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Abstract. We study solute transport in porous media with periodic microstructures consisting of
interconnected thin channels. We discuss a local physical mechanism that occurs at the intersections
of channels and promotes mixing of the solute with the solvent (i.e., the host liquid). We identify
the parameter regime, where this mechanism is the dominant cause of dispersion, and obtain the
effective or macroscopic transport equation that the concentration of solute satisfies when the medium
is subjected to a time periodic applied pressure gradient. We conclude with illustrative examples.
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1. Introduction. A porous medium is a material that contains relatively small
spaces filled with fluid (such as a gas, a liquid, or a mixture of different fluids) em-
bedded in a solid matrix. These fluid filled spaces are called pores or voids. With the
exception of metals, some dense rocks, and some plastics, virtually all solid materials
are porous to varying degrees.

Solutes are materials that dissolve in liquids forming solutions. An example is
salt (not at very large concentrations) in water. The host liquid, such as water in
the mentioned example, is called the solvent. The transport of a solute in porous
media depends on several factors, including the solvent and solute properties, the
fluid velocity field within the porous medium, and the microgeometry, i.e., shape,
size, and location of the solid part of the medium and the voids. The objective of this
paper is to provide new tools for the study of the influence of these factors on solute
transport.

Solute transport in liquid filled porous media plays a significant role in several
phenomena of scientific and technological importance including the transport of con-
taminants in soils [17, 32], the transport of nutrients in bones [50, 45, 43, 44, 65, 39],
the intrusion of salt in fresh water in soils near ocean coasts, movement of minerals
(e.g., fertilizers) in soils, secondary recovery techniques in oil reservoirs (where the
injected fluid dissolves the reservoir’s oil), the use of tracers in petroleum engineering
and hydrology research projects, etc. (see more about these and other examples in
[14, 6, 9, 19, 30, 58]).

Several theoretical methods are used to study solute transport in porous me-
dia [23]. These include the use of numerical experiments on networks of channels
with varying widths forming regular grids [2, 15, 16, 20, 27, 58, 59], percolation
methods [2, 7, 8, 10, 47, 55, 56, 57, 59, 62], numerical experiments on media with
fractal geometry [2, 16, 59, 64], assuming periodic media and calculating the effec-
tive transport equation by means of the method of moments [2, 11, 12, 13, 14, 31]
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Fig. 1.1. (a) Direction of the fluid velocity. (b) Initial distribution of solute concentration. (c)
Solute concentration at the time when solute first reaches the intersection. (d) Solute concentration
after solute reaches channel 1 if diffusion does not homogenize the solute concentration in slices
perpendicular to the channels. (e) Solute concentration after solute reaches channel 1 if the channels
are thin enough that diffusion homogenizes the solute concentration in slices perpendicular to the
channels. We work in the regime of (e).

or homogenization techniques [42, 48, 49, 51], and the calculation of effective trans-
port equations by means of the method of moments on periodic networks of channels
[2, 1, 29] (see also [38] for a study of diffusion in periodic networks with no flow).
The most well-known early theoretical works are studies of solute transport in single
straight tubes [63, 3]. We also mention the work on random networks of thin channels
[52, 53, 54], the work on media with trapped fluid in dead-end pores [21], the early
work using the method of moments [41], and the work on solute transport in a dilute
suspension of spheres [46] and in parallel channels [18]. Further discussions can be
found in [10, 36, 60, 5, 24, 25, 9, 26]. Experimentally, these phenomena have also
been extensively studied (see summaries in [37, 30, 22]; see also [40, 28]).

The local phenomenon that motivates our work is simple and described next.
Consider the three interconnected channels of Figure 1.1(a). We labeled the channels
1, 2, and 3. The arrows indicate the direction of the fluid velocity field within each
channel. The channels are thin. More precisely, assume that the lengths of the
channels are O(�), their diameters are O(δ), the fluid velocities within the channels
are O(v), and these parameters satisfy δ2/D � �/v � �2/D, where D is the diffusion
coefficient of the solute in the solvent under consideration. In this parameter regime,
the concentration of solute in each channel is homogeneous in slices perpendicular to
the channel and is convected with the average fluid velocity within the channel (see
[63, 3] and our section 2.1).

In Figure 1.1(b) we display the initial solute concentration, i.e., at time t = 0.
The darker the regions, the larger the solute concentration. Only channel 2 has solute
at t = 0. Let t1 be the time when solute first reaches the intersection of the channels.
The solute concentration at time t = t1 is shown in Figure 1.1(c). Let t2 > t1. In
the absence of diffusion, fluid from channel 2 with solute and fluid from channel 3
without solute would be convected next to each other along channel 1 during the
time interval (t1, t2), and the distribution of solute concentration at t = t2 would
look as displayed in Figure 1.1(d). This is in contradiction with the fact that solute
concentration is homogeneous in slices perpendicular to the channels. In fact, as
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discussed in section 2.1, diffusion homogenizes the concentration of solute in slices
perpendicular to the channels, and thus the distribution of solute at t = t2 is as
illustrated in Figure 1.1(e). During the time interval (t1, t2), liquid with solute from
channel 2 enters channel 1 and mixes with liquid without solute that enters channel 1
from channel 3.

In this paper we consider porous media with periodic microstructures and void
spaces consisting of interconnected thin channels. The local effect described in the
above paragraph (that corresponds to Figure 1.1(e)) occurs throughout the porous
media and promotes solute transport. In this paper we study this phenomenon.

In section 2 we describe our mathematical model. This model is the asymptotic
limit of the Navier–Stokes equations within the void with nonslip boundary condition
coupled with the convection-diffusion equation for the transport of solute. In section 3
we obtain the macroscopic transport equation which the solute concentration satisfies.
We assume that the medium is subjected to a time periodic applied pressure gradient
and obtain, by means of homogenization techniques on the model of section 2, that
the solute concentration satisfies a macroscopic convection-diffusion equation. As
expected, it is convected with the average fluid velocity. We obtain a relatively simple
mean to compute the diffusion tensor, known in the literature as the dispersion tensor.
In section 4 we provide some examples and in section 5 conclude with some discussions.

