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DECAY ESTIMATES OF A TANGENTIAL DERIVATIVE TO

THE LIGHT CONE FOR THE WAVE EQUATION AND THEIR

APPLICATION

SOICHIRO KATAYAMA AND HIDEO KUBO

Abstract. We consider wave equations in three space dimensions and obtain
new weighted L

∞-L∞ estimates for a tangential derivative to the light cone.
As an application, we give a new proof of the global existence theorem, which
was originally proved by Klainerman and Christodoulou, for systems of nonlin-
ear wave equations under the null condition. Our new proof has the advantage
of using neither the scaling nor the Lorentz boost operators.

1. Introduction

Solutions to the Cauchy problem for nonlinear wave equations with quadratic
nonlinearity in three space dimensions may blow up in finite time no matter how
small initial data are, and we have to impose some special condition on the nonlin-
earity to get global solutions. The null condition is one of such conditions and is
associated with the null forms Q0 and Qab, which are given by

Q0(v, w; c) =(∂tv)(∂tw)− c2(∇xv) · (∇xw),(1.1)

Qab(v, w) =(∂av)(∂bw)− (∂bv)(∂aw) (0 ≤ a < b ≤ 3)(1.2)

for v = v(t, x) and w = w(t, x), where c is a positive constant corresponding to the
propagation speed, ∂0 = ∂t = ∂/∂t, and ∂j = ∂/∂xj (j = 1, 2, 3). More precisely,
let c > 0 and consider the Cauchy problem for

(1.3) �cui = Fi(u, ∂u,∇x∂u) in (0,∞)× R
3 (1 ≤ i ≤ m)

with initial data

(1.4) u = εf and ∂tu = εg at t = 0,

where �c = ∂2t − c2∆x, u = (uj), ∂u = (∂auj), and ∇x∂u = (∂k∂auj) with
1 ≤ j ≤ m, 1 ≤ k ≤ 3, and 0 ≤ a ≤ 3, while ε is a positive parameter. Let
F = (Fi)1≤i≤m be quadratic around the origin in its arguments and the system be
quasi-linear. In other words, we assume that each Fi has the form

(1.5) Fi(u, ∂u,∇x∂u) =
∑

1≤j≤m

1≤k≤3, 0≤a≤3

cijka(u, ∂u)∂k∂auj + di(u, ∂u),
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2 S. KATAYAMA AND H. KUBO

where cijka(u, ∂u) = O(|u|+ |∂u|) and di(u, ∂u) = O(|u|2 + |∂u|2) around (u, ∂u) =

(0, 0). Without loss of generality, we may assume cijkℓ = cijℓk for 1 ≤ i, j ≤ m and
1 ≤ k, ℓ ≤ 3. In addition, we always assume the symmetry condition

cijka = cjika for 1 ≤ i, j ≤ m, 1 ≤ k ≤ 3, and 0 ≤ a ≤ 3.

Then it is well known that the null condition (for the above system (1.3)) is satisfied
if and only if the quadratic terms of Fi (1 ≤ i ≤ m) can be written as linear
combinations of the null forms Q0(uj, ∂

αuk; c) and Qab(uj , ∂
αuk) with 1 ≤ j, k ≤

m, 0 ≤ a < b ≤ 3, and |α| ≤ 1, where ∂α = ∂α0

0 ∂α1

1 ∂α2

2 ∂α3

3 for a multi-index
α = (α0, α1, α2, α3) (refer to [3] and [14] for the precise description of the null
condition). Klainerman [14] and Christodoulou [3] proved the following global
existence theorem independently by different methods.

Theorem 1.1 (Klainerman [14], Christodoulou [3]). Suppose that the null condi-

tion is satisfied. Then, for any f , g ∈ C∞
0 (R3;Rm), there exists a positive con-

stant ε0 such that the Cauchy problem (1.3)–(1.4) admits a unique global solution

u ∈ C∞([0,∞)× R
3;Rm) for any ε ∈ (0, ε0].

Christodoulou used the so-called conformal method which is based on Penrose’s
conformal compactification of Minkowski space. On the other hand, Klainerman
used the vector field method and showed the above theorem by deriving some decay
estimates in the original coordinates. In Klainerman’s proof, he introduced vector
fields

Lc,j =
xj
c
∂t + ct∂j (1 ≤ j ≤ 3), Ωij = xi∂j − xj∂i (1 ≤ i < j ≤ 3),

which are the generators of the Lorentz group, and the scaling operator

S = t∂t + x · ∇x.

