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Abstract. We use the singular value decomposition of the array response matrix, frequency by
frequency, to image selectively the edges of extended reflectors in a homogeneous medium. We show
with numerical simulations in an ultrasound regime, and analytically in the Fraunhofer diffraction
regime, that information about the edges is contained in the singular vectors for singular values
that are intermediate between the large ones and zero. These transition singular vectors beamform
selectively from the array onto the edges of the reflector cross-section facing the array, so that
these edges are enhanced in imaging with travel time migration. Moreover, the illumination with
the transition singular vectors is done from the sources at the edges of the array. The theoretical
analysis in the Fraunhofer regime shows that the singular values transition to zero at the index
N?(ω) = |A||B|/(λL)2. Here |A| and |B| are the areas of the array and the reflector cross-section,
respectively, ω is the frequency, λ is the wavelength and L is the range. Since (λL)2/|A| is the
area of the focal spot size at range L, we see that N?(ω) is the number of focal spots contained in
the reflector cross-section. The ultrasound simulations are in an extended Fraunhofer regime. The
simulation results are, however, qualitatively similar to those obtained theoretically in the Fraunhofer
regime. The numerical simulations indicate, in addition, that the subspaces spanned by the transition
singular vectors are robust with respect to additive noise when the array has a large number of
elements.

Key words. Broadband array imaging, travel-time migration, selective illumination, singular
value decomposition, generalized prolate spheroidal wave functions.

1. Introduction. Accurate array imaging of extended reflectors requires infor-
mation that comes from their edges. However such information is masked by the
strong reflections received from the body of the reflectors. The singular value decom-
position (SVD) of the array impulse response matrix Π̂(ω), at frequency ω, is a natural
tool for filtering strong reflections and concentrating on the weaker edge effects. Here
Π̂(ω) is the complex matrix with entries Π̂(~xr, ~xs, ω), which are the Fourier transforms
of the time traces Π(~xr, ~xs, t) recorded at receiver locations ~xr in the array when the
source at ~xs emits an impulse with flat spectrum over the bandwidth.

We carry out a theoretical analysis of the SVD of Π̂(ω) in the Fraunhofer regime,
in which the Fresnel number [9, Chapter 8.2]

a2

λL
=

a

(λL)/a
(1.1)

is large. Here a is the linear array size, λ is the wavelength, and L is the range. The
Fresnel number is the ratio of a to the focal spot size (λL)/a, which is the first zero of
the array diffraction pattern in the Fraunhofer regime [9, Chapter 8.5]. In this regime
the SVD of the array response matrix can be obtained using the generalized prolate
spheroidal wave functions [39, 30, 42, 6]. This is because the SVD analysis can be
reduced by factorization of the response matrix Π̂(ω) to the eigenvalue problem of a
self-adjoint operator of a special form, as explained in Section 4.4.
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In the Fraunhofer regime, we show that if b is a linear cross-range size of the
reflector then b2a2/(λL)2 is approximately the number N?(ω) of nonzero singular
values. This says that the effective rank of Π̂(ω) is determined by the number of focal
spots of area (λL/a)2 that fit inside a reflector of area b2 and it provides a theoretical
justification for the empirical observations in [45, 44].

Beyond the threshold index N?(ω), the singular values transition rapidly to zero.
The right singular vectors associated with the transition singular values correspond
to illuminations from the edges of the array. The travel time images with these
illuminations focus selectively on the edges of the reflector cross-section facing the
array. The edges of the reflector can thus be emphasized in travel-time migration
images. This fact was also shown with variational methods in the Fraunhofer regime
in [6], and it has been observed experimentally in [27].

The Fraunhofer regime arises naturally in optics [9, Chapter 8.5]. In ultrasonic
array imaging applications we encounter an extended Fraunhofer regime, in which
edge diffraction effects play a more prominent role. The Fraunhofer regime is based
on the assumption that b� a, so that the phase of the free space Green’s function

Ĝ0(~x, ~y, ω) =
exp[ik |~x− ~y|]

4π |~x− ~y| (1.2)

can be linearized with respect to points ~y in the reflector. This reduces the math-
ematical analysis to that of Fourier integral operators. In the extended Fraunhofer
regime the reflector is large (b ∼ a) and the phase of the Green’s function contains the
quadratic Fresnel term in ~y that accounts for stronger diffraction effects. This Fresnel
term complicates the SVD analysis of Π̂(ω), because the problem does not reduce as
in the Fraunhofer case to the spectral decomposition of a self-adjoint, compact op-
erator (see Section 5). However, we show here with numerical simulations that the
behavior of the singular values and singular vectors is qualitatively similar to that of
the Fraunhofer regime. We also demonstrate the effectiveness of the SVD for edge
illumination and its robustness to additive noise when the array has a large number
of transducers. Numerical simulations in the Fraunhofer regime are computationally
demanding because wavelengths are typically very small compared to the size of the
array and the reflector. We do not carry out numerical simulations in the Fraunhofer
regime.

The basic imaging function used in this paper is travel-time migration. It is
easy to implement, it is not demanding computationally, and it is widely used in
several applied areas such as seismic imaging [10, 11, 4, 3], radar imaging [16, 8],
nondestructive evaluation of materials [35], etc. There are, of course, more accurate
broad-band imaging methods such as full wave migration [3, Chapter 4] and full
least squares inversion [3, Chapter 9]. Single frequency least squares techniques that
estimate the support of the reflector using level sets (shape derivatives) [38, 17, 22]
also work well when the the array is large and the signal to noise ratio of the array data
is high. However, these methods are more demanding computationally. In this paper
(see also [6]) we point out that migration becomes more efficient, accurate and robust
when coupled with a data filtering process that tends to emphasize the echoes from
the edges of the reflectors. The data filtering increases the computational complexity
of the migration method, because the filters are defined frequency by frequency with
the SVD of the response matrix Π̂(ω), as explained in Section 2.2.

The SVD can also be used in imaging with the linear sampling method [14, 15,
12, 13]. In this approach, the measurements are made on a sphere of very large
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(asymptotically infinite) radius R surrounding the reflector, and it involves the SVD
of the far field operator with kernel Sω(~θr, ~θs). With the data acquisition geometry
considered in [14, 15, 12, 13], Sω is related to the response matrix Π̂(ω) by

Sω(~θr, ~θs) = lim
R→∞

R2e−2ikRΠ̂(R~θr, R~θs, ω).

Here k = ω/c is the wavenumber and ~θs and ~θr are unit vectors. The theoretical
analysis of the linear sampling method deals with the full scattering problem, not
only the Born approximation, and gives good results with high SNR data and with
full aperture, where Sω(~θr, ~θs) is measured in all directions ~θr and ~θs. It is a single
frequency method which does not appear to have a natural time-domain extension.

In this paper we use the SVD of the limited aperture (a � L) response matrix
Π̂(ω) for all the frequencies in the bandwidth. We also make explicit the connection
between the geometrical features of the reflector cross-section facing the array and the
singular vectors of Π̂(ω) corresponding to the transition singular values whose indices
are near the threshold N?(ω).

In the full aperture case the behavior of the singular values of the far field operator
with kernel Sω is considered in [15, 12]. It is shown in particular, in [15, Chapter 4.3],
that when the reflector is contained in a ball of fixed radius b, the singular values
decay like (ekb/(2n))n as the index n → ∞. The threshold index at which the
singular values start to decay is not identified in [15, 12]. It is shown in [28, 29] that
for two-dimensional disk shaped reflectors of radius b the transition index N?(ω) is the
integer part of kb. This threshold is then used in [28, 29] to characterize the convex
scattering support associated with the data Sω(~θr, ~θs) for a fixed incident direction
~θs and all unit vectors ~θr. The convex scattering support is defined in [28, 29] as
the smallest convex set that can produce the far field measurements. It is a subset
of the convex hull of the support of any scatterer that gives the measured far field
data. As shown in [23], the convex scattering support can also be determined from
back-scattered, far field measurements Sω(~θ, ~θ), for all directions ~θ.

In [28, 29, 23] there is no discussion regarding the connection between the shape of
the scatterer and the form of the singular functions of Sω. In this paper we make this
connection precise for array imaging in the Fraunhofer regime, in the Born approxi-
mation. We also use it to define, in general, data filtering operators that emphasize
the echoes from the edges in the time domain data. The filtered data is then used
in travel time migration to obtain sharp images of the support of the reflectors. To
assess the robustness of the conclusions drawn from the analysis, we present numer-
ical simulations that account for multiple scattering (see Section 3.2) and for strong
diffraction effects (i.e., the extended Fraunhofer regime) (see Section 5). We find that
the theoretical results hold qualitatively in both cases.

We study the limited aperture problem a � L. The full aperture case, with
measurements made all around the reflector, in the far field, as considered in [15, 12,
28, 29, 23] is very different. However, some ideas in this paper extend to the full
aperture problem, as discussed briefly in Appendix C.

The paper is organized as follows. In Section 2 we formulate the array imaging
problem and the selected subspace migration imaging algorithm. In Section 3 we
present the results of numerical simulations using this algorithm in an ultrasonic
imaging regime, including data with additive noise. In Section 4 we introduce the
Fraunhofer diffraction regime and analyze the structure of the SVD of the array
response matrix. In Section 5 we introduce and discuss an extended Fraunhofer regime
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Fig. 1.1. General setup for array imaging.

that is closer to our ultrasonic imaging simulations than the Fraunhofer regime. We
end with a summary and conclusions in Section 6.

2. Array imaging. We wish to image a reflective target with an active array
A consisting of Ns emitters and Nr receivers. The data in the frequency domain is
denoted by Π̂(ω) ∈ CNr×Ns . It is the array impulse response matrix, assumed known
in the frequency band ω0 + [−B/2, B/2]. Here ω0 is the central frequency and B is
the bandwidth. The entries Π̂(~xr, ~xs, ω) of this matrix are the Fourier transforms of
the time traces of the echoes received at ~xr ∈ A, when the source at ~xs ∈ A (see
Figure 1.1) emits the signal

g(t) = exp[iω0t]
sin(Bt/2)

πt

whose Fourier transform is

ĝ(ω) =
∫

exp[−iωt]g(t)dt =

{
1 if |ω − ω0| ≤ B/2,
0 otherwise.

We assume for simplicity that the sources and receivers are collocated, which
means that all array elements act as emitters and receivers and that Nr = Ns = N .
We also assume that the reflector or target is immersed in a medium with constant
wave speed c0.