As previously mentioned, there are several methods for studying solute transport
in porous media. Each method has its strengths and weaknesses. The most compu-
tational economical methods are those that compute the macroscopic properties with
the use of periodic networks. This class of methods is essentially limited to [1] and its
generalizations [2, 29]. The authors of [1, 2, 29] use the method of moments instead
of homogenization or asymptotic techniques, as we do here. However, this is not the
essential difference between those methods and the technique developed in this paper.
The models in [1, 2, 29] use ad hoc rules that correspond to assuming that the volume
of the channels is much smaller than the volume of the intersections, and some ad hoc
mixing rules are given at the intersections. As a consequence, the physical effect that
motivated our work (that of Figure 1.1(e)) is not captured well by the existing models
[1, 2, 29] (see also our section 4). We believe our method is an ideal tool for studying
the dependence of the dispersion tensor on the microgeometry and will prove to be
very useful.

2. Mathematical model.

2.1. Preliminaries. Fluid flow and solute transport in channels. Fig-
ure 2.1 shows a two-dimensional channel with length � and width δ filled with a
Newtonian incompressible fluid that is subjected to pressures p = pa and p = pb at
the ends of the channel. Let ê be the vector of unit length parallel to the channel
displayed in Figure 2.1. Let y be the coordinate in the direction perpendicular to the
channel. At low Reynolds numbers (low velocities), the fluid velocity of the steady
state flow is of the form u(y)ê with u satisfying (pb − pa)/� = μu′′, where μ is the
fluid viscosity and u′′ is the second derivative of u. In addition, the fluid velocity
satisfies nonslip boundary conditions at the channel walls, i.e., u = 0 at the walls.
Simple calculations show that the velocity has a parabolic profile (see Figure 2.1) and
its spatial average across the channel is

(2.1) v =
δ2

12μ�
(pa − pb)ê

(see [4]). This type of flow is known as Poiseuille flow.
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�

ê

δp = pa p = pb

Fig. 2.1. Velocity profile of a Poseuille flow within a straight channel (indicated by arrows).

(b)(a)

Fig. 2.2. (a) Example of a periodic network of interconnected channels. The period cell is
shown by dashed lines. (b) Associated graph. The lines are the edges and the solid circles the nodes.

Taylor studied solute transport in channels at low Reynolds numbers [63]; see
also Aris [3]. The result relevant to us is the following. Let D be the coefficient of
diffusion of the solute in the host liquid, � the length of the channel, δ its diameter,
and v the spatial average of the norm of the fluid velocity. If

(2.2)
δ2

D
� �

v
� �2

D
,

the evolution of solute concentration is described by these two rules:

(2.3)

Rule 1: The concentration of solute is homogeneous in slices (of
infinitesimal thickness) perpendicular to the channel.

Rule 2: The solute concentration is convected (or advected) with the
average fluid velocity within the channel.

The validity of these two rules can be easily understood as follows. The time
required by diffusion to homogenize the solute concentration in slices perpendicular
to the channel is of order O(δ2/D). Since the time required for solute to be convected
from one end to the opposite end of the channel is O(�/v), the validity of Rule 1
results from δ2/D � �/v. On the other hand, Taylor showed that, in the direction
of the tube, the time for solute to disperse distances of O(�) is O(�2/D�), where
D� = O(D + v2δ2/D). Thus, the validity of Rule 2 results if �/v � �2/D�. Simple
algebra shows that, in fact, the two conditions δ2/D � �/v and �/v � �2/D� are
equivalent to (2.2).

2.2. Microgeometry. We consider two-dimensional porous media with periodic
microstructures. We denote the void or pore space (i.e., the space filled by fluid) by
Ωp. Note that Ωp ⊆ R

2. Since the microstructures are periodic, there exist two
linearly independent vectors w and q such that

(2.4) Ωp = Ωp + nw + mq

for all pairs of integers n and m. We assume that Ωp is a collection interconnected thin
channels (see Figure 2.2(a)). We assume that exactly three channels merge at each
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intersection. We associate a periodic graph with the microstructure of the medium
in a natural way, as illustrated in Figure 2.2(b); the edges are the channels and the
nodes the intersection of channels. We denote by N the set of nodes. We identify the
nodes with their location, and thus N ⊂ R

2. We denote by E the set of edges. Given
an edge e, its width (i.e., the width of the channel that corresponds to e) is denoted by
δe and its length by �e. We assume that the widths of the channels are much smaller
than their lengths. We also assume that the void space Ωp is a connected set.

2.3. Fluid flow. Microscopic description. The fluid that fills Ωp is an in-
compressible Newtonian fluid with constant density ρ and constant viscosity μ and
satisfies nonslip boundary conditions, i.e., the fluid velocity vanishes at the channels
walls (i.e., at the boundary of Ωp).

For each node a ∈ N , we denote by pa the pressure at a. Note that pa = pa(t) is
a function of time t. We assume that the medium is subjected to an applied pressure
gradient G = G(t) that is periodic in t with period t0. Thus, the pressures at the
nodes satisfy the condition

(2.5) pa+nw+mq = pa + G · (nw + mq)

for all integers n and m and all nodes a, where, as described above, w and q are the
vectors that determine the periodicity of the microgeometry, and we use the notation
r · s = r1s1 + r2s2 for all vectors r, s, and ri is the ith component of the vector r.

If e is an edge, we denote by ve the average of the velocity field within the
channel e. We assume that the variation of G(t) in time is slow enough that the
pressure difference between the two ends of a channel creates a Poiseuille flow within
that channel, and thus, for each edge e, according to our review (equation (2.1)), we
have

(2.6) ve = − δ2
e

12μ�e
(pb − pa)

b − a

‖b − a‖ , where a and b are the endpoints of e,

and we use the standard notation for the Euclidean norm ‖r‖ =
√

r2
1 + r2

2.
The rate at which the volume of fluid enters an intersection is equal to the rate

at which it leaves the intersection, i.e., conservation of mass. This implies that, for
each node a, we have

∑
{e∈E:a is an endpoint of e}

δeve ·
b − a

‖b − a‖ = 0, where b is the endpoint of e not equal to a.