These vector fields play an important role in getting Klainerman’s weighted L1-L∞

estimates for wave equations (see also Hörmander [5]). In addition, using them, we
can see that an extra decay factor is expected from the null forms. For example,
we have

Q0(v, w; c) =
1

t+ r

{

(∂tv)
(

Sw + cLc,rw
)

− c

3
∑

j=1

(Lc,jv)(∂jw)(1.6)

− c2(Sv)(∂rw) + c2
∑

j 6=k

ωk(Ωjkv)(∂jw)

}

,

where r = |x|, ω = (ω1, ω2, ω3) = x/r, ∂r =
∑3

j=1 ωj∂j , Lc,r =
∑3

j=1 ωjLc,j, and
Ωij = −Ωji for 1 ≤ j < i ≤ 3.

Among the above vector fields, the Lorentz boost fields Lc,j depend on the
propagation speed c, and they are unfavorable when we consider the multiple
speed case. Thus, the vector field method without the Lorentz boost fields was
developed by many authors (see Kovalyov [17, 18], Klainerman and Sideris [16],
Yokoyama [25], Kubota and Yokoyama [19], Sideris and Tu [23], Sogge [24], Hi-
dano [4], Katayama [9, 11], and Katayama and Yokoyama [13], for example). In
place of (1.6), the following identity was used in the above works relating to the
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null condition for the multiple speed case:

Q0(v, w; c) =
1

t2
(Sv + (ct− r)∂rv)(Sw − (ct+ r)∂rw)(1.7)

+
c

t
{(Sv)(∂rw)− (∂rv)(Sw)} +

c2

r

∑

j 6=k

ωk(∂jv)(Ωjkw),

whose variant was introduced by Hoshiga and Kubo [6]. Equation (1.7) leads to a
good estimate in the region r > δt with some small δ > 0, because r is equivalent
to t + r in this region. Note that the operator S is still used in (1.7), and this is
the only reason why S was adopted in [9, 19, 25], because these works are based
on variants of L∞-L∞ estimates due to John [7] and Kovalyov [17], where only ∂a
and Ωij are used (see Lemma 3.2 below).

Our aim here is to get rid of not only Lc,j, but also S from the estimate of
the null forms, and prove Theorem 1.1 using only ∂a and Ωjk. Though the usage
of the scaling operator S has not caused any serious difficulty in the study of the
Cauchy problem for nonlinear wave equations so far, we believe that it is worthwhile
developing a simple approach with a smaller set of vector fields. For this purpose,
we make use of the identity

Q0(v, w; c) =
1

2

{

(D+,cv)(D−,cw) + (D−,cv)(D+,cw)
}

(1.8)

+
c2

r

∑

j 6=k

ωk(∂jv)(Ωjkw),

where D±,c = ∂t±c∂r. Note that this identity was already used implicitly to obtain
identities like (1.7) (see [23], for example). In view of (1.8), what we need to treat
the null forms is an enhanced decay estimate for the tangential derivative D+,c to
the light cone. We can say that, in the previous works, this enhanced decay has
been observed through

D+,c =
1

t

(

S + (ct− r)∂r
)

or D+,c =
1

ct+ r

(

cS + cLc,r

)

with the help of S or also Lc,r =
∑3

j=1 ωjLc,j.
In this paper, we take a different approach. We will establish the enhanced

decay of D+,cu for the solution u to the wave equation directly. We formulate it as
a weighted L∞-L∞ estimate in Theorem 2.1 below, which is our main ingredient
in this paper. The point is that such an estimate can be derived by using only ∂a
and Ωij . This type of approach to D+,c goes back to the work of John [8].

2. The Main Result

Before stating our result precisely, we introduce several notations. We put Z =
{Za}1≤a≤7 = {(∂a)0≤a≤3, (Ωjk)1≤j<k≤3}. For a multi-index α = (α1, . . . , α7), we
define Zα = Zα1

1 Zα2

2 · · ·Zα7

7 . For a function v = v(t, x) and a nonnegative integer
s, we define

(2.1) |v(t, x)|s =
∑

|α|≤s

|Zαv(t, x)| and ‖v(t, ·)‖s =
∥

∥|v(t, ·)|s
∥

∥

L2(R3)
.

