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Abstract. We study the problem of optimizing nonlinear objective functions over matroids
presented by oracles or explicitly. Such functions can be interpreted as the balancing of multicriteria
optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented
matroids, that makes repeated use of matroid intersection and an algebraic algorithm for vectorial
matroids. Our work is partly motivated by applications to minimum-aberration model-fitting in
experimental design in statistics, which we discuss and demonstrate in detail.
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1. Introduction. In this article, partly motivated by applications to minimum-
aberration model-fitting in experimental design, which will be discussed briefly at the
end of this introduction and in detail in section 5, we study the problem of optimizing
an arbitrary nonlinear function over a matroid as follows.

Nonlinear matroid optimization. Given matroid M on ground set N := {1, . . . , n},
integer weight vectors wi = (wi,1, . . . , wi,n) ∈ Zn for i = 1, . . . , d, and function f :
Zd → R, find a matroid base B ∈ B(M) ⊂ 2N minimizing the “balancing” by f of
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902 BERSTEIN ET AL.

the d weights wi(B) :=
∑

j∈B wi,j of base B,

f(w1(B), . . . , wd(B)) = f

⎛⎝∑
j∈B

w1,j , . . . ,
∑
j∈B

wd,j

⎞⎠ .

(All necessary basics about matroid theory are provided in section 2.1. For more
details consult [14] or [17].)

Nonlinear matroid optimization can be interpreted as multicriteria matroid opti-
mization: the d given weight vectors w1, . . . , wd represent d different criteria, where
the value of base B ∈ B(M) under criterion i is its ith weight wi(B) =

∑
j∈B wi,j ,

and where the objective is to minimize the “balancing” f(w1(B), . . . , wd(B)) of the d
given criteria by the given function f .

In fact, we have a hierarchy of problems of increasing generality, parameterized
by the number d of weight vectors. At the bottom of the hierarchy lies standard linear
matroid optimization, recovered with d = 1 and f being the identity on Z. At the
top of the hierarchy lies the problem of maximizing an arbitrary function over the set
of bases, with d = n and wi = 1i, the ith standard unit vector in Zn for all i; see
Proposition 2.4.

It will often be convenient to collect the weight vectors in a d × n matrix W .
Thus, the ith row of this matrix is the ith weight vector wi = (wi,1, . . . , wi,n). For
each subset S ⊆ N we define its W -image to be

W (S) := (w1(S), . . . , wd(S)) :=

⎛⎝∑
j∈S

w1,j , . . . ,
∑
j∈S

wd,j

⎞⎠ ∈ Zd,

which is the vector giving the value of S under each of the d weight vectors. The
nonlinear matroid optimization then asks for a matroid base B ∈ B(M) minimizing
the objective function f(W (B)).

The computational complexity of nonlinear matroid optimization depends on the
number d of weight vectors, on the representation of weights (binary 〈wi,j〉 versus
unary |wi,j |; see section 2.1), on the type of function f and its presentation, and on the
type of matroid and its presentation. We will be able to handle an arbitrary function
f presented by a comparison oracle that, queried on u, v ∈ Zd, asserts whether or not
f(u) ≤ f(v), and an arbitrary matroid presented by an independence oracle, that,
queried on I ⊆ N , asserts whether or not I is independent in M , that is, whether
I ⊆ B for some base B ∈ B(M); see section 2.1. These are very broad presentations
that reveal little information (per query) on the function and matroid, making our
problem setting rather expressive but difficult for achieving strong complexity results.

Standard linear matroid optimization is well known to be efficiently solvable by
the greedy algorithm. Nonlinear matroid optimization with d fixed and f concave
turns out to be solvable in polynomial time as well [8, 11]. In fact, using sophisticated
geometric methods, the nonlinear optimization problem with d fixed and f concave
has been recently shown to be efficiently solvable for bipartite matching [4] and for
broader classes of combinatorial optimization problems [12]. Therein, maximization
rather than minimization form is used; hence, convex rather than concave functions
are considered.

However, generally, nonlinear matroid optimization is intractable, even for uni-
form matroids. In particular, if d is variable, then exponential time is needed even
for {0, 1}-valued weights, and if the weights are encoded in binary, then exponential



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR MATROID OPTIMIZATION 903

time is needed even for fixed dimension d = 1. See Propositions 2.3, 2.4, and 2.5 in
what follows for various intractability statements.

In spite of these difficulties, we establish here the efficient solvability of the prob-
lem as follows.

