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Abstract

We consider a class of finite Markov moment problems with arbitrary

number of positive and negative branches. We show criteria for the exis-

tence and uniqueness of solutions, and we characterize in detail the non-

unique solution families. Moreover, we present a constructive algorithm

to solve the moment problems numerically and prove that the algorithm

computes the right solution.

1 Introduction

We aim at inverting a moment system often associated with the prestigious
name of Markov. The original form of the problem is the following. Given a
finite set of moments mk for k = 1, . . . ,K, find a bounded measurable density
function f satisfying

mk =

∫

R

xk−1f(x)dx, 0 ≤ f ≤ 1, k = 1, . . . ,K. (1)

Condition for the existence of solutions f(x) to this problem is classical [1, 2].
In general solutions are not unique, unless more conditions are given, e.g. based
on entropy minimization [3, 4] or L∞-minimization [19, 18]. A typical result
is that the unique solution for even K is piecewise constant, taking values in
{0, 1}. More precisely, if K = 2n then f is of the form

f(x) =
n
∑

j=1

χ[yi,xi](x) (2)

where χI(x) is the characteristic function for the interval I and

y1 < x1 < y2 < x2 < · · · < yn < xn. (3)

See Theorem 3 below in Section 4 and consult e.g. [5, 8, 17, 23, 25] for general
background on moment problems.
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A reduced form of the finite moment problem is to search for solutions to (1)
which are precisely of the form (2, 3). One then obtains an algebraic problem
for the branch values,

mk =
1

k

n
∑

j=1

xk
j − ykj , k = 1, . . . ,K = 2n. (4)

Finding {xj} and {yj} from {mk} is an ill-conditioned problem when the branch
values of the solution come close to each other; the Jacobian of the problem
is a Vandermonde matrix and iterative numerical resolution routines require
extremely good starting guesses when the matrix degenerates. For less than four
moments a direct method based on solving polynomial equations was presented
in [21]. Routines based on the Simplex algorithm have been proposed in [19].
Another algorithm was presented by Koborov, Sklyar and Fardigola in [16, 24] in
the slightly modified setting where f takes values in {−1, 1} instead of {0, 1}. It
consists of solving a sequence of high degree polynomial equations, constructed
through a rather intricate process with unclear stability properties. In [14] we
showed that this algorithm can be drastically simplified and adapted to (4).
Later, in [15], we also gave a direct proof that the simplified algorithm indeed
computes the correct solution, relying on the classical Newton’s identities and
Toeplitz matrix theory.

The moment problem has many applications in for instance probability and
statistics [10, 7], but also in areas like wave modulation [6, 22] and “shape
from moments” inverse problems [11]. Our own motivation comes from a quite
different field, namely multiphase geometrical optics [3, 4, 12, 13, 14, 21]. In
this application one needs to solve a system of nonlinear hyperbolic conservation
laws. To evaluate the flux function in the partial differential equations (PDEs)
a system like (4) must be solved. In a finite difference method this means that
the system must be inverted once for every point in the computational grid,
repeatedly in every timestep. It is thus important that the inversion can be done
fast and accurately; this difficulty has been a bottleneck in computations. In [14]
we used the simplified algorithm mentioned above for numerical implementation
inside a shock-capturing finite difference solver. It is our aim here to develop
better algorithms and understanding to open the way for the processing of
intricate wave-fields with large K, and thus complement the seminal paper [4]
where the multiphase geometrical optics PDEs were first proposed.

In this paper we are concerned with a generalization of (4). In the geometri-
cal optics application, the number of moments K is typically not even and one
can have a variable number of positive (xk) and negative (yk) branches. We
thus consider the following problem

mk =

nx
∑

j=1

xk
j −

ny
∑

j=1

ykj , k = 1, . . . ,K, (5)

where nx + ny = K but where nx and ny are not necessarily equal. We study
existence and uniqueness of solutions to this problem (Theorem 2). In partic-
ular we are interested in how and when uniqueness is lost. For these cases we
characterize the family of solutions that exists. The reason is to understand
what happens numerically close to degenerate solutions, which is an important
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feature in the application we have in mind: In the exact solution to the multi-
phase geometrical optics PDEs the moment problem is typically degenerate for
large domains; the numerical approximation is almost degenerate.

We also give constructive algorithms to solve (5) and prove that they gener-
ate the right solution (Theorem 1). In a future paper we will study the numer-
ical stability of these algorithms. Experimentally we note, for instance, that to
compute the next moment, Algorithm 3 is much more stable than Algorithm 1.
The difficulty lies in understanding perturbations around degenerate solutions,
which is where the algorithms are most unstable. For this the insights of this
paper will be of importance.

Remark 1 The problem (5) can be cast in the form of (1) if one demands that
the density function f(x) is of the form

f(x) =

nx
∑

j=1

sgn(xj) [H(x)−H(x− |xj |)]−

ny
∑

j=1

sgn(yj) [H(x)−H(x− |yj |)] ,

(6)
and we rescale the moments mk → kmk. For the case nx = ny = n and K = 2n
with interlaced branch values (3) this reduces to (2).

This paper is organized as follows. In Section 2 we present the algorithms for
solving (5). Notation and various ways of describing a solution is subsequently
introduced in Section 3. Next we derive conditions for existence and uniqueness
of solutions in Section 4 and also discuss various properties of the solution, in
particular when it is not unique. A theorem proving the correctness of the
algorithms is proved in Section 5. Finally, in Section 6, we give additional
properties of the elements of our algorithms, and use these to relate our results
back to the classical Markov theory.

2 Algorithms

In this section we detail the algorithms that we propose for solving (5). The
solution that we obtain is what we call the minimal degree solution, meaning
that when the solution is not unique as many branch values as possible are zero.
See Section 4 for a precise definition. The algorithms goes as follows; they may
fail in case there is no solution to (5).

Algorithm 1 (Computing {xj} and {yj})

1. Construct the sequence {ak} as follows. Set a0 = 1 and ak = 0 for k < 0.
For 1 ≤ k ≤ K, let the elements be given as the solution to











1
−m1 2
...

. . .
. . .

−mK−1 . . . −m1 K





















a1
a2
...

aK











=











m1

m2

...
mK











. (7)
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2. Construct the matrix A1 ∈ R
nx×nx as

A1 =











any any−1 . . . any−nx+1

any+1 any . . . any−nx+2

...
...

. . .
...

any+nx−1 any+nx−2 . . . any











.

Compute the rank of A1. Let ñx = rank A1 and ñy = ny − nx + ñx.

3. Construct the matrices Ã0, Ã1 ∈ R
ñx×ñx as

Ã0 =











añy+1 añy . . . añy−ñx+2

añy+2 añy+1 . . . añy−ñx+3

...
...

. . .
...

añy+ñx añy+ñx−1 . . . añy+1











,

Ã1 =











añy añy−1 . . . añy−ñx+1

añy+1 añy . . . añy−ñx+1+1

...
...

. . .
...

añy+ñx−1 añy+ñx−2 . . . añy











.