We put 〈a〉 =
√
1 + a2 for a ∈ R. Let c be a positive constant, and we fix

arbitrary positive constants cj (1 ≤ j ≤ N) (our theorem is true for any choice
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of these constants cj , but when we apply our estimate to nonlinear problems, we
usually choose cj as the propagation speeds and N as the number of different
propagation speeds in the system; c is also chosen from these propagation speeds).
We define

(2.2) w(t, r) = w(t, r; c1, . . . , cN ) = min
0≤j≤N

〈cjt− r〉

with c0 = 0, and we define

(2.3) Aρ,µ,s[G; c](t, x) = sup
(τ,y)∈Λc(t,x)

|y| 〈τ + |y|〉ρw(τ, |y|)1+µ|G(τ, y)|s

for ρ, µ ≥ 0, a nonnegative integer s, and a smooth function G = G(t, x), where
Λc(t, x) = {(τ, y) ∈ [0, t]× R

3 ; |y − x| ≤ c(t− τ)}. We also define

(2.4) Bρ,s[φ, ψ; c](t, x) = sup
y∈Λ′

c(t,x)

〈|y|〉ρ
(

|φ(y)|s+1 + |ψ(y)|s
)

for ρ ≥ 0, a nonnegative integer s, and smooth functions φ and ψ on R
3, where

Λ′
c(t, x) = {y ∈ R

3 ; |y − x| ≤ ct}.
The following theorem is our main result.

Theorem 2.1. Assume 1 ≤ κ ≤ 2 and µ > 0.

(i) Let u be the solution to

�cu = G in (0,∞)× R
3

with initial data u = ∂tu = 0 at t = 0. Then there exists a positive constant

C, depending on κ and µ, such that

〈|x|〉 〈t+ |x|〉 〈ct− |x|〉κ−1 {log(2 + t+ |x|)}−1 |D+,cu(t, x)|(2.5)

≤ CAκ,µ,2[G; c](t, x)

for (t, x) ∈ (0,∞)× R
3 with x 6= 0, where Aκ,µ,2 is given by (2.3).

Moreover, if 1 < κ < 2, then for any δ > 0, there exists a constant

C, depending on κ, µ, and δ, such that

(2.6) 〈t+ |x|〉2 〈ct− |x|〉κ−1 |D+,cu(t, x)| ≤ CAκ,µ,2[G; c](t, x)

for (t, x) ∈ (0,∞)× R
3 satisfying |x| > δt.

(ii) Let u∗ be the solution to

�cu
∗ = 0 in (0,∞)× R

3

with initial data u∗ = φ and ∂tu
∗ = ψ at t = 0. Then we have

(2.7) 〈|x|〉 〈t+ |x|〉 〈ct− |x|〉κ−1 |D+,cu
∗(t, x)| ≤ CBκ+µ+1,2[φ, ψ; c](t, x)

for (t, x) ∈ (0,∞)× R
3 with x 6= 0, where Bκ+µ+1,2 is given by (2.4).

Remark. (1) Similar estimates for radially symmetric solutions are obtained by
Katayama [11].

(2) Suppose that Aκ,µ,2[G; c](t, x) is bounded on [0,∞)×R
3 for some κ ∈ [1, 2) and

µ > 0 and that u solves �cu = G with zero initial data. Then, from Lemma 3.2
below, we see that u and ∂u decay like 〈t〉−1 Ψκ−1(t) along the light cone ct = |x|,
where Ψρ(t) = log(2 + t) if ρ = 0, and Ψρ(t) = 1 if ρ > 0. Compared with this

decay rate, we find from (2.5) and (2.6) that D+,cu gains extra decay of 〈t〉−1 and

behaves like 〈t〉−2
Ψκ−1(t) along the light cone.
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(3) For tangential derivatives Tc,j = (xj/|x|)∂t+c∂j (1 ≤ j ≤ 3), Alinhac showed that