2.1. Travel-time migration. The Kirchhoff or travel-time migration function
is given by [10, 11, 4, 3]

IKM(~yS ; f̂) =
∫
|ω−ω0|≤B/2

dω

N∑
s=1

N∑
r=1

exp
[
iωτ(~xr, ~yS) + iωτ(~xs, ~yS)

]
Π̂(~xr, ~xs, ω)f̂(~xs, ω). (2.1)

Here τ(~xr, ~yS) is travel time from the point ~xr to ~yS , ~yS is a search point in the
image domain, and the pulse sent from location ~xs is f̂(~xs, ω). Since the propagation
medium is homogeneous, we have τ(~xr, ~yS) =

∣∣~xr − ~yS∣∣ /c0.
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2.2. Selected subspace migration. We will use an imaging functional in
which we replace the array data Π̂(ω) in (2.1) by a filtered version D[Π̂(ω);ω]

ISM(~yS ; f̂) =
∫
|ω−ω0|≤B/2

dω

N∑
s=1

N∑
r=1

exp
[
iωτ(~xr, ~yS) + iωτ(~xs, ~yS)

]
(
D
[
Π̂(ω);ω]

])
r,s
f̂(~xs, ω). (2.2)

The filtering operator D[ · ;ω] : CN×N → CN×N acts only on the singular values of
the response matrix. It has the form

D[Π̂(ω);ω] =
N∑
j=1

dj(ω)σj(ω)uj(ω)v∗j (ω), (2.3)

where the filter weights are dj(ω) ≥ 0, uj(ω) and vj(ω) are the left and right singular
vectors of the response matrix, respectively, and σ1(ω) ≥ σ2(ω), . . . ,≥ σN (ω) ≥ 0 are
its singular values. We recall that the singular vectors form two orthonormal bases,
so that for 1 ≤ i ≤ N , 1 ≤ j ≤ N , we have

u∗i (ω)uj(ω) = v∗i (ω)vj(ω) = δi,j

with δi,j being the Kronecker delta. The singular value decomposition (SVD) [21] of
the array response matrix is

Π̂(ω) =
N∑
j=1

σj(ω)uj(ω)v∗j (ω). (2.4)

The idea in using subspace migration is that the SVD provides a natural scale
for the strength of the reflections reaching the array from different features of the
target. Data filtering with subspace migration is an idea similar to apodization,
where exoplanets or faint astronomical objects are imaged by obscuring the strong
light from nearby stars with aperture control [40, 26]. The difference here is that the
array is active, the data is in a broadband regime, and we exploit the coherence of
the SVD over the different frequencies. Data filtering using the singular values of a
matrix is also used as a regularization method in linear inverse problems [47].

Throughout this paper we make two simplifying assumptions regarding the mi-
gration functional (2.2). First, we assume that the pulses sent from each source are
the same and independent of the frequency, i.e. f̂(~xs, ω) = 1. The second assumption
is that the multiplicative weights dj(ω) used to define the filter D are binary, that is

dj(ω) =

{
1 if j ∈ J(ω)
0 otherwise,

(2.5)

for some set J(ω) ⊂ {1, . . . , N} that determines which singular vectors of Π̂(ω) we
keep. An optimization approach to select illuminations f̂(~xs, ω) and filter weights
dj(ω) in a way that enhances the quality of the images, as is done in [6], can also be
carried out.

We focus attention on three subspace selection strategies.
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1. The simplest strategy is to keep all singular vectors, so that all the data is mi-
grated to obtain an image, without any selection. In this case JKM(ω) = {1, . . . , N},
so the filter D is the identity and we recover the usual travel-time migration.

2. Another strategy is to keep for each frequency the strongest reflection i.e.
JDetect.(ω) = {1}. This is good for detection and is very robust to noise. However, it
is not good for imaging extended targets since the waves scattered by the edges are
weaker than direct or specular reflections from the bulk of the target, and thus there
is practically no information about the edges in the migrated data. This strategy
is more closely related to the DORT method [37], which is used for both imaging
and physical time reversal, and which is designed to selectively image or focus energy
on well-separated point-like targets. DORT in its basic form relies on the fact that
the array response matrix for n such targets has rank n, and that each singular
vector corresponds to a different target [7]. In principle, migrating each singular
vector separately forms an image of each single point-like target. When the point-like
targets are not well separated and even when the surrounding medium is randomly
inhomogeneous, an optimization approach introduced in [5] can determine weights
{dj(ω)} that image the targets one by one in a robust way.

3. Here we will remove the strongest reflections from an extended target so that
we can focus on its edges. This is achieved by selecting singular vectors so that the
normalized singular values σj(ω)/σ1(ω) of Π̂(ω) belong to some interval [α, β] ⊂ (0, 1),
that is

JSM(ω; [α, β]) =
{
j | σj(ω)

σ1(ω)
∈ [α, β]

}
. (2.6)

In this approach, we trade off some robustness to noise (detection capability) for the
ability to focus selectively on the edges (imaging capability).

Using numerical simulations in the ultrasound regime, we compare next these
approaches for imaging extended targets.

Remark 2.1. In simple situations it may be feasible to isolate the echoes coming
from various parts of the reflectors by time-gating the data. However, for extended but
far away reflectors this is difficult to do because the echoes arrive at almost the same
time. The SVD-based subspace data filtering method proposed here is, in general, more
computationally demanding than time gating. But it has the advantage that it can be
automated, thus avoiding any intervention. It is also robust with respect to additive
noise for arrays with a large number of elements.

3. Numerical experiments. For simulations in the ultrasound regime we use
the setup shown in Figure 3.1. The speed of propagation in the background medium
(water) is c0 = 1.5km/s and the frequency band is [1.5MHz,4.5MHz]. The central
wavelength is λ0 = 0.5mm and the bandwidth B = 3MHz.

3.1. Setup for numerical simulations. We probe the medium with a square
array in the xy plane with side (aperture) a = 24.5λ0 and collocated sources and re-
ceivers in two different configurations. The first configuration has N = 2500 elements
placed on a uniform 50 × 50 lattice. The second has N = 100 elements placed on a
10× 10 uniform lattice.

The targets are thin prisms B × L + [−h/2, h/2] with reflectivity ρ(~y). We take
first the case of constant reflectivity ρ(~y) = 1. Then we consider in Section 3.9 non-
constant reflectivities. The targets are at range L = 100λ0. Their cross-range profile
is B ⊂ [−b/2, b/2]2 with b = 20λ0 and their thickness is h = λ0/5. Off-centered



EDGE ILLUMINATION AND IMAGING OF EXTENDED TARGETS 7

zx

y

h

b1

b2

a1

a2

B × L+ [−h/2, h/2]

A

~0

~y?

L

Fig. 3.1. Setup for array imaging.

targets are briefly examined in Section 3.9. The targets are at first parallel to the
array. In Section 3.10 we also consider obliquely placed targets.

The synthetic data is generated using the Born approximation [9, §13.1.2]

Π̂(~xr, ~xs, ω) ≈ k2

∫
d~yρ(~y)Ĝ0(~xr, ~y, ω)Ĝ0(~xs, ~y, ω) (3.1)

where supp ρ = B × L+ [−h/2, h/2]. The integral in (3.1) is evaluated with the mid-
point rule, which is equivalent to having a target with a lattice of point reflectors. In
our computations we use 41× 41× 5 points placed uniformly, at a distance no more
than λ0/2 apart.

We generated data for Nfreq = 51 equally spaced frequencies ωi in the bandwidth,
which are 60KHz apart. This is enough for resolving numerically the coherent behavior
of the singular values over the bandwidth. The frequency spacing we use corresponds
roughly to a time window that is one quarter of the travel time from the array to the
target and back.

3.2. Multiple scattering. If we think of the target as a lattice of closely spaced
point reflectors or “particles”, then the Born approximation (3.1) takes into account
only scattering paths involving a single particle. Our agorithm can of course be
applied to any data and, to see how multiple scattering influences the images that it
produces, we also generated data with second order multiple scattering ([9, §13.1.4]),
by modeling scattering paths that involve up to two particles:

Π̂(xr,xs, ω) ≈ k2

∫
d~yρ(~y)Ĝ0(~xs, ~y, ω)

[
Ĝ0(~xs, ~y, ω) + k2

∫
d~y′ρ(~y′)

Ĝ0(~xr, ~y′, ω)Ĝ0(~y, ~y′, ω)
]
. (3.2)

Here supp ρ = B × L+ [−h/2, h/2].
We only considered a parallelepiped target with reflectivity ρ = 1, in the same

configuration described in Section 3.1. The target was discretized using 221× 221× 5
points in order to get roughly 10 points per wavelength, although we went up to 21
points per wavelength (413×413×11 points) to validate our code. Since (3.2) involves
convolutions, we can evaluate it efficiently using the FFT, as in a single step of the
conjugate-gradient FFT or k−space Lippmann-Schwinger equation solvers (see e.g.
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[24] for a review). Convergence is slow as the number of discretization points increases
because we do not deal with the singularity at the diagonal of the kernel Ĝ0(~y, ~y′, ω).

For the 50×50 array and at the central frequency we found that the second order
term in (3.2) represented roughly 51.6% of the power of the first order term (3.1), i.e.
the ratio of their squared Frobenius norms was about 51.6%.

We generated subspace migration images using first and second order scattering
data, with the rescaled singular values in the interval [0.001, 0.2], and with the 10×10
and the 50 × 50 arrays. We do not show here the images with the second order
scattering data, because they are almost identical to the single scattering ones. This
can be explained intuitively from (3.2), because in the second integral over ~y′ it is
the volume of the penetrable target that plays the dominant role and not its edges
(boundary). Our subspace migration approach looks for the edges of the target,
and their effect on multiple scattering in the penetrable target are small. Multiple
scattering should have a visible effect on the estimation of the actual value of the
reflectivity inside the target and on the imaging of the support of unpenetrable targets.
We do not consider these problems here.

3.3. Singular values of the array response matrix. We compare in Fig-
ure 3.2 the singular values of the response matrix for both the 50×50 and the 10×10
arrays. To make the comparison more realistic we look at the array response matrix
Π̂(ω) as an approximation of an L2(A) → L2(A) operator Π̂C(ω) and plot the ap-
proximate singular values of Π̂C(ω). That is, for g some function defined on A and
g = [g(x1), . . . , g(xN )]T we have

(∆a)2(Π̂(ω)g)r = (∆a)2
N∑
s=1

Π̂((xr, 0), (xs, 0), ω)g(xs)

≈
∫
A
dxsΠ̂((xr, 0), (xs, 0), ω)g(xs) = (Π̂C(ω)g)(xr),

(3.3)

where (∆a)2 ≡ a2/(
√
N − 1)2 is the area associated, or covered, by an array sensor.

The approximation above is a mid-point quadrature rule for the L2(A) inner product.
The spacing between elements in the 50×50 array is λ0/2, so that it behaves as a

continuum aperture (Nyquist criterion). As can be seen from Figure 3.2, the 10× 10
array also behaves as an aperture, even though the spacing between elements is 2.5λ0.
Indeed, the singular values for both arrays are similar when there is no noise.