4. Solve the generalized eigenvalue problem

Ã0v = xÃ1v, (8)

to get the {xj} values of the minimal degree solution to (5).

5. To compute the {yj} values, the same process is used with mk replaced by
−mk and the roles of nx and ny interchanged.

An alternative to Algorithm 1 is as follows:

Algorithm 2 (Computing {xj} and {yj})

1. Construct the matrices Ã0 and Ã1 as in steps 1-3 in Algorithm 1.

2. Denote the first column vector in Ã0 by ã0 by and solve

Ã1c
′ = −ã0, c′ = (c1, c2, . . . , cñx)

T . (9)

3. Construct the polynomial

P (z) = cñx + cñx−1z + · · ·+ c1z
ñx−1 + zñx .

The roots of P (z) are the {xj} values of the minimal degree solution to
(5) (possibly together with some zeros).

4. To compute the {yj} values, the same process is used with mk replaced by
−mk and the roles of nx and ny interchanged.
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Remark 2 We note that the values of ak in the definition (7) are independent
of K, since the system matrix is triangular. We therefore consider the sequence
without reference to K in any other respect than the fact that we are only able
to compute elements with k ≤ K when we are given K moments. The largest
index of the ak-sequence appearing in the matrix A1 is ny +nx − 1 < K. In the

matrices Ã0, Ã1 it is ñy + ñx = ny − nx + 2ñx ≤ ny + nx = K. Hence all three
matrices can be constructed from the first K moments. Some properties of the
A1 matrix are detailed in Section 6.

Sometimes one is not interested in finding the individual {xj} and {yj}
branch values but just wants the higher moments, defined as

mk =

nx
∑

j=1

xk
j −

ny
∑

j=1

ykj , (10)

but now for k > K, given a solution {xj}∪{yj} to (5). (That this is well-defined
is shown later in Theorem 2.) For this case there is another algorithm, which
has empirically proven to be more stable than first computing {xj} and {yj}
from Algorithm 1 or 2, and then entering the values into (10). We stress that
this is precisely what is needed in order to compute K-multivalued solutions of
the inviscid Burger’s equation in geometrical optics, following the ideas of [4].

Algorithm 3 (Computing mK+1)

1. Construct the A1 matrix as in steps 1-2 of Algorithm 1.

2. Let
a0 = (any+1, any+2, . . . , any+nx)

T ∈ R
nx ,

and let c̄ = (c1, c2, . . . , cnx)
T be one solution to

A1c̄ = −a0. (11)

3. The next moment is given by

mK+1 = −(K + 1)

nx
∑

j=1

cjaK+1−j −
K
∑

j=1

mjaK+1−j.

We recall that Algorithm 1 has been shown to be numerically efficient in the
paper [14]. The justification of these algorithms is given in Section 5 where we
show the following theorem:

Theorem 1 If a solution to (5) exists then:

(i) In Algorithm 1, the matrix Ã1 is non-singular. The generalized eigenvalue
problem in (8) is well-defined and the generalized eigenvalues (counting
algebraic multiplicity) are the {xj}-values of the minimal degree solution
to (5) plus ñx −Dmin zeros. (See (19) for the definition of Dmin.)

(ii) In Algorithm 2, c′ is well defined,

P (z) = det(zI − Ã−1
1 Ã0) (12)

and the roots of P (z) are the {xj}-values of the minimal degree solution
to (5) plus ñx −Dmin zeros.
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(iii) In Algorithm 3, the computed moment satisfies

mK+1 =

nx
∑

j=1

xK+1
j −

ny
∑

j=1

yK+1
j ,

for all solutions {xj} ∪ {yj} to (5).

We postpone the proof of Theorem 1 to Section 5. We just note here that the
last point in Algorithms 1 and 2 can easily be explained by the symmetry of the
problem. Indeed, the negative of (5)

−mk =

ny
∑

j=1

ykj −
nx
∑

j=1

xk
j , k = 1, . . . ,K,

is of the same form as (5) itself, with the roles of nx, {xj} and ny, {yj} inter-
changed.

3 Preliminaries

We will use three different ways of describing the solution to (5). First we
have a set of numbers {xj}

nx

j=1 and {yj}
ny

j=1, solving (5). We call those numbers
branch values. Second, we have a pair of polynomials (p, q) of degrees at most
nx and ny respectively in the z variable. Third, we have a pair of coefficient
vectors c = (c0, . . . , cnx)

T ∈ R
nx+1 and d = (d0, . . . , dnx)

T ∈ R
ny+1. These

three representations are related as

p(z) = (1 − x1z) · · · (1− xnxz) = c0 + c1z + · · ·+ cnx−1z
nx−1 + cnxz

nx , (13)

and

q(z) = (1 − y1z) · · · (1− ynyz) = d0 + d1z + · · ·+ dny−1z
ny−1 + dnyz

ny . (14)

It is clear that there is a one-to-one correspondence between these ways of
describing the solution, if we disregard the ambiguity in the ordering of the
numbers {xj} and {yj}. Generally, we will use the notation Deg(p) to denote the
degree of a polynomial p, and, for a given coefficient vector c, we systematically
write Pc to denote the corresponding polynomial (13).

Definition 1 We call the pair of polynomials (p, q) a (polynomial) solution to
(5) if

1. The degrees of p and q are at most nx and ny,

Deg(p) ≤ nx, Deg(q) ≤ ny, (15)

2. They are normalized to one at the origin,

p(0) = q(0) = 1, (16)
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3. Their roots {x̃j} and {ỹj} satisfy

mk =

Deg(p)
∑

j=1

x̃−k
j −

Deg(q)
∑

j=1

ỹ−k
j , k = 1, . . . ,K. (17)

We note that the roots cannot be zero because of (16).

Next:

Definition 2 A pair of vectors

c = (c0, . . . , cnx)
T ∈ R

nx+1 and d = (d0, . . . , dny )
T ∈ R

ny+1

is said to be a (coefficient) solution to (5) if the corresponding pair (Pc, Pd)
(13)–(14) realizes a polynomial solution to (5).

The number of branch values are always nx and ny respectively. Some of
them may be zero, and they do not need to be distinct. The number of non-zero
branch values are Deg(p) and Deg(q) respectively. The degree of a solution can
then also be defined.

Definition 3 The degree of a solution to (5) is the number of non-zero xj-
values. This number is equivalent to Deg(p).

Given any polynomial pair satisfying (16), we say that it generates the mo-
ment sequence {mk} if mk is given by (17) for all k. In turn, each sequence
of moments {mk} generates the corresponding {ak} sequence through (7). We
define the big matrix

A =











any+1 any . . . any−nx+1

any+2 any+1 . . . any−nx+2

...
...

. . .
...

any+nx any+nx−1 . . . any











∈ R
nx×(nx+1).