(2.7)

The velocities within all the channels are uniquely determined by the system (2.5)–
(2.7). This well-known system (similar models were used as early as [33, 34, 35]; see
also [61, 30]) is the asymptotics of the Navier–Stokes equations within the void with
nonslip boundary conditions in the limit when the widths of the channels are much
smaller than their lengths, and the time variations of the applied pressure gradient
G(t) are slow enough. Note that the resultant velocity field is periodic in space with
the same period as the microstructure.

In practice, we first solve for the pressure at the nodes and then for the velocities
within the channels. More precisely, using the expression for the velocities in (2.6),
we reduce (2.7) into

(2.8)
∑

{b∈N :b is connected to a by an edge}

δ3
e

12μ�e
(pb − pa) = 0 for all a ∈ N ,
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which together with condition (2.5) reduce, for each fixed t, to a system of linear
equations, where the number of unknowns is equal to the number of nodes in a single
period cell minus one. Once the pressure at the nodes is obtained, the velocities in
the edges are easily computed with (2.6).

2.4. Solute transport. Microscopic description. For each e ∈ E we use the
notation ve = ‖ve‖. We assume that

(2.9) ve = O(v), �e = O(�), δe = O(δ) for all e ∈ E ,

where v, �, and δ are parameters that satisfy (2.2), and thus the transport of solute
concentration within each channel is given by Rules 1 and 2 (see (2.3)).

Given an edge e, its endpoint with smallest pressure will be called its head and
will be denoted by h(e). Analogously, k(e), the tail of the edge e, is the endpoint of
e with largest pressure. Thus, fluid within an edge e (or channel) flows from its tail
k(e) to its head h(e). Note that, since the fluid flow is time dependent, an endpoint
of an edge may be its head for some period of time and its tail for other times.

We parametrize each edge e (more precisely, the segment joining the tail and head
of e) by

(2.10) xe(s) = k(e) + s
h(e) − k(e)

‖h(e) − k(e)‖

and we denote by ue(s, t) the solute concentration in the channel e at the point xe(s)
and time t. Note that xe(0) = k(e) and xe(�e) = h(e) because �e = ‖h(e) − k(e)‖.
Thus, the channel is parametrized by xe(s) with 0 ≤ s ≤ �e. The fact that solute
concentration in a channel is convected with the average fluid velocity within the
channel translates into

(2.11)
∂ue

∂t
+ ve

∂ue

∂s
= 0 for 0 ≤ s ≤ �e, t ≥ 0, and all e ∈ E .

Let e be an edge and k(e) its tail (at a fixed time t). One of two cases is possible:
k(e) is the head of two other edges, or k(e) is the head of only one other edge. Assume
first that k(e) is the head of two other edges, say, β1 and β2, i.e., h(β1) = h(β2) = k(e).
Conservation of solute implies that solute enters k(e) at the same rate that it leaves
k(e), and thus δeveue(0, t) = δβ1vβ1uβ1(�β1 , t) + δβ2vβ2uβ2(�β2 , t). This condition can
be written as

(2.12) ue(0, t) =

∑
{β:h(β)=k(e)} δβvβuβ(�β , t)∑

{β:h(β)=k(e)} δβvβ

once we note that (2.7) at k(e) is δeve = δβ1
vβ1

+ δβ2
vβ2

. We have just shown that
(2.12) is valid for edges e for which its tail k(e) is the head of two other edges. We
next show that, in fact, (2.12) is valid for all edges e. To that end, assume now that
k(e) is the head of only one edge, say β. In other words, fluid flows into k(e) from
only channel β. Thus, the concentration of solute going into e should be equal to the
concentration of solute entering k(e) from β, i.e., ue(0, t) = uβ(�β , t). This condition
is, in fact, (2.12) in this case, i.e., when k(e) is the head of only one edge.

The system (2.11)–(2.12) uniquely determines the time evolution of the solute
concentration within the channels once initial conditions and appropriate boundary
conditions are given. We mention that the system (2.11)–(2.12) is not ad hoc; it is
the asymptotic limit of the convection-diffusion equation for the transport of solute
within the network in the parameter regime in which we work (i.e., (2.9) and (2.2)).
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3. Macroscopic transport equation. We say that two edges are equivalent if
one is the translation of the other by a vector of the form nw + mq, where w and q
are the vectors that determine the periodicity of the microstructure (see (2.4)) and n
and m are integers. Thus, two edges e1 and e2 are equivalent if there exist n and m
integers such that h(e2) = h(e1) +nw +mq and k(e2) = k(e1) +nw +mq (we recall
that h(e) denotes the head of the edge e and k(e) denotes its tail). This defines an
equivalence relation in the set of edges. Note that the widths, lengths, and velocities
of equivalent edges are equal, i.e., δe1 = δe2 , �e1 = �e2 , and ve1 = ve2 if e1 and e2 are
equivalent. In what follows we will take spatial average of quantities. Thus, we need
to be able to select exactly one edge per equivalence class. We denote by F a set of
edges that contains exactly one edge per equivalent class. For example, F could be
all the edges whose heads are in the period cell

(3.1) Q = {sw + rq : 0 ≤ s, r < 1}

at a certain time.
We first observe that the area occupied by fluid within the period cell Q (i.e., the

area of Ωp ∩Q) is

(3.2) |Ωp ∩Q| =
∑
e∈F

δe�e.

We denote by V the spatial average fluid velocity, i.e.,

(3.3) V =

∑
e∈F δe�eve∑
e∈F δe�e

=

∑
e∈F δe�eve

|Ωp ∩Q| .

Note that assumption (2.9) implies that ‖V‖ = O(v). Assume that t0, the period of
the applied pressure gradient G, satisfies

(3.4) t0 
 �

v
(more precisely t0 
 max �e/ve most of the time);

i.e., the time required for solute concentration to be convected across a channel is
much smaller than the period of the applied pressure gradient. In Appendix A we
show that, macroscopically, the solute concentration is convected with the average
fluid velocity V and dispersed with dispersion tensor

(3.5) Deff
ij =

1

t0

∫ t0

0

D�
ij(t)dt,

where

D�
ij =

1

2|Ωp ∩Q|

{∑
e∈F

δe�e

(
�e
ve

[ve − V]i [ve − V]j(3.6)

+ [V − ve]i
[
fk(e)

]
j
+ [V − ve]j

[
fk(e)

]
i

)}
,

[y]i denotes the ith component of the vector y, and the family of vectors (fa)a∈N is
a solution periodic in space and time (i.e., fa(t) = fa+nw+mq(t + pt0) for all integers
n, m, and p) of the following system:

(3.7)
∑

{e:h(e)=a}
δeve(fk(e) − fa) =

∑
{e:h(e)=a}

δe�e (ve − V) for all a ∈ N .
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More precisely, for each a ∈ N , let ua(t) be the solute concentration that leaves the
intersection a at time t, i.e.,

(3.8) ua(t) = ue(0, t) if a = k(e) at time t.