Theorem 1.1. For every fixed d and p, there is an algorithm that, given a ma-
troid M presented by an independence oracle on the n-element ground set N , integers
a1, . . . , ap ∈ Z, weight vectors w1, . . . , wd ∈ {a1, . . . , ap}n, and function f : Zd → R

presented by a comparison oracle, solves the nonlinear matroid optimization problem
in time that is polynomial in n and max〈ai〉.

We also state the following natural immediate corollary concerning {0, 1, . . . , p}-
valued weights.

Corollary 1.2. For every fixed d and p, there is an algorithm that, given n-
element matroid M presented by an independence oracle, w1, . . . , wd ∈ {0, 1, . . . , p}n
and function f : Zd → R presented by a comparison oracle, solves the nonlinear
matroid optimization problem in time polynomial in n.

The algorithm establishing Theorem 1.1 is combinatorial and makes repeated use
of matroid intersection (see, e.g., [9] or [10], and see [7] for another recent interest-
ing application of matroid intersection). In fact, it invokes the matroid intersection

algorithm roughly npd

times, and hence it is quite heavy. However, most matroids
appearing in practice, including graphic matroids and those arising in the applications
to experimental design to be discussed later, are vectorial. Therefore, we also provide
another more efficient, linear-algebraic algorithm for vectorial matroids. Moreover,
this algorithm applies to weights with an unlimited number (rather than a fixed num-
ber p) of different values wi,j of entries.

Theorem 1.3. For every fixed d, there is an algorithm that, given integer m×n
matrix A, weight vectors w1, . . . , wd ∈ Zn, and function f : Zd → R presented by a
comparison oracle, solves the nonlinear optimization problem over the (real) vectorial
matroid of A in time polynomial in 〈A〉 and max |wi,j |.

A specific application that can be solved by either the combinatorial algorithm
underlying Theorem 1.1 or the more efficient linear-algebraic algorithm underlying
Theorem 1.3 is the following example.

Example 1.4 (minimum-norm spanning tree). Fix any positive integer d. Let G
be any connected graph with edge set E = {e1, . . . , en}, and let w1, . . . , wd ∈ Zn be
weight vectors with wi,j representing the values of edge ej under the ith criterion.
Let A be the vertex-arc incidence matrix of an arbitrary orientation of G. Then the
vectorial matroid of A is the graphic matroid of G whose bases are the spanning trees
of G. Now fix also any q that is either a positive integer or ∞, and let f : Zd → R

be the lq norm given by ‖u‖q := (
∑d

i=1 |ui|q)
1
q for finite q and ‖u‖∞ := maxd

i=1 |ui|.
Note that a comparison oracle for f(u) = ‖u‖q is easily and efficiently realizable. Then
Theorems 1.1 and 1.3 assure that a spanning tree T of G minimizing the lq norm of
the multicriteria vector, given by

‖(w1(T ), . . . , wd(T ))‖q = ‖W (T )‖q

is computable in time polynomial in n and max |wi,j |. Note that if P�=NP, then
the problem is not solvable in time polynomial in the binary length 〈wi,j〉 even for
the graph obtained from a path by replacing every edge by two parallel copies; see
Proposition 2.5.

Experimental design. We conclude the introduction with a brief discussion of the
application to experimental design, elaborated in detail in section 5. The general
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framework is as follows. We are interested in learning an unknown system whose
output y is an unknown function Φ of a multivariate input x = (x1, . . . , xk) ∈ Rk. It
is customary to call the input variables xj factors of the system. In order to learn
the system, we perform several experiments. Each experiment i is determined by a
point pi = (pi,1, . . . , pi,k) and consists of feeding the system with input x := pi and
measuring the corresponding output yi = Φ(pi). Based on these experiments, we wish
to fit a model for the system, namely, determine an estimation Φ̂ of the function Φ,
that satisfies the following properties:

• It lies in a prescribed class of functions.
• It is consistent with the outcomes of the experiments.
• It minimizes the aberration—a suitable criterion—among models in the class.

More detailed discussion and precise definitions will be given in section 5. We have
the following broad corollary of Theorems 1.1 and 1.3; see section 5 for the precise
statement and its various practical specializations to concrete aberration criteria useful
in optimal model-fitting in experimental design.

Corollary 1.5. An aberration-minimum multivariate-polynomial model is poly-
nomial time computable.

