculations one finds that the unique solution
(cf. [DG, Theorem 2]) being symmetric around x = 1/2 of the Dirichlet problem







1√
1+ux(x)2

d
dx

(

κx(x)√
1+ux(x)2

)

+ 1
2κ

3(t, x) = 0, x ∈ [0, 1],

u(0) = u(1) = 0, ux(0) = −ux(1) = β,
(23)

β ∈ R, is (linearized) stable. Analogously, a global existence result follows for the following initial
Dirichlet boundary value problem















vt(t,x)√
1+vx(t,x)2

+ 1√
1+vx(t,x)2

d
dx

(

κv,x(t,x)√
1+vx(t,x)2

)

+ 1
2κ

3
v(t, x) = 0, (t, x) ∈ [0,∞) × [0, 1],

v(t, 0) = v(t, 1) = 0, vx(t, 0) = −vx(t, 1) = β, t ∈ [0,∞),
v(0, x) = v0(x), x ∈ [0, 1],

(24)

provided the initial datum v0 obeys the same boundary data and is sufficiently close to the stationary
solution u of (23) with respect to the W 4,p-norm, (p > 5).

10



3 Morse index of the large solution

For c ∈ (0, c0) we consider as in (8)

uc(x) =
2

c 4

√

1 +G−1
(

c
2 − cx

)2
− 2

c 4

√

1 +G−1
(

c
2

)2
.

In order to prove Theorem 2 we have to show that exactly one eigenvalue of the quadratic form

ϕ 7→ D2W̃α(uc)(ϕ,ϕ), α = h(c)

passes through 0 when c passes through cmax and that for c ∈ (cmax, c0), 0 is not an eigenvalue of
D2W̃α(uc), i.e. of (10). The latter was already done in Lemma 4. Moreover, its proof yields that
is at most one eigenvalue, which crosses 0 in c = cmax. It remains to show that for c > cmax and
suitable ϕ ∈ H2 ∩H1

0 (0, 1), one has that one has indeed D2W̃α(uc)(ϕ,ϕ) < 0. Making use of the
same transformations and notations of Section 2 and restricting ourselves to symmetric ϕ we find:

D2W̃α(uc)(ϕ,ϕ) = 2

∫ 1

0

χ′(x)2
(

1 +G−1
(

c
2 − cx

)2
)5/2

dx− 5c2
∫ 1

0

G−1
(

c
2 − cx

)2 − 1
(

1 +G−1
(

c
2 − cx

)2
)2 χ(x)2 dx

−12h(c)
G−1

(

c
2

)

(

1 +G−1
(

c
2

)2
)2χ(1)2

= 2c

∫ G−1( c
2
)

−G−1( c
2
)

ψ′(y)2

(1 + y2)5/4
dy − 5c

∫ G−1( c
2
)

−G−1( c
2
)

(y2 − 1)

(1 + y2)13/4
ψ(y)2 dy

−12
cG−1

(

c
2

)

(

1 +G−1
(

c
2

)2
)9/4

ψ
(

G−1
( c

2

))2
.

We choose
ψc(y) := (1 + y2)3/2Φ2(y) = (1 + y2)5/4G(y)

and obtain for the corresponding ϕc ∈ H2 ∩H1
0 (0, 1):

1

4c
D2W̃α(uc)(ϕc, ϕc) =

∫ G−1( c
2
)

0

(

(

(1 + y2)−1/4 +
5

2
yG(y)

)2

− 5

2
(y2 − 1)G(y)2

)

dy

(1 + y2)3/4

−3

4
c2G−1

( c

2

)

(

1 +G−1
( c

2

)2
)1/4

. (25)

According to Theorem 1 we know that this expression is equal to 0 for c = cmax. Writing c = 2G(d)
we see that the asymptotic behaviour of the right hand side is dominated by

c20
4

(

25

4
· 2

3
− 5

2
· 2

3
− 3

)

d3/2 = −c
2
0

8
d3/2 → −∞

for d → ∞, i.e. c ր c0. This shows, together with Lemma 4 that D2W̃α(uc)(ϕc, ϕc) < 0 for
c ∈ (cmax, c0) and concludes the proof of Theorem 2.