Note that ua(t) is well defined because ue1(0, t) = ue2(0, t) if e1 and e2 are two edges
that have the same tail at time t, i.e., k(e1) = k(e2). In Appendix A we show that

(3.9) ua(t) � u (a, t) for t = O
(
t20
v

�

)
,

where u(x, t) satisfies

(3.10)
∂u

∂t
+ V · ∇u =

∑
i,j

Deff
ij

∂2u

∂xi∂xj
,

where ∇u is the gradient of u with respect to x and u is subjected to appropriate
boundary and initial conditions that depend on the particular problem under consid-
eration. We note that Deff is usually referred to as the dispersion tensor.

4. Examples and observations.

4.1. Constant applied pressure gradient. As a first general example, we
consider the case when the applied pressure gradient G is time independent. In this
case, the system for the pressure at the nodes (2.5) and (2.8) is time independent and
so are the velocities within the channels (see (2.6)). The spatially periodic family of
vectors (fa)a∈N , solution of system (3.7), is also time independent, and the expression
for the dispersion tensor simplifies to

Deff
ij = D�

ij =
1

2
∑

e∈F δe�e

∑
e∈F

δe�e

(
�e
ve

[ve − V]i [ve − V]j(4.1)

+ [V − Ve]i
[
fk(e)

]
j
+ [V − ve]j

[
fk(e)

]
i

)
.

4.2. Applied pressure gradient of the form G(t) = g(t)E with E con-
stant. As a second general example, we consider the case when the applied pressure
gradient G is of the form G(t) = g(t)E with E constant and g(t) a real valued peri-
odic function with period t0. The evaluation of the dispersion tensor is also simple in
this case. Let Deff

E be the dispersion tensor that corresponds to the applied pressure
gradient E. Then, the dispersion tensor that corresponds to the applied pressure
gradient G(t) = g(t)E is

(4.2) Deff = Deff
E

1

t0

∫ t0

0

|g(t)|dt.

The validity of the above equation results from simple calculation. Briefly, we first
note that, if vE

e are the velocities within the channels when the applied pressure
gradient is E, then ve = g(t)vE

e are the velocities within the channels when the
applied pressure gradient is g(t)E. As a consequence, if the vectors fEa solve system
(3.7) when the applied pressure gradient is E, then fa = g(t)fEa is a solution of system
(3.7) when the applied pressure gradient is g(t)E. Thus, if D�

E is the tensor of (3.6)
when the applied pressure gradient is E, then D� = |g(t)|D�

E is the tensor of (3.6)
when the applied pressure gradient is g(t)E. Note that D�

E is time independent, and
thus Deff

E = D�
E (see (3.6)). Finally, (4.2) results from (3.6).
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δ1 δ2

δ3(0, 1)

Fig. 4.1. Graph corresponding to the microgeometry of our example. The period cell is enclosed
by dashed lines. The widths of the channels are δ1, δ2, and δ3.

4.3. A concrete example. The graph that corresponds to the microgeometry
of our example is shown in Figure 4.1. All the channels have the same length � and
form regular hexagons. The period cell is enclosed by dashed lines. The width of the
channels in the period cell are, as displayed in the figure, δ1, δ2, and δ3. We assume
the applied pressure gradient to be of the form

(4.3) G(t) =

(
0,

g(t)

�

)
,

where g is a periodic function with period t0 and (0, 1) is the unit vector that points
in the vertical direction (see Figure 4.1). Some algebra shows that, in this example,
the use of our method leads to

(4.4) V2(t) = − 3

16μ�

δ3
3(δ3

1 + δ3
2)

(δ3
1 + δ3

2 + δ3
3)(δ1 + δ2 + δ3)

g(t)

and

(4.5) Deff
22 =

9

64μ

δ3
3(δ3

1 + δ3
2)(δ1 + δ2)

2(δ1 − δ2)
2

δ1δ2(δ3
1 + δ3

2 + δ3
3)(δ1 + δ2 + δ3)3

1

t0

∫ t0

0

|g(t)|dt.

To discuss the above formulas in a more concrete context, assume that the ma-
terial occupies the region x2 > 0. Also assume that the material is attached to a
reservoir of solute located at x2 < 0 and that initially there is no solute within the
material (for x2 > 0). Due to symmetry, the solute concentration u, solution of (3.10),
in this example depends only on x2. Thus, we need only V2 and Deff

22 , which are given
by (4.4) and (4.5), respectively.

As a first observation, note that Deff
22 = 0 if δ1 = δ2. Thus, after each period,

solute is convected a distance
∫ t0
0

V(t) dt but is not dispersed in our asymptotic limit;
there is a smaller order effective dispersion that results from an effect known as Taylor
dispersion inside the channels [63, 3]. Note that this is in accordance with the physical
effect described in the introduction as shown in Figure 1.1(e). The mixing of solute
with the host liquid occurs when solute from two different channels and at different
concentrations flows into the same intersection (in Figure 1.1(e) one of the channels
had zero solute concentration). Due to symmetry in our example when δ1 = δ2,
whenever solute from two channels flows into the same intersection, the concentration
in both channels is the same. This is illustrated in Figure 4.2(a), where we show that
solute reaches the upper ends of all the channels attached to the reservoir at the same
time if δ1 = δ2.
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(a) (b)

Fig. 4.2. Microgeometry that corresponds to the graph of Figure 4.1. In (a), δ1 = δ2. In (b),
δ1 < δ2. The shaded areas represent the solute concentration. The darker the shade, the larger the
solute concentration.