We let the columns of A be denoted a0, . . . ,anx and we note that

A =





| |
a0 · · · anx

| |



 =





|
A0 anx

|



 =





|
a0 A1

|



, (18)

Hence, A0 and A1 constitutes the first and last nx columns of A respectively.
When a0 ∈ range A1 and a0 6= 0, let

Dmin = argminj>0 a0 ∈ span{a1, . . . ,aj}, (19)

and set Dmin = 0 if a0 = 0. Moreover, define

Dmax = Dmin + nx − rank A1. (20)
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4 Existence and uniqueness of solutions

In this section we prove results on the existence and uniqueness of solutions to
(5). We aim at establishing the following theorem:

Theorem 2

(i) There exists a solution to (5) if and only if

a0 ∈ range(A1). (21)

(ii) If d is the degree of a solution to (5), then Dmin ≤ d ≤ Dmax.

(iii) When (21) holds, there is a unique solution (p∗, q∗) of minimal degree
Dmin. For this solution, xj 6= yi for all indices i, j representing non-zero
branch values. Moreover, Deg(q∗) ≤ ny − nx + rank A1 with equality if
Dmin < rank A1.

(iv) When (21) holds, a polynomial pair (p, q) is a solution if and only if
p = p∗r and q = q∗r where r(z) is a polynomial satisfying r(0) = 1
and Deg(r) ≤ Dmax −Dmin.

(v) The minimal degree solution is the only solution to (5) if and only if the
matrix A1 is non-singular.

(vi) Let {xj} and {yj} be a solution to (5). Then the higher moments defined
in (10) are well-defined.

Let us proceed with several remarks:

Remark 3 In particular it follows from (i) that there exists a solution as soon
as the matrix A1 is non-singular.

Remark 4 Since (5) is a system of polynomial equations of degree K, one could
expect there to be a finite number of solutions, typically K solutions. How-
ever, because of the special structure of the equations there is either one unique
solution (when A1 is non-singular) or inifintely many solutions (when A1 is
singular).

Remark 5 The form (p∗r, q∗r) of solutions can also be stated as follows: All
solutions have a core set of values {xj}, j = 1, . . . ,Deg(p∗) = Dmin and {yi},
i = 1, . . . ,Deg(q∗)corresponding to non-zero branch values of the minimal degree
solution, where xj 6= yi for all those i, j. One can then add an optional set of
non-zero branch values {xDmin+j}, and {yDeg(q∗)+j}, for j = 1, . . . , Dmax−Dmin

such that xDmin+j = yDeg(q∗)+j.

To prove this theorem we first establish some utility results in the next sub-
section. We then derive different ways of characterizing the solution in Section
4.2, which are subsequently used to prove Theorem 2 in Section 4.3.
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4.1 Utility results

We start with a useful lemma on Taylor coefficients for a product of functions:

Lemma 1 Suppose f , g and h are analytic functions in a neighborhood of zero
satsifying f(z) = g(z)h(z). Let f have the Taylor expansion

f(z) =

∞
∑

k=0

fkz
k,

and let {gk}, and {hk} be the corresponding coefficients for g(x) and h(x) re-
spectively. Then

fk =

k
∑

j=0

gjhk−j . (22)

Proof: Since the functions are analytic the coefficients are given as

fk =
1

k!

dk

dzk
f(z)

∣

∣

∣

z=0
=

1

k!

dk

dzk
g(z)h(z)

∣

∣

∣

z=0
=

1

k!

k
∑

j=0

cjkg
(j)(0)h(k−j)(0),

where cjk = k!/j!(k − j)! are the binomial coefficients. But g(j)(0) = j!gj and
h(k−j)(0) = (k − j)!hk−j and therefore (22) follows. �

Remark 6 The sum (22) is in fact precisely an elementwise description of
multiplication of a lower triangular k × k Toeplitz matrix by a vector. In the
notation of [15], it would read f = T (g)h.

As was already known by Markov, the exponential transform of the moment
sequence plays an important role in the analysis of these problems, see e.g. [1, 2].
We show here that {ak} is a version of the exponential transform of {mk}.

Lemma 2 Suppose {mk} is generated by the polynomials p(z) and q(z) and
{ak} is generated by {mk}. Let m(z) be defined as

m(z) = m1z +
1

2
m2z

2 +
1

3
m3z

3 + · · · . (23)

Then if (16) holds,

em(z) =
q(z)

p(z)
= a0 + a1z + a2z

2 + · · · , (24)

written as its Taylor expansion around z = 0.

Proof: Let us first show that m(z) is a well-defined analytic function at zero.
We have

m(z) =
∑

∞

k=0
mkz

k

k

=
∑

∞

k=0

∑nx

j=1

xk
j z

k

k
−
∑

∞

k=0

∑ny

j=1

yk
j z

k

k

= −
∑nx

j=1 log(1− xjz) +
∑ny

j=1 log(1 − yjz).

9



The last step is allowed when |z| < 1/maxij(|xj |, |yi|), which is true for small
enough z since p(0) 6= 0. This also shows that the function is analytic at zero.
Moreover,

em(z) =

∏ny

j=1(1− yjz)
∏nx

j=1(1− xjz)
=

q(z)

p(z)
.

Finally, setting a(z) := exp(m(z)) and differentiating gives

za′(z) = zm′(z)a(z),

where all three functions are analytic at zero. Let a(z) have the Taylor co-
efficients {ãk}. Then za′(z) = ã1z + 2ã2z

2 + 3ã3z
3 · · · and clearly zm′(z) =

m1z +m2z
2 + · · · . By Lemma 1, for k ≥ 1,

kãk =

k
∑

j=1

mj ãk−j .

Since ã0 = q(0)/p(0) = 1, we see that ak and ãk satisfy the same non-singular
linear system of equations (7), and therefore ak = ãk, showing (24). �

We now have the following basic characterization of a solution.

Lemma 3 Suppose p(z) and q(z) are two polynomials satisfying (15, 16). They
form a polynomial solution to (5) if and only if their quotient has the Taylor
expansion around z = 0

q(z)

p(z)
= a0 + a1z + · · ·+ aKzK +O

(

zK+1
)

, (25)

where {ak} is generated by {mk}. Moreover, if (p, q) is a solution then (p̄, q̄)
is also a solution if and only if the pair satisfies (15, 16) and p̄/q̄ = p/q where
these fractions are defined.

Proof: Let {m̃k} be generated by p and q and suppose (25) holds. Then, as in
the of proof of Lemma 2 for 1 ≤ k ≤ K

kak =
k
∑

j=1

m̃jak−j .

Since {mk} satisfy the linear system (7), we have after subtraction,

mn − m̃n = −
n−1
∑

k=1

(mk − m̃k)an−k, m1 = m̃1,

for n = 2, . . . ,K. By induction m̃k = mk for 1 ≤ k ≤ K, showing that (p, q)
solves (5). On the other hand, if (p, q) is a solution, then (25) must hold by (24)
in Lemma 2.