(
∫ t

0

∫

R3

(

1 +
∣

∣cτ − |x|
∣

∣

)−ρ|Tc,ju(τ, x)|2dxdτ
)1/2

with ρ > 1 is bounded by ‖∂u(0, ·)‖L2(R3) +
∫ t

0
‖�cu(τ, ·)‖L2(R3)dτ (see [1], for ex-

ample). Observe that Tc,j is closely connected to D+,c. In fact, we have D+,c =
∑3

j=1(xj/|x|)Tc,j. Though Alinhac’s estimate does not need S and means enhanced
decay of tangential derivatives implicitly, it seems difficult to recover a pointwise de-
cay estimate from his weighted space-time estimate. On the other hand, Sideris and
Thomases [22] obtained the estimate for

∥

∥

(

1 +
∣

∣ct+ | · |
∣

∣

)

Tc,ju(t, ·)
∥

∥

L2(R3)
; how-

ever, S is used in their estimate.

(4) The exterior problem for systems of nonlinear wave equations with the single
or multiple speed(s) is also widely studied (see Metcalfe, Nakamura, and Sogge [20]
and Metcalfe and Sogge [21] and the references cited therein). In the exterior do-
mains, because of their unbounded coefficients on the boundary, the Lorentz boosts
are unlikely to be applicable even for the single speed case. This is another reason
why the vector field method without the Lorentz boosts is widely studied. In ad-
dition, S also causes a technical difficulty in the exterior problems. We will discuss
the exterior problem in a subsequent paper, and we will not go into further details
here.

We will prove Theorem 2.1 in the next section, after stating some known weighted
L∞-L∞ estimates for wave equations. Though we can apply our theorem to exclude
S from the proof of the multiple speed version of Theorem 1.1 in [9, 19, 25], we
concentrate on the single speed case for simplicity, and we will give a new proof,
without using S and Lc,j, of Theorem 1.1 in section 4 as an application of our main
theorem.

Throughout this paper, various positive constants, which may change line by
line, are denoted just by the same letter C.

3. Proof of Theorem 2.1

For c > 0, φ = φ(x), and ψ = ψ(x), we write U∗
c [φ, ψ] for the solution u to the

homogeneous wave equation �cu = 0 in (0,∞) × R
3 with initial data u = φ and

∂tu = ψ at t = 0. Similarly, for c > 0 and G = G(t, x), we write Uc[G] for the
solution u to the inhomogeneous wave equation �cu = G in (0,∞)×R

3 with initial
data u = ∂tu = 0 at t = 0.

For U∗
c [φ, ψ] we have the following.

Lemma 3.1. Let c > 0. Then, for κ > 1, we have

〈t+ |x|〉 〈ct− |x|〉κ−1 |U∗
c [φ, ψ](t, x)|(3.1)

≤ C sup
y∈Λ′

c(t,x)

〈|y|〉κ (〈|y|〉 |φ(y)|1 + |y| |ψ(y)|)

for (t, x) ∈ [0,∞)× R
3.

For the proof, see Katayama and Yokoyama [13, Lemma 3.1] (see also Asakura [2]
and Kubota and Yokoyama [19]).

After the pioneering work of John [7], a wide variety of weighted L∞-L∞ esti-
mates for Uc[G] and ∂Uc[G] have been obtained (see [2, 9, 10, 12, 13, 17, 18, 19, 25]).
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Here we restrict our attention to what will be used directly in our proofs of Theo-
rems 1.1 and 2.1.

Lemma 3.2. Let c > 0. Define

Φρ(t, r) =

{

log
(

2 + 〈t+ r〉 〈t− r〉−1)
if ρ = 0,

〈t− r〉−ρ
if ρ > 0,

(3.2)

Ψρ(t) =

{

log(2 + t) if ρ = 0,
1 if ρ > 0.

(3.3)

Assume κ ≥ 1 and µ > 0. Then we have

〈t+ |x|〉Φκ−1(ct, |x|)−1|Uc[G](t, x)| ≤ CAκ,µ,0[G; c](t, x),(3.4)

〈|x|〉 〈ct− |x|〉κ Ψκ−1(t)
−1|∂Uc[G](t, x)| ≤ CAκ,µ,1[G; c](t, x)(3.5)

for (t, x) ∈ [0,∞)× R
3, where Aκ,µ,s[G; c] is given by (2.3).

Proof. For the proof of (3.4), see Katayama and Yokoyama [13, equation (3.6) in
Lemma 3.2, and section 8] for κ > 1 and Katayama [11] for κ = 1.

