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Abstract

We study N -homoclinic orbits near a heteroclinic cycle in a reversible system. The
cycle is assumed to connect two equilibria of saddle-focus type. Using Lin’s method
we establish the existence of infinitely many N -homoclinic orbits for each N near
the cycle. In particular, these orbits exist along snaking curves, thus mirroring the
behaviour one-homoclinic orbits. The general analysis is illustrated by numerical
studies for a Swift-Hohenberg system.
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1 Introduction

Spatially localised structures, such as solitary pulses, appear in many systems
described by higher-order nonlinear partial differential equations (PDEs). Par-
ticular examples have been found in structural mechanics [7], nonlinear optics
[15] and water wave problems [2]. A common feature of these cases is the
onset of the localised patterns in a sequence of fold bifurcations, which are
connected by a snaking curve.
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In one spatial dimension this phenomenon can be explained by a sequence of
bifurcations in the associated ordinary differential equation (ODE) for travel-
ling waves. Localised patterns correspond to homoclinic solutions of this ODE,
and it has been found that infinitely many of such orbits can exist near a het-
eroclinic cycle in the ODE. These homoclinic orbits all lie on a snaking curve,
along which they undergo infinitely many fold bifurcations, while thereby get-
ting wider and developing new oscillations about their centre at each fold. An
important requirement for this scenario to happen is the time-reversibility of
the travelling-wave ODE.

In addition to time-reversibility the type of the heteroclinic cycle plays an
important role for the dynamics. Homoclinic snaking has been observed in a
neighbourhood of a heteroclinic cycle between an equilibrium p1 and a saddle
focus equilibrium p2 (EE cycle) and near cycles connecting an equilibrium p1

and a periodic orbit P (EP cycle). The homoclinic orbits occurring along a
snaking curve are asymptotic to p1.

In the case of an EE cycle the snaking occurs locally around some critical value
of a family parameter at which a codimension one heteroclinic cycle exists.
This feature allows one to study the scenario using a local bifurcation analysis.
In an earlier paper [10] it has been shown rigorously by the authors that
heteroclinic cycles between symmetric equilibria of saddle focus type generate
a snaking behaviour. In contrast to that behaviour the snaking related to an
EP cycle is generically a global phenomenon. For a geometric explanation for
why homoclinic snaking occurs in this case we refer to [18,3].

If also p1 is of saddle focus type, then general results by Häerterich [4], see
also [14], show that homoclinic orbits to p1 will be accompanied by a plethora
of N -homoclinic orbits, i.e. homoclinic orbits to p1 that pass p2 N times be-
fore closing the loop. For each N there exist infinitely many N -homoclinic
orbits, which are distinguished by the times they spend near p1. In the case
studied here, one may now expect these orbits to snake under variation of the
parameter, too. Our goal here is to describe this snaking.

More precisely, we understand a snaking curve as a graph {(ω, λ(ω)), ω ∈ I}
that intersects a line {(ω, λ∗), ω ∈ I} infinitely many times. Moreover, in
the case of an EE cycle λ(ω) tends to λ∗ as ω tends to infinity. So, a snaking
curve looks qualitatively similar to the one in Figure 1. Here ω is some intrinsic
parameter characterising the the N -homoclinic orbit, taken from some infinite
interval I, and λ(ω) is the family parameter of the ODE at which the N -
homoclinic orbit exists. Roughly speaking, ω is the length of stay near p2

during a certain passage of the N -homoclinic orbit near p2. In the analysis in
Section 4, we will particularly focus on the case where ω is the first passage
past p2, and we will discuss other possibilities only briefly.
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Figure 1. Snaking curve for symmetric N -homoclinic orbits.

This paper can be seen as a follow-up to [10], where we discussed one-homoclinic
orbits near an EE cycle. There it has also be shown that p2 has to be of
saddle-focus type, in order to find snaking behaviour of one-homoclinic orbits.
Furthermore, it has been shown there that p1 has to be of saddle-focus type,
too, if N -homoclinic orbits to this equilibrium are to exist.

Similar to the procedure in [10] we will use Lin’s method [8,13] to derive
bifurcation equations for N -homoclinic orbits near the cycle. The general setup
will be introduced in Section 3. Under certain genericity assumptions it will
be shown in Section 4 that the cycle is accompanied by a multitude of N -
homoclinic orbits, which exist on snaking curves.

Before the general bifurcation analysis, however, we will illustrate the problem
we are interested in by numerical results for a generalized Swift-Hohenberg
equation in the next Section.

2 N-pulses in a generalized Swift-Hohenberg equation

We consider the generalized Swift-Hohenberg equation studied in [6]

∂u

∂t
= ru−

(
∂2

x + q2
c

)2
u + vu2 − gu3.

Stationary localised solutions of this equation, that is, homoclinic solutions to
0 of the fourth order equation

u′′′′ + 2q2
cu
′′ + (q4

c − r)u− vu2 + gu3 = 0 (1)

have been discussed in detail in [1]. In particular, several snaking scenarios
have been found to occur in (1).
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Figure 2. Snaking curve for one-homoclinic orbits of (1).

We stress the fact that Equation (1) is reversible. This means that there is a
linear involution R such that the corresponding first order system is invariant
under the transformation ((u, u′, u′′, u′′′), x) 7→ (R(u, u′, u′′, u′′′),−x). Here the
involution R is defined by (u, u′, u′′, u′′′) 7→ (u,−u′, u′′,−u′′′). The reversibility
plays an important role for the dynamics of (1). In particular, it leads to the
robust existence of those homoclinic solutions, for which u is an even function.
As is common, we will call such solutions symmetric. We refer to Section 3 for
more general comments about reversible systems.

Note that in addition to being reversible, Equation (1) is also conservative and
preserves a first integral. However, we will both in our computations for (1)
and in the general analysis afterwards focus on symmetric homoclinics, and
for these the reversibility of (1) is the most important property.

Following computations in [1], we set qc = 0.5, v = 0.75 and g = 1 and
consider (1) as an equation depending on r only. Then the 0 equilibrium
is a saddle focus for all r < 0, i.e. the linear part of the vector field has
a quadruple of complex eigenvalues. Furthermore, there are two additional
equilibria u± = (3±√5 + 64r)/8, if r > −5/64.

We compute symmetric homoclinic orbits to 0 by shooting for orbits in the
unstable manifold of this equilibrium, which intersect the symmetry section
Fix (R) = {(u, u′, u′′, u′′′) : u′ = u′′′ = 0}. The behaviour and bifurcations
of these orbits under variation of r are studied using the software package
AUTO/HomCont [19].