The article proceeds as follows. In section 2 we set some notation and prelim-
inaries, make some preparations for the algorithms in the following sections, and
demonstrate various intractability limitations on nonlinear matroid optimization. In
section 3 we discuss arbitrary matroids presented by oracles, and provide the combina-
torial algorithm for nonlinear matroid optimization, thereby establishing Theorem 1.1.
In section 4 we provide the more efficient algebraic algorithm for nonlinear optimiza-
tion over vectorial matroids, thereby proving Theorem 1.3. We conclude in section 5
with a detailed discussion of the experimental design application and prove Corol-
lary 5.2 (a refined version of Corollary 1.5) and its various practical specializations.
Readers interested mostly in experimental design can go directly to section 5, where
the minimum-aberration model-fitting problem is reduced to nonlinear optimization
over a suitable matroid, and where each of the algorithms developed in sections 3 and
4 can be invoked as a black box.

2. Preliminaries, preparation, and limitations.

2.1. Preliminaries. We use R for the reals, Z for the integers, and N for the
nonnegative integers. The ith standard unit vector in Rn is denoted by 1i. The
support of x ∈ Rn is the index set supp(x) := {j : xj �= 0} of nonzero entries of x.
The integer lattice Zn is naturally embedded in Rn. Vectors will be interpreted as
either row or column vectors interchangeably—this will be relevant only when such
vectors are multiplied by matrices—in which case the correct interpretation will be
clear from the context. We often collect a sequence of vectors designated by a lower-
case letter as the rows of a matrix designated by the corresponding upper case letter.
Thus, our weight vectors wi = (wi,1, . . . , wi,n), i = 1, . . . , d are arranged in a d × n
matrix W , and our design points pi = (pi,1, . . . , pi,k), i = 1, . . . ,m are arranged in an
m × k matrix P . The space Rn is endowed with the standard inner product which,
for w, x ∈ Rn, is w · x :=

∑n
i=1 wixi. Vectors w in Rn are also regarded as linear

functions on Rn via the inner product w · x. Therefore, we refer to elements of Rn

as points, vectors, or linear functions, as is appropriate from the context. We write
1 for the vector with all entries equal to 1, with the dimension being clear from the
context.

Our algorithms are analyzed for rational data only, and the time complexity is
as in the standard Turing machine model; see, e.g., [1, 6, 16]. The input typically
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consists of rational (usually integer) numbers, vectors, matrices, and finite sets of
such objects. The binary length of an integer number z ∈ Z is defined to be the
number of bits in its binary representation, 〈z〉 := 1 + �log2(|z| + 1) (with the extra
bit for the sign). The length of a rational number presented as a fraction r = p

q with

p, q ∈ Z is 〈r〉 := 〈p〉+ 〈q〉. The length of an m× n matrix A (or a vector) is the sum
〈A〉 :=

∑
i,j〈ai,j〉 of the lengths of its entries. Note that the length of A is no smaller

than the number of entries, 〈A〉 ≥ mn. Therefore, when A is, say, part of an input
to an algorithm, with m and n not fixed, the length 〈A〉 already incorporates mn,
and so we will typically not account additionally for m,n directly. But sometimes we
will also emphasize n as part of the input length. Similarly, the length of a finite set
S of numbers, vectors, or matrices is the sum of lengths of its elements and hence,
since 〈S〉 ≥ |S|, automatically accounts for its cardinality. Some input numbers affect
the running time of some algorithms through their unary presentation, resulting in
so-called “pseudo-polynomial” running time. The unary length of an integer number
z ∈ Z is the number |z|+ 1 of bits in its unary representation (again, an extra bit for
the sign). The unary length of a rational number, vector, matrix, or finite set of such
objects is defined again as the sums of lengths of their numerical constituents, and
is again no smaller than the number of such numerical constituents. Often part of
the input is presented by oracles. Then the running time counts also the number of
oracle queries. An oracle algorithm is polynomial time if its running time, including
the number of oracle queries, is polynomial in the length of the input.

Next, we make some basic definitions concerning matroids and set some associated
notation; for matroid theory, see [14] or [17]. A matroid M is described by giving a
finite ground set E(M) and a nonempty set B(M) of subsets of E(M) called the set
of bases of M , such that for every B,B′ ∈ B(M) and i ∈ B \ B′ there is an i′ ∈ B′

such that B \{i}∪{i′} ∈ B(M). A subset I of E(M) is independent in M if I ⊆ B for
some base B ∈ B(M). The set of independent sets of M is denoted by I(M). Often
it is convenient to let E(M) = N = {1, 2, . . . , n} for some positive integer n. The rank
rank(S) of a subset S ⊆ E(M) is the maximum cardinality |I| of an I ∈ I(M) that
is contained in S. The rank of the matroid is rank(M) := rank(E(M)) and is equal
to the cardinality |B| of every base B ∈ B(M). An independence oracle for M is one
that, queried on I ⊆ E(M), asserts whether I is in I(M). An independence oracle
allows us to compute the rank of every S ⊆ E(M) as follows. Start with I := ∅. For
each j ∈ S (in any order) do: if I ∪ {j} is in I(M), then set I := I ∪ {j}. Output
rank(S) := |I|.