Next we consider (3.5) with κ > 1. From Lemma 8.2 in [13], we find that
(3.5) with ∂Uc[G] replaced by Uc[∂G] is true. Now (3.5) follows immediately from
Lemma 3.1, because we have ∂aUc[G] = Uc[∂aG] + δa0U

∗
c [0, G(0, ·)] for 0 ≤ a ≤ 3

with the Kronecker delta δab, and 〈|y|〉κ+1 |y| |G(0, y)| ≤ CAκ,µ,1[G; c](t) (note that
we have w(0, r) = 〈r〉). Equation (3.5) for the case κ = 1 can be treated similarly
(see [19] and [9]). �

Note that we will use (3.5) in the proof of Theorem 1.1 but not in that of
Theorem 2.1.

Now we are in a position to prove Theorem 2.1. Suppose that all the assumptions
in Theorem 2.1 are fulfilled. Without loss of generality, we may assume c = 1.

For simplicity of exposition, we write D± for D±,1 = ∂t±∂r. Similarly, U∗[φ, ψ],
U [G], Aρ,µ,s(t, x), and Bρ,s(t, x) denote U∗

1 [φ, ψ], U1[G], Aρ,µ,s[G; 1](t, x), and
Bρ,s[φ, ψ; 1](t, x), respectively.

First we prove (2.5). Assume 0 < r = |x| ≤ 1. We have

|D+u| ≤ |∂tu|+ |∇xu| ≤
∑

0≤a≤3

|U [∂aG]|+ |U∗[0, G(0, ·)]| .

From (3.4) in Lemma 3.2, we get

(3.6) 〈t+ r〉Φκ−1(t, r)
−1 |U [∂aG](t, x)| ≤ CAκ,µ,1(t, x),

while Lemma 3.1 leads to

〈t+ r〉 〈t− r〉κ |U∗[0, G(0, ·)](t, x)| ≤C sup
y∈Λ′

1
(t,x)

|y| 〈|y|〉κ+1 |G(0, y)|

≤CAκ,µ,0(t, x).

Thus we obtain (2.5) for 0 < |x| ≤ 1.
We set v(t, r, ω) = ru(t, rω) for r > 0 and ω ∈ S2. Then we have

(3.7) D−D+v(t, r, ω) = rG(t, rω) +
1

r

∑

1≤j<k≤3

Ω2
jku(t, rω).
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Let r = |x| ≥ 1 and 1 ≤ κ ≤ 2. From (3.4), we get

1

r

∑

1≤j<k≤3

|Ω2
jku(t, rω)| ≤C 〈r〉−1 〈t+ r〉−1

Φκ−1(t, r)Aκ,µ,2(t, rω)(3.8)

≤C 〈t+ r〉−κ
(〈r〉−1

+ 〈t− r〉−1
)Aκ,µ,2(t, rω),

where Φκ−1 is from (3.2). It is easy to see that

(3.9) |rG(t, rω)| ≤ 〈t+ r〉−κ
w(t, r)−1−µAκ,µ,0(t, rω).

Note that we have

Aκ,µ,s(τ, (t+ r − τ)ω) ≤ Aκ,µ,s(t, rω) for 0 ≤ τ ≤ t.

Therefore, by (3.7), (3.8), and (3.9), we get

|D+v(t, r, ω)| =
∣

∣

∣

∣

∫ t

0

d

dτ
(D+v)(τ, t+ r − τ, ω)dτ

∣

∣

∣

∣

(3.10)

=

∣

∣

∣

∣

∫ t

0

(D−D+v)(τ, t+ r − τ, ω)dτ

∣

∣

∣

∣

≤C 〈t+ r〉−κAκ,µ,2(t, rω)

∫ t

0

〈t+ r − τ〉−1 dτ

+ C 〈t+ r〉−κAκ,µ,2(t, rω)

∫ t

0

〈t+ r − 2τ〉−1 dτ

+ C 〈t+ r〉−κAκ,µ,0(t, rω)

∫ t

0

w(τ, t+ r − τ)−1−µdτ

≤C 〈t+ r〉−κ
Aκ,µ,2(t, rω) log(2 + t+ r).