Figure 2 shows a bifurcation diagram for a particular one-homoclinic solution
H1. In this diagram we plot the L2-norm of H1 against the parameter r. We
see that H1 emerges at r = 0 in a local bifurcation of the 0-equilibrium and
then undergoes a sequence of fold bifurcation along a snaking curve, which
accumulates at r∗ = −1/16.
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Inspection of the solutions, contained in the accompanying boxes, shows that
along the snaking curve the middle part of the homoclinic orbit approaches
the equilibrium u+, and indeed a heteroclinic cycle Γ between 0 and u+ is
found to exist at r∗, see also [1]. Note that Γ is invariant under R – it is the
limit of symmetric homoclinic orbits.

Remark. In all of the numerically obtained diagrams in this paper we plot
the L2-norm of the solution u against the parameter, because this solution
measure is numerically convenient. We note, however, that this norm is also
directly related to the transition times, which will be used in the general
analysis (compare with Figure 1). Indeed, the part of the solution that is close
to u+ is the one that predominantly contributes to its L2-norm. 2

Note that for r = r∗ there exist infinitely many homoclinic orbits to 0. Since
0 is of saddle-focus type for that parameter value, the results by Härterich [4]
suggest the existence of N -homoclinic orbits to 0. These N -homoclinic orbits
are computed using a homoclinic branch-switching method developed in [12].
We find a multitude of symmetric N -homoclinic orbits and only consider a
few of them with N = 2, 3 here.

Figure 3 contains a bifurcation diagram for two symmetric 2-homoclinic orbits
existing near the cycle Γ. As before we plot the L2-norm against the parameter
r and find a snaking curve for each orbit, which accumulates at r = r∗. Note
that the snaking curves in the diagram stop at some finite norm. This is caused
by numerical difficulties in continuing the solutions.

Some solutions along the green curve are shown to the right of the diagram.
As for H1 we find that along the snaking curve the pulses widen, and their
middle parts approach u+. It is interesting to observe that the central part of
the solutions between the pulses remains unchanged.

We note that the diagram in Figure 3 shows only half of the L2-norm of the 2-
homoclinic solutions, in order to allow for comparison with the snaking curve
for the 1-homoclinic orbit. (The snaking curve for H1 is shown in grey.) The
green snaking curve is not close to the 1-homoclinic snaking curve, but we find
a much better approximation by the red curve. This red curve corresponds to
a 2-homoclinic solution for which the 2 pulses are more separated, compare
also with the solution plots to the left of the diagram. This suggests that the
snaking curves move closer together, if the pulses become more separated.
However, we encounter numerical difficulties in finding and continuing such
solutions.

Next we discuss numerical results for 3-homoclinic obits near Γ. In Figure 4 we
present two bifurcation diagrams for 3-homoclinic orbits near H1. The orbits in
this figure are created in saddle-node bifurcations and follow only parts of the
snaking curve of H1. Nevertheless, as the L2-norm of the solutions increases,
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Figure 3. Snaking curves for 2-homoclinic orbits of (1).

the curves approach the parameter value r∗.

But now the solution plots show that there are two different types of behaviour
along the snaking curves. Along the red snaking curves the outer pulses develop
additional oscillations, whereas the middle pulse hardly changes. On the other
hand, for orbits on the green curve it is the middle pulse that spreads out, and
the outer pulses remain unchanged. In fact, solutions along the green curve
approach a 2-heteroclinic cycle between 0 and u+. The existence of such cycles
will be investigated in Section 4.4. We note that for both types of snaking
the times separating the pulses are again virtually constant along all snaking
curves.

As before, the L2 norm of the 3-homoclinic orbits is rescaled in Figure 4 to
make the snaking comparable with the one for H1, whose snaking curve (in
parts) is again shown in grey. It is important that the rescaling is performed
as to accommodate the behaviour along the red curves, that is, we plot an
approximation to the L2-norm of one of the outer pulses. This explains why
there is a better match of the red and grey curves.

In summary, we have found 2- and 3-homoclinic orbits near H1, which mirror
the behaviour of this one-homoclinic solution in that they exist on snaking
curves, along which certain pulses become wider and approach a steady state
u+. Furthermore, we expect to find different types of behaviour along snaking
curves for N -homoclinic orbits with N > 2.
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Figure 4. Two bifurcation diagrams for 3-homoclinic orbits near the heteroclinic
cycle. Two different types of snaking behaviour are encountered along the red and
green curves, respectively.

3 Notations and setup

We aim to understand the numerical results above in a more general con-
text and are thus interested in bifurcations from a heteroclinic cycle between
two symmetric equilibria of saddle-focus type in the class of time-reversible
systems. Let us describe this configuration in detail.

We consider a system of ordinary differential equations

ẋ = f(x, λ), x ∈ R2n, λ ∈ R (2)

with a smooth vector field f , which is assumed to be (time-)reversible, that
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is, the vector fields anticommutes with some linear involution R:

Rf(x, λ) = −f(Rx, λ).

In a reversible system the image RX of an orbit X is also an orbit. Orbits,
for which RX = X, are called symmetric. It is well known that orbits of a
reversible system are symmetric if and only if they intersect the fixed space
Fix (R) := {x ∈ R2n : Rx = x} of the involution R. We refer to [11,16] for a
collection of fundamental results about reversible systems.

We will be concerned with bifurcations from a heteroclinic cycle Γ in (2).
More precisely, Γ is a collection of two equilibria p1, p2 and heteroclinic orbits
connecting p1 to p2 and p2 to p1 in this order respectively. Let us first discuss
the equilibria.

We assume that (2) possesses two symmetric equilibria of saddle-focus type.
More precisely, we assume that there are p1, p2 ∈ Fix (R), such that

f(pk, 0) = 0, k = 1, 2,

and the stable spectrum of Dxf(pk, 0) has the structure

σs(Dxf(pk, 0)) = {−µk(0)± φk(0)i} ∪ σss
k , with µk(0), φk(0) > 0. (3)

In Equation (3), σss
k denotes the strong stable spectrum, such that <µ < −µk

for all µ ∈ σss
k . Moreover, the principal eigenvalues−µk(0)±φk(0)i are assumed

to be simple. Due to the symmetry of the equilibria pk we find for the unstable
spectrum that

σu(Dxf(pk, 0)) = −σs(Dxf(pk, 0)). (4)

By hyperbolicity the equilibria will persist as symmetric equilibria for small
λ, and thus, with no loss of generality, we may assume that f(pk, λ) = 0 for
all λ. Furthermore, the leading eigenvalues of the linearized vector field vary
smoothly with λ; this means that both µk(·) and φk(·) are smooth functions
of λ.