Clearly there are only a few non-zero singular values, so Π̂(ω) is effectively a
low-rank matrix (Figure 3.2). The first few right singular vectors correspond to the
low-dimensional subspace of illuminations that produce echoes at the array.

The number of singular values that are effectively nonzero, that is, above some
threshold relative to the largest singular value, increases with the frequency. This
characteristic behavior has a theoretical explanation, at least in the Fraunhofer regime,
as we show in Section 4. In that section we also explain the staircase form of the
singular values for square targets, which comes from separation of variables.

3.4. Singular values of the array response matrix with noise. To sim-
ulate instrument noise we added a noise matrix W (ω) ∈ CNr×Ns with zero mean
uncorrelated Gaussian distributed entries having variance εpavg, that is, Wr,s(ω) ∼
N (0, εpavg). Here ε > 0 and pavg is the average power received per source, receiver
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and frequency

pavg =
1

NrNsNfreq

Nfreq∑
i=1

∥∥∥Π̂(ωi)
∥∥∥2

F
, (3.4)

where ‖·‖F is the Frobenius matrix norm. The expected power of the noise W (ωi)
over all frequencies, receivers and sources is

E

Nfreq∑
i=1

‖W (ωi)‖2F

 = εNrNsNfreqpavg.

Since the total power of the signal received over all frequencies, receivers and sources
is NrNsNfreqpavg, the signal to noise ratio (SNR) in dB is −10 log10 ε.

The behavior with noise can be quantified relative to σ1[W (ω)]. To see this let us
return to the case N = Nr = Ns (collocated sources and receivers) and use Corollary
8.6.2 in [21] which guarantees that for 1 ≤ j ≤ N ,∣∣∣σj [Π̂(ω) +W (ω)

]
− σj

[
Π̂(ω)

]∣∣∣ ≤ σ1 [W (ω)] . (3.5)

Thus, the singular values of Π̂(ω) that are essentially zero become with noise singular
values no larger than σ1[W (ω)]. This last quantity has been estimated asymptotically
for large N by Geman [19] (see also [18]):

σ1[W (ω)] ≈ 2
√
εNpavg, for N large. (3.6)

In Figure 3.2 we show the estimated effect of noise on the singular values of Π̂C(ω)
by a dotted line at (∆a)22

√
εNpavg. This is a better estimate for the 50 × 50 array

than for the 10× 10 array, since (3.6) is an asymptotic result for large N .
The effect of noise is significantly higher when there are fewer receivers, which is

what is expected. In fact, for the 10× 10 array the noise influences more the singular
values than for the 50× 50 array, even if it is ten times weaker. The improvement in
SNR with more elements in the array follows from

(∆a)2σ1[W (ω)] ≈ (∆a)22
√
εNpavg =

2a2
√
εNpavg

(
√
N − 1)2

= O(N−1/2), for N large.

(3.7)
The bound (3.5) is rather conservative for the largest singular values, as can be

seen with a simple example. Assuming Π̂(ω) has rank r < N , its SVD can be rewritten
as

Π̂(ω) =
[
U1 U2

] [Σ
0

] [
V ∗1
V ∗2

]
,

where [U1, U2] and [V1, V2] are unitary matrices and Σ = diag(σ1[Π̂(ω)], · · · , σr[Π̂(ω)]).
Now if the vectors in the span of U1 and V1 are not noisy, then we can think of
RangeW (ω) ⊂ RangeU2 and RangeW ∗(ω) ⊂ RangeV2. Let us further assume that
we do have W (ω) = U2U

∗
2W (ω)V2V

∗
2 , and that the SVD of U∗2W (ω)V2 is UWΣWV ∗W

with σ1[ΣW ] ≤ σr[Σ]. Then the SVD of the noisy measurements has the form

Π̂(ω) +W (ω) =
[
U1 U2UW

] [Σ
ΣW

] [
V ∗1

V ∗WV
∗
2

]
.

Thus, at least in this very simple case, the largest singular values of Π̂(ω) + W (ω)
remain those of Π̂(ω).
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(a) SNR 0dB, 50× 50 array (b) SNR 10dB, 10× 10 array

Fig. 3.2. The first 100 singular values of the continuous array response matrix bΠC(ω) for
noiseless (green line) and noisy (blue line) measurements for a rectangular target, and for frequencies
1.5MHz, 3MHz and 4.5MHz. The dotted line is at the estimated largest singular value of the noise
matrix.

3.5. Image display conventions. Most of the images we show are obtained
with the search point ~yS in a domain D consisting of three slices z = L, x = 0 and
y = 0 passing through the center ~y? = (0, L) of the target. Each slice is discretized
with 40× 40 points. The cross-range dimension of the slices is 30λ0 and it is 10λ0 in
range. We plot

∣∣I(~yS)
∣∣ /max~yS∈D(

∣∣I(~yS)
∣∣), and we used the same scale for each row

of plots. For reference, the outline of the target is superposed in black.
We show the sets J(ωi) that define the class of filtering operators that we consider

as blue dots on a contour plot of the rescaled singular values σj(ωi)/σ1(ωi), with the
frequency ωi as the abscissa and the singular value index j as the ordinate. The
contours are spaced every 10%. When there is noise in the data we add a thick
green line. The singular values above this line are above the expected noise level
2(∆a)2

√
εpavgN (see Section 3.4).

3.6. Selected subspace migration imaging. We compare in Figures 3.3 and
3.4 the images obtained with the different filtering strategies described in Section 2.2,
for the 50 × 50 array with and without noise. To emphasize the fact that the array
response matrix Π̂(ω) is low rank, instead of taking all the singular values for travel-
time migration, we take at a given frequency ωi only the singular values larger than
0.1% of σ1[Π̂(ωi)].

Travel-time migration works well in recovering the object as a whole. In detection,
only the largest singular value is used, so the image shows the strongest reflection
which comes from the center of the object. This is good for detecting targets but not
for imaging extended targets because information about the edges is lost.

Keeping intermediate singular values, say between 10% and 20% of the largest
singular value, gives images that show the edges of the object. It appears from our ex-
periments that taking all the singular values below some threshold (say 20%) improves
the images in range. This is probably because information about the perimeter of the
object is present redundantly in the intermediate singular values (see Section 4).

We make two general observations regarding the contour plots for the singular
values (Figures 3.3 and 3.4). First, the number of singular values that are within 10%
of the largest one increases with frequency. Second, the noise influences more the
higher frequencies. In fact for the data with 0dB SNR there are no singular values
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Fig. 3.3. Comparison of different methods for imaging a rectangular target with data captured
on a 50× 50 array and with infinite SNR.

below the 10% contour for the upper half of the bandwidth (the “dome” in Figure 3.4).
This separation does not occur with fewer receivers (Figure 3.7).

In Figure 3.5 we use the edge illumination algorithm for targets that have different
cross-range profiles. The results are similarly to those for the rectangular target, so
we only show images with rescaled singular values between 10% and 20%. Note that
the images peak close to the corners because scattering is stronger there.

3.7. Influence of array size on imaging with noisy data. Travel-time mi-
gration and detection with the top singular value are very stable in the presence of
noise: the images with 0dB SNR are very similar to the images with infinite SNR
data. The edge illumination method is naturally more sensitive to noise, but if we
take singular values above the noise level the results are similar. If we go below the
noise level we still get images of the edges, but they appear blurred in both range and
cross-range. This is shown in Figures 3.6 and 3.7.
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Fig. 3.4. Comparison of different methods for imaging a rectangular target with data captured
on a 50× 50 array and with 0dB SNR.

For the 50× 50 array, edge illumination imaging is robust to noise: blurry images
can be obtained even with singular values that are 10% below the largest one (Fig-
ure 3.6). This is because of the large number of elements in the array (Section 3.4)
and because we use the first 100 singular vectors only.

With fewer array elements the images break down more easily. For the 10 × 10
array, imaging with the bottom 5% of the rescaled singular values (Figure 3.7) gives
unacceptable images. The break down happens mostly outside the target, where there
is no information since there are no echoes.

3.8. Sparse sensor arrays. We show in Figure 3.8 images obtained with pro-
gressively sparser sensor placement in the arrays, and infinite SNR. Here by sparse we
mean that the array has fewer sensors but the same overall dimensions. The possibil-
ity of being able to use sparse arrays is important because arrays with many sensors
can be expensive. Of course, the sensors must not be too far apart because then they
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Fig. 3.5. Edge illumination of other targets, with infinite SNR.

will not behave like an array at all. It simplifies the theory when we treat Π̂(ω) as
the L2(A)→ L2(A) operator Π̂C(ω), and in the numerics it avoids aliasing. The rule
of thumb (motivated by the Nyquist criterion) is to have array elements that are no
more than λ0/2 apart. This is why in most of our numerical simulations we use a
large array with 50× 50 elements.

In the numerical experiments we see that it is possible to obtain comparable
images even with a small 8×8 array, where its elements are 7 times farther apart than
in the 50 × 50 array. The images obtained with travel-time migration and detection
using the top singular value behaved similarly, so we do not show them.

Having a small number of sensors in the array is not a good idea because imaging
is much more sensitive to noise. As we saw in Section 3.4, the effect of noise decreases
with the number of array elements. With infinite SNR, good images can be obtained
as long as the number of array elements is larger than the effective rank N?(ω) of the
operator Π̂C(ω), at the highest frequency in the bandwidth.
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Fig. 3.6. Imaging with the bottom 10% of the rescaled singular values and with 0dB SNR data,
captured with a 50× 50 array gives blurry images. This robust-to-noise behavior should be compared
to that of an array with fewer sensors and the same aperture (Figure 3.7).

3.9. Off-centered targets and non-constant reflectivities. We see from
Figure 3.9 that subspace migration is unaffected by shifts of the reflector in the xy
plane. We computed subspace migration images for a parallelepiped target with
dimensions 10λ0×10λ0×λ0/5, centered at the point (5λ0, 5λ0, 100λ0). The images are
centered at the point (0, 0, 100λ0), following the conventions outlined in Section 3.5.

We also tested how subspace migration behaves when the reflectivity is not con-
stant, using two configurations. In the first one the target is a parallelepiped with
dimensions b× b× h (as in Section 3.1), where the reflectivity is different depending
on the sign of x. In the second configuration (Figure 3.11) the target is a cylinder
of diameter b and depth h, having a different reflectivity in the concentric cylinder
of diameter b/2. We show images when the higher reflectivity is either on the inside
(|ξ| < b/2) or on the outside (b/2 ≤ |ξ| ≤ b).

In Figure 3.10 we also see the effect of the contrast (ratio of highest to lowest
reflectivity) on the images. For low contrast, subspace migration images are compa-
rable to those for a constant reflectivity where the edges are emphasized when we
remove the largest singular values. However, the edges for the higher reflectivities
appear sharper than those for the lower reflectivities. With higher contrast, in both
Figures 3.10 and 3.11, we see that when we take all the singular values below a thresh-
old we mask the stronger reflections, which come from the highest reflectivity region
of the target, and thus enhance the part of the reflector that is not well imaged with
the plain travel-time migration.