Since we have

rD+u(t, rω) = D+v(t, r, ω)− u(t, rω),

from (3.10) and (3.4), we obtain

〈r〉 〈t+ r〉 〈t− r〉κ−1 |D+u(t, x)| ≤ C log(2 + t+ |x|)Aκ,µ,2(t, x)

for r = |x| ≥ 1. This completes the proof of (2.5).
To prove (2.6), we first note that 〈t+ r〉 ≤ C 〈r〉 for r > δt. Let 1 < κ < 2. By

the first line of (3.8), we have

(3.11)
1

r

∑

1≤j<k≤3

|Ω2
jku(t, rω)| ≤ C 〈t+ r〉−2 〈t− r〉−κ+1

Aκ,µ,2(t, rω)

for r > max{δt, 1}. Obviously r > max{δt, 1} yields t + r − τ > max{δτ, 1} for
0 ≤ τ ≤ t. Hence following similar lines to (3.10), we obtain

|D+v(t, r, ω)| ≤ C 〈t+ r〉−κ
Aκ,µ,2(t, rω) for r ≥ max{δt, 1}.

This immediately implies (2.6), because we already know that |D+u| (resp., |D+u−
r−1D+v|) has the desired bound for (δt <)r ≤ 1 (resp., r ≥ max{δt, 1}).

Now we are going to prove (2.7). Lemma 3.1 immediately implies

〈t+ |x|〉 〈t− |x|〉κ+µ−1 |D+u
∗(t, x)| ≤ CBκ+µ+1,1(t, x),
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which is better than (2.7) for 0 < |x| ≤ 1. Lemma 3.1 also implies

1

r

∑

1≤j<k≤3

|Ω2
jku

∗(t, x)|(3.12)

≤ C 〈r〉−1 〈t+ r〉−1 〈t− r〉1−κ−µ
Bκ+µ+1,2(t, x)

≤ C 〈t+ r〉−κ (〈r〉−1−µ + 〈t− r〉−1−µ)Bκ+µ+1,2(t, x)

for r = |x| ≥ 1. Set v∗(t, r, ω) = ru∗(t, rω) for r ≥ 0 and ω ∈ S2. For r ≥ 1,
similarly to (3.10), we get

|D+v
∗(t, r, ω)| =

∣

∣

∣

∣

(D+v
∗)(0, t+ r, ω) +

∫ t

0

(D−D+v
∗)(τ, t+ r − τ, ω)dτ

∣

∣

∣

∣

≤C 〈t+ r〉−κ
Bκ+1,0(t, rω)

+ C 〈t+ r〉−κ
Bκ+µ+1,2(t, rω)

∫ t

0

〈t+ r − τ〉−1−µ
dτ

+ C 〈t+ r〉−κ
Bκ+µ+1,2(t, rω)

∫ t

0

〈t+ r − 2τ〉−1−µ
dτ

≤C 〈t+ r〉−κ
Bκ+µ+1,2(t, rω),

which ends up with

〈r〉 〈t+ r〉 〈t− r〉κ−1 |D+u
∗(t, x)| ≤ CBκ+µ+1,2(t, x)

for r = |x| ≥ 1. This completes the proof of (2.7). �

4. Proof of Theorem 1.1

As an application of Theorem 2.1, we give a new proof of Theorem 1.1. First we
derive estimates for the null forms.

Lemma 4.1. Let c be a positive constant, and v = (v1, . . . , vM ). Suppose that Q
is one of the null forms. Then, for a nonnegative integer s, there exists a positive

constant Cs, depending only on c and s, such that

|Q(vj , vk)|s ≤Cs

{

|∂v|[s/2]
∑

|α|≤s

|D+,cZ
αv|+ |∂v|s

∑

|α|≤[s/2]

|D+,cZ
αv|

+
1

r

(

|∂v|[s/2]|v|s+1 + |v|[s/2]+1|∂v|s
)

}

.