Let W s(u)(pk, λ) denote the (un-)stable manifold of pk with respect to f(pk, λ).
Again, due to the symmetry and hyperbolicity of the equilibria these manifolds
are n-dimensional, see also (4). Moreover, reversibility implies W s(pk, λ) =
RW u(pk, λ).

Finally, we assume the existence of a heteroclinic orbit Γ1 = {γ1(t) : t ∈ R}
connecting p1 to p2 for λ = 0. By reversibility, this orbit is part of a heteroclinic
cycle Γ, together with Γ2 = RΓ1 and the equilibria p1 and p2. Our analysis
will require certain non-degeneracy conditions to be fulfilled. These will be
imposed on Γ1, and reversibility ensures that they are fulfilled along Γ2, too.
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Firstly, we assume Γ1 to be non-degenerate, that is we assume

dim
(
Tγ1(0)W

u(p1, 0) ∩ Tγ1(0)W
s(p2, 0)

)
= 1, (5)

where TqM denotes the tangent space of a manifold M at the point q. As a
consequence of (5), the equation v̇ = −Dxf(γ1(t), 0)∗v has a unique bounded
solution ψ1. We assume that both γ1 and ψ1 converge along the leading direc-
tions to the equilibria and zero, respectively, that is, we assume

lim
t→−∞ eµ1t‖γ1(t)− p1‖ 6= 0, lim

t→∞ eµ2t‖γ1(t)− p2‖ 6= 0, (6)

lim
t→−∞ eµ2t‖ψ1(t)‖ 6= 0, lim

t→∞ eµ1t‖ψ1(t)‖ 6= 0. (7)

Conditions (6) and (7) are known as non-orbit flip and non-inclination flip
conditions, respectively [14]; see also [9] for an equivalent geometric statement.

Finally, we also assume a generic unfolding of the heteroclinic connection Γ1,
which should break up under variation of the parameter λ. This can be ensured
by assuming that a Melnikov integral M does not vanish, [14]:

M :=
∫ ∞

∞
〈ψ1(t), Dλf(γ1(t), 0)〉dt 6= 0. (8)

3.1 The main result

We are interested in N -homoclinic orbits to p1 that lie in a sufficiently small
neighbourhood of the cycle Γ. Our main results reads as follows:

Theorem 3.1 Consider (2) near the heteroclinic cycle Γ under the conditions
set up in Section 3. Let N ≥ 1 be fixed.
At λ = 0 there exist countably many symmetric N-homoclinic orbits H to p1

which can be continued on a snaking curve λH(·) defined on (ΩH,∞). The
functions λH have countably infinitely many zeros, and |λH(ω)| tends expo-
nentially fast to zero as ω tends to infinity.

The graphs of λH are depicted in Figure 1. As already mentioned we will prove
Theorem 3.1 for the case, where ω is the length of stay of the first passage of
H near p2. For a precise definition of ω we refer to Section 4. However, the
numerical results for 3-homoclinic orbits of Equation 1 demonstrate that there
are other possibilities for the choice of ω. We will discuss these issues briefly
in Section 4.4.

Note that for N = 1 the theorem has already been proved in [10]. In this case
all symmetric 1-homoclinic orbits (to p1) lie on the same snaking curve.
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For N > 1 it turns out that the length of all the other passages near p1 and p2

remain bounded as ω tends to infinity. This phenomenon can also be observed
in the numerical bifurcation diagrams, see for example Figure 4. Along the
red branch in that Figure, the outer pulses (representing the first and last
passage near p2) become and wider as the L2 norm increases, while both the
inner pulse and the time-intervals, by which the pulses are separated, remain
nearly unchanged.

In addition, for fixed N there are infinitely many different snaking curves. For
example, two N -homoclinic orbits H and H′ (which might exist for the same
λ) are not on the same snaking curve if their numbers of rotations around p1

and p2 are “too different”.

4 The analysis

We will analyse the existence of N -homoclinic orbits to p1 using Lin’s method,
[13,8]. In a first step we determine N-homoclinic Lin orbits near the cycle Γ.
An N -homoclinic Lin orbit to p1 is a piecewise continuous orbit that starts
in the unstable manifold of p1, follows the cycle Γ and finishes after N loops
in the stable manifold of p1. Thereby, the discontinuities are only allowed to
lie in certain places and have well defined jump directions. Figure 5 shows an
impression of a 2-homoclinic Lin orbit near Γ.

4.1 Set up of the bifurcation equation

In the following we work exclusively in a neighbourhood U of Γ. To define
N -homoclinic Lin orbits precisely, let Σ1 be a hyperplane intersecting Γ1

transversally at γ1(0), and let Σ2 := RΣ1. We are concerned with four dif-
ferent types of partial orbits. Firstly, let X− = {x−(t) : t ∈ (−∞, 0]}, such
that x−(0) ∈ Σ1 ∩ W u(p1, λ), and x−(t) 6∈ Σk for all t < 0. Similarly, let
X+ = {x+(t) : t ∈ [0,∞)}, such that x+(0) ∈ Σ2 ∩W s(p1, λ) and x+(t) 6∈ Σk

for all t > 0. Finally, for positive numbers ωi
2, ω

j
1, we consider orbits X i

2 =

{xi
2(t) : t ∈ [0, 2ωi

2]} and Xj
1 =

{
xj

1(t) : t ∈
[
0, 2ωj

1

]}
, such that

xi
2(0) ∈ Σ1, xi

2

(
2ωi

2

)
∈ Σ2, and xi

2(t) 6∈ Σ2 for t ∈
(
0, 2ωi

2

)
,

xj
1(0) ∈ Σ2, xj

1

(
2ωj

1

)
∈ Σ1, and xj

1(t) 6∈ Σ1 for t ∈
(
0, 2ωj

1

)
.

Now, we introduce a space Z1 ⊂ Tγ1(0)Σ1, complementary to Tγ1(0)W
u(p1, 0)+

Tγ1(0)W
s(p2, 0). Note that because of (5) we have dim Z1 = 1. Furthermore,
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p1 p1p2 p2 p1

Σ1 Σ2 Σ1 Σ2

X1
2 X1

1 X2
2X− X+

Figure 5. A 2-homoclinic Lin orbit near the cycle Γ. The original heteroclinic or-
bits are shown in grey. Note that for the purpose of illustration Γ is shown as a
heteroclinic chain.

let Z2 = RZ1 ⊂ Σ2. Then a collection of partial orbits

L =
(
X−, X1

2 , X
1
1 , X

2
2 , . . . , X

N−1
1 , XN

2 , X+
)

is called an N -homoclinic Lin orbit to p1 if the jump between two consecutive
partial orbits is parallel to Z1 or Z2, respectively.