On the other hand, in Figure 4.2(b) we display an example where δ1 < δ2. As
illustrated in that figure, the time required for solute from the reservoir to travel
through the thinner channels is longer than the travel time through the thicker chan-
nels. Thus, the effect illustrated in Figure 1.1(e) does occur and, as (4.5) implies,

we have that Deff
22 
= 0. Note in particular that, in the case

∫ t0
0

g(t) dt = 0, there is
no convection after a complete period. Thus, there will be much more transport of
solute in our second example, where Deff

22 
= 0, than in the example of the previous
paragraph, where Deff

22 = 0.

At first glance, (4.5) seems to lead to the following contradiction. On one hand,
(4.5) shows that Deff

22 → ∞ as δ1 → 0 while keeping δ2 and δ3 fixed. However, δ1 = 0
means not having the channels with width δ1, and thus not having intersection of
three channels. According to our discussions, we would expect Deff

22 = 0 in this case.
This apparent contradiction is resolved by (3.4) and (3.9) which state that (4.5) is
valid for t = O(t20v/�) and t0 
 �/v1, and thus we need t 
 �/v1. Finally, we note
that, since v1 → 0 as δ1 → 0, this is a singular limit, which resolves this apparent
contradiction. In other words, the smaller δ1, the longer we have to wait for dispersion
to occur and for our asymptotics to be valid. As δ1 → 0, we would have to wait an
infinitely long time.

5. Discussion. As mentioned in the introduction, there are several methods for
studying solute transport in porous media. For their computational efficiency and
their flexibility in modeling microstructures, methods that compute the macroscopic
properties with the use of periodic networks are very useful. So far, this class of
methods is essentially limited to [1] and its generalizations [2, 29]. Moreover, as
mentioned in the introduction, the models in [1, 2, 29] use ad hoc rules that prevent
them from accurately modeling the physical effect that motivated the present work,
i.e., that of Figure 1.1(e).

Thus, while a large body of work exists in solute transport in porous media,
the work introduced here is new and, we believe, will prove powerful in providing
new understanding of the dependence of solute transport on the microgeometry. The
strengths of our method include the following: (1) This method is exact to first
order, i.e., has a small error. More precisely, it is the asymptotic limit of the well-
established Navier–Stokes system for fluid flow and the convection-diffusion equation
for solute transport (there are no ad hoc rules imposed). (2) The asymptotic limit
used results from considering the simple but, we believe, fundamental effect of Figure
1.1(e). While this local effect has been identified and appears in standard texts on
porous media [30], its global consequence (i.e., the combined effect of this phenomenon
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at all intersections) has not been well studied. This method is an ideal tool for those
studies. (3) This method is relatively computationally inexpensive, essentially solving
a linear system whose number of variables is equal to two times the number of nodes
in a period cell. We mention that the extension of our method to three dimension is
immediate.

Appendix A. Asymptotic approximation.

A.1. Dimensionless variables, parameters, and equations. We first define
the small dimensionless parameter ε as

(A.1) ε =
�

vt0
� 1

for each edge e, the dimensionless parameters as

(A.2) �̄e =
�e
�

and δ̄e =
δe
δ
,

the dimensionless velocities and their norms as

(A.3) v̄e =
ve

v
and v̄e = ‖v̄e‖,

and the dimensionless average velocity as

(A.4) V̄ =
V

v
.

The velocities will be periodic with the same period t0 as the applied pressure
gradient. This motivates the choice of the dimensionless time

(A.5) t̄ =
t

t0
.

We regard the dimensionless velocities as 1-periodic functions of the dimensionless
time; i.e., v̄e = v̄e(t̄) and V̄ = V̄(t̄) are periodic with period 1.

Since the velocities are of order v, distances traveled by convection in periods
of times of order t0 are of order vt0. This motivates the use of the following space
dimensionless variable:

(A.6) x̄ =
x

vt0
.

Accordingly, the dimensionless nodes are the set

(A.7) N̄ =
N
vt0

,

the dimensionless head and tail of each edge e are

(A.8) h̄(e) =
h(e)

vt0
and k̄(e) =

k(e)

vt0
,

respectively, and the dimensionless vectors that determine the periodicity of the mi-
crostructure are

(A.9) w̄ =
w

vt0
and q̄ =

q

vt0
.
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Thus, parametrizing the segment joining k̄(e) and h̄(e) by

(A.10) x̄e(s̄) = k̄(e) + s̄
h̄(e) − k̄(e)

‖h̄(e) − k̄(e)‖
,

we have that (2.11) becomes

(A.11)
∂ūe

∂t̄
+ v̄e

∂ūe

∂s̄
= 0 for 0 ≤ s̄ ≤ ε�̄e, t̄ ≥ 0, and all e ∈ E ,

where ūe(s̄, t̄) is the solute concentration in the channel e at the point vt0x̄e(s̄) and
time t0t̄. Note that k̄(e) = x̄e(0) and h̄(e) = x̄e(ε�̄e).

On the other hand, (2.12) becomes

(A.12) ūe(0, t̄) =

∑
{β:h̄(β)=k̄(e)} δ̄β v̄β ūβ(ε�̄β , t̄)∑

{β:h̄(β)=k̄(e)} δ̄β v̄β
.

A.2. Solute transport within each channel. Let e be an edge. Solute is
convected from k̄(e), the tail of e, to h̄(e), the head of e. Thus, the solute concentration
at h̄(e) at time t̄ is equal to the solute concentration at k̄(e) at an earlier time t̄−Δt̄e,
i.e.,

(A.13) ūe(0, t̄− Δt̄e) = ūe(ε�̄e, t̄).

We next compute Δt̄e.
Let S(τ) be the solution of

(A.14) S′(τ) = v̄e(τ) and S(t̄) = ε�̄e,

where S′ is the derivative of S. We claim that Δt̄e is the solution of

(A.15) S(t̄− Δt̄e) = 0.

This is due to the fact that ūe(S(τ), τ) is independent of τ , and thus ūe(0, t̄−Δt̄e) =
ūe(S(t̄− Δt̄e), t̄− Δt̄e) = ūe(S(t̄), t̄) = ūe(ε�̄e, t̄).