An important example of a matroid is the graphic matroid M(G) of a graph G
with E(M(G)) being the edge set of G and B(M(G)) equal to the set of edge sets of
spanning forests of G. A further key example is the vectorial matroid of an m × n
matrix A (over a field F) with B(M) the set of subsets of indices of maximal linearly-
independent subsets of columns of A. Throughout, when treating complexity issues,
we assume that F is the field Q of rationals, that A has integer components, and
that we do arithmetic over Q. A uniform matroid is any matroid that is isomorphic
to the matroid Um,n having ground set N = {1, . . . , n} and having all m-subsets of
N as bases. If M1 and M2 are matroids with disjoint ground sets, then their direct
sum M1 ⊕ M2 has E(M1 ⊕ M2) := E(M1) � E(M2) and B(M1 ⊕ M2) := {B1 � B2 :
B1 ∈ B(M1), B2 ∈ B(M2)}. A partition matroid is any matroid that is a direct sum
of uniform matroids ⊕r

i=1Umi,ni
(with the ground sets of the Umi,ni

labeled to be
pairwise disjoint). If mi = m and all ni = k for all i, then we write Ur

m,k for this
r-fold sum of Um,k.
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It is well known that all graphic matroids and uniform matroids are vectorial.
Furthermore, any partition matroid that is the direct sum ⊕r

i=1U1,ni
of rank-1 uniform

matroids is graphic: it is the matroid of the graph obtained from any forest on r edges
by replacing the ith edge by ni parallel copies for i = 1, . . . , r. In particular, Ur

1,k is
a graphic matroid for any positive k and r.

2.2. Preparation. Here we provide preparatory ingredients which will be used
in algorithms in sections 3 and 4. First, we record for later the following statement,
which follows directly from the definitions.

Proposition 2.1. Consider n-element matroid M , weights w1, . . . , wd ∈ Zn,
and f : Zd → R. Put

U := {W (B) : B ∈ B(M)} = {u ∈ Zd : u = W (B) for some base B ∈ B(M)}.

Then the optimal objective value of the corresponding nonlinear matroid optimization
problem satisfies

f∗ = min {f(u) : u ∈ U} .

In light of this viewpoint, with respect to the definitions of U and f∗ from Proposi-
tion 2.1, an optimal W -image is any u ∈ U satisfying f(u) = f∗.

Thus, the problem of computing f∗ reduces to that of constructing the set U of
W -images of bases, and then extracting an optimal W -image from U . This really is
the crucial component of the solution of the nonlinear matroid optimization problem.
While the cardinality of U = {W (B) : B ∈ B(M)} may be polynomial under suitable
assumptions on the data, its direct computation by computing W (B) for every base is
prohibitive since the number of matroid bases is typically exponential in n. Instead,
we will construct a finite superset Z of “potential” W -images of bases, satisfying
U ⊆ Z ⊂ Zd, and then filter U out of Z. However, this is not an easy task either:
deciding if a given u ∈ Zd satisfies u = W (B) for some base B is NP-complete already
for fixed d = 1 and uniform matroids or partition matroids that are the direct sums of
rank-1 uniform matroids; see Proposition 2.5. The way the filtration of U out of Z is
done is precisely the key difference between our two algorithms for nonlinear matroid
optimization in sections 3 and 4.

Next, we demonstrate that finding an optimal base for a nonlinear matroid opti-
mization problem can be reduced to finding an optimal W -image for a small number
of subproblems. Consider data for a nonlinear matroid optimization problem, consist-
ing of a matroid M , weight vectors w1, . . . , wd ∈ Zn, and function f : Zd → R. Each
subset S ⊆ N gives a subproblem of nonlinear matroid optimization as follows. The
matroid of the subproblem is the restriction of M to S; that is, the matroid M.S on
ground set S in which a subset I ⊆ S is independent if and only if it is independent
in M . Note that an independence oracle for the restriction matroid M.S is realizable
at once from that of M . The weight vectors of the subproblem are the restrictions of
the original weight vectors to S. The function f : Zd → R in the subproblem is the
same as in the original problem. We have the following useful statement.