For the last statement, the “if” part is obvious since both pairs then satisfy
(25). To show the “only if” part, suppose both (p, q) and (p̄, q̄) are solutions.
By definition they satisfy (15, 16), and by (25),

q̄(z)

p̄(z)
−

q(z)

p(z)
=

q̄(z)p(z)− p̄(z)q(z)

p̄(z)p(z)
= O(zK+1).

10



Since p̄(0)p(0) = 1 we must have that (q̄(z)p(z) − p̄(z)q(z))/zK+1 is bounded
as z → 0. But since the degree of q̄p − p̄q is at most K = nx + ny this is only
possible if it is identically zero. Hence q̄(z)p(z) = p̄(z)q(z) which concludes the
proof. �

4.2 Characterization of the solution

In this section we show three Propositions that characterize solutions to (5)
in terms of polynomials, coefficient vectors and the column vectors of the A-
matrix in (18). We start by expressing the uniqueness properties of the solution
in terms of its polyomial representation.

Proposition 1 Suppose the pairs (p, q) and (p̄, q̄) are both polynomial solutions
to (5). Then,

(i) Deg(p)−Deg(q) = Deg(p̄)−Deg(q̄).

(ii) If Deg(p̄) ≤ Deg(p), and if there is no polynomial r(z) such that p = p̄r,
then there is another solution (p̃, q̃) with Deg(p̃) < Deg(p). In particular,
if Deg(p) = Deg(p̄) but p 6= p̄, there is such a lower degree solution.

(iii) If Deg(p̄) ≤ Deg(p), any polynomial pair (p̄r, q̄r) is a solution if r(z)
is a polynomial satisfying r(0) = 1 and Deg(r) ≤ Deg(p) − Deg(p̄). In
particular, if Deg(p̄) ≤ m ≤ Deg(p) there is a solution (p̃, q̃) with Deg(p̃) =
m.

Proof:

(i) The statement follows directly from Lemma 3, since q̄p = p̄q implies that

Deg(q̄) + Deg(p) = Deg(p̄) + Deg(q).

(ii) We let

p(z) = rp(z)p̄(z) + sp(z), q(z) = rq(z)q̄(z) + sq(z),

be the unique polynomial decomposition of (p, q) such that rp, rq, sp, sq
are polynomials, Deg(sp) < Deg(p̄) and Deg(sq) < Deg(q̄). Since p̄q = pq̄
by Lemma 3, we get

p̄q̄(rq − rp) = q̄sp − p̄sq.

Unless rq = rp the degree of the left hand side is at least Deg(p̄)+Deg(q̄),
while the degree of the right hand side is at most

max (Deg(q̄) + Deg(sp),Deg(p̄) + Deg(sq)) < Deg(q̄) + Deg(p̄).

Hence, rq = rp and q̄sp = p̄sq. Since q̄, p̄ 6≡ 0 it follows that either sp and
sq are both zero or both non-zero. Suppose sp 6≡ 0 and sq 6≡ 0. Write
sp(z) = zmp s̃p(z) and sq(z) = zmq s̃q(z) where s̃p(0) 6= 0 and s̃q(0) 6= 0.
Since

zmp s̃p(z)q̄(z) = zmq s̃q(z)p̄(z)

11



and also q̄(0) = p̄(0) = 1, the lowest degree term in the left and right hand
side polynomials are zmp and zmq respectively, and therefore mp = mq.
Consequently,

s̃p(z)q̄(z) = s̃q(z)p̄(z),

and s̃p(0) = s̃q(0). We can then take p̃(z) = s̃p(z)/s̃p(0) and q̃(z) =
s̃q(z)/s̃q(0). They satisfy

p̃(z)q̄(z) = q̃(z)p̄(z), p̃(0) = q̃(0) = 1,

while Deg(p̃) = Deg(s̃p) ≤ Deg(sp) < Deg(p) and similarly Deg(q̃) <
Deg(q) ≤ ny. Hence (p̃, q̃) is a polynomial solution by Lemma 3. It
has degree strictly less than (p, q), which shows the first statement in
(ii). If Deg(p) = Deg(p̄) and p 6= p̄ then there is no r(z) satisfying the
requirements, showing the second statement in (ii).

(iii) We finally let r(z) be any polynomial with Deg(r) ≤ Deg(p)−Deg(p̄) and
r(0) = 1. We then set p̃ = p̄r and q̃ = q̄r. These polynomials trivially
satisfy (16) and (25). Since Deg(p̃) = Deg(r) + Deg(p̄) ≤ Deg(p) ≤ nx

and

Deg(q̃) = Deg(r) + Deg(q̄) ≤ Deg(p)−Deg(p̄) + Deg(q̄) = Deg(q) ≤ ny,

they also satisfy (15) and thus are a polynomial solution by Lemma 3. In
particular we can take r(z) of degree m.

�

A solution to (5) can also be characterized in terms of the coefficient vectors.
We have the following Proposition.

Proposition 2 The pair c = (c0, . . . , cnx)
T ∈ R

nx+1 and d = (d0, . . . , dny )
T ∈

R
ny+1 is a coefficient solution to (5) if and only if

(i) c0 = 1,

(ii) c is in the null-space of A,

(iii)

dk =

min(k,nx)
∑

j=0

cjak−j , k = 0, . . . , ny. (26)

Proof: Suppose first that c is in the null-space of A, c0 = 1 and {dk} is given by
(26). Extend the coefficient sequences by setting ck = 0 for k > nx and dk = 0

for k > ny. Since c is in the null-space of A, we get
∑k

j=0 cjak−j = 0 when
ny + 1 ≤ k ≤ nx + nx = K, and in conclusion

dk =

k
∑

j=0

cjak−j , k = 0, . . . ,K. (27)

Upon noting that {ck}∞k=0 and {dk}∞k=0 are the Taylor coefficients of Pc and Pd,
and since Pc(0) = c0 = 1, Pd(0) = d0 = a0c0 = 1, Lemma 1 shows that

Pd(z) = Pc(z)
[

a0 + a1z + · · ·+ aKzK +O
(

zK+1
)]

, (28)
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and by Lemma 3 we have that (Pc, Pd) is a solution to (5). Conversely, if (Pc, Pd)
is a solution, then c0 = Pc(0) = 1 and by Lemma 1 we get that (27) holds. For
k = ny + 1, . . . ,K this also implies that c is in the null-space of A. �

The final Proposition of this section relates the degree of the solution to the
column vectors of A and the linear spaces they span.

Proposition 3 Let Vj = span{a1, . . . ,aj} and V 0
j = span{a0, . . . ,aj}. Set

V0 = V 0
−1 = ∅. Then

(i) There is a solution if and only if a0 ∈ Vnx = Range(A1).

(ii) There is a solution of degree j ≥ 0 if and only if

a0 ∈ Vj , and aj ∈ V 0
j−1. (29)

(iii) When a0 ∈ Vnx then
a0 ∈ Vd, V 0

d = Vd,

if and only if d ≥ Dmax.

(iv) When a0 ∈ Vnx the vectors

a1, . . . ,aDmin
,

(when Dmin > 0)
aDmax+1, . . . ,anx ,

(when Dmax < nx), are all linearly independent. Moreover,

aj ∈ VDmin
, Vj = VDmin

, j = Dmin, . . . , Dmax.