For non-constant reflectivities, therefore, imaging with subspace filtering does not
detect edges but removes the stronger components of the usual travel-time migration
to reveal the faintest ones. If we can use low enough singular values, it may be
possible to image the edges of the low reflectivity region. A deeper study of the infor-
mation contained in the singular subspaces of the response matrix for non-constant
reflectivities is left for future studies.
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Fig. 3.7. Images obtained with the bottom 30% of the rescaled singular values and with 10dB
data, captured with a 10 × 10 array. When we use the bottom 5% of rescaled singular values the
images break down. This should be contrasted with the robustness of the images for the 50×50 array
in Figure 3.6

3.10. Oblique targets. In Figure 3.12 we consider travel-time migration, de-
tection with the top singular value, and our edge illumination approach when the
target is not parallel to the array. The rectangular target we considered has the same
dimensions 20λ0 × 20λ0 × λ0/5 as before, but it is rotated by π/12 around the x
axis or around the x = y, z = L axis. The image domain is a box with dimensions
[−15λ0, 15λ0]2 × [−5λ0, 5λ0], with the same center ~y? as the target. It is discretized
with 403 points.

From the images with travel-time migration and detection with the top singular
value images we see that the edges parallel to and close to the array are the ones that
produce the strongest reflections. In fact, detection with the top singular value focuses
only on the closest feature, edge or corner, to the array. Because of the orientation,
the interior of the target and the other edges do not appear in the images: the echoes
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Fig. 3.8. Using arrays with identical aperture but fewer sensors, and with infinite SNR. The
distances between sensors are from top to bottom: 0.5λ0, 2.72λ0, 3.5λ0 and 8.16λ0. The rescaled
singular values are in the interval [0.001,0.2]. The plots are shorter for sparser arrays because there
are fewer singular values.
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Fig. 3.9. Edge illumination of an off-center rectangular target.
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Fig. 3.10. Subspace migration images in the xy plane of a rectangular target made with two
reflectivities. The higher reflectivity is in x > 0. Two different contrasts (ratio of highest to lowest
reflectivity) are considered.
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Fig. 3.11. Subspace migration images in the xy plane of a circular target with two reflectivities
with contrast (ratio of highest to lowest reflectivity) of 10. First row: the higher reflectivity is on
the outside. Second row: the higher reflectivity is on the inside.

from the waves hitting these features do not reach the array and are overpowered by
the specular reflections.

The edge illumination approach obscures these strong reflections and reveals fea-
tures coming from edges or corners that could not be seen in the travel-time migration
image. For both targets we can see corners as stronger features. The edges that are
prominent in the travel-time migration images are masked.

4. Analysis in the Fraunhofer regime. We now show that the qualitative
behavior of the singular values of the array response matrix can be explained in the
regime of Fraunhofer diffraction by using some results for space and wavenumber
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Kirchhoff Detection SM [0.001, 0.2]

Fig. 3.12. Images for a rectangular target rotated by π/12 around the x axis (top row) or the
x = y, z = L axis (bottom row), with infinite SNR data. The true target appears in red. Only the
isosurfaces 1/4 and 1/2 of the image are plotted.

limiting operators1. The analysis also explains why choosing intermediate singular
values images well the edges of the target.

4.1. The Fraunhofer regime. With the characteristic length scales of the
imaging problem we define the following dimensionless parameters:

θa =
k0a

2

L
, θb =

k0b
2

L
, θh =

k0h
2

L
and θab =

k0ab

L
.

Here k0 = ω0/c0 = 2π/λ0 is the central wavenumber, λ0 the central wavelength, a is
the array aperture, L the range, b is the diameter of the target and h is its thickness
(see Figure 3.1).

The parameter θa is the Fresnel number of the array. By analogy we also call the
other three parameters Fresnel numbers (as in [6]). The scaling regime we consider
is a particular case of the usual Fraunhofer diffraction regime [9, §8.3], in which the
focal spot size is small relative to the array aperture, that is,

λ0L

a
� a⇔ θa � 1. (4.1)

We also require that the range is large so that

a2

L2
� 1

θa
� 1 (4.2)

1Space and wavenumber limiting operators are discussed in more detail in Section 4.5. They are
also called “space and frequency limiting” [39] or “time and band limiting” operators [41], depending
on the interpretation of the Fourier space. To avoid confusion with the frequency ω, we use here
“wavenumber” instead of “spatial frequency”.
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and that the target is small with respect to the aperture, b � a and θb � 1. We
assume that the target contains at least a few focal spot sizes,

b ≥ λ0L

a
⇔ θab ≥ 1. (4.3)

We work with thin reflectors satisfying θh � 1 and h � a � L. Moreover, we
assume that the thickness of the reflector h is small compared to L2/(k0a

2), the range
resolution of single frequency images [9, Chapter 8.8]:

h� L2

k0a2
⇔ hθa

L
� 1. (4.4)

4.2. Ultrasonic and optical imaging. The setup for the numerical simulations
of Section 3 is for high frequency ultrasonic imaging which, however, does not fall into
the Fraunhofer scaling regime as we defined it in Section 4.1. Indeed, we take the
frequency band [1.5MHz, 4.5MHz] so that, for the sound speed c0 = 1.5km/s in water
we get a central wavelength λ0 = 0.5mm. The range is L = 100λ0 = 5cm and the
array aperture a = 24.5λ0 = 1.225cm is comparable to the linear size of the reflector
b = 20λ0 = 1cm. The Fresnel numbers in our simulations are

θa ≈ 12π, θb = 8π, θh =
1

1250
π, and θab =

49
5
π,

so we are clearly not in the Fraunhofer regime of Section 4.1.
The Fraunhofer regime arises naturally in optical imaging, where the typical wave-

length is λ0 = 0.5µm and where, for example, the range may be taken to be L = 3m,
the array aperture a = 2cm, and the reflector size b = 0.1mm. This gives

1� θa ≈ 1.68× 103 � L2

a2
= 2.25× 104

and

θab ≈ 8.38� θb ≈ 0.042,

so it corresponds roughly to the assumptions in Section 4.1.
Numerical simulations in the Fraunhofer regime are very demanding computa-

tionally because the array aperture contains some 104 central wavelengths in each
direction. Since the sensors in the array should be separated by at most a λ0 distance,
we need some 108 sensors. This is why we do not carry out numerical simulations in
the Fraunhofer regime.

In the ultrasonic regime of our numerical setup, an extended Fraunhofer regime
with θb ∼ θab ∼ 1 is more appropriate. The results of the numerical simulations
indicate, however, that the qualitative behavior of our imaging algorithm is nearly
as predicted by the Fraunhofer theory. We discuss briefly in Section 5 the extended
Fraunhofer regime and show how it captures better the behavior of the singular values
of the array response matrix in the numerical simulations.

4.3. The array response matrix in the Fraunhofer regime. Three key ap-
proximations are made in the Fraunhofer regime. The first is the Born approximation
[9, §13.1.2] and the second is the paraxial approximation Ĝ0(~x, ~y, ω) ≈ Ĝ0(~x, ~y, ω),
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that simplifies with the scalings of the Fraunhofer regime as described below. With
the two first approximations we may write

Π̂(~xr, ~xs, ω) ≈ Π̂F (~xr, ~xs, ω) = k2

∫
B×L+[−h/2,h/2]

d~yρ(~y)Ĝ0(~xr, ~y, ω)Ĝ0(~xs, ~y, ω),

(4.5)
where ρ(~y) is the reflectivity of the target. The third and last is the “continuum”
approximation of the L2(A) inner product by (∆a)2 ≡ a2/(

√
N − 1)2 times the CN

inner product. Instead of studying the matrix [Π̂F (~xr, ~xs, ω)]Nr,s=1, we study the
operator Π̂F (ω) : L2(A)→ L2(A) defined by

(Π̂F (ω)f)(x) =
∫
A
dyf(y)Π̂F ((x, 0), (y, 0), ω). (4.6)

We now describe how to obtain the paraxial approximation to the free space
Green’s function

Ĝ0(~x, ~y, ω) ≈ Ĝ0(~x, ~y, ω) =
1

4πL
exp

[
ik

(
L+ η +

|x|2
2L
− x · ξ

L

)]
, (4.7)

for ~x = (x, 0) ∈ A and ~y = (ξ, L + η) ∈ B × L + [−h/2, h/2]. The first step is to
notice that for ~x in the array and ~y in the target, the denominator in the free space
Green’s function (1.2) is approximately 4πL since

|~x− ~y| =
[
(L+ η)2 + |x− ξ|2

] 1
2

= L

[
1 +O

(
h

L

)
+O

(
a2

L2

)]
≈ L. (4.8)

The approximation of the phase in the Green’s function (1.2) comes from

k |~x− ~y| = k

(
L+ η +

|x|2
2L
− x · ξ

L

)
+O

(
θb + θh + θa

h

L
+ θa

a2

L2

)

≈ k
(
L+ η +

|x|2
2L
− x · ξ

L

)
.

(4.9)

In both equations (4.8) and (4.9), we can neglect the terms in O(·) because of the
assumptions made in the Fraunhofer regime (Section 4.1).

Next we characterize the Fraunhofer regime array response matrix Π̂F (ω) in terms
of a known class of linear operators.

4.4. The singular value decomposition of the array response matrix.
For reflectivities of the form ρ(~y) = χB(ξ)ρL(η), where ~y = (ξ, L+η) is in the target,
we relate Π̂F (~xr, ~xs, ω) to a space and wavenumber limiting operator. We have the
following.

Proposition 4.1. When the array is invariant under reflections about the origin
(−x ∈ A ⇔ x ∈ A) then,

Π̂F (ω) =
ρ̂L(−2k)

4
U(ω)RAQ k

LB
AU(ω).
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Here U(ω) is the unitary operator

(U(ω)f)(x) = (4πL)Ĝ0(~x, ~y?, ω)f(x) = exp

[
ik

(
L+

|x|2
2L

)]
f(x),

which is multiplication by a phase, and with ~x = (x, 0) and ~y? = (0, L). The operator
A : L2(R2)→ L2(R2) is the orthogonal projection onto the set of functions supported
on A,

(Af)(x) = χA(x)f(x),

and the operator Q k
LB

: L2(R2)→ L2(R2) projects orthogonally onto the set of func-
tions that have a Fourier transform supported on the set k

LB ≡
{
x ∈ R2 | Lk x ∈ B},

Q k
LB

= F−1

(
k

L
B
)
F ,

where F is the Fourier transform. Finally R is reflection about the origin (Rf)(x) ≡
f(−x).