Note that the lower index k of X i
k indicates that this partial orbit passes pk

while the upper index i counts the number of passages past the equilibrium pk.
The indices in the corresponding quantities xi

k and ωi
k have the same meaning.

Lin orbits can be characterised by the times ωi
2 and ωj

1, and by the parameter
λ. More precisely, we have the following result.

Lemma 4.1 ([13,8]) There are positive numbers λ̂ and ω̂, such that for each

|λ| < λ̂ and each sets ω1 =
{
ω1

1, . . . , ω
N−1
1

}
and ω2 =

{
ω1

2, . . . , ω
N
2

}
with

min
{
ωj

1, ω
i
2 : j = 1, . . . , N − 1, i = 1, . . . , N

}
> ω̂

there exists a unique N-homoclinic Lin orbit L (ω1,ω2, λ) as introduced above.

The detection of N -homoclinic orbits near Γ now amounts to finding those
Lin orbits without discontinuities (jumps), which are given by

Ξ1
1 = x−(0)− x1

2(0)

Ξi
1 = xi−1

1

(
2ωi−1

1

)
− xi

2(0), i = 2, . . . , N,

Ξi
2 = xi

2

(
2ωi

2

)
− xi

1(0), i = 1, . . . , N − 1,

ΞN
2 = xN

2

(
2ωN

2

)
− x+(0).

The lower index k of Ξi
k indicates in which cross-section the jump takes place,

and the upper index i counts the jumps in these cross-sections.
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Setting Ξ1 = (Ξ1
1, . . . , Ξ

N
1 ) and Ξ2 = (Ξ1

2, . . . , Ξ
N
2 ) we find by Lemma 4.1 that

Ξi = Ξi (ω1,ω2, λ). In order to detect actual N -homoclinic orbits to p1 we
have to solve the bifurcation equations

Ξ1 (ω1,ω2, λ) = 0, Ξ2 (ω1,ω2, λ) = 0.

Within the general framework of Lin’s method we can derive expressions for
the terms Ξk, k = 1, 2. We will do this for Ξ1 only, since it turns out that
only this is needed when we focus on symmetric orbits.

For the jumps Ξi
1 = Ξi

1 (ω1,ω2, λ) it has been shown in [13,8] that

Ξi
1 (ω1, ω2, λ) = ξ∞(λ) + ξi

1 (ω1,ω2, λ) ,

where ξ∞(λ) measures the splitting of W u(p1, λ) and W s(p2, λ) in the direction
Z1. Obviously, ξ∞(0) = 0, and according to assumption (8) we have Dξ∞(0) 6=
0. Hence, with no loss of generality we may assume that

ξ∞(λ) = λ.

While ξ∞ only depends on λ, the terms ξi
1 measure the influence of the finite

transition times between the Σi, too. The leading terms in the ξi
1 depend on the

asymptotic behaviour near the equilibria p1 and p2. Applying general results
from [13,8] we find

Lemma 4.2 Assuming the non-degeneracy conditions (3), (6) and (7) the
jumps ξi

1 have the following representation:

ξ1
1 (ω1, ω2, λ) = L2(ω

1
2, λ) +R1,

ξi
1 (ω1,ω2, λ) = L1(ω

i−1
1 , λ) + L2(ω

i
2, λ) +Ri, i = 2, . . . , N,

where

Lk(ω, λ) := ck(λ)e−2µk(λ)ω sin (2φk(λ)ω + ϕk(λ)) , k = 1, 2,

R1 = O
(
e−2αµ2(λ)ω1

2

)
, Ri = O

(
e−2αµ1(λ)ωi−1

1

)
+O

(
e−2αµ2(λ)ωi

2

)
,

i = 2, . . . , N . Here α is some real number greater than one. The quantities c1,
c2 and ϕ1, ϕ2 depend smoothly on λ, and we have c1(0) 6= 0, c2(0) 6= 0. ¤

Also from [13,8] we know that the jumps ξi
k are differentiable, and moreover

we have the following estimates of the derivatives:

Lemma 4.3 Under the assumptions of Lemma 4.2 the mappings ξi
1 : RN−1×

RN ×R→ R are smooth and the partial derivatives Djξ
i
1, j ∈ {1, 2, 3} can be
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estimated as follows:

Djξ
1
1 (ω1,ω2, λ) = DjL2(ω

1
2, λ) + o

(
e−2µ2(λ)ω1

2

)
,

Djξ
i
1(ω1,ω2, λ) = Dj

(
L1(ω

i−1
1 , λ) + L2(ω

i
2, λ)

)

+O
(
e−2αµ1(λ)ωi−1

1

)
+O

(
e−2αµ2(λ)ωi

2

)
,

i = 2, . . . , N . Again α is some real number greater than one. ¤

In the following we will focus on symmetric N -homoclinic orbits to p1. Those
orbits correspond to symmetric N -homoclinic Lin orbits to p1, which are char-
acterised by

X− = RX+, X i
1 = RXN−i

1 , i = 1, . . . , bN/2c and

X i
2 = RXN+1−i

2 , i = 1, . . . , b(N + 1)/2c,

where brc denotes the integer part of the real number r. If N is even, then

the partial orbit X
N/2
1 is symmetric and the N -homoclinic Lin orbit intersects

Fix R near p1, while for N odd X
(N+1)/2
2 is symmetric and the N -homoclinic

Lin orbit intersects Fix R near p2.

In particular, this implies that

ωi
1 = ωN−i

1 , i = 1, . . . bN
2
c and ωi

2 = ωN+1−i
2 , i = 1, . . . , bN+1

2
c. (9)

Taking these particularities of the transition times into consideration we will
henceforth write

ω := ω1
2, ω := (ω1

1, . . . , ω
bN

2
c

1 , ω2
2, . . . , ω

bN+1
2
c

2 ).

Furthermore the symmetry of an N -homoclinic Lin orbit implies

Ξi
1 = R ΞN+1−i

2 , i = 1, . . . , N. (10)

Hence, Ξ1 = 0 if and only if Ξ2 = 0, and the bifurcation equation for sym-
metric N -homoclinic orbits to p1 reads

Ξ(ω, ω, λ) := Ξ1(ω1, ω2, λ) = 0.