Proof:

(i) By Proposition 2 there exists a solution to (5) if and only if there is a
coefficient vector c = (1, c′)T in the null-space of A, i.e.

Ac = A1c̄+ a0 = 0.

But such a vector c̄ exists if and only if a0 is in the range of A1. This
shows (i).

(ii) Again by Proposition 2 there is a solution of degree j if and only if there
is a vector c = (c0, c1, . . . , cj , 0, . . . , 0)

T such that

0 = Ac = c0a0 + c1a1 + · · ·+ cjaj , (30)

with cj 6= 0 and c0 = 1. For j = 0 this is clearly equivalent to a0 = 0
or a0 ∈ V0 = V 0

−1. For j > 0 the existence of cj-coefficients satisfying
(30) is equivalent to the left condition in (29). Moreover, if aj 6= V 0

j−1 =
span{a0, . . . ,aj−1}, then we must have cj = 0 to satisfy (30), and c

cannot represent a solution of degree j. On the other hand, if cj = 0
and aj = c′0a0 + · · · + c′j−1aj−1 for some non-zero coefficients c′k, then
a0 + c′′1a1 + · · ·+ c′′j−1aj−1 +aj = 0, with c′′k = (1+ c′0)ck − c′k, represents
a solution of degree j. This shows (ii).
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(iii) The statement is obvious in case Dmin = 0. If Dmin > 0 there are scalars
such that

a0 = v1a1 + · · ·+ vDmin
aDmin

, (31)

by (19). Hence, a0 ∈ VDmin
and since the Vj spaces are nested, Vj ⊂ Vj+1,

we have a0 ∈ Vd for d ≥ Dmin. Moreover, the minimal property of Dmin

ensures that vDmin
6= 0 in (31), so that a0 6∈ Vd when d < Dmin.

(iv) To show that when Dmin > 0 the vectors a1, . . . ,aDmin
are linearly inde-

pendent, we use (31) and note that Pc(z) with c = (1,−v1, . . . ,−vDmin
, 0, . . . , 0)T

is a polynomial solution to (5). Suppose now that the there are non-zero
coefficients c′j such that

c′1a1 + · · ·+ c′Dmin
aDmin

= 0.

Then Pc′ with c′ = (1, c′1 − v1, . . . , cDmin
− vDmin

, 0, . . . , 0)T is another
polynomial solution to (5). Moreover, by the minimality property of Dmin

we must have cDmin
−vDmin

6= 0 and therefore Deg(Pc) = Deg(Pc′) = Dmin.
But by (ii) in Proposition 1 this implies that there is yet another solution
Pc′′ of degree strictly less than Dmin. Hence, there are coefficients c′′j such
that

a0 + c′′1a1 + · · ·+ c′′dad = 0,

with d < Dmin, contradicting (19). The vectors must therefore be linearly
independent.

Suppose D∗ ≥ Dmin is the highest degree of an existing solution. Since
Pc(z) is a solution of degree Dmin we get from (iii) in Proposition 1 that
there are solutions of all intermediate degrees Dmin, . . . , D

∗. Hence, from
(ii), aj ∈ V 0

j−1 for j = Dmin, . . . , D
∗ and from (iii) aj ∈ Vj−1 for j =

Dmin+1, . . . , D∗. Noting that if aj+1 ∈ Vj then Vj = Vj+1 we can conclude
inductively that VDmin

= · · · = VD∗ and aj ∈ VDmin
for j = Dmin, . . . , D

∗.
We now have three different cases:

1. If D∗ = nx then VDmin
= Vnx and by (20) we get D∗ = rank A1 −

Dmin+Dmax = dim Vnx−Dmin+Dmax = dim VDmin
−Dmin+Dmax =

Dmax since either a1, . . . ,aDmin
are linearly independent or Dmin = 0

and VDmin
= ∅. This shows (iv) for D∗ = nx.

2. If D∗ < nx and Dmin = 0 then VDmin
= VD∗ = ∅ and

Vnx = span{aD∗+1, . . . ,anx}. (32)

Suppose there are non-zero coefficients αk such that

αD∗+1aD∗+1 + · · ·+ αnxanx = 0,

and let k∗ be the highest index of all non-zero coefficients, αk∗ 6= 0.
Then ak∗ ∈ V 0

k∗
−1 and there is a solution of degree k∗ by (ii), a

contradiction to the definition of D∗. Hence, the vectors in (32)
must be linearly independent and

D∗ = nx − dim Vnx = Dmin + nx − rank A1 = Dmax,

showing (iv) for this case.
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3. If D∗ < nx and Dmin > 0 we have

Vnx = span{a1, . . . ,aDmin
,aD∗+1, . . . ,anx}. (33)

Suppose there are non-zero coefficients αk such that

α1a1 + · · ·+ αDmin
aDmin

+ · · ·+ αD∗+1aD∗+1 + · · ·+ αnxanx = 0.

Since a1, . . . ,aDmin
are linearly independent at least one αk with

k > D∗ must be non-zero. By the same argument as above in case
two we then get a contradiction and the vectors in (33) must be
linearly independent. Hence,

D∗ = Dmin + nx − dim Vnx = Dmin + nx − rank A1 = Dmax,

showing this final case.

�

4.3 Proof of Theorem 2

To prove Theorem 2 we essentially have to combine the results from Propositions
1 and 3. The statement (i) is given directly by (i) in the latter. For the remaining
points we have:

(ii) From (ii) in Proposition 3 we see that a0 ∈ Vd and ad ∈ V 0
d−1. It follows

from (iii) in Proposition 3 that d ≥ Dmin. On the other hand, if Dmax <
nx and d > Dmax it says that V 0

d−1 = Vd−1. Hence, ad ∈ Vd−1 which
contradicts the linear independence of aDmax

, . . . ,anx established in point
(iv) of Proposition 3.

(iii) We note that by (19) there are scalars v1, . . . , vDmin
such

a0 = v1a1 + · · ·+ vDmin
aDmin

. (34)

Hence, a0 ∈ VDmin
and since vDmin

6= 0, we also have aDmin
∈ V 0

Dmin
.

By (ii) in Proposition 3 there is thus a solution of degree Dmin which we
denote (p∗, q∗). Since a1, . . . ,aDmin

are linearly independent by (iii) in
Proposition 3, the coefficients in (34) are unique and therefore also the
Dmin-degree solution is unique. Moreover, suppose that xj = yi = x∗ 6= 0
for some i, j. Then p∗ and q∗ would have a common factor (1− zx∗), and
by Lemma 3 also p̄(z) := p∗(z)/(1−zx∗) and q̄(z) := q∗(z)/(1−zx∗) would
be a solution. But this is impossible since Deg(p̄) < Deg(p∗) = Dmin. By
(iv), shown below, a solution is given by (p∗r, q∗r) where r(0) = 1 and
Deg(r) = Dmax −Dmin. Hence ny ≥ Deg(q∗r) = Deg(q∗) + nx − rank A1.
Suppose finally that Dmin < rank A1 and that Deg(q∗) < ny − nx +
rank A1. Let Deg(r) = Dmax + 1 − Dmin. Then (p∗r, q∗r) is still a
solution by Lemma 3 since (p∗, q∗) is a solution, Deg(p∗r) = Dmax + 1 =
nx +Dmin + 1− rank A1 ≤ nx and

Deg(q∗r) < ny − nx + rank A1 +Dmax + 1−Dmin = ny + 1.