Proof. The case Q = Q0 and s = 0 follows immediately from (1.8). We can obtain
similar identities for other null forms by using

(∂t,∇x) =

(

1

2
,− x

2cr

)

D−,c +

(

1

2
,
x

2cr

)

D+,c −
(

0,
x

r2
∧ Ω

)

with Ω = (Ω23,−Ω13,Ω12) (see (5.2) in Sideris and Tu [23, Lemma 5.1]), and we
can show the desired estimate for s = 0. Since ZαQ(vj , vk) can be written in terms
of Q0(Z

βvj , Z
γvk; c) and Qab(Z

βvj , Z
γvk) (0 ≤ a < b ≤ 3) with |β|+ |γ| ≤ |α|, the

desired estimate for general s follows immediately. �
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Now we are going to prove Theorem 1.1. Without loss of generality, we may
assume c = 1. Assume that the assumptions in Theorem 1.1 are fulfilled. Let u be
the solution to (1.3)–(1.4) on [0, T )× R

3, and we set

eρ,k(t, x) = 〈t+ |x|〉 〈t− |x|〉ρ |u(t, x)|k+2 + 〈|x|〉 〈t− |x|〉ρ+1 |∂u(t, x)|k+1

+ χ(t, x) 〈t+ |x|〉2 〈t− |x|〉ρ
∑

|α|≤k

|D+,1Z
αu(t, x)|

for ρ > 0 and a positive integer k, where χ(t, x) = 1 if |x| > (1 + t)/2, while
χ(t, x) = 0 if |x| ≤ (1 + t)/2. We fix ρ ∈ (1/2, 1) and s ≥ 8, and assume that

(4.1) sup
0≤t<T

‖eρ,s(t, ·)‖L∞(R3) ≤Mε

holds for some large M(> 0) and small ε(> 0), satisfying Mε ≤ 1. Our goal here
is to get (4.1) with M replaced by M/2. Once such an estimate is established,
it is well known that we can obtain Theorem 1.1 by the so-called bootstrap (or
continuity) argument.

In the following we always assume M is large enough, and ε is sufficiently small.
For simplicity of exposition, we will not write dependence of nonlinearities on the
unknowns explicitly. Namely we abbreviate F (u, ∂u,∇x∂u)(t, x) as F (t, x), and
so on.

First we evaluate the energy. For any nonnegative integer k ≤ 2s, (4.1) implies

(4.2) |F (2)(t, x)|k ≤ CMε 〈|x|〉−1 〈t− |x|〉−1−ρ |∂u(t, x)|k+1,

where F (2) denotes the quadratic terms of F . Put H = F − F (2), and Zu =
(Z1u, . . . , Z7u). Since we have

(4.3) 〈r〉−1 〈t− r〉−1 ≤ C 〈t+ r〉−1
for any (t, r) ∈ [0,∞)× [0,∞),

and since 〈|x|〉−1 |Zu| ≤ C|∂u|, from (4.1) we obtain

|H(t, x)|k ≤C
(

|u|3 + |(u, ∂u)|2[k/2]+1(|Zu|k−1 + |∂u|k+1)
)

(4.4)

≤CM3ε3 〈t+ |x|〉−3 〈t− |x|〉−3ρ

+ CM2ε2 〈t+ |x|〉−1 〈t− |x|〉−2ρ |∂u(t, x)|k+1

for any nonnegative integer k ≤ 2s. Similarly to (4.2) and (4.4), using (4.3), we
obtain

(4.5) |Fi,α(t, x)| ≤ CMε(1 + t)−1|∂u(t, x)|2s + CM3ε3 〈t+ |x|〉−3 〈t− |x|〉−3ρ

for |α| ≤ 2s, where

Fi,α = ZαFi −
∑

j,k,a

cijka∂k∂a(Z
αuj)

with cijka coming from (1.5). It is easy to see that

(4.6) ‖ 〈t+ | · |〉−3 〈t− | · |〉−3ρ ‖L2(R3) ≤ C(1 + t)−2

for ρ > 1/2. Therefore, from (4.5), we obtain

‖Fi,α(t, ·)‖L2 ≤ CMε(1 + t)−1‖∂u(t, ·)‖2s + CM3ε3(1 + t)−2

for |α| ≤ 2s. We also have
∑

j,k,a

|cijka(t, x)|1 ≤ CMε(1 + t)−1.
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Now, applying the energy inequality for the systems of perturbed wave equations
�1(Z

αui)−
∑

j,k,a c
ij
ka∂k∂a(Z

αuj) = Fi,α, we find

d

dt
‖∂u(t, ·)‖2s ≤ CMε(1 + t)−1‖∂u(t, ·)‖2s + CM3ε3(1 + t)−2,

and the Gronwall lemma leads to

(4.7) ‖∂u(t, ·)‖2s ≤ C(ε+M3ε3)(1 + t)C0Mε ≤ CMε(1 + t)C0Mε

with an appropriate positive constant C0 which is independent of M (note that the
energy inequality for the systems of perturbed wave equations is available because
of the symmetry condition).