In what follows we just write Ξi instead of Ξi
1. With these notations we have:

Ξ1 = λ + L2(ω
1
2, λ) +R1

Ξi = λ + L1(ω
i−1
1 , λ) + L2(ω

i
2, λ) +Ri, i = 2, . . . , bN+1

2
c,

Ξi = λ + L1(ω
N+1−i
1 , λ) + L2(ω

N+1−i
2 , λ) +Ri, i = bN+1

2
c+ 1, . . . , N.

(11)

13



Note that all Ξi and Ri depend on (ω, ω, λ).

4.2 Reformulation of the bifurcation equation

We define

ri
k := e−2µk(0)ωi

k , r := r1
2, r := (r1

1, . . . , r
bN

2
c

1 , r2
2, . . . , r

bN+1
2
c

2 ). (12)

We want to emphasize that by definition all r and as well as all components
of r are greater than zero.

With that we write the jumps as quantities depending on (r, r, λ):

Ξ̂(r, r, λ) = (Ξ̂1(r, r, λ), . . . , Ξ̂N(r, r, λ)) := Ξ(ω(r),ω(r), λ).

Corollary 4.4 The (r, r)-dependent jumps reads as follows:

Ξ̂1 = λ + R̂1

Ξ̂i = λ + L̂1(r
i−1
1 , λ) + L̂2(r

i
2, λ) + R̂i, i = 2, . . . , bN+1

2
c,

Ξ̂i = λ + L̂1(r
N+1−i
1 , λ) + L̂2(r

N+1−i
2 , λ) + R̂i, i = bN+1

2
c+ 1, . . . , N − 1,

Ξ̂N = λ + L̂1(r
1
1, λ) + R̂N .

where R̂i = R̂i(r, r, λ), and

L̂k(s, λ) := ck(λ)s
µk(λ)

µk(0) sin

(
−φk(λ)

µk(0)
ln s + ϕk(λ)

)
, k = 1, 2,

and, with some α > 1,

R̂1 = L̂2(r, λ) +O
(
rα

)
,

R̂i = O
(
(ri−1

1 )α
)

+O
(
(ri

2)
α
)
, i = 2, . . . , N − 1,

R̂N = L̂2(r, λ) +O
(
(rN−1

1 )α
)

+O
(
(rN

2 )α
)
. ¤

And similarly we get estimates for the derivatives of the residual terms R̂i =
R̂i(r, r, λ) from Lemma 4.3:

Corollary 4.5 The statement of Lemma 4.3 for the (r, r)-dependent jumps
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reads as follows:

D1R̂1 = D1L̂2(r, λ) +O
(
rα−1

)
, D2R̂1 = O

(
rα

)
,

D3R̂1 = D3L̂2(r, λ) +O
(
rα

)
,

D2R̂i = O
(
(ri−1

1 )α−1
)

+O
(
(ri

2)
α−1

)
, i = 2, . . . , N,

D3R̂i = O
(
(ri−1

1 )α
)

+O
(
(ri

2)
α
)
, i = 2, . . . , N − 1,

D3R̂N = D3L̂2(r, λ) +O
(
(rN−1

1 )α
)

+O
(
(rN

2 )α
)
. ¤

Our goal is to rewrite the bifurcation equation Ξ̂ = 0 as a fixed point equation.
For this we introduce

L̂(r, λ) :=
(
L̂1(r

1
1, λ), . . . , L̂1(r

bN
2
c

1 , λ), L̂2(r
2
2, λ), . . . , L̂2(r

bN+1
2
c

2 , λ)
)T

,

R̂ :=
(
R̂1, . . . , R̂N

)T
.

There is an invertible constant (N ×N)-matrix M such that

Ξ̂(r, r, λ) = M
(
L̂(r, λ)

λ

)
+ R̂(r, r, λ)

The entries ofM are either one or zero. To show thatM is indeed nonsingular
we simply compute its determinant by using Laplace’s formula. The main
observation in this respect is that M and each minor arising in this procedure
has (exactly) one row whose entries but one are zeros (we always expand
the corresponding determinant along that row). This finally yields that the
determinant of M is some power of (−1).

With that Ξ̂(r, r, λ) = 0 is equivalent to

(
L̂(r, λ)

λ

)
= −M−1R̂(r, r, λ). (13)

In the next step we rewrite (13) into a fixed point equation. For that we choose
r̂ such that L̂(r̂, 0) = 0. Note that there are infinitely many candidates for such
r̂ which accumulate at zero. However, for either such r̂ the partial derivative
w.r.t. the first variable D1L̂(r̂, 0) is an invertible diagonal matrix D, and the

absolute values of the entries in the diagonal are either | c1(0)φ1(0)
µ1(0)

| or | c2(0)φ2(0)
µ2(0)

|.
We want to emphasize that these quantities do not depend on the particular
choice of r̂ (as long as L̂(r̂, 0) = 0).

With that the Taylor expansion of L̂ at (r, λ) = (r̂, 0) with second order
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residual term L̂res,̂r reads

L̂(r, λ) = D(r− r̂) + D2L̂(r̂, 0)λ + L̂res,̂r(r, λ). (14)

Combining (13) and (14) we find the following fixed point equation for r which
is equivalent to Ξ̂(r, r, λ) = 0:

(
r

λ

)
=

(
r̂−D−1(D2L̂(r̂, 0)λ + L̂res,̂r(r, λ))

0

)
− (MD̂)−1R̂(r, r, λ)

=: Tr̂(r, r, λ),

(15)

where D̂ =
(D 0

0 1

)
. The right-hand side Tr̂ of this equation can be read as a

mapping

Tr̂ : R+ × RN−1
+ × R→ RN−1

+ × R.

The lower index “+” denotes the restriction to positive numbers.

4.3 Proof of Theorem 3.1

Our goal is to solve the reformulated bifurcation equation (15) for (rr̂, λr̂)(r)
near (r, λ) = (r̂, 0), r ∈ (0, ε). We will do this by applying the Banach Fixed
Point Theorem. Our strategy is as follows. First we construct for the “principal
part”

(
r

λ

)
=

(
r̂−D−1(D2L̂(r̂, 0)λ + L̂res,̂r(r, λ))

0

)
=: Tred,̂r(r, r, λ),

of that equation a domain Cr̂ × Br̂, which will be mapped contractively into
itself by Tred,̂r. Then we make clear that for small r̂ this can be carried forward
to Tr̂.

In a first step we consider L̂k – which represent the components of L̂. To
simplify matter we omit the lower index k in the further considerations:

L̂(s, λ) := c(λ)s
µ(λ)
µ(0) sin

(
−φ(λ)

µ(0)
ln s + ϕ(λ)

)
.