From (A.14) and (A.15), we note that Δt̄e = O(ε). Thus, we Taylor expand
(A.15) to get

(A.16) 0 = S(t̄− Δt̄e) � S(t̄) − S′(t̄)Δt̄e +
S′′(t̄)

2
(Δt̄e)

2.

Next we note that S(t̄) = ε�̄e and S′(t̄) = v̄e(t̄) (see (A.14)). Thus, S′′(t̄) = v̄′e(t̄),
and we conclude from (A.16) that

(A.17) 0 � ε�̄e − v̄e(t̄)Δt̄e +
v̄′e(t̄)

2
(Δt̄e)

2.

We now set Δt̄e = εΔt̄1 + ε2Δt̄2, plug this expression into (A.17), collect powers of ε
to obtain equations for Δt̄1 and Δt̄2, and finally get

(A.18) Δt̄e � ε
�̄e
v̄e

+ ε2 �̄
2
e

2

v̄′e
v̄3
e

,

where v̄e and v̄′e are evaluated at t̄. Note that Δt̄e is a function of t̄.
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A.3. Continuum approximation. Using (A.13), (A.12) becomes

(A.19) ūe(0, t̄) =

∑
{β:h̄(β)=k̄(e)} δ̄β v̄β ūβ(0, t̄− Δt̄β)∑

{β:h̄(β)=k̄(e)} δ̄β v̄β
,

where Δt̄β is given by (A.18).
For each dimensionless node ā ∈ N̄ , let ūā(t̄) be the solute concentration that

leaves the intersection ā, i.e.,

(A.20) ūā(t̄) = ūe(0, t̄) if ā = k̄(e) at time t̄.

With the notation introduced in (A.20), (A.19) becomes

(A.21) ūā(t̄) =

∑
{β:h̄(β)=ā} δ̄β v̄β ūk̄(β)(t̄− Δt̄β)∑

{β:h̄(β)=ā} δ̄β v̄β
.

A.3.1. Ansatz and expansions. We now use standard asymptotic techniques
to obtain the macroscopic transport equation for the solute concentration. We propose
the ansatz

(A.22) ūā(t̄) = ρ(ā, t̄, εt̄) + εfâ(ā, t̄, εt̄) + ε2gâ(ā, t̄, εt̄), where â =
ā

ε
,

ρ(x̄, t̄, τ) is a smooth function of its variables periodic in t̄ with period 1, and for
each â ∈ N̄/ε = N/� the functions fâ(x̄, t̄, τ) and gâ(x̄, t̄, τ) are smooth functions
of x̄, t̄, and τ and are also periodic in t̄ with period 1. The family of functions
fâ and gâ are periodic in â in the sense that fâ+(nw̄+mq̄)/ε(x̄, t̄, τ) = fâ(x̄, t̄, τ) and
gâ+(nw̄+mq̄)/ε(x̄, t̄, τ) = gâ(x̄, t̄, τ) for all integers n and m and â ∈ N̄/ε.

Let x̄ be a point that we hold fixed for the moment. Let ā be a dimensionless
node ā ∈ N̄ such that ‖x̄ − ā‖ = O(ε). We write

(A.23) ā = x̄ + ε(â − x̂), where â =
ā

ε
and x̂ =

x̄

ε
.

We now plug this expression for ā into the right-hand side of (A.22) to get

ūā(t̄) = ρ(x̄ + ε(â − x̂), t̄, εt̄) + εfâ(x̄ + ε(â − x̂), t̄, εt̄)(A.24)

+ε2gâ(x̄ + ε(â − x̂), t̄, εt̄).

We now Taylor expand the right-hand side of the above equality around the point
(x̄, t̄, εt̄) to get

ūā(t̄) � ρ + ε

{∑
i

∂ρ

∂x̄i
[â − x̂]i + fâ

}
(A.25)

+ε2

⎧⎨
⎩1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j
[â − x̂]i[â − x̂]j +

∑
i

∂fâ
∂x̄i

[â − x̂]i + gâ

⎫⎬
⎭ ,

where ρ, fâ, gâ and their derivatives are evaluated at (x̄, t̄, εt̄). In the above equation
we neglected terms of order ε3.
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Now let β be an edge whose dimensionless head is ā, i.e., h̄(β) = ā. Note that
‖k̄(β)− ā‖ = ε�̄β . Thus, since ‖x̄− ā‖ = O(ε), we have ‖x̄− k̄(β)‖ = O(ε). We write

(A.26) k̄(β) = x̄ + ε(k̂(β) − x̂), where k̂(β) =
k̄(β)

ε
and x̂ =

x̄

ε
.

From (A.24), but replacing ā by k̄(β) and t̄ by t̄− Δt̄β , we get

ūk̄(β)(t̄− Δt̄β) =ρ(x̄ + ε(k̂(β) − x̂), t̄− Δt̄β , εt̄− εΔt̄β)(A.27)

+εfk̂(β)(x̄ + ε(k̂(β) − x̂), t̄− Δt̄β , εt̄− εΔt̄β)

+ε2gk̂(β)(x̄ + ε(k̂(β) − x̂), t̄− Δt̄β , εt̄− εΔt̄β).

We now Taylor expand the right-hand side of the above equation around the point
(x̄, t̄, εt̄) and make use of the expression (A.18) (with e replaced by β) to get

ūk̄(β)(t̄− Δt̄β) � ρ + ε

{∑
i

∂ρ

∂x̄i
[k̂(β) − x̂]i −

∂ρ

∂t̄

�̄β
v̄β

+ fk̂(β)

}
(A.28)

+ε2

⎧⎨
⎩1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j
[k̂(β) − x̂]i[k̂(β) − x̂]j −

∑
i

∂2ρ

∂t̄∂x̄i
[k̂(β) − x̂]i

�̄β
v̄β

+
1

2

∂2ρ

∂t̄2
�̄2β
v̄2
β

− ∂ρ

∂t̄

�̄2β
2

v̄′β
v̄3
β

− ∂ρ

∂τ

�̄β
v̄β

+
∑
i

∂fk̂(β)

∂x̄i
[k̂(β) − x̂]i −

∂fk̂(β)

∂t̄

�̄β
v̄β

+ gk̂(β)

}
,

where ρ, fk̂(β), gk̂(β) and their derivatives are evaluated in (x̄, t̄, εt̄), and v̄β and its

derivative are evaluated at t̄. In the above equation we neglected terms of order ε3.
Now we plug the expressions for ūâ(t̄) and ūk̄(β)(t̄ − Δt̄β) given in (A.25) and

(A.28) into (A.21), neglect terms of ε2, and make simple algebraic manipulations
(which include dividing by ε) to obtain

(A.29)
∑

β:h̄(β)=ā

δ̄β v̄β(fk̂(β) − fâ) =

⎛
⎝ ∑

β:h̄(β)=ā

δ̄β �̄β

⎞
⎠ ∂ρ

∂t̄
+

⎛
⎝ ∑

β:h̄(β)=ā

δ̄β �̄βv̄β

⎞
⎠ · ∇̄ρ.