The right hand side of (25) is plotted in Figure 5. Since ϕc → 0 for c ց 0, the curve starts in
(0, 0) although there, D2W̃α(u0) is positive definite.
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2W̃α(uc)(ϕc, ϕc)

4 Global minima and symmetry

The aim of this section is to examine whether the small solutions which were found to be local
minima in Section 2 are also global minima for the functional W̃α. In what follows it will be
convenient to write

W̃α(v) =

∫ 1

0

(

κ(x)2 + 2ακ(x)
)
√

1 + v′(x)2 dx,

=

∫ 1

0
κ(x)2

√

1 + v′(x)2 dx+ 2α
[

arctan(v′(x))
]1

0
=: W (v) +BCα(v).

We remark that all quantities are geometric and so, invariant under rotation. Moreover, when
stretching a curve by a factor k, W is multiplied by a factor 1/k while BCα remains unchanged.
We shall see that the task of minimizing W̃α can be reduced to a minimization problem for a
function of two variables. As a by–product of the analysis of this function we find that in order to
determine infv∈H2∩H1

0

W̃α(v) it is sufficient to minimize over all symmetric functions. The reduction
to a two–dimensional problem is achieved in two steps. We begin by showing that it is enough to
consider concave functions.

Lemma 5. Suppose that u ∈ H2 ∩H1
0 (0, 1) is not concave. Then there exists a concave function

v ∈ H2 ∩H1
0 (0, 1) with W̃α(v) < W̃α(u).

Proof. It is natural to think of v as the concave envelope of u, so that we are led to consider the
following obstacle problem: find v ∈ K such that

∀η ∈ K
∫ 1

0
v′(η′ − v′) ≥ 0, (26)

where K = {η ∈ H1
0 (0, 1) | η ≥ u a.e. in (0, 1)}. It is shown in Chapter IV of [KS] that v can be

obtained as the limit of a sequence (vε)ε>0, where vε ∈ H2 ∩H1
0 (0, 1) solves

−v′′ε = (−u′′)+ ϑε(vε − u) in (0, 1). (27)

Here, ϑε : R → R satisfies

ϑε(t) =







1, t < 0
1 − t

ε , 0 ≤ t ≤ ε
0, t > ε.

12



It follows from the analysis in [KS] that vε → v in H1(0, 1), v′′ε ⇀ v′′ in L2(0, 1) as ε → 0,
so that v ∈ H2 ∩ H1

0 (0, 1) and v′′ ≤ 0 a.e. in (0, 1); in particular v is concave. Denoting by
I = {x ∈ [0, 1] | v(x) = u(x)} the coincidence set, we have that v′′ = 0 a.e. in [0, 1]\I. Furthermore,
using (27)

W (v) =

∫ 1

0

|v′′|2

(1 + (v′)2)
5

2

=

∫

I

|v′′|2

(1 + (u′)2)
5

2

≤ lim inf
ε→0

∫

I

|v′′ε |2

(1 + (u′)2)
5

2

≤
∫

I

|(−u′′)+|2

(1 + (u′)2)
5

2

≤
∫ 1

0

|(−u′′)+|2

(1 + (u′)2)
5

2

≤
∫ 1

0

|u′′|2

(1 + (u′)2)
5

2

= W (u).

If we had W (v) = W (u), then the above argument would imply that (−u′′)− = 0 a.e. in (0, 1) and
therefore u′′ ≤ 0 a.e. in (0, 1) contradicting our assumption that u is not concave. Hence W (u) <
W (v); since v ≥ u we have that u′(0) ≤ v′(0) and u′(1) ≥ v′(1) and therefore W̃α(v) < W̃α(u).

In what follows we shall make use of the prototype solution

U0(x) =
2

c0
4

√

1 +G−1
(

c0
2 − c0x

)2
. (28)

Formally, it is the large solution of the Navier boundary value problem (1) for α = 0. However,
one should observe that this solution is no longer smooth as a graph near x = 0 and x = 1, and for
this reason, it was not included in Proposition 1.
Suppose that 0 ≤ x0 < x1 ≤ 1 are two points with x1 − x0 < 1. Then U0|[x0,x1] can be written as a
graph over the segment connecting (x0, U0(x0)) and (x1, U0(x1)). We denote by ux0,x1

: [0, 1] → R

the strictly concave function which is obtained by translating, rotating and rescaling the above
graph to the unit interval [0, 1]. Note that ux0,x1

∈ H2 ∩ H1
0 (0, 1). Our next lemma essentially

reduces the minimization of W̃α to a two–dimensional minimization problem.