The zeros sn of L̂(·, 0) are explicitely given by sn = e−
µ(0)
φ(0)

(nπ−ϕ(0)), n ∈ Z.
For our purpose we are only interested in those zeros which are close to s = 0,
so we may assume n ∈ N, sufficiently large.

Let δ := D1L̂(sn, 0). Note that δ represents an element in the diagonal of
D, and that |δ| does not depend on n. By L̂res,n we denote the second order
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residual term of the Taylor expansion of L̂ at (sn, 0). We consider the following
reduced fixed point equation:

s = sn − δ−1
(
D2L̂(sn, 0)λ + L̂res,n(s, λ)

)
=: Tn(s, λ). (16)

Let B[s, ρ] be the closed ball centered at s with radius ρ.

Lemma 4.6 There is a β > 0 such that for all n ∈ N there exists a positive
real number lsn such that for all s ∈ B[sn, ρn], ρn := snβ, and all λ ∈ B[0, lsn ]

|D1Tn(s, λ)| < 1

3
, |Tn(s, λ)− sn| < 2

3
ρn.

Proof. From (16) we read easily that D1Tn(s, λ) = δ−1D1L̂res,n(s, λ). With

A(s, λ) := −φ(λ)
µ(0)

ln s + ϕ(λ) we get

L̂res,n(s, λ) = c(λ)s
µ(λ)
µ(0) sin(A(s, λ))− δ(s− sn)−D2L̂(sn, 0)λ,

and therefore

D1L̂res,n(s, λ) = c(λ)s
µ(λ)
µ(0)

−1
[

µ(λ)
µ(0)

sin(A(s, λ))− φ(λ)
µ(0)

cos(A(s, λ))
]
− δ. (17)

Obviously D1L̂res,n(sn, 0) = 0. Writing s = snβ one finds that there is a β and
a l̃sn such that for all β ∈ [1− β, 1 + β] and all λ ∈ B[0, l̃sn ]

|D1L̂res,n(snβ, λ)| < δ

3
. (18)

Note that for those β the corresponding s = snβ belong to B[sn, ρn]. This
proves the assertion concerning D1Tn.

It remains to show that Tn maps B[sn, ρn] into itself. For that we first notice
that

lim
n→∞D2L̂(sn, 0) = 0, (19)

where we exploit that lims→+0 s ln s = 0. So, in particular D2L̂(sn, 0) remains
bounded. Similarly we find that D2L̂res,n(s, λ) remains bounded if s and λ

are close to zero. The boundedness of D2L̂res,n together with the mean value
theorem imply that there is a constant C such that

|L̂res,n(s, λ)| ≤ sup
s∈B[sn,ρn]

λ∈B[0,l̃sn ]

|D1L̂res,n(s, λ)| |s− sn|+ sup
s∈B[sn,ρn]

λ∈B[0,l̃sn ]

|D2L̂res,n(s, λ)| |λ|

≤ δ
3
|s− sn|+ C|λ|.
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Hence |Tn(s, λ)−sn| ≤ |δ|−1
(
|D2L̂(sn, 0)| |λ|+ δ

3
|s−sn|+C|λ|

)
. Now we choose

l̄sn such that for all λ ∈ B[0, l̄sn ]

|δ|−1
(
|D2L̂(sn, 0)| |λ|+ C|λ|

)
<

1

3
ρn. (20)

Then the lemma is true for lsn := min{l̃sn , l̄sn}. 2

Remark.

(i) From (17), (18) or (20) one finds that l̃sn or l̄sn can be chosen such that

l̃sn = O(1/n), or l̄sn = O(ρn) = O(sn) = O(e−n),

respectively. Therefore l̄sn < l̃sn for sufficiently large n.
Furthermore, because of (19) there is a K such that D2L̂(sn, 0) < K for
all sufficiently large n. Therefore δ−1(K + C)|λ| < (1/3)ρn implies (20).
Altogether, for sufficiently large n we can choose

lsn =
δ

3
(K + C)−1ρn. (21)

(ii) The quantities β and l̃sn can be chosen in such a way that in addition
to (18) also |D2L̂res,n(snβ, λ)| < δ

3
for all β ∈ [1 − β, 1 + β] and all

λ ∈ B[0, l̃sn ]. 2

Now we return to the original fixed point equation (15). First we introduce
some simplifying notations.

Let r := (r1
1, . . . , r

bN
2
c

1 , r2
2, . . . , r

bN+1
2
c

2 ) ∈ RN−1
+ . We define projections πi

k as
follows

πi
k : RN−1

+ → R+, πi
k

(
(r1

1, . . . , r
bN

2
c

1 , r2
2, . . . , r

bN+1
2
c

2 )
)

= ri
k.

Now let L̂(r̂, 0) = 0. By Lemma 4.6, each r̂i
k has a ρi

k = r̂i
kβk and a corre-

sponding Bi
k := B[r̂i

k, ρ
i
k] assigned to it. With these we define the cylinder

Cr̂ := B1
1 × . . .×B

bN
2
c

1 ×B2
2 × . . .×B

bN+1
2
c

2 .

Further we define

β := max{β1, β2}, β := min{β1, β2}

and similarly

ρ(r̂) := max{ρi
k}, ρ(r̂) := min{ρi

k}.
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For r = (r1, . . . , rN−1) ∈ RN−1
+ ⊂ RN−1 we introduce

r := max{ri, i = 1, . . . , N − 1} = ‖r‖, r := min{ri, i = 1, . . . , N − 1},

and with that we define

κ(r) := r/r = r/‖r‖.

From these definitions it follows

r̂β ≤ ρ(r̂) ≤ ρ(r̂) ≤ ‖r̂‖β. (22)

Therefore sup{‖r‖ : r ∈ Cr̂} ≤ ‖r̂‖(1 + β).

In accordance with (21) there is a constant K̂ such that lr̂ = K̂ρ(r̂). Finally
we define Br̂ := B[0, lr̂].

Lemma 4.7 Let κ∗ ∈ (0, 1]. There is an η = η(κ∗) such that for all r̂ with
κ(r̂) ≥ κ∗, ‖r̂‖ < η there is an εr such that for all r ∈ (0, εr) the fixed point
equation (15) has a unique fixed point (rr̂, λr̂)(r) ∈ Cr̂×Br̂. Moreover, rr̂ and
λr̂ depend smoothly on r.