The factorization of the operator Π̂F (ω) in Proposition 4.1 has a simple physical
interpretation. Since U(ω), A and R commute, the operator Π̂F (ω) is a multiple of
AU(ω)RQ k

LB
U(ω)A, whose action from right to left means that the illumination is

first restricted to the array, it is then propagated to the reflector by U(ω), it scatters
off it according to Q k

LB
(in the Fraunhofer regime), it is reflected about the origin,

then propagated back to the array and finally, restricted to the array again.
The operator AQ k

LB
A of Proposition 4.1 is a space and wavenumber (or time

and frequency) limiting operator, a product of orthogonal projections, encountered
in the study of functions that are well-localized as are their Fourier transforms. The
connection between the Fraunhofer response matrix and such operators, in the context
of imaging a slit with a linear array, is considered in [6].

We review the properties of time and frequency limiting operators in Section 4.5.
In particular, AQ k

LB
A is Hilbert-Schmidt, self-adjoint, and has a discrete real spec-

trum with positive eigenvalues. So the singular value decomposition of Π̂F (ω) follows
by Proposition 4.1 from that of the spectral decomposition of AQ k

LB
A.

Proposition 4.2. The singular values of Π̂F (ω) are for n ∈ N,

σn[Π̂F (ω)] =
|ρ̂L(−2k)|

4
σn[AQ k

LB
A],

with associated right and left singular functions,

vn[Π̂F (ω)] = U∗(ω)vn[AQ k
LB
A], and

un[Π̂F (ω)] = arg(ρ̂L(−2k))U(ω)Rvn[AQ k
LB
A],

where arg(·) denotes the complex argument.
Proof. (of Proposition 4.1.) Applying U∗(ω)Π̂F (ω)U∗(ω) to a function f gives

(U∗(ω)Π̂F (ω)U∗(ω)f)(xr) =

(4πL)2
∫
A
dxsf(xs)Ĝ0(~xr, ~y?, ω)Π̂F (~xr, ~xs, ω)Ĝ0(~xs, ~y?, ω),
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where ~y? = (0, L), ~xs = (xs, 0) and ~xr = (xr, 0). With (4.5) and the identity

(4πL)2Ĝ0(~x, ~y, ω)Ĝ0(~x, ~y?, ω) = exp
[
− ik
L

x · ξ + ikη

]
, (4.10)

for ~y = (ξ, L+ η) and ~x = (x, 0), we get

(U∗(ω)Π̂F (ω)U∗(ω)f)(xr) =
k2

(4πL)2

∫
A
dxsf(xs)

∫
B×L+[−h/2,h/2]

d~y

ρ(~y) exp
[
− ik
L

(xr + xs) · ξ + 2ikη
]
. (4.11)

When the reflectivity is ρ(~y) = χB(ξ)ρL(η) the above expression simplifies to

(U∗(ω)Π̂F (ω)U∗(ω)f)(xr) =
ρ̂L(−2k)

4
1

(2π)2

∫
A
dxsf(xs)χ̂ k

LB
(xr + xs)χA(xr).

The result follows by identifying above the kernel representation of Q k
LB

,

(Q k
LB
f)(x) =

1
(2π)2

∫
dyf(y)χ̂ k

LB
(y − x).

Example 4.3 (taken from [6]). In 2D when the array is linear [−a/2, a/2] × 0
and we wish to image the slit [−b/2, b/2]× L+ [−h/2, h/2] with unit reflectivity, the
singular values of Π̂F (ω) are 2π2k |ρ̂L(−2k)| νn(kab/(4L)). Here νn(C), with C =
kab/(4L), are the singular values of the operator P[C] = P[−1,1]Q[−C,C]P[−1,1] with
kernel representation,

(P[C]f)(x) =
∫ 1

−1

dyf(y)
sin[C(x− y)]
π(x− y)

.

Here P[−1,1] is the orthogonal projection that restricts functions to the interval [−1, 1],
and Q[−C,C] = F−1P[−C,C]F is the orthogonal projection that restricts a function
to [−C,C] in frequency. The singular functions of this operator can be computed
explicitly and are the prolate spheroidal wave functions, as was shown by Landau,
Pollak and Slepian [43, 31, 42], so the singular values νn(C) are known analytically.
The properties of this operator are considered further in Appendix A.

Therefore, in the Fraunhofer regime the array response Π̂F (ω) is, up to unitary
transformations, a space and wavenumber limiting operator. Let us now review prop-
erties of this class of operators.

4.5. Space and wavenumber limiting. The problem of finding a function
localized to some set A (in space) and whose Fourier transform is most concentrated
on another set B can be solved with the spectral decomposition of the operator AQBA.
When A and B are intervals of the real line, this problem has an explicit solution in
terms of the prolate spheroidal wave functions, as was shown by Slepian and Pollak [43]
(see also [41]). One of the many generalizations (see e.g. the review by Slepian [42])
of their work is to higher dimensions. We review known results about the generalized
prolate spheroidal wave functions that allow us to analyze the behavior of our imaging
algorithm. Because of our problem setup, we limit the discussion to two-dimensional
versions of results that hold also in higher dimensions.
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4.5.1. Space and wavenumber limited functions. A function f that is sup-
ported on a set A in space is such that f = Af , so its L2 norm is ‖Af‖2, or by
Parseval’s identity (2π)−2 ‖FAf‖2. Now the norm of f measured on the set B in the
Fourier domain is (2π)−2 ‖BFAf‖2. Functions that are restricted to the set A and
that are well localized on the set B in Fourier space maximize the ratio

(2π)−2 ‖BFAf‖2
‖Af‖2 = (2π)−2 〈BFAf,BFAf〉

〈f, f〉 , (4.12)

where 〈·, ·〉 is the usual L2(R2) inner product and we have f = Af . The ratio (4.12) is
the Rayleigh quotient for the self-adjoint operator (2π)−2AF∗BFA = AQBA, since
QB = F−1BF and F−1 = (2π)−2F∗. Since AQBA is compact, the concentration
in energy (4.12) is maximized by the eigenfunction v1[AQBA] corresponding to the
largest eigenvalue σ1[AQBA]. The compactness of AQBA follows from it being of
trace class, since by Mercer’s theorem,

tr AQBA =
∑
j

σj [AQBA] =
1

(2π)2

∫
dxχA(x)χA(x)χ̂B(x− x) =

|A| |B|
(2π)2

,

where | · | denotes the area (measure) of a set.
We could have formulated the problem differently: what is the function localized

in the Fourier domain to B, that is most concentrated in space to A? The answer is the
eigenfunction of BQ∗AB = BFAF−1B with largest eigenvalue. From this reformulation
we see that the Fourier transform of an eigenfunction, Fv[AQBA], is a function of the
same form, v[QABQA]. This important property of essential invariance under Fourier
transforms is used in Proposition 4.5.

So far we have effectively constructed the left and right singular functions of the
operator (2π)−1BFA with largest singular value (we omit the (2π)−1 factor when
referring to singular functions). The remaining singular functions solve constrained
problems: the j−th right singular function vj [BFA] maximizes the concentration
(4.12) while being orthogonal to the first j − 1 right singular functions, and the j−th
left singular function uj [BFA] is the function localized in frequency domain to B that
is most concentrated in space to A and orthogonal to the first j − 1 left singular
functions.

4.5.2. Asymptotics of the eigenvalue distribution. A remarkable result
about the spectrum of AQBA is that for large sets B, this product of orthogonal pro-
jections behaves itself like an orthogonal projection: its higher (2π)−2 |A| |B| eigenval-
ues are close to one and then plunge to zero very rapidly. For the operator AQ k

LB
A

that we encountered in our study of the array response Π̂F (ω), this result can be seen
as a large Fresnel number θab = kab/L asymptotic form of its eigenvalue distribution
function, where a is the size of the array and b that of the target, in cross-range. The
eigenvalue distribution of AQ k

LB
A is defined by

N(δ; θab) = #
{
j
∣∣ σj [AQ k

LB
A] > δ

}
, for 0 < δ < 1.

That the operator AQ k
LB
A behaves like an orthogonal projection can be seen by

applying the results of Kac, Murdock and Szegő [25] on Hermitian Toeplitz operators
(see also Landau [30] for a direct proof). As θab →∞ we have the asymptotic form

N(δ; θab) = (λL)−2 |A| |B| (1 + o(1)), (4.13)
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where the leading term is O(θ2ab). To first order, N(δ; θab) is independent of δ, which
means that the first (λL)−2 |A| |B| eigenvalues are close to one, while the rest are close
to zero. This phenomenon has been seen in actual experiments (see e.g. [45, 44]) since
the first term in the expansion can be rewritten as

N(δ; θab) ≈ |B|
(λL)2/ |A| ,

that is, the rank of the array data operator produced by the target is roughly equal
to the number of focal spot areas (square of the spot size) that fit in the target.

In the numerical simulations of Section 3 we are in a scaling regime that is different
from the Fraunhofer regime, and so we do not observe this law, or the plateau. The
computed singular values decay faster than they would in the Fraunhofer regime, as
can be seen in Figure 5.1. This significant difference in the distribution of eigenvalues
is explained in Section 5 by analyzing the response matrix in an extended Fraunhofer
regime.

Remark 4.4. In our imaging method we migrate the singular functions of Π̂(ω)
for singular values, rescaled by σ1[Π̂(ω)], in some interval [α, β] ⊂ (0, 1). By the above
result on the distribution of eigenvalues, σ1[AQ k

LB
A] ≈ 1. Thus by dividing all the

singular values of Π̂(ω) by σ1[Π̂(ω)] we cancel out the effect on the singular values of
the range dimension of the target, that is, the factor |ρ̂(−2k)| /4 in Proposition 4.2,
and recover the singular values of the underlying operator AQ k

LB
A.

The singular values in the plunge region (intermediate) of AQ k
LB
A are the ones we

use to illuminate the edges of the target (see Section 3). However, the asymptotic form
(4.13) indicates that the width of the plunge region is relatively small as θab →∞; it
does not give any information other than that it is o(θ2ab).

We review next refinements of (4.13) that quantify the width of the plunge region.

4.5.3. Second order asymptotics of the eigenvalue distribution. For Her-
mitian operators Tr : L2(A′)→ L2(A′) of the form

(Tru)(x) =
r2

(2π)2

∫
A′
dyu(y)

∫
R2
dξ exp[irξ · (x− y)]q (x, ξ) ,

with real symbol q(x, ξ) and having jump type discontinuities in ξ, Widom [50, 51]
conjectured a second order asymptotic formula for computing tr f(Tr) for suitable
functions f , as the dilation factor r → ∞. The operator AQ k

LB
A is precisely in this

class: its symbol is q(x, ξ) = χb−1B(ξ), A′ = a−1A and the dilation factor is the
Fresnel number r = θab = kab/L. Moreover, knowing the large θab asymptotics for
tr f(AQ k

LB
A) gives automatically an asymptotic form for N(δ; θab) since

N(δ; θab) =
∫ 1

δ

dt
d

dt
[−N(t; θab)] = tr χ(δ,1)(AQ k

LB
A).