Lemma 6. Suppose that u ∈ H2∩H1
0 (0, 1)\{0} is concave. Then there exist 0 ≤ x0 < x1 ≤ 1, x1−

x0 < 1 such that v = ux0,x1
satisfies BCα(u) = BCα(v) and either W (v) ≤ W (u), u′(0) = v′(0) or

W (v) < W (u), u′(0) 6= v′(0).

Proof. Let us denote by βℓ and βr the boundary angles of graph(u) on the left and on the right
respectively. Since u is assumed to be concave and nontrivial we have βℓ, βr ∈ (0, π

2 ). Consider

K := graph(U0) ∪ {(0, y) : y ≤ 0} ∪ {(1, y) : y ≤ 0}.

This is no longer neither a graph nor a solution of the Willmore equation. However, it is a
regular H2-curve, locally an H2-graph over the x- or the y-axis respectively and it has minimal
Willmore energy c20 among all concave curves connecting any point from {(0, y) : y ≤ 0} with
any point from {(1, y) : y ≤ 0} with tangential directions (0, 1) and (0,−1) respectively. This
minimality follows similarly as in [DG, end of Section 5].
Claim: There exist two points P = (xP , yP ), Q = (xQ, yQ) ∈ K, P 6= Q such that the segment
[P,Q] intersects K under the angles βℓ at P and βr at Q.
To see this, we start with the point (x1, y1) = (1, 0) and the orthogonal straight line through this
point. This line intersects the left part of K in (x0, y0) under a right angle. Now we move the point
(x1, y1) and the corresponding orthogonal straight line counterclockwise. The corresponding (x0, y0)
finally moves down, the intersection angle (at least finally) decreases and becomes arbitrarily small.
In particular, the left angle βℓ is attained. Now we keep this angle fixed and move the point (x0, y0)
clockwise. We consider (x1, y1) on the right part of K as intersection point with the straight line
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Figure 6: Left angle βℓ, right angle π/2

building the angle βℓ with K in (x0, y0). At the beginning this right angle is π/2 while it becomes
arbitrarily small when (x0, y0) moves clockwise. In particular, βr is attained as angle on the right
and the claim is proved.
In view of the above–mentioned minimality property of K, K′ enjoys a similar minimality among
those arcs with boundary angels βℓ, βr. We infer that

W (K′) ≤ 1

|P −Q|W (u), (29)

where K′ denotes the subarc of K between P and Q. Observing that by construction yP and yQ

cannot both be negative we may distinguish two cases:
Case 1: yP ≥ 0 and yQ ≥ 0. Setting x0 = xP , x1 = xQ we have x1 − x0 < 1 since βℓ, βr ∈ (0, π

2 ).
The function v = ux0,x1

then satisfies

W (v) = |P −Q|W (K′) ≤W (u)

as well as v′(0) = u′(0) and v′(1) = u′(1).
Case 2: Either yP < 0 or yQ < 0. If yP < 0, then yQ > 0 since βr <

π
2 and we let x0 = 0, x1 = xQ

as well as v = ux0,x1
. Denoting by L(x0, x1) the length of the segment connecting (x0, U0(x0)) and

(x1, U0(x1)) we have

W (v) = L(x0, x1)W (K′) ≤ L(x0, x1)

|P −Q| W (u) < W (u)

since u 6= 0 and by construction any point on graph(U0) is strictly closer to (0, 0) that to any
other point on {(0, y) | y < 0}. A similar argument applies if yQ < 0. Finally note that while
BCα(u) = BCα(v) we have u′(0) 6= v′(0) in this case.