Proof. First we show that there is an appropriate η̃ such that Tr̂(r, ·, ·) is
a contraction on Cr̂ × Br̂. We introduce for (r, λ) ∈ RN−1 × R the norm
‖(r, λ)‖ := ‖r‖+ |λ|. Then, from the definition of Tr̂, see (15), we find:

‖D(2,3)Tr̂(r, r, λ)‖ ≤ ‖D−1D2L̂(r̂, 0)‖

+ max{‖D−1 D1L̂res,̂r(r, λ)‖, ‖D−1 D2L̂res,̂r(r, λ)‖}

+‖(MD̂)−1‖ ‖D(2,3)R̂(r, r, λ)‖.

Because of (19) there is an η1 such that ‖r̂‖ < η1/1+β implies

‖D−1D2L̂(r̂, 0)‖ <
1

3

Moreover, according to Lemma 4.6 and the remark following its proof the η1

can be chosen such that for ‖r̂‖ < η1/1+β and (r, λ) ∈ Cr̂ ×Br̂ also

‖D−1 D1L̂res,̂r(r, λ)‖ <
1

3
, ‖D−1 D2L̂res,̂r(r, λ)‖ <

1

3
.

According to Corollary 4.5 there are an ε̃r and an η2 < η1 such that for all
r < ε̃r, all r with ‖r‖ < η2 and all λ ∈ Br̂ we have

‖(MD)−1‖ ‖D(2,3)R̂(r, r, λ)‖ <
1

6
. (23)
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Therefore, if ‖r̂‖(1 + β) < η2, then (23) holds true for all r ∈ Cr̂.

Thus, we have shown that if ‖r̂‖ < η2/1+β then ‖D(2,3)Tr̂(r, r, λ)‖ < 1 for all
(r, λ) ∈ Cr̂×Br̂, r < ε̃r. In other words, the mapping Tr̂(r, ·, ·) is a contraction
on Cr̂ ×Br̂.

Next we verify that Tr̂(r, ·, ·) maps Cr̂ × Br̂ into itself. Lemma 4.6 provides
that for all (r, λ) ∈ Cr̂ ×Br̂

∣∣∣πi
k

(
r̂−D−1(D2L̂(r̂, 0)λ + L̂res,̂r(r, λ))

)∣∣∣ < 2
3
ρi

k. (24)

It remains, see (15), to consider the term (MD̂)−1R̂(r, r, λ). Let (r, λ) ∈
Cr̂ ×Br̂. In accordance with Corollary 4.4 there are constants C and Ĉ such
that

‖R̂(r, r, λ)‖ ≤ Cr + Ĉ‖r̂‖α.

For any given r̂ we can choose εr = εr(r̂) < ε̃r that small such that

‖(MD̂)−1‖Cr < min{(1/6)ρ(r̂), (1/2)lr̂}.

Further, due to (22) we find that ρ(r̂) ≥ βκ∗‖r̂‖, and because of lr̂ = K̂ρ(r̂) we

have lr̂ ≥ K̂βκ∗‖r̂‖. Hence there is a η3 ≤ η2 such that for r̂, ‖r̂‖(1 + β) < η3

‖(MD̂)−1‖ Ĉ‖r̂‖α < min{(1/6)ρ(r̂), (1/2)lr̂}.

This finally shows for those r̂ and r < εr

‖(MD̂)−1‖ ‖R̂(r, r, λ)‖ ≤ min{(1/3)ρ(r̂), lr̂}.

Together with (24) this implies that Tr̂(r, ·, ·) maps Cr̂ ×Br̂ into itself.

Now we can apply the Banach Fixed Point Theorem to prove the existence of
(rr̂, λr̂)(r).

Finally, let (r, λ) = Tr̂(r, r, λ). Applying the Implicit Function Theorem pro-
vides the smooth dependence of (rr̂, λr̂) on r. 2

To complete the proof of Theorem 3.1 we consider the function λr̂. Our above
considerations show that in particular

Ξ̂1(r, rr̂(r), λr̂(r)) = λr̂(r) + L̂2(r, λr̂(r)) +O(rα) ≡ 0.

Due to the structure of L̂2 the function λr̂ has infinitely many zeros. Moreover
it follows that limr→0 λr̂(r) = 0. Let r0, such that λr̂(r0) = 0. Then (r0, rr̂(r0))
corresponds to an N -homoclinic orbit H(r0) (to p1) of the vector field f(·, 0).
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Let λH(r0)(ω) := λr̂(r(ω)); defined on some interval (a,∞). Then λH(r0) has
infinitely many zeros, and |λH(r0)(ω)| tends exponentially fast to zero as ω
tends to infinity.

4.4 Further homoclinic orbits

So far we have proved the existence of infinitely many N -homoclinic solutions
to the equilibrium p1, which lie on snaking curves and whose ‘outer’ pulses
become wider when one continues the orbits on the snaking curves. Similarly,
we can prove the existence of such orbits to the equilibrium p2.

Let H(λr̂(r)) be the N -homoclinic orbits corresponding to the snaking curve
{(r, λr̂(r))}. Then, in the sense of the Hausdorff metric, the following limits
exists

lim
r→0

H(λr̂(r)) = Γ ∪H2,N−1(r̂),

where H2,N−1(r̂) is a particular (symmetric) N − 1-homoclinic orbit to p2.
Roughly speaking, for ω1

2 → ∞ (or r → 0, resp.) the system (11) decouples:
Ξ1 = λ = 0 models the break up of the original cycle Γ; and the solutions of
Ξ2 = 0, . . . , ΞN = 0 correspond to symmetric N -homoclinic orbits to p2. We
will call Γ ∪H2,N−1(r̂) the snaking limit of H(λr̂(r)).

The numerical experiments for the generalized Swift-Hohenberg equation,
however, show that there are also snaking curves different from the ones we
described so far analytically. In Figure 4 there are 3-homoclinic orbits depicted
where the snaking is due to the middle part – in other words the snaking curve
is parametrized by ω2

2. The snaking limit of those orbits is a (symmetric) 2-
heteroclinic cycle connecting p1 and p2. In what follows we will make this
statement somewhat more rigorous.

In the sketch of our further analysis we restrict ourselves to the consideration of
symmetric 3-homoclinic orbits and show that another behaviour along snaking
curves can occur. However, the arguments we will utilize can be generalized
to arbitrary N -homoclinic orbits, for which we expect to find b(N + 1)/2c
different types of behaviour along snaking curves.