We require the above equation to be valid for all (x̄, t̄, τ), not just at τ = εt̄.

A.3.2. Fredholm alternative. First equation for ρ. Convection with
average velocity. We recall that two edges are equivalent if one is the translation
of the other by a vector of the form nw + mq, where n and m are integers, and
we denote by F a set of edges that contains exactly one edge per equivalent class
(see section 3). Analogously, we also say that two dimensionless nodes ā and b̄ are
equivalent if b̄ = ā+nw̄+mq̄ for some n and m integers, and we denote by M̄ a set of
dimensionless nodes that contains exactly one dimensionless node per equivalent class.
For example, M̄ could be all the dimensionless nodes included in the dimensionless
period cell Q̄ = {sw̄ + rq̄ : 0 ≤ s, r < 1}, i.e., M̄ = N̄ ∩ Q̄.

Let yâ be defined for all â ∈ N̄/ε and have the same periodicity as fâ, i.e.,
yâ+(nw̄+mq̄)/ε = yâ for all integers n and m and all â ∈ N̄/ε. Note that

(A.30)
∑
ā∈M̄

yâ
∑

β:h̄(β)=ā

δ̄β v̄βfk̂(β) =
∑
β∈F

δ̄β v̄βyĥ(β)fk̂(β) =
∑
ā∈M̄

fâ
∑

β:k̄(β)=ā

δ̄β v̄βyĥ(β).
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Thus,

(A.31)
∑
ā∈M̄

yâ
∑

β:h̄(β)=ā

δ̄β v̄β(fk̂(β) − fâ) =
∑
ā∈M̄

fâ
∑

β:k̄(β)=ā

δ̄β v̄β(yĥ(β) − yâ).

The above expression is equal to 0 for all periodic fâ if and only if

(A.32)
∑

β:k̄(β)=ā

δ̄β v̄β(yĥ(β) − yâ) = 0 for all ā ∈ N̄ .

A simple calculation shows that yb̂ = yâ for all â, b̂ ∈ N̄/ε (if v̄e 
= 0 for all edges e.
This is a generic condition that we assume is satisfied).

If we multiply the left-hand side of (A.29) by yâ and add over all a ∈ M̄, we
obtain the expression in (A.31). Thus, the above discussion, the Fredholm alternative
theory, and simple manipulations imply that there exists a solution fâ (of (A.29))
that satisfies fâ+(nw̄+mz̄)/ε = fâ for all integers n and m if and only if

(A.33)
∂ρ

∂t̄
+ V̄ · ∇̄ρ = 0,

where ∇̄ρ is the gradient of ρ with respect to x̄.

A.3.3. Further expansions. Next we take derivatives of (A.33) with respect
to x̄i to obtain

(A.34)
∂2ρ

∂t̄∂x̄i
= −

∑
j

[V̄]j
∂2ρ

∂x̄i∂x̄j
.

Analogously, taking derivatives of (A.33) with respect to t̄ and using (A.34), we obtain

(A.35)
∂2ρ

∂t̄2
= −

∑
i

[V̄′]i
∂ρ

∂x̄i
−
∑
i

[V̄]i
∂2ρ

∂x̄i∂t̄
= −

∑
i

[V̄′]i
∂ρ

∂x̄i
+
∑
i,j

[V̄]i[V̄]j
∂2ρ

∂x̄i∂x̄j
.

Using the last three identities, (A.28) becomes

ūk̄(β)(t̄− Δt̄β) = ρ + ε

{∑
i

∂ρ

∂x̄i

[
k̂(β) − x̂ +

�̄β
v̄β

V̄

]
i

+ fk̂(β)

}

+ε2

⎧⎨
⎩1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j

[
k̂(β) − x̂ +

�̄β
v̄β

V̄

]
i

[
k̂(β) − x̂ +

�̄β
v̄β

V̄

]
j

(A.36)

−1

2

�̄β
v̄β

∑
i

(
�̄β
v̄β

[V̄]i

)′
∂ρ

∂x̄i
− ∂ρ

∂τ

�̄β
v̄β

+
∑
i

∂fk̂(β)

∂x̄i
[k̂(β) − x̂]i −

∂fk̂(β)

∂t̄

�̄β
v̄β

+ gk̂(β)

}
.

We now plug into (A.21) the expressions for ūk̂(β)(t̄ − Δt̄β) and ūa(t̄) given by

(A.36) and (A.25), respectively, to obtain, after some algebraic manipulations and
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making use of (A.29), that

(A.37)⎛
⎝ ∑

{β:h̄(β)=ā}

δ̄β �̄β

⎞
⎠ ∂ρ

∂τ
+

∑
{β:h̄(β)=ā}

[
δ̄β v̄β

(
∇̄fâ · (â − x̂) − ∇̄fk̂(β) ·

(
k̂(β) − x̂

))

+
δ̄β
2
�̄2β

(
V̄

v̄β

)′
· ∇̄ρ + δ̄β �̄β

∂fk̂(β)

∂t̄

]

=
1

2

∑
{β:h̄(β)=ā}

δ̄β v̄β
∑
i,j

∂2ρ

∂x̄i∂x̄j

([
k̂(β) − â +

�̄β
v̄β

V̄

]
i

[
k̂(β) − â +

�̄β
v̄β

V̄

]
j

2 + [â − x̂]i

[
k̂(β) − â +

�̄β
v̄β

V̄

]
j

)
+

∑
{β:h̄(β)=ā}

δ̄β v̄β

(
gk̂(β) − gâ

)
.