We deduce from Lemma 5 and Lemma 6 that when determining infv∈H2∩H1

0
(0,1) W̃α(v) it is

sufficient to calculate the Willmore energy for functions v = ux0,x1
with 0 ≤ x0 < x1 ≤ 1 and

x1 − x0 < 1. The integrand for W on [x0, x1] is c20, so the integral is c20 · (x1 − x0). The length of
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the base line is
(

(x1 − x0)
2 + (U0(x1) − U0(x0))

2
)1/2

. As for BCα, we have 2α(arctan(U ′
0(x1)) −

arctan(U ′
0(x0))). After rotation and rescaling we come up with:

W̃α(ux0,x1
) = c20 · (x1 − x0)

(

(x1 − x0)
2 + (U0(x1) − U0(x0))

2
)1/2

+2α(arctan(U ′
0(x1)) − arctan(U ′

0(x0)))

= c20 · (x1 − x0)


(x1 − x0)
2 +

4

c20

(

1
4
√

1 +G−1(c0/2 − c0x1)2
− 1

4
√

1 +G−1(c0/2 − c0x0)2

)2




1/2

+2α(arctan(G−1(c0/2 − c0x1)) − arctan(G−1(c0/2 − c0x0))).

We now introduce the new variables

d0 := G−1(c0/2 − c0x0), d1 := −G−1(c0/2 − c0x1), d1 > −d0 (30)

so that

x0 =
1

2
− 1

c0
G(d0), x1 =

1

2
+

1

c0
G(d1).

Defining
Ŵα(d0, d1) := W̃α(ux0,x1

)

we end up with

Ŵα(d0, d1) = (G(d0) +G(d1))
(

(G(d0) +G(d1))
2 + 4((1 + d2

0)
−1/4 − (1 + d2

1)
−1/4)2

)1/2

−2α(arctan(d0) + arctan(d1)).

The following result summarizes what we have achieved so far.

Theorem 5. Let α ≥ 0. Then

inf
v∈H2∩H1

0
(0,1)

W̃α(v) = inf
(d0,d1)∈R2,d1≥−d0

Ŵα(d0, d1).

It remains to discuss the two-dimensional function Ŵα(d0, d1), (d1 ≥ −d0). Here, the key step
is proving positivity for the following expression:

Lemma 7. For d1 > −d0 we have that

(G(d0) +G(d1)) ·
(

d0

4
√

1 + d2
0

+
d1

4
√

1 + d2
1

)

− (G(d0) +G(d1))
2 − 2

(

1
4
√

1 + d2
0

− 1
4
√

1 + d2
1

)2

> 0.

Proof. By the fundamental theorem of calculus and since G is odd we have:

G(d0) +G(d1) = G(d0) −G(−d1) =

∫ d0

−d1

1

(1 + τ2)5/4
dτ,

d0

4
√

1 + d2
0

+
d1

4
√

1 + d2
1

=

[

τ

(1 + τ2)1/4

]d0

−d1

=

∫ d0

−d1

1 + 1
2τ

2

(1 + τ2)5/4
dτ,

1
4
√

1 + d2
0

− 1
4
√

1 + d2
1

=

[

1

(1 + τ2)1/4

]d0

−d1

= −1

2

∫ d0

−d1

τ

(1 + τ2)5/4
dτ.
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Figure 7: Cross section of the graph of Ŵ1 along the axis d0 = d1

One may observe that d1 > −d0 is equivalent to −d1 < d0. The first two terms in the expression
under consideration combine as follows:

(G(d0) +G(d1)) ·
(

d0

4
√

1 + d2
0

+
d1

4
√

1 + d2
1

)

− (G(d0) +G(d1))
2

=
1

2

(
∫ d0

−d1

1

(1 + τ2)5/4
dτ

)

·
(
∫ d0

−d1

τ2

(1 + τ2)5/4
dτ

)

.

We now apply the Cauchy-Schwarz inequality and make use of τ 7→ 1
(1+τ2)5/8

and τ 7→ τ
(1+τ2)5/8

being linearly independent:

2

(

1
4
√

1 + d2
0

− 1
4
√

1 + d2
1

)2

=
1

2

(∫ d0

−d1

τ

(1 + τ2)5/4
dτ

)2

<
1

2

(∫ d0

−d1

1

(1 + τ2)5/4
dτ

)

·
(∫ d0

−d1

τ2

(1 + τ2)5/4
dτ

)

= (G(d0) +G(d1)) ·
(

d0

4

√

1 + d2
0

+
d1

4

√

1 + d2
1

)

− (G(d0) +G(d1))
2 ,

thereby proving the claim.

Next we show that in the open interior of the domain of definition of the two dimensional energy
function Ŵα, critical points may occur at most on the diagonal, i.e. on symmetric graphs in the
original context.