Assuming that the Widom asymptotic expansion holds, we have

N(δ; θab) = (λL)−2 |A| |B|
+ (λL)−1 ln θab

4π2
ln

1− δ
δ

∫
∂A

∫
∂B
dxdξ |nA(x) · nB(ξ)|

+ o(θab ln θab).

(4.14)
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The Widom conjecture has been shown to hold in 1D by Landau and Widom [32],
and in higher dimensions when the domain B is a half-space [51]. Gioev [20] has
recently confirmed that the second term in the asymptotics of tr f(Tr) is of the order
predicted by Widom. In Appendix A we show that (4.14) holds in the very particular
case of rectangular A and B using the 1D two-term asymptotics [32].

The expansion (4.14) indicates that information about the edges of B appears
redundantly in the plunge region. Indeed, if the Widom conjecture holds then the
number of eigenvalues in the plunge region are proportional to the double integral
term, which is less than the product |∂A| |∂B| of the perimeters of A and B. This is
probably why similar edge images can be obtained with different parts of the plunge
region, as we see in the numerical simulations of Section 3, with selected subspace
migration.

Another use of the large Fresnel number asymptotic expression (4.14) could be
for detecting edges by looking at the rate of decay in the plunge region. Indeed, if the
reflectivity in the cross-range dimension is smooth, the second term would be only
O(θab) (see e.g. [48, 49]), instead of being O(θab ln θab) as it is in (4.14).

4.5.4. Localization of the singular functions. The leading singular function
v1[( kLB)FA] peaks typically at the center of A, and dies off quickly away from its
peak. The corresponding left singular function u1[( kLB)FA] behaves similarly in k

LB.
As j increases, the peaks of the singular functions move progressively outwards to the
edges of their respective domain, with oscillations that die off quickly away from the
peaks.

The singular value σj [AQ k
LB
A] measures the fraction of energy in A (resp. k

LB)
of the extension of vj [( kLB)FA] (resp. uj [( kLB)FA]) to L2(R2). Slepian [39] defines
the extension of vj [( kLB)FA] by

vj [( kLB)FA](x) =
1

σj [AQ k
LB
A]

(2π)−2

∫
A
dyvj [( kLB)FA](y)χ̂ k

LB
(y−x), for x ∈ R2.

(4.15)
In addition to being orthonormal in L2(A), the extended functions have the property
of being mutually orthogonal also in L2(R2) with 〈vi, vj〉 = δi,j/σi[AQ k

LB
A]. The

domain of definition of the left singular functions can be similarly extended from k
LB

to R2.
We know that roughly the first (λL)−2 |A| |B| singular values of AQ k

LB
A are

close to one. Therefore, the first (λL)−2 |A| |B| singular functions uj [( kLB)FA] are
relatively well concentrated inside k

LB. The situation is exactly the opposite for sin-
gular values with index above the threshold. Therefore, if we want singular functions
that peak on the edges of k

LB we should consider the plunge region, which corresponds
to intermediate singular values.

The localization property of the eigenfunctions of the response matrix has been
observed experimentally [27]. To further illustrate localization, we give in Appendix A
explicit formulas for the singular functions of BFA when both A and B are rectangles.
Also, the fact that the images in range agree with ∂B for other cross-range profiles B
indicates that this localization property holds more generally.

In the next Section 4.6 we show that the single-frequency, single-eigenfunction
subspace migration image (2.2) is roughly

∣∣uj [( kLB)FA]( kL ·)
∣∣2. Therefore, the local-

ization property explains why we can focus on the edges by imaging with the singular
functions in the plunge region.
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4.6. Analysis of selected subspace migration. In this section we connect
the subspace migration images to the singular functions of space and wavenumber
limiting operators. We express the image resulting from migrating a right singular
function of Π̂F (ω) in terms of the left singular functions of ( kLB)FA. We present this
result as Proposition 4.5. It allows us to apply the properties of the SVD of space and
frequency limiting operators to explain the behavior of selected subspace imaging in
the numerical simulations of Section 3.

Proposition 4.5. Subspace migration images (2.2) with a single singular func-
tion vj [Π̂F (ω)] at a single frequency ω, in the Fraunhofer regime have the form

ISM(~yS ;ω) ∼ ρ̂L(−2k) exp[2ikηS ]σ2
j [AQ k

LB
A]
∣∣∣∣uj [( kLB

)
FA

](
k

L
ξS
)∣∣∣∣2 ,

where the search point is ~yS = (ξS , L + ηS) and the symbol ∼ means equality up
to a positive multiplicative factor, independent of ω, j and ~yS. Here the values of
uj [( kLB)FA] outside k

LB are given by Slepian’s extension (4.15).
This result shows that images with subspace selection are as localized as the left

singular functions of ( kLB)FA. By Section 4.5.4, the singular functions for interme-
diate singular values are localized near the edges of the array and the object. Thus,
when we migrate with a subspace that contains those intermediate singular functions
we expect to image the edges with illuminations coming mainly from the edges of the
array. This agrees with the numerical simulations of Section 3.

When the single frequency image is summed over the frequencies, the simulation
results in Section 3 indicate that the oscillatory part (recall Section 4.5.4) of the
singular functions average out.

The potential for imaging with eigenfunctions has been noted in [36, 34], for
the full aperture, far field operator, which is different from array imaging. In array
imaging the selective focusing on the edges with illuminations coming from the ends
of a linear array was shown in [6].

Proof. (of Proposition 4.5) Using the continuum approximation of the CN inner
product, which is the L2(A) inner product, the subspace migration imaging functional
(2.2) for a single singular function becomes

ISM(~yS ;ω) ∼
∫
A
dxr

∫
A
dxs exp

[
ik
∣∣~xr − ~yS∣∣+ ik

∣∣~xs − ~yS∣∣]
σj [Π̂F (ω)]uj [Π̂F (ω)](xr)v∗j [Π̂F (ω)](xs).

Here the symbol ∼ means equality up to a positive multiplicative factor. From Propo-
sition 4.2 and approximating the phases in the complex exponentials as in (4.7) we
obtain

ISM(~yS ;ω) ∼ ρ̂L(−2k)σ′j

∫
A
dxr

∫
A
dxsĜ0(~xr, ~yS , ω)Ĝ0(~xs, ~yS , ω)

Ĝ0(~xr, ~y?, ω)v′j(−xr)Ĝ0(~xs, ~y?, ω)v′j(xs),

where to simplify the notation we write v′j ≡ vj [( kLB)FA] and σ′j ≡ σj [AQ k
LB
A].
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Recalling the expression (4.7) of Ĝ0 and that ~yS ≡ (ξS , L+ ηS), we obtain

ISM(~yS ;ω) ∼ ρ̂L(−2k)σ′j

∫
A
dxr

∫
A
dxs exp

[
2ikηS − ik

L
(xr + xs) · ξS

]
v′j(−xr)v′j(xs),

which becomes (using Fubini’s theorem),

ISM(~yS ;ω) ∼ ρ̂L(−2k)
4

exp[2ikηS ]σ′j

(∫
A
dxr exp

[
− ik
L

xr · ξS
]
v′j(−xr)

)
(∫
A
dxs exp

[
− ik
L

xs · ξS
]
v′j(xs)

)
.

We have assumed here that the set A is symmetric about the origin (x ∈ A ⇔ −x ∈
A). Therefore

ISM(~yS ;ω) ∼ ρ̂L(−2k) exp[2ikηS ]σ′j

∣∣∣∣(FAv′j)( kLξS
)∣∣∣∣2 .

Finally, from the definition of the SVD we have(
k

L
B
)
FAv′j = σj

[(
k

L
B
)
FA

]
u′j = 2π

√
σ′ju
′
j , (4.16)

where u′j ≡ uj [( kLB)FA]. In dimension one, property (4.16) is the remarkable self-
similarity of the prolate spheroidal wave functions with respect to the Fourier trans-
form [42], noted in Section 4.5.1. Here, it translates into knowing the field at the
target after migration from the array. Thus, the image inside the cross-section B of
the target takes the form

ISM(~yS ;ω) ∼ ρ̂L(−2k) exp[2ikηS ]σ′2j

∣∣∣∣u′j ( kLξS
)∣∣∣∣2 , for ξS ∈ B. (4.17)

Outside B the image is also given by (4.17), provided Slepian’s extension (4.15) of u′j
is used. This is because the extension of u′j that is naturally defined by (4.16)

g′j(ζ) =
1

2π(σ′j)1/2

∫
A
dx exp [−ix · ζ] v′j(x), for ζ ∈ R2, (4.18)

is equivalent to (4.15). To see this, simply substitute v′j above by using the properties
of the SVD: v′j = (σj

[(
k
LB
)FA])−1AF∗( kLB)u′j , to obtain after some manipulations

g′j(ζ) =
1

(2π)2σ′j

∫
k
LB

dζ′u′j(ζ
′)χ̂A(ζ′ − ζ)

which for A symmetric about the origin is precisely Slepian’s extension (4.15).

5. The extended Fraunhofer regime. In the analysis of imaging in the Fraun-
hofer regime in Section 4 we assume that the target is small (θb � 1). However, in the
numerical simulations we violate this condition, since we have θb = 8π. Although the
qualitative behavior of our imaging algorithm can be understood using the analysis
of the Fraunhofer regime, quantitatively the story is different. Figure 5.1 shows that
there is a significant difference between the computed singular values and those pre-
dicted by the Fraunhofer regime. We now introduce an extended Fraunhofer regime
that accounts for this discrepancy by incorporating θb ≥ 1 in the analysis of Sections
4.3 and 4.4. Preliminary results suggest a scaling law analogous to (4.13).
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5.1. The array response matrix in the extended Fraunhofer regime. We
proceed as in Section 4.3 to approximate the array response matrix Π̂(~xr, ~xs, ω) for
large targets. We make the Born and the paraxial approximation ĜFre

0 of the Green’s
function to get

Π̂(~xr, ~xs, ω) ≈ Π̂Fre(~xr, ~xs, ω) =

k2

∫
B×L+[−h/2,h/2]

d~yρ(~y)ĜFre
0 (~xr, ~y, ω)ĜFre

0 (~xs, ~y, ω).

For large targets the difference is that the approximation (4.7) of the free space Green’s
function is not valid because we neglected an O(θb) term in the phase. When we
include this term the new approximation to the Green’s function is

Ĝ0(~x, ~y, ω) ≈ ĜFre
0 (~x, ~y, ω) =

1
4πL

exp

[
ik

(
L+ η +

|x|2
2L
− x · ξ

L
+
|ξ|2
2L

)]
, (5.1)

for ~x = (x, 0) in the array and ~y = (ξ, L + η) in the vicinity of the target. The
additional term in the phase appears in the study of Fresnel diffraction [9], which
explains our notation Π̂Fre(~xr, ~xs, ω).