Taking the gradient of (A.29), taking the dot product of the result with (â −
x̂), making use of previous equations, performing some algebraic manipulations, and

noting that v̄β(â − k̂(β)) = �̄βv̄β , (A.37) can be reduced to

(A.38)⎛
⎝ ∑

{β:h̄(β)=ā}

δ̄β �̄β

⎞
⎠ ∂ρ

∂τ
+

∑
{β:h̄(β)=ā}

δ̄β �̄β

[
∇̄fk̂(β) · v̄β +

�̄β
2

(
V̄

v̄β

)′
· ∇̄ρ +

∂fk̂(β)

∂t̄

]

=
∑

{β:h̄(β)=ā}

δ̄β v̄β

(
gk̂(β) − gâ

)
+

1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j

∑
{β:h̄(β)=ā}

δ̄β �̄
2
β

v̄β

[
v̄β − V̄

]
i

[
v̄β − V̄

]
j
.

A.4. Fredholm alternative. Long time equation for ρ. Dispersion ten-
sor. Following the same arguments to obtain (A.33), we have that there exists a
solution gâ of (A.38) that is periodic in â if and only if

∑
ā∈M̄

⎧⎨
⎩
⎛
⎝ ∑

{β:k̄(β)=ā}

δ̄β �̄β

⎞
⎠ ∂fâ

∂t̄
+

⎛
⎝ ∑

{β:k̄(β)=ā}

δ̄β �̄βv̄β

⎞
⎠ · ∇̄fâ

⎫⎬
⎭

+
∑
ā∈M̄

⎧⎨
⎩
⎛
⎝ ∑

{β:k̄(β)=ā}

δ̄β �̄β

⎞
⎠ ∂ρ

∂τ
+

⎛
⎝ ∑

{β:k̄(β)=ā}

δ̄β
2
�̄2β

(
V̄

v̄β

)′
⎞
⎠ · ∇̄ρ

⎫⎬
⎭(A.39)

=
1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j

∑
ā∈M̄

∑
{β:k̄(β)=ā}

δ̄β �̄
2
β

v̄β

[
v̄β − V̄

]
i

[
v̄β − V̄

]
j
.

Let Fâ = Fâ(t̄) be a solution of

(A.40)
∑

{β:h̄(β)=ā}

δ̄β v̄β

(
Fk̂(β) − Fâ

)
=

∑
{β:h̄(β)=ā}

δ̄β �̄β
(
v̄β − V̄

)

that is periodic in t̄ and â, i.e., Fâ+(nw̄+mq̄)/ε(t̄ + p) = Fâ(t̄) for all integers n,m, p.
A simple calculation shows that fâ is a periodic (in â and t̄) solution of (A.29) if and
only if

(A.41) fâ(x̄, t̄, τ) = Fâ(t̄) · ∇̄ρ(x̄, t̄, τ) + ψ(x̄, t̄, τ),
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where ψ is an arbitrary function that is periodic on t̄.

Note that {β : k̄(β) = ā and ā ∈ M̄} is a set that contains exactly one edge
per equivalent class. Thus, the sums in equation (A.39) are spatial averages, i.e.,∑

ā∈M̄
∑

{β:k̄(β)=ā} =
∑

β∈F , where we recall that F is any set of edges that contains

exactly one edge per equivalent class. Using this observation, (A.41), and some simple
algebraic manipulations, we transform (A.39) in

(A.42)⎛
⎝∑

β∈F
δ̄β �̄β

⎞
⎠(

∂ρ

∂τ
+

∂ψ

∂t̄
+ V̄ · ∇̄ψ

)
+

⎛
⎝∑

β∈F
δ̄β �̄βF

′
k̂(β)

+
δ̄β
2
�̄2β

(
V̄

v̄β

)′
⎞
⎠ · ∇̄ρ

=
1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j

∑
β∈F

δ̄β �̄β

(
�̄β
v̄β

[
v̄β − V̄

]
i

[
v̄β − V̄

]
j
+ 2

[
Fk̂(β)

]
i

[
V̄ − v̄β

]
j

)
.

We now make the change of variables

(A.43) ȳ = x̄ −
∫ t̄

0

V̄(s) ds.

To avoid confusion, we denote ρ by ρ̄ when the new independent variables (ȳ, t̄, τ) are
used. In these new variables, (A.33) becomes ∂ρ̄/(∂t̄) = 0, from which we get that ρ̄
is a function that depends only on ȳ and τ , i.e., ρ̄ = ρ̄(ȳ, τ).

Analogously, ψ̄ is simply ψ, but only when the new independent variables (ȳ, t̄, τ)
are used. The changes that occur in (A.42) when the new variables are used are the
following: (1) The term V̄ · ∇̄ψ is removed; (2) derivatives with respect to x̄ are
replaced by derivatives with respect to ȳ; and (3) ρ is replaced by ρ̄ and ψ by ψ̄.
After making this change of variables, we integrate the resulting equation (A.42) with
respect to t̄ over a period, from t̄ = t̄0 to t̄ = t̄0 + 1, and divide by

∑
β∈F δ̄β �̄β to

obtain

(A.44)
∂ρ̄

∂τ
(ȳ, τ) + ψ̄(ȳ, t̄0 + 1, τ) − ψ̄(ȳ, t̄0, τ) =

∑
i,j

D̄ij
∂2ρ̄

∂yi∂yj
(ȳ, τ),

where

D̄ij =
1

2
∑

β∈F δ̄β �̄β

∑
β∈F

δ̄β �̄β

∫ 1

0

(
�̄β
v̄β

[
v̄β − V̄

]
i

[
v̄β − V̄

]
j

+
[
Fk̂(β)

]
i

[
V̄ − v̄β

]
j
+

[
Fk̂(β)

]
j

[
V̄ − v̄β

]
i

)
dt̄.(A.45)

Finally, the dependence of ρ̄ in τ is obtained by requiring ψ̄ to be bounded. Given
(A.44), we note that this occurs only if

(A.46)
∂ρ̄

∂τ
(y, τ) =

∑
i,j

D̄ij
∂2ρ̄

∂yi∂yj
(y, τ).

The result stated in section 3 is obtain by going back to the original dimensional
variables.
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