Lemma 8. Let α ≥ 0 and assume that

(d0, d1) 7→ Ŵα(d0, d1)

= (G(d0) +G(d1)) ·
(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)1/2

−2α (arctan(d0) + arctan(d1))
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has a critical point (d0, d1) with d1 > −d0. Then

d0 = d1.

Proof. In a critical point of Ŵα, we have that

0 =
∂

∂d0
Ŵα(d0, d1)

=
1

2
(G(d0) +G(d1)) ·

(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)−1/2

·
(

2(G(d0) +G(d1))(1 + d2
0)

−5/4 − 4d0(1 + d2
0)

−5/4
(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
))

+(1 + d2
0)

−5/4

(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)1/2

−2α
1

1 + d2
0

;

0 =
∂

∂d1
Ŵα(d0, d1)

=
1

2
(G(d0) +G(d1)) ·

(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)−1/2

·
(

2(G(d0) +G(d1))(1 + d2
1)

−5/4 + 4d1(1 + d2
1)

−5/4
(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
))

(31)

+(1 + d2
1)

−5/4

(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)1/2

−2α
1

1 + d2
1

.

Equivalently:

0 = (G(d0) +G(d1)) ·
(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)−1/2

·
(

(G(d0) +G(d1))(1 + d2
0)

−1/4 − 2d0(1 + d2
0)

−1/4
(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
))

+(1 + d2
0)

−1/4

(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)1/2

− 2α;

0 = (G(d0) +G(d1)) ·
(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)−1/2

·
(

(G(d0) +G(d1))(1 + d2
1)

−1/4 + 2d1(1 + d2
1)

−1/4
(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
))

+(1 + d2
1)

−1/4

(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)1/2

− 2α.
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Subtracting both equations yields

0 =
(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)

·
(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)−1/2

·
{

(G(d0) +G(d1))
2 − 2(G(d0) +G(d1))

(

d0

4
√

1 + d2
0

+
d1

4
√

1 + d2
0

)

+

(

(G(d0) +G(d1))
2 + 4

(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)2
)

}

.

By Lemma 7, the curly bracket is strictly negative, since we assume that d1 > −d0. We conclude
that

0 =
(

(1 + d2
0)

−1/4 − (1 + d2
1)

−1/4
)

,

which yields that d0 = d1.

We are now in position to solve the two–dimensional minimization problem.

Proposition 2. Let 0 < α ≤ αmax. There exists α∗ = 1.132372323 . . . ∈ (0, αmax) such that

inf
(d0,d1)∈R2,d1≥−d0

Ŵα(d0, d1) =

{

Ŵα(G−1( c
2), G−1( c

2)), 0 < α ≤ α∗

c20 − 2απ, α∗ < α ≤ αmax,

where c ∈ (0, cmax) solves h(c) = α. In the first case d0 = d1 = G−1( c
2) is the only point for which

the minimum is attained, while it is not attained for α∗ < α ≤ αmax.

Proof. In view of Lemma 8 and the symmetry of Ŵα,

inf
(d0,d1)∈R2,d1≥−d0

Ŵα(d0, d1)

is the minimum between
inf

d∈(0,∞)
Ŵα(d, d), (32)

inf
d∈R

Ŵα(d,−d) = 0, (33)

and
inf
d∈R

Ŵα(d,∞). (34)

Since
Ŵα(d, d) = 4G(d)2 − 4α arctan(d)

is certainly negative for d > 0 close to 0, we see that infd∈(0,∞) Ŵα(d, d) < 0, so we need not
consider (33). As for (34) we have

Ŵα(d,∞) =
(

G(d) +
c0
2

)

·
(

(G(d) +
c0
2

)2 + 4(1 + d2)−1/2
)1/2

− 2α
(

arctan(d) +
π

2

)

.

It is sufficient to discuss local mimima, since Ŵα(∞,∞) is already covered by (32) and Ŵα(−∞,∞) =
0 by (33). Passing to the c = 2G(d)-variable, we see that Ŵα attains its minimum on {(d0, d1) :
d0 ∈ [−∞,∞], d1 ∈ [−d0,∞]}. For fixed d0 ∈ R, we infer from (31) that for d1 large enough,
∂Ŵα
∂d1

> 0. This follows since the slowest term 4d1(1+ d2
1)

−5/4(1+ d2
0)

−1/4 decays of order −3/2 and
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has a positive coefficient. Hence, the minimum is not attained on R × {∞}, but either in (∞,∞)
or in the interior of our domain. This proves that

inf
(d0,d1)∈R2,d1≥−d0

Ŵα(d0, d1) = inf
d∈(0,∞)

Ŵα(d, d). (35)

It remains to evaluate the right hand side of (35). Let

φ(d) := Ŵα(d, d) = 4G(d)2 − 4αarctan(d).