First we make clear that near Γ there are infinitely many 2-heteroclinic cycles
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connecting p1 and p2. The bifurcation equation for those orbits reads:

0 = Ξ̂1 = λ + L̂2(r
1
2, λ) + R̂1

0

0 = Ξ̂2 = λ + L̂1(r
1
1, λ) + R̂2

0,

0 = Ξ̂3 = λ + L̂1(r
1
1, λ) + L̂2(r

1
2, λ) + R̂3

0,

(25)

here R̂1 = O
(
(r1

2)
α
)
, R̂2 = O

(
(r1

1)
α
)

and R̂3 = O
(
(r1

1)
α
)

+ O
(
(r1

2)
α
)
; the

lower index 0 should indicate that these R̂ do not depend on r2
2. In the same

way as outlined in Section 4.2 this system can be written as a fixed point
equation

(r1
1, r

1
2, λ) = Tr̂(r

1
1, r

1
2, λ). (26)

Let r := (r1
1, r

1
2), and with that let r̂ have the same meaning as in Section 4.2.

Using the arguments of the proof of Lemma 4.7 we find that (26) has an
unique fixed point (rr̂, λr̂) in Cr̂ × [−εr̂, εr̂]. Moreover, if the vector field f is
conservative, as in the example of Equation (1), then λr̂ = 0 for all r̂. (For
λ 6= 0 the fixed points p1 and p2 are in different level sets - therefore they
cannot be connected by a heteroclinic orbit.)

Now, each of these symmetric 2-heteroclinic cycles can be seen as a primary
cycle in its own right. Then our above considerations show that there are one-
homoclinic orbits (to p1) having this cycle as snaking limit. But related to Γ
these orbits are the observed 3-homoclinic orbits.

More precisely, in accordance with Corollary 4.4 the bifurcation equation for
3-homoclinic orbits reads:

0 = Ξ̂1 = λ + L̂2(r
1
2, λ) + R̂1

0 = Ξ̂2 = λ + L̂1(r
1
1, λ) + L̂2(r

2
2, λ) + R̂2,

0 = Ξ̂3 = λ + L̂1(r
1
1, λ) + L̂2(r

1
2, λ) + R̂3.

(27)

In Section 4.3 we have solved this equation for (r1
1, r

2
2, λ) = (r̄1

1, r̄
2
2, λ̄)(r1

2). The
corresponding snaking curve is parametrized by ω1

2. In the same way (27) can

be solved for (r1
1, r

1
2, λ) = (¯̄r1

1, ¯̄r
1
2,

¯̄λ)(r2
2). Then the corresponding snaking curve

is parametrized by ω2
2.

Indeed, the right-hand side of (27) tends to the right-hand side of (25) as
r2
2 tends to zero. This shows also along this way that the snaking limit of

H(¯̄λ(r2
2)) is a 2-heteroclinic cycle.
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Our analysis shows in particular that for all r1
2 and r2

2

(r̄1
1(r

1
2), r

1
2, r̄

2
2(r

1
2), λ̄(r1

2)) 6= (¯̄r1
1(r

2
2), ¯̄r

1
2(r

2
2), r

2
2,

¯̄λ(r2
2)).

In other words, there is no symmetric 3-homoclinic orbit that snakes with
respect to both ω1

2 and ω2
2. This means that for sufficiently large transition

times there will be no fold bifurcations as in Figure 4, where the red and green
branches meet. (The bifurcations in this Figure are outside the reference of
the presented analysis, since the ri

k are too large.)

Finally, we note that only the times ωi
2 can serve as snaking parameters and

not the ωi
1. This mean that the times separating pulses stay almost constant

along snaking curves.

5 Conclusions

In this paper we have studied the emergence of N -homoclinic orbits near
heteroclinic cycles between equilibria of saddle-focus type (EE cycles) in re-
versible systems. We have shown that for each N there are infinitely many
N -homoclinic orbits, which exist on (distinct) snaking curves near the cy-
cle. We have focussed on the case where these curves are parameterized by a
transition time ω1

2 and have discussed other possibilities briefly.

It is interesting to note that the behaviour of N -homoclinic orbits reveals a
striking difference in the dynamics near EE cycles and EP cycles. Note first
of all that EP cycles exist robustly in reversible systems, and therefore the
fold points along snaking curves of homoclinic orbits in their neighbourhood
do not converge to a single parameter value, but rather oscillate between 2
values, which are the boundaries of the parameter interval, in which the cycle
exists, see also Figure 6.

This global character of bifurcations near an EP cycle makes a rigorous an-
alytical treatment difficult. Nevertheless, numerical results for N -homoclinic
orbits near such a cycle have been described in [5,17]

Below we present a corresponding result for the generalized Swift-Hohenberg
Equation (1). Similar to Section 2 we view the equation as depending on r,
this time setting qc = 0.5, v = 0.41 and g = 1. And as in that section, one-
homoclinic orbits to 0 are computed using shooting, and two-homoclinic orbits
by the branch-switching method.

In Figure 6 we present a bifurcation diagram for symmetric 2-homoclinic orbits
to 0 near an EP cycle, which exists for r ∈ [−0.0146,−0.0125]. This EP cycle
generates two snaking curves of one-homoclinic orbits, one which is shown
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Figure 6. 2-homoclinic orbits near an EP cycle exist along an isola in (1).

in grey in the Figure. In addition, the rescaled continuation curve for a two-
homoclinic orbit is shown in red in the Figure. And although this curve follows
(parts of) the snaking curve, we see a clear difference. In contrast to the EE
cycle case the 2-homoclinic orbit does not exist on a snaking curve, but rather
on an isola in the diagram.

A reason for this becomes apparent when we consider the plots for the two-
homoclinic solutions along the snaking curve. Moving up on the bifurcation
curve we see that the pulses of the solutions become wider, but in contrast
to the EE cycle case, the pulses grow symmetrically about their centre, such
that they do not stay separated but approach each other. (Note that instead
of approaching an equilibrium solution the pulses now come close to a periodic
orbit such that they grow additional oscillations.). Hence, in the notation of
Section 4, the time ω1

1 decreases along the snaking curve. And this process
cannot be repeated ad infinitum, since the 2 pulses would have to meet, and
therefore the 2-homoclinic orbit cannot follow the full snaking curve. A similar
behaviour has been found for different examples in [5,17]. Indeed, so far 2-
homoclinic orbits near EP cycles have only been found to lie on isolas and not
snaking curves.

It is one goal of our future research to better understand the dynamics near EP
cycles. For this we will extend Lin’s method such that it can deal with cycles
involving periodic orbits. The necessary foundations will be presented in a
forthcoming paper. Besides, we want to understand the geometrical reason for
the different behaviour of N -homoclinic orbits near EE cycles and EP cycles,
respectively.
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