In the following, we repeatedly use Theorem 2.1 and Lemmas 3.1 and 3.2 with
the choice of N = 1 and c1 = 1(= c). In other words, from now on we put
w(t, r) = min

{

〈r〉 , 〈t− r〉
}

. Note that we have

(4.8) 〈r〉−1 〈t− r〉−1 ≤ C 〈t+ r〉−1
w(t, r)−1,

which is more precise than (4.3).
By (4.7) and the Sobolev-type inequality

〈|x|〉 |v(t, x)| ≤ C‖v(t, ·)‖2,
whose proof can be found in Klainerman [15], we see that

(4.9) 〈|x|〉 |∂u(t, x)|2s−2 ≤ CMε(1 + t)C0Mε.

Using (4.8) and (4.9), from (4.2) and (4.4) with k = 2s− 3, we obtain

|F (t, x)|2s−3 ≤ CM2ε2 〈r〉−1 〈t+ |x|〉−1 w(t, |x|)−2ρ(1 + t)C0Mε,

which implies

(4.10) A1+ν,2ρ−1,2s−3[F ; 1](t, x) ≤ CM2ε2 〈t+ |x|〉C0Mε+ν ,

where ν is a positive constant to be fixed later (note that we have 〈τ + |y|〉 ≤
〈t+ |x|〉 for (τ, y) ∈ Λ1(t, x)). Since 2ρ > 1 and 1 + ν > 1, by Lemmas 3.1 and 3.2
with Theorem 2.1, we obtain

e0,2s−5(t, x) ≤ eν,2s−5(t, x) ≤ Cε+ CM2ε2 〈t+ |x|〉C0Mε+ν
(4.11)

≤ CMε 〈t+ |x|〉C0Mε+ν
.

Finally, we are going to estimate eρ,s(t, x). By (4.11) and (4.2) with k = 2s− 6,
we have

|F (2)(t, x)|2s−6 ≤ CM2ε2 〈t+ |x|〉−2−ρ+C0Mε+ν 〈|x|〉−2

for (t, x) satisfying |x| ≤ (t+1)/2. On the other hand, (4.1), (4.11), and Lemma 4.1
imply

|F (2)(t, x)|2s−6 ≤ CM2ε2 〈t+ |x|〉−3+C0Mε+ν 〈t− |x|〉−1−ρ

for (t, x) satisfying |x| ≥ (t+ 1)/2. Summing up, we obtain

(4.12) |F (2)(t, x)|2s−6 ≤ CM2ε2 〈|x|〉−1 〈t+ |x|〉−2+C0Mε+ν
w(t, |x|)−1−ρ.

By the first line of (4.4) with k = 2s− 6, using (4.1) and (4.11), we get

(4.13) |H(t, x)|2s−6 ≤ CM3ε3 〈|x|〉−1 〈t+ |x|〉−2+C0Mε+ν
w(t, |x|)−2ρ.

Equations (4.12) and (4.13) yield

(4.14) |F (t, x)|2s−6 ≤ CM2ε2 〈|x|〉−1 〈t+ |x|〉−2+C0Mε+ν
w(t, |x|)−2ρ.
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Now we fix some ν satisfying 0 < ν < 1 − ρ, and assume that ε is sufficiently
small to satisfy −2 + C0Mε+ ν ≤ −1− ρ. Then from (4.14) we find that

(4.15) A1+ρ,2ρ−1,2s−6[F ; 1](t, x) ≤ CM2ε2.

Since we have s+2 ≤ 2s−6, 1+ρ > 1, and 2ρ > 1, from Theorem 2.1, Lemmas 3.1
and 3.2, we obtain

(4.16) eρ,s(t, x) ≤ C1

(

ε+M2ε2
)

for (t, x) ∈ [0, T )×R
3, with an appropriate positive constant C1 which is indepen-

dent of M . Finally, if M is large enough to satisfy 4C1 ≤M , and ε is small enough
to satisfy C1Mε ≤ 1/4, by (4.16) we obtain

(4.17) sup
0≤t<T

‖eρ,s(t, ·)‖L∞(R3) ≤
M

2
ε,

which is the desired result. This completes the proof.
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