We have

φ′(d) =
8G(d)

(1 + d2)
5

4

− 4α

1 + d2
=

4

1 + d2

(

h(2G(d)) − α
)

,

with h defined in (9). Thus, φ′(d) = 0 if and only if d = G−1( c
2 ), where c is one of the solutions of

h(c) = α. Only the solution c ∈ (0, cmax) is a local minimum so that

inf
d∈(0,∞)

φ(d) = min
(

c2 − 4αarctan(G−1(
c

2
)), c20 − 2απ

)

taking into account that φ(0) = 0 and φ(d) < 0 for small d > 0. In order to calculate the last
minimum we introduce the following auxiliary function f : [0, cmax] → R,

f(c) := c20 − 2h(c)π − c2 + 4h(c)arctanG−1(
c

2
).

We find that f(0) = c20 > 0, f(cmax) = −0.6674542140 . . . < 0 and a short calculation shows that

f ′(c) =
(

4arctanG−1(
c

2
) − 2π

)

h′(c) < 0, c ∈ (0, cmax)

so that f has a unique zero

c∗ = 1.274998908 . . . ∈ [0, cmax] with α∗ := h(c∗) = 1.132372323 . . . .

This proves the formula for inf(d0,d1)∈R2,d1≥−d0
Ŵα(d0, d1). The uniqueness of the minimum for

0 ≤ α ≤ α∗ follows from Lemma 2.

We are now in position to prove Theorem 3 and Theorem 4. The second result is an immediate
consequence of (35) and Theorem 5. As for Theorem 3 we focus on the case 0 < α ≤ α∗. Let
c ∈ (0, cmax) be the unique solution of h(c) = α with corresponding small solution uc. Clearly,

W̃α(uc) = Ŵα(G−1(
c

2
), G−1(

c

2
)) = inf

(d0,d1)∈R2,d1≥−d0

Ŵα(d0, d1) = inf
v∈H2∩H1

0
(0,1)

W̃α(v)

by Proposition 2 and Lemma 6. It remains to show that uc is the only function in H2∩H1
0 (0, 1) for

which the minimum is attained. Suppose that u ∈ H2∩H1
0 (0, 1) satisfies W̃α(u) = inf

v∈H2∩H1

0
(0,1)

W̃α(v).

In view of Lemma 5 u is necessarily concave. Let v = ux0,x1
∈ H2 ∩H1

0 (0, 1) be the function ap-
pearing in Lemma 6 with d0, d1 given by (30). Using the minimality of u, Proposition 2 and Lemma
6 we obtain

W̃α(u) ≤ W̃α(uc) = Ŵα(G−1(
c

2
), G−1(

c

2
)) ≤ Ŵα(d0, d1) = W̃α(v) ≤ W̃α(u).

This implies that Ŵα(G−1( c
2), G−1( c

2 )) = Ŵα(d0, d1) and hence by Proposition 2 that d0 = d1 =
G−1( c

2) so that v = uc. In particular we infer with the help of Lemma 6 that
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Figure 8: Graphs of the function c 7→ W̃α(uc) for α = 1.1, α = α∗ and α = 1.34 (left to right)

u′(0) = v′(0) = u′c(0) and u′(1) = v′(1) = u′c(1). As a consequence we have BCα(u) = BCα(uc)
and therefore W (u) = W (uc). However, in view of Theorem 2 in [DG] uc is the unique minimum
of W in the class Mβ = {w ∈ H2 ∩H1

0 (0, 1) |w′(0) = −w′(1) = β} (β = u′c(0)) so that we must
have u = uc. This completes the proof of Theorem 3.

For selected values of α, Fig. 8 shows plots of the function c 7→ W̃α(uc) on the interval [0, c0).

Acknowledgment: The authors thank N. Masel (Minsk) for pointing out an error in an earlier
version of Lemma 3.
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