5.2. The singular value decomposition of the response matrix in the
extended Fraunhofer regime. We give a characterization analogous to Proposi-
tion 4.1 for the operator Π̂Fre(ω) : L2(A)→ L2(A) defined by

(Π̂Fre(ω)f)(x) =
∫
A
dyf(y)Π̂Fre((x, 0), (y, 0), ω),

when the reflectivity is of the form ρ(~y) = χB(ξ)ρL(η). We omit the proof since it
goes along the same lines as the proof of Proposition 4.1.

Proposition 5.1. When the array is invariant with respect to reflections about
the origin (−x ∈ A ⇔ x ∈ A), we have

Π̂Fre(ω) =
ρ̂L(−2k)

4
U(ω)RAQ̃ k

LB
AU(ω).

Here U(ω), R and A are operators identical to those appearing in Proposition 4.1.
The operator Q̃ k

LB
is a non-Hermitian one with kernel representation,

(Q̃ k
LB
f)(x) = (2π)−2

∫
dyf(y)q̂(y − x), where q(ξ) = χ k

LB
(ξ) exp

[
i
L

k
|ξ|2
]
.

However, the operator AQ̃ k
LB
A is still Hilbert-Schmidt. This can be seen by compar-

ing with Example X.2.2 in [52] and∫
A

∫
A
dxdy |q̂(x− y)|2 <∞.

Thus the singular value decomposition (SVD) of AQ̃ k
LB
A is well defined. The SVD

of Π̂Fre(ω) follows from a result similar to Proposition 4.2.
Proposition 5.2. The singular values of Π̂Fre(ω) are for n ∈ N,

σn[Π̂Fre(ω)] =
|ρ̂L(−2k)|

4
σn[AQ̃ k

LB
A],
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Fig. 5.1. The computed (green lines) singular values of the array response matrix versus the
ones predicted in the usual (red lines) and extended (blue lines) Fraunhofer regimes for a rectangular
target, and for frequencies 1.5MHz (-·-), 3MHz (- -) and 4.5MHz (—). The singular values in the
extended Fraunhofer regime are obtained from (5.2) using k = 2π/λ, L = 100λ0, a = 24.5λ0 and
b = 20λ0, which are the same as those in Section 3.

with associated right and left singular functions,

vn[Π̂Fre(ω)] = U∗(ω)vn[AQ̃ k
LB
A], and

un[Π̂Fre(ω)] = arg(ρ̂L(−2k))U(ω)Run[AQ̃ k
LB
A].

Therefore, up to unitary transformations, the array response matrix in the ex-
tended Fraunhofer regime is the operator AQ̃ k

LB
A.

5.2.1. Comparison with the Fraunhofer regime. We compare in Figure 5.1
the singular values of the array response matrix for a square 20λ0×20λ0 target to the
singular values predicted by the usual and the extended Fraunhofer regimes. The sin-
gular values of AQ k

LB
A (usual Fraunhofer regime) can be computed analytically using

the 1D prolate spheroidal wave functions (see Appendix A). As for the singular values
of AQ̃ k

LB
A (extended Fraunhofer regime), we obtain them similarly using separation

of variables from the singular values of its analogous one dimensional operator

(2π)−1

∫ a/2

−a/2
dyf(y)q̂(y − x) where q(ξ) = χ k

L [−b/2,b/2](ξ) exp
[
i
L

k
ξ2
]
, (5.2)

which we approximate using collocation. In Appendix A, the eigenfunctions of the
operator (5.2) are compared to those that would be obtained in the usual Fraunhofer
regime when q(ξ) = χ k

L [−b/2,b/2](ξ) in (5.2).

5.3. A distribution result for the pseudospectrum. The operator AQ̃ k
LB
A

is non-Hermitian, so we cannot speak about eigenvalues and eigenvectors since their
existence is not guaranteed. Landau [30] was among the first proponents of pseu-
dospectra for the study of non-Hermitian operators [46], and one of his original results
gives a scaling law that is similar in spirit to the one in the Fraunhofer regime (4.13).

An ε−pseudoeigenvalue µ ∈ C of AQ̃ k
LB
A is such that∥∥∥AQ̃ k

LB
Aφ− µφ

∥∥∥ ≤ ε, for some nonzero φ.
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The function φ is said to be an ε−pseudoeigenfunction of AQ̃ k
LB
A. Here we have used

the L2(A) norm. In our setting, Theorem 3 in [30] means that the maximum number
of orthogonal ε−pseudoeigenfunctions with ε−pseudoeigenvalues in the annulus2

Ω = {z ∈ C | δ ≤ |z| ≤ 1}
is (λL)−2 |A| |ΩB|, in the limit ε → 0 and θab → ∞. Here ΩB is the set of points for
which the symbol of AQ̃ k

LB
A belongs to the annulus Ω, that is,

ΩB = {ξ ∈ R2 | χB(ξ) exp[i(L/k) |ξ|2] ∈ Ω} = B.
The last equality shows that in fact ΩB is the same as the set B.

A physical interpretation (from Proposition 5.1), is that the maximal number of
orthogonal (independent) signals f for which∥∥∥∥Π̂Fre(ω)f − µρ̂L(−2k)

4
U(ω)RU(ω)f

∥∥∥∥ ≤ ε for some µ ∈ C with δ ≤ |µ| ≤ 1,

is roughly (λL)−2 |A| |B| (the number of focal spot areas fitting in the target). In
other words, there are about |B| /((λL)2/ |A|) orthogonal signals that when sent by
the array, produce an echo which is essentially the same signal up to a reflection and
a phase.

6. Summary and conclusions. We have introduced a selective subspace mi-
gration approach for array imaging of the edges of extended reflectors, in homoge-
neous media. Numerical simulations show that this imaging method is quite effective
because it masks the strong specular reflections from the bulk of the object to be im-
aged, allowing us to image the edges. It is also robust to noise if the array has a large
number of sensors. In the Fraunhofer regime the analysis of selective subspace mi-
gration imaging can be carried out using the theory of generalized prolate spheroidal
wave functions. Imaging extended reflectors with ultrasound is not, however, in the
Fraunhofer regime but rather in an extended one. The theory of generalized prolate
spheroidal wave functions carries over only partially into the extended Fraunhofer
regime. This is enough, however, to explain much of what we see in the numerical
simulations.

There are many things that are not addressed here but should be. On the theoret-
ical side is developing a more complete theory for imaging in the extended Fraunhofer
regime and with non-constant reflectivities. On the side of applications as well as
theory are questions about robustness to noise and sensor sparsity that need a deeper
analysis. Extensions to random media and optimal subspace selection and illumina-
tion, as in [5], also need to considered.
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Appendix A. Rectangular array and target. For a rectangular array A
and target B, centered at the origin, the eigenvalues and eigenfunctions of the space

2The result in [30] holds for other regions of C not containing the origin.



EDGE ILLUMINATION AND IMAGING OF EXTENDED TARGETS 31

and wavenumber limiting operator AQ k
LB
A can be expressed in terms of the pro-

late spheroidal wave functions (PSWF) [43, 31, 42]. The eigenvalue distribution of
AQ k

LB
A for such A and B can also be inferred from existing one-dimensional results

[32].

A.1. The one-dimensional prolate spheroidal wave functions. Slepian
and Pollak [43] found the eigenfunctions and eigenvalues of the one-dimensional space
and wavenumber limiting (called time and band limiting in [43]) operator P[C] =
P[−1,1]Q[−C,C]P[−1,1] with kernel representation,

(P[C]f)(x) =
∫ 1

−1

dyf(y)
sin[C(x− y)]
π(x− y)

. (A.1)

Here P[−1,1] is the orthogonal projection that restricts functions to the interval [−1, 1],
and Q[−C,C] = F−1P[−C,C]F restricts a function to [−C,C] in the Fourier domain.
The elegant method of Slepian and Pollak consists in showing that the operator P[C]
commutes with a differential operator for which the eigenfunctions are known explic-
itly [1, §21]. The eigenvalues of P[C] are denoted by νn(C) (in decreasing order) and
its eigenfunctions ψn(x;C), with normalization ‖ψn(·;C)‖2L2[−1,1] = νn(C). Since the
operator P[C] is positive and Hermitian, the singular values and singular functions
are the eigenvalues and eigenfunctions.

The first order asymptotic for the eigenvalue distribution (the one-dimensional
analog of (4.13)) is that, except for relatively few eigenvalues, the first n∗(C) =
b2C/πc eigenvalues are asymptotically close to one, and the rest approach zero as the
dilation factor C →∞ (see e.g. [41]).

A.2. Eigenvalues and eigenfunctions. Finding the eigenvalues of the opera-
tor AQBA when A =

∏2
i=1[−ai/2, ai/2] and B =

∏2
i=1[−bi/2, bi/2] in terms of the

PSWF is done with separation of variables and change of integration variables. For
simplicity, we drop in this section the dilation factor k/L and suppose that B includes
it already.

Proposition A.1. For rectangular sets

A =
2∏
i=1

[−ai/2, ai/2] and B =
2∏
i=1

[−bi/2, bi/2]

the (unsorted) eigenvalues and eigenfunctions of AQBA are for x = (x1, x2) ∈ A,

σn[AQBA] =
2∏
i=1

νni

(
aibi

4

)
and vn[AQBA](x) ∼

2∏
i=1

ψni

(
2
ai
xi;

aibi
4

)
,

where the symbol ∼ means equality up to a norming constant and n = (n1, n2) ∈ N2.
For the “dual” operator BQ∗AB we have σn[BQ∗AB] = σn[AQBA], with eigenfunctions

vn[BQ∗AB](y) ∼
2∏
i=1

ψni

(
2
bi
yi;

aibi
4

)
for y = (y1, y2) ∈ B.

That the eigenfunctions of the “dual” operator BQ∗AB are the PSWF stretched to
B is a manifestation of the self-similarity under Fourier transform of the PSWF [42].
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Fig. A.1. Top row: Some eigenfunctions of P[C] stretched to [−a/2, a/2] with C = 49π/20.
Bottom row: some eigenfunctions of the operator (5.2), ordered by decreasing magnitude of the
associated eigenvalues µn. The eigenfunctions are consistent with the setup in Section 3 at the
central frequency, that is, k = 2π/λ0, L = 100λ0, a = 24.5λ0 and b = 20λ0. The abscissa −a/2
and a/2 are in dotted lines, with units λ0. The functions are rescaled to have unit L2([−a/2, a/2])
norm, and are extended to [−a, a].