This contradicts (ii) and therefore Deg(q∗) = ny−nx+rank A1, concluding
the proof of (iii).
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(iv) We first note that there exists a solution of degree Dmax by Proposition
3 since if Dmax > Dmin we have a0 ∈ V 0

Dmax−1 and aDmax
∈ VDmin

=
VDmax−1 = V 0

Dmax−1. Hence, (iii) in Proposition 1 shows that any poly-
nomial pair of the stated type is a solution. On the other hand, if the
polynomial solution is not of this type, then (ii) in Proposition 1 says
there is a solution of degree strictly less than Dmin, contradicting (ii)
above.

(v) We suppose first that A1 is non-singular. Then rank A1 = nx so that
Dmin = Dmax and the uniqueness is given by (iii) above. If, on the con-
trary, A1 is singular then Dmax > Dmin and since we can then pick in-
finitely many polynomials r(z) in (iv), we have infinitely many solutions.

(vi) This is a consequence of (iv). The solution can be represented by (p∗r, q∗r)
for some polynomial r(z) with r(0) = 1. Let 1/xj for j = 1, . . . , Dmin and
1/yj for j = 1, . . . ,Deg(q∗) be the roots of p∗(z) and q∗(z) respectively.
Let 1/zj for j = 1, . . . ,Deg(r) be the roots of r(z). Then

mk =

Dmin
∑

j=1

xk
j +

Deg(r)
∑

j=1

zkj −

Deg(q∗)
∑

j=1

ykj −

Deg(r)
∑

j=1

zkj =

Dmin
∑

j=1

xk
j −

Deg(q∗)
∑

j=1

ykj ,

which is independent of r(z) and uniquely determined because (p∗, q∗) is
unique.

5 Proof of Theorem 1

We can now use the results in Section 4 to prove Theorem 1.

(i-ii) To show the statements about Algorithms 1 and 2 we consider the reduced
problem

mk =

ñx
∑

j=1

x̃k
j −

ñy
∑

j=1

ỹkj , k = 1, . . . , K̃, (35)

where ñx = rank A1 ≤ nx, ñy = ny−nx+ ñx ≤ ny and K̃ = ñx+ ñy ≤ K.
The moments mk in the left hand side are the same as in (5). First, we
consider the minimal solution (p∗, q∗) of (5). By (iv) in Proposition 3
we must have Deg(p∗) = Dmin ≤ rank A1 = ñx. Moreover, by (iii) in
Theorem 2,

Deg(q∗) ≤ ny − nx + rank A1 = ñy.

It follows from Lemma 3 that (p∗, q∗) is also a solution to (35). Second, let
(p̃∗, q̃∗) be the minimal degree solution to (35). Then by (iv) in Theorem
2 there is a polynomial r(z) with r(0) = 1 such that p∗ = p̃∗r and q∗ =
q̃∗r. But then (p̃∗, q̃∗) is also a solution to (5) by Lemma 3. By the
uniqueness of the minimal degree solution of (5) it follows that r ≡ 1 and
p∗ = p̃∗,q∗ = q̃∗. Suppose now that there is another polynomial r(z) with
r(0) = 1, Deg(r) > 0 such that (p∗r, q∗r) is a solution to (35). Then
Deg(p∗r) = Dmin + Deg(r) ≤ ñx = rank A1. Hence, Dmin < rank A1 and
therefore by (iii) in Theorem 2 we have Deg(q∗) = ny−nx+rank A1 = ñy.
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Thus, Deg(q∗r) > ñy which is impossible if (p∗r, q∗r) is a solution. Hence,

(p∗, q∗) is the unique solution to (35) and therefore Ã1 is non-singular by
(v) in Theorem 2.

Since Ã1 is invertible, the generalized eigenvalue problem (8) and c′ are
well-defined. Moreover, we can construct Ã−1

1 Ã0. By (9),

Ã−1
1 Ã0 =

















−c1 1 0 · · · 0
−c2 0 1 · · · 0
...

...
. . .

. . .
...

−cñx−1 0 0
. . . 1

−cñx 0 0 · · · 0

















,

which is a companion matrix. It is well-known that for those matrices
the elements in the first column are the coefficients of its characteristic
polynomial. This is shown as follows: let Mij be the minor of V :=

zI− Ã−1
1 Ã0, i.e. the determinant of the matrix obtained by removing row

i and column j. Then, the determinant can be expanded by minors, for
any j,

det(V ) =

ñx
∑

i=1

(−1)i+jvijMij , V = {vij}.

Taking j = 1, we get Mi,1 = det(diag(z, . . . , z,−1, . . . ,−1)) with i − 1
occurrences of −1, so that Mi,1 = zñx−i(−1)i−1. Therefore,

det(V ) = (−1)2(c1 + z)M1,1 +
∑ñx

i=2(−1)i+1ciMi,1

= c1z
ñx−1 + zñx +

∑ñx

i=2 ciz
ñx−i

= P (z),

which is exactly (12). This shows that the results of Algorithms 1 and 2
are identical, since the generalized eigenvalues in (8) are exactly the roots
of P (z).

It remains to show what the roots are. Let Ã = [ã0 Ã1] be the A-matrix
related to (35). Clearly, c = (1, c′T )T is in the null-space of Ã and hence
Pc(z) is the unique solution to (35). But for z 6= 0,

P (z) = cñx + cñx−1z + · · ·+ c1z
ñx−1 + zñx

= zñx

( cñx

zñx
+

cñx−1

zñx−1
+ · · ·+

c1
z

+ 1
)

= zñxPc(1/z)

= zñx(1− x1/z)(1− x2/z) · · · (1− xDmin
/z)

= zñx−Dmin(z − x1)(z − x2) · · · (z − xDmin
),

which extends to z = 0 by continuity. This concludes the proof of points
(i) and (ii).

(iii) Let (p, q) be a polynomial solution to (5) and c the corresponding coeffi-
cient solution. From Lemma 2 we have

q(z) = p(z)em(z),
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where m(z) is defined in (23). For the (K +1)-th Taylor coefficient of the
left and right hand side we have by Lemma 2 and Lemma 1,

0 =

nx
∑

j=0

cjaK+1−j ⇒ aK+1 = −
nx
∑

j=1

aK+1−jcj , (36)

since the k-th Taylor coefficient of q and p is zero for k > nx and k > ny

respectively. Finally, the last row of (7) extended to size K + 1 gives

mK+1 = (K + 1)aK+1 −
K
∑

j=1

mjaK+1−j .

Together the last two equations show point (iii).

6 Properties of A1 and Markov’s Theorem

We now look more in detail on the structure of the A1 matrix. In particular we
look at the implications of A1R being positive definite. Then we get an explicit
simplified formula for the matrix and our results also shed some light on the
relationship of our results to the classical Markov theorem on the existence
and uniqueness of solutions to the finite moment problem (1) discussed in the
introduction. For this we need to define the matrix

R =





1
. . .

1



,

and note that left (right) multiplication byR reverses the order of rows (columns)
of a matrix. In our notation we can then formulate Markov’s theorem as follows

Theorem 3 (Markov) Suppose K = 2n is even and n = nx = ny. There is a
unique piecewise continuous function f(x) satisfying

mk = k

∫

R

xk−1f(x)dx, 0 ≤ f ≤ 1, k = 1, . . . ,K, (37)

if A1R is symmetric positive definite and the matrix

(

a0 A1

aK+1 aT
0

)

(38)

is singular. This f is of the form in (2, 3).

Remark 7 The theorem does not rule out other forms of f(x) a priori, and
without the second condition in (38) such solutions are indeed possible. It only
considers the case nx = ny, i.e. problem (4), and says nothing about the possi-
bility of other solution types, e.g. when the {xj} and {yj} are not interlaced as
in (3).
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We start by introducing some new notation that will be used throughout
this section. If {xj} and {yj} is a solution of (5) and (p, q) is the corresponding
polynomial solution as defined in (13, 14), we can introduce the new polynomials
pr(z) = znxp(1/z) and qr(z) = znyq(1/z) to describe the solution. Defining
them by continuity at z = 0, we have

pr(z) = (z − x1) · · · (z − xnx), qr(z) = (z − y1) · · · (z − yny). (39)

Furthermore, we assume that the number of distinct roots of pr (xj -branch
values) is ñ. We also order the roots such that we can write

pr(z) = (z − x1)
1+η1(z − x2)

1+η2 · · · (z − xñ)
1+ηñ ,

where 1 + ηj is the multiplicity of the root xj , so that

nx = Deg(pr) = ñ+

ñ
∑

ℓ=1

ηℓ.

We start the analyis with a Lemma giving explicit expressions for the ak
values.

Lemma 4 For k ≥ 0,

any−nx+1+k =

ñ
∑

j=1

1

η!
lim
z→xj

dηj

dzηj

(z − xj)
1+ηj zkqr(z)

pr(z)
. (40)

Proof: This result follows from an application of the residue theorem in complex
analysis as follows. Let Cr be the circle in the complex plane with radius r. Since
the roots of p(z) are non-zero, the function q/p is analytic within and on Cε if
ε is taken small enough, and the Cauchy integral formula gives

ak =

{

1
k!

dk

dzk

q(z)
p(z)

∣

∣

∣

z=0
, k ≥ 0,

0, k < 0,
=

1

2πi

∮

Cε

q(z)

p(z)zk+1
dz.

Setting

f(z) :=
qr(z)

pr(z)
=

zny−nxq(1/z)

p(1/z)
. (41)

and changing variable z → 1/z we get

any−nx+1+k =
1

2πi

∮

Cε

q(z)

p(z)zny−nx+k+2
dz =

1

2πi

∮

Cε

f(1/z)

zk+2
dz =

1

2πi

∮

C1/ε

zkf(z)dz.

Hence, any−nx+1+k is given by the sum of the residues of zkf(z) (assuming we
take small enough ε). By (41) and the restriction k ≥ 0 we see that its poles
are located at the xj-values and they have multiplicities 1 + ηj at xj . Then
(40) follows from the residue formula for a pole of a function g(z) at z∗ with
multiplicity η + 1,

Res(g, z∗) =
1

η!
lim
z→z∗

dη

dzη
(z − z∗)1+ηg(z).
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When the branch values {xj} are distinct the expression for the ak elements
simplifies. They can then be expressed as sums of the powers of {xj} in a way
similar to the momentsmk, but with weights different from one. We can also give
a more concise description of the matrices A0 and A1, which can be factorized
into a product of Vandermonde and diagonal matrices. More precisely, we let
V be the Vandermonde matrix

V =















1 1 · · · 1
x1 x2 · · · xnx

x2
1 x2

2 · · · x2
nx

... · · · · · ·
...

xnx−1
1 xnx−1

2 · · · xnx−1
nx















,

and introduce the diagonal matrices,

W =







w1

. . .

wnx






, X =







x1

. . .

xnx






,

where wj are the weights defined as

wj =
qr(xj)

p′r(xj)
. (42)

(Note that pr has only simple roots when {xj} are distinct, so p′r(xj) 6= 0.)
Then we can show

Proposition 4 If {xj} are distinct, then for k ≥ 0,

any−nx+1+k =

nx
∑

j=1

wjx
k
j , (43)

and
A1R = VWV T , A0R = VWXV T . (44)

Proof: When {xj} are distinct ηj = 0 for all j and the expression (40) for the
xj-residue simplifies,

lim
z→xj

(z − xj)z
kqr(z)

pr(z)
=

xk
j qr(xj)

p′r(xj)
.

This shows (43). For (44) we set bk = any−nx+1+k. Then

A1−rR =











br br+1 . . . br+nx

br+1 br+2 . . . br+nx+1

...
...

. . .
...

br+nx br+nx+1 . . . br+2nx











∈ R
nx×nx , r = 0, 1.

From (43) we then have, for k ≥ 0,










bk
bk+1

...
bk+nx











=

nx
∑

j=1

wj











xk
j

xk+1
j

...

xk+nx

j











=

nx
∑

j=1

wjx
k
j











1
xj

...
xnx

j











= V











w1x
k
1

w2x
k
2

...
wnxx

k
nx











= VW











xk
1

xk
2
...

xk
nx











.

20



Consequently,

A1−rR = VW











xr
1 xr+1

1 . . . xr+nx
1

xr
2 xr+1

2 . . . xr+nx
2

...
...

. . .
...

xr
nx

xr+1
nx

. . . xr+nx
nx











= VWXrV T ,

which concludes the proof. �

We now consider the implications of a positive definite A1R. It turns out
that this is a necessary and sufficient condition to guarantee both distinct {xj}
values and positive weights. We get

Theorem 4 The matrix A1R is symmetric positive definite if and only if {xj}
are distinct and the weights are strictly positive, wj > 0 for j = 1, . . . , nx.

Proof: We use the same notation as in Lemma 4 and set

Sj(z) =
1

ηj !
(z − xj)

1+ηj
qr(z)

pr(z)
.

We note that Sj(z) is smooth and regular close to z = xj . Then by Lemma 4,
for k ≥ 0,

any−nx+1+k =
ñ
∑

j=1

lim
z→xj

dηj

dzηj
zkSj(z).

Next, we let v = (v1, . . . , vnx)
T be an arbitrary vector in R

nx and recall that
Pv(z) is the corresponding nx − 1 degree polynomial

Pv(z) = v1 + v2z + · · ·+ vnxz
nx−1.

Then

vTA1Rv =

nx
∑

j=1

nx
∑

k=1

vjvkany−nx+j+k−1 =

nx
∑

j=1

nx
∑

k=1

ñ
∑

ℓ=1

lim
z→xℓ

dηℓ

dzηℓ
zj+k−2Sℓ(z)vjvk

=

ñ
∑

ℓ=1

lim
z→xℓ

dηℓ

dzηℓ
Sℓ(z)

nx
∑

j=1

nx
∑

k=1

zj+k−2vjvk =

ñ
∑

ℓ=1

lim
z→xℓ

dηℓ

dzηℓ
Sℓ(z)Pv(z)

2.

(45)

If

ñ+

ñ
∑

j=1

⌊ηj/2⌋ ≤ nx − 1, (46)

we can take

Pv(z) = (z − x1)
1+η̃1(z − x2)

1+η̃2 · · · (z − xñ)
1+η̃ñ , η̃j = ⌊ηj/2⌋.

Since 2(1 + η̃ℓ) = 2 + 2⌊ηℓ/2⌋ ≥ 2 + 2(ηℓ/2− 1) > ηℓ and

(

dℓ

dzℓ
f(z)(z − z∗)k

)∣

∣

∣

∣

z=z∗

= 0, 0 ≤ ℓ < k,
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for all smooth enough f(z), we get vTA1Rv = 0, which contradicts the positivity
of A1R. Hence,

ñ+

ñ
∑

j=1

⌊ηj/2⌋ > nx − 1 = ñ+

ñ
∑

ℓ=1

ηℓ − 1.

Since for any integer n > 0 we have ⌊n/2⌋ ≤ n− 1 it follows that all ηℓ = 0 and
ñ = nx. Hence, if A1R is positive definite, then {xj} are distinct.

To show the theorem it is now enough to show that, when {xj} are distinct,
A1R is positive if and only if the weights are positive. From (45) we then have

vTA1Rv =

nx
∑

ℓ=1

Sℓ(xℓ)Pv(xℓ)
2 =

nx
∑

ℓ=1

wℓPv(xℓ)
2.

Clearly, when all wℓ > 0, this expression is positive for v 6= 0, and A1R is
positive definite. To show the converse, we take Pv(z) to be the Lagrange basis
polynomials Lj(z) of degree nx − 1 defined as

Lj(xi) =

{

1, i = j,

0, i 6= j.
.

If A1R is positive then

0 < vTA1Rv =

nx
∑

ℓ=1

wℓLj(xℓ)
2 = wj .

This can be done for each j, which concludes the proof. �

We can now relate our conclusions with those in Markov’s Theorem 3. We
consider all solutions to (5), instead of those given by the integral relation (37)
with a piecewise continuous function f(x). The extra condition (38) is then
automatically satisfied, and we note that the positivity of A1R guarantees a
unique solution also in our space of density functions (6). We view this as a
corollary of Theorems 2 and 4.

Corollary 1 If there exists a solution to (5), then the matrix in (38) is singular.
When nx = ny there is a unique solution to (5) of the form (3) if and only if
A1R is symmetric positive definite.

Proof: We start by proving the singularity of (38). By (ii) in Proposition 2
a coefficient solution c = (c0, . . . , cnx)

T = (c0, c̄
T )T satisfies Ac = 0. Since

A = (a0 A1) it remains to prove that c0aK+1 + aT
0 c̄ = 0. This was already

proved in (36).
Next, we prove the “if” part of the second statement. If A1R is symmetric

positive definite it is non-singular and by (i), (iii) and (v) in Theorem 2 the
minimal degree solution exists and is unique and xj 6= yi for all i, j. (If xj = 0
for some j, then there is no zero yi-value since Deg(q∗) = n by point (iii).) By
Theorem 4 the corresponding branch values {xj} are distinct. It remains to
show that, upon some reordering, the {xj} and {yj} are interlaced as in (3).

Order the xj-values in an increasing sequence and let mk be the number
of yj-values such that yj < xk. Clearly, mk is increasing and 0 ≤ mk ≤ ny.
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Moreover, sgn(qr(xk)) = (−1)ny−mk and since limz→∞ p′r(z) > 0, we also have
sgn(p′r(xk)) = (−1)nx−k. Hence, by also using the fact that ny = nx,

sgn(wk) = (−1)ny−mk+nx−k = (−1)mk+k.

We conclude that mk + k is even, which implies that mk is in fact strictly
increasing. Then, for k = 1, . . . , nx − 1, we have mk+1 ≥ mk + 1 and

nx ≥ mnx ≥ mk + nx − k ⇒ mk ≤ k.

Similarly, mk ≥ m1 + k − 1 ≥ k − 1, so k − 1 ≤ mk ≤ k, and therefore

2k − 1 ≤ mk + k ≤ 2k.

Finally, since mk + k is even we must have mk = k, which implies that the
values are interlaced.

We now consider the “only if” part. If there is a solution of the form (3),
then the {xj}-values are obviously distinct and mk = k. By Proposition 4 the
weights are then given by (42) and they are positive since, as above, sgn(wk) =
(−1)mk+k = 1. It follows from Theorem 4 that A1R is positive definite. �

7 Outlook

Several interesting issues may be worth mentioning:

1. Computational complexity in a finite difference implementation: one can
consult the article [14] where practical implementation issues and several
examples of increasing complexity have been addressed in the context of
geometric optics problems. In particular, comparisons with Lagrangian
(ray-tracing) solutions are shown.

2. Extension to higher dimensions: nothing seems to be done in this direction
at the time being; see however the last sections of [20] and the routines
based on complex variables in [11, 9] for “shape from moments”.

3. A very special case of the trigonometric moment problem can be solved
by means of a slight variation of the algorithms presented here, in [14] and
in Section IV.A of [9]. That is to say, one tries to invert the following set
of equations:

n
∑

j=0

µj exp(ikλj) = mk, k = 0, ..., n. (47)

Let us state that in case the n+ 1 real frequencies λj are known, the set
of complex amplitudes µj are found by solving a Vandermonde system:











1 · · · 1
exp(iλ0) · · · exp(iλn)

...
...

exp(inλ0) · · · exp(inλn)





















µ0

µ1

...
µn











=











m0

m1

...
mn











.
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The frequencies can be found through a byproduct of [9, 14] as we state
now: let us suppose n is odd (i.e. the number of equations is even), we
form the two matrices,

A1 =







m0 · · · mn−1

2

...
...

mn−1

2

· · · mn−1






, A2 =







m1 · · · mn+1

2

...
...

mn+1

2

· · · mn






,

and then the frequencies can be obtained through a generalized eigenvalue
problem, A1vj = λjA2vj , j = 0, ..., n. This kind of algorithm can be
used to check the accuracy of the classical FFT and will be studied in a
forthcoming article.
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