Lemma 2.2. The nonlinear matroid optimization problem of finding an optimal
base of an n-element matroid is reducible in time polynomial in n to finding an optimal
W -image for n + 1 subproblems.
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Proof. Denote by u∗(S) the optimal W -image for the subproblem on S ⊆ N . Now
compute an optimal base for the original problem, by computing an optimal W -image
for n + 1 such subproblems as follows.

Start with S := N ;
Compute m := rank(S);
Compute an optimal W -image u∗ := u∗(N) of the original problem;
for j=1, 2,. . . ,n do

Compute rank(S \ {j});
Compute an optimal W -image u∗(S \ {j});
if rank(S \ {j}) = m and f(u∗(S \ {j})) = f(u∗) then set S := S \ {j};

end
return B := S;

It is not hard to verify that the set B obtained is indeed an optimal base for the
original problem.

2.3. Limitations. Here we provide various intractability statements about the
nonlinear matroid optimization problem and some of its relatives. In particular, we
show that, if the weights are encoded in binary, then even the 1-dimensional problem,
namely with fixed d = 1, over any matroid given explicitly or by an oracle, requires
examining the objective value of every base, and hence cannot be solved in polynomial
time.

It is convenient to define a certain class of rank k matroids on 2k elements, so
as to generalize the uniform matroid Uk,2k and the partition matroids Uk

1,2. For some
r, 1 ≤ r ≤ k, partition K = {1, . . . , k} into r parts as �r

i=1Ki. Correspondingly, let
K̄i := {j̄ : j ∈ Ki}. Let ki = |Ki| = |K̄i|. For i = 1, . . . , r, let Mi be a uniform
matroid of rank ki on ground set Ki ∪ K̄i (so Mi

∼= Uki,2ki
). Let Mr,k := ⊕r

i=1Mi.
Observe that M1,k

∼= Uk,2k (which is uniform) and Mk,k
∼= Uk

1,2 (which is graphic),
so hardness results with respect to the matroid classes Mr,k apply to uniform and
graphic matroids. We note and will soon use that for any r, 1 ≤ r ≤ k, |B(Mr,k)| is
not bounded by any polynomial in |E(Mr,k)| = 2k.

Proposition 2.3. Computing an optimal solution of the 1-dimensional non-
linear matroid optimization problem over any matroid M , given explicitly or by an
oracle, on n-element ground sets, and a univariate function f presented by a compar-
ison oracle, cannot be done in polynomial time. In particular, with the single weight
vector w := (1, 2, 4, . . . , 2n−1), solution of the nonlinear matroid optimization problem
requires examining f(W (B)) for each of the |B(M)| bases of M . In particular, for
each r, 1 ≤ r ≤ k, the problem cannot be solved in polynomial time for the class of
matroids Mr,k.

Proof. The weights w(S) =
∑

j∈S 2j−1 of the 2n subsets S ⊆ N attain precisely
all 2n distinct values 0, 1, . . . , 2n − 1. Since the function f is arbitrary, this implies
that the objective value f(W (B)) of each base B can be arbitrary. Therefore, if the
value f(W (B)) of some base B is not compared against, it may be that this value
is the unique minimum one and the nonlinear matroid optimization problem cannot
be correctly solved. The final remark of the proposition follows since, for every r,
|B(Mr,k)| is not bounded by any polynomial in |E(Mr,k)| = 2k.

Proposition 2.4. Computing an optimal solution of the nonlinear matroid opti-
mization problem in variable dimension d = n, over any matroid M , with {0, 1}-valued
weights, the ith weight being the standard unit vector wi := 1i in Zn for all i, and
with f : Zn → R a function presented by a comparison oracle, requires examining



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

908 BERSTEIN ET AL.

f(W (B)) for each of the |B(M)| bases of M . In particular, for each r, 1 ≤ r ≤ k, the
problem cannot be solved in polynomial time for the class of matroids Mr,k.

Proof. The W -images W (B) = (w1(B), . . . , wn(B)) of the 2n subsets B ⊆ N
attain precisely all 2n distinct vectors in {0, 1}n. Since the function f is arbitrary,
this implies that the objective value f(W (B)) of each base can be arbitrary. The rest
of the argument is as in the proof of Proposition 2.3.

Consider nonlinear matroid optimization with a matroid M , weights w1, . . . , wd ∈
Zn, and function f : Zd → R. As explained in section 2.2, a crucial component in
solving the problem is to identify W -images of bases; that is, points u ∈ Zd satisfying
u = W (B) for some B ∈ B(M). The following proposition shows that, with binary-
encoded weights, both the nonlinear matroid optimization problem with explicitly
given univariate