The staircase aspect of the eigenvalues of AQBA for a rectangular array and
target can be explained qualitatively by Proposition A.1 and by the characteristic
plateau behavior of νn(C). Roughly speaking, each eigenvalue νn1 (a1b1/4) that is in
the plunge region for P[a1b1/4] has multiplicity n∗(a2b2/4) as an eigenvalue of AQBA,
since

∏2
i=1 νni

(aibi/4) ≈ νn1(a1b1) for n2 ≤ n∗(a2b2/4).

We show in Figure A.1 some of the eigenfunctions of P[aibi/4] for dimensions
ai = 24.5λ0 and bi = (k0/L)20λ0 = 2π/(5λ0), taken from the setup of Section 3. The
eigenfunctions up to n∗(aibi/4) = 4.9 are well localized in [−a/2, a/2], but then spill
outside this interval. The eigenfunctions of P[aibi/4] that are better localized on the
edges of the array are near the threshold n∗(aibi/4). We recall that the extension of
the domain of definition of the singular functions is done with (4.15).

The eigenfunctions we use as illuminations in our method are mostly localized on
the edges of A. Moreover, the associated eigenfunctions on the target side are also
localized near the edges of B. Thus, by Proposition 4.5 the images concentrate near
the edges of B in the Fraunhofer regime.

However, the behavior of the array response matrix is better described in the
extended Fraunhofer regime, as we saw in Figure 5.1. Thus, for comparison we include
in Figure A.1 some of the eigenfunctions of the 1D operator (5.2) that appears in the
extended Fraunhofer regime array response matrix for a rectangular array and target.
We see that at least on the array side, the eigenfunctions are localized, but that they
spill over faster outside the array. As for the eigenvalues, they also decay faster than
those in the usual Fraunhofer regime. The extension of the eigenfunctions was done
similarly to (4.15). The study of the operator (5.2) and the characterization of images
in the extended Fraunhofer regime are left for future studies.
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A.3. Eigenvalue distribution. We show that for rectangular sets A and B
in space and Fourier domain, the eigenvalue distribution of AQ k

LB
A is consistent

with that conjectured by Widom (4.14). This is based on the two term asymptotic
distribution for P[C] due to Landau and Widom [32], and we formulate it as a large
Fresnel number θab = kab/L asymptotic in the following proposition.

Proposition A.2. For rectangular sets

A =
2∏
i=1

[−ai/2, ai/2] and B =
2∏
i=1

[−bi/2, bi/2],

with respective length scales a and b, the eigenvalue distribution of AQ k
LB
A is consis-

tent with the Widom conjecture (4.14): as θab = kab/L→∞ we have

N(δ; θab) = (λL)−2a1a2b1b2 + (λL)−1 ln θab
4π2

4(a1b1 + a2b2) ln
1− δ
δ

+ o(θab ln θab).

Proof. By Proposition A.1, we have σn[AQ k
LB
A] = νn1(C1)νn2(C2) for (n1, n2) ∈

N2 with

Ci =
kaibi
4L

, i = 1, 2,

and where νni
(Ci) are the eigenvalues of the operator P[Ci] (recall (A.1)). Using

the asymptotic expansion of Landau and Widom [32] (see also [42]) of the eigenvalue
distribution of P[C] , we obtain for large Fresnel number θab,

N (i)(δ; θab) = (λL)−1aibi +
1
π2

ln(θab) ln
1− δ
δ

+ o(ln θab), (A.2)

where N (i)(δ; θab) = #{n|νn(Ci) > δ} and i = 1, 2. Notice that

N(δ; θab) = #
{

n = (n1, n2) ∈ N2 | σn[AQ k
LB
A] = νn1(C1)νn2(C2) > δ

}
=

∞∑
n1=1

#
{
n2 | νn2(C2) >

δ

νn1(C1)

}
=

∞∑
n1=1

N (2)

(
δ

νn1(C1)
; θab

)
,

where we can divide by νn1(C1) because the operator P[C] is positive. But we have
δ ≥ νn1(C1) for n1 > N (1)(δ; θab) and N (2)(α; θab) = 0 for α ≥ 1, so it is easy to see
that the above sum has only a few nonzero terms, giving

N(δ; θab) =
N(1)(δ;θab)∑

n1=1

N (2)

(
δ

νn1(C1)
; θab

)
,

For most n1 ≤ N (1)(δ; θab), we have that νn1(C1) → 1 as θab → ∞, with only a few
o(θab) exceptions where the limit of νn1(C1) is not one, which happen when n1 nears
N (1)(δ; θab). This observation together with the asymptotics (A.2) of the summand
gives N(δ; θab) = N (1)(δ; θab)N (2)(δ; θab) + N (1)(δ; θab)o(ln θab). The result follows
from (A.2).
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A.4. Eigenvalue computation. The downside of Proposition A.1 is that it
does not give any information about the ordering of the eigenvalues. Fortunately,
we are only interested in the eigenvalues of AQ k

LB
A that are for practical purposes

nonzero.
According to Proposition A.2, and for large enough θab, the number N(δ; θab) of

eigenvalues of AQ k
LB
A above some 0 < δ < 1 is essentially

∏2
i=1N

(i)(δ; θab), where
N (i)(δ; θab) is the number of eigenvalues above δ of P[kaibi/(4L)]. Thus to find the sin-
gular values above some δ, we compute σn[AQ k

LB
A] for n ∈ N2∩∏2

i=1[1, N (i)(δ; θab)]
and then sort them in decreasing order.

For the eigenvalues ofAQ k
LB
A in Figure 5.1, we computed the first 100 eigenvalues

of P[kaibi/(4L)], which is well into the region where the νn(kaibi/(4L)) are almost
zero. This gives 104 unsorted eigenvalues for AQ k

LB
A. We sort them and keep the

100 largest ones.

Appendix B. Other computational issues.
Computations for the forward problem were done with the Born approximation

(3.1), which can be seen as a symmetric matrix-matrix multiplication if the sources
and receivers are collocated in the array, This is a so-called level-3 linear algebra
operation that can achieve near peak processor performance when using tuned BLAS
libraries such as ATLAS or the Intel MKL.

A significant part of the computational cost of our method is spent computing
the SVD of the array response matrix, especially for the 50×50 array where the array
response matrix is C2500×2500. This is an embarrassingly parallel task, since it can
be done independently frequency by frequency. However, we did not parallelize the
SVD computations in our code. Instead we noted that the Fraunhofer regime theory
of Section 4.1 predicts that the array response matrix is effectively low-rank, and that
its rank can be estimated a priori by having an idea of the area of the target.

Therefore we need only to compute the first few singular vectors and values of
the array response matrix, and this can be done efficiently using an iterative method.
We use the Matlab eigs interface to ARPACK [33]. The low-rank of the response
matrix can also be used to reduce the storage of the frequency samples. In our
computations, we store only the first 100 singular vectors and values of the data,
which is the best rank 100 approximation in the matrix 2-norm and Frobenius norm,
see e.g. [21, §2.5.5]. This was enough to capture the significantly non-zero singular
values. Of course, when we add noise to the array response matrix we add it before
such compression.

The imaging method described in Section 2.2 uses only the intermediate singular
values, which is a relatively small part of the data. It would be interesting to directly
compute the singular vectors corresponding to intermediate singular values. In prin-
ciple a simple spectral transformation can make the intermediate singular values the
ones with largest magnitude. For example the transformation A(σ1[A]I − A), where
A = Π̂∗(ω)Π̂(ω).

Appendix C. The full aperture problem. We consider here the full aperture
scattering problem for a disk-shaped reflector of radius b, in two dimensions, in order
to show how the ideas in the paper extend to this case. The full aperture data have
the form

Π̂(~xr, ~xs, ω) =
e2ikR

R2
Sω(~θr, ~θs), (C.1)
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where the sources and receivers are on a disk of radius R � b, concentric with the
reflector, and k = ω/c0. We have

~xr = R~θr, ~xs = R~θs,

for unit vectors3

~θr = (cos θr, sin θr) , ~θs = (cos θs, sin θs) .

With the Born approximation, the kernel of the far field operator is

Sω(~θr, ~θs) =
k2

(4π)2
ρ̂
(
k~θr + k~θs

)
, (C.2)

as follows easily from the far field approximation of the Green’s function

Ĝ0(~x, ~y, ω) ≈ eikR

4πR
e−ik

~θ·~y, (C.3)

for ~x = R~θ and ~y a point in the reflector (|~y| ≤ b). Thus, the SVD analysis of Π̂(ω)
reduces to the analysis of the operator with kernel ρ̂

(
k~θr + k~θs

)
.

The singular values (see [28, 29]) have the form

µn =
∫ b

0

J2
n(kr)rdr, (C.4)

where Jn is the Bessel function of order n. The right singular functions of the far field
operator are given by

vn(θs) = cos(nθs), or sin(nθs) (C.5)

and, using (C.1) and (C.2), we get the singular vectors of Π̂(ω)

Vn(θs) =
e−ikR

4πR
vn(θs) ≈ Ĝ0(~xs,~0, ω)vn(θs). (C.6)

It follows from the properties of the Bessel functions [2, Chapter 9] that the
singular values are uniformly large for indices n < kb and then plunge to zero for
n > kb. Thus, the threshold is

N∗(ω) = [kb] , (C.7)

as obtained in [28, 29]. What we wish to show here is that when we illuminate
the reflector with the transition singular vectors VN∗(θs), we obtain images that are
focused on the edges of the disk.

The single frequency migration image is

J (~yS , ω, n) =
∫ 2π

0

dθr

[∫ 2π

0

dθsΠ̂(~xr, ~xs, ω)Vn(θs)
]
Ĝ0(~xr, ~yS , ω) . (C.8)

Since [
Π̂(ω)Vn

]
(θr) ∼ µnVn(θr), (C.9)

3The notation θr for angles should not be confused with that for Fresnel numbers (Section 4.1).
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we have

J (~yS , ω, n) ∼ µn
∫ 2π

0

dθrVn(θr)Ĝ0(~xr, ~yS , ω) ≈ µn
∫ 2π

0

dθrvn(θr)e−ikr
S cos(θr−ϕS).

Here we used the polar coordinates

~yS = rS
(
cosϕS , sinϕS

)
.

Using (C.5) we get the single frequency image

J (~yS , ω, n) ∼ µneinϕS

Jn(krS). (C.10)

We plot J (~yS , ω, n)/µn in Figure C.1 for kb = 100 and for kb = 110. Note how it
peaks at rS = 0 when we use the leading singular vectors V0, and how the peaks move
to the boundary of the disk when we use the transition singular vectors VN? . The
images are greatly improved when we integrate over the bandwidth kb ∈ [100, 200],
as shown in Figure C.1. This is because the oscillations of the Bessel functions cancel
out in the integration. In particular, the image

J (~yS) =
∫
dωJ (~yS , ω,N?(ω)

)
(C.11)

is nicely focused on the edges of the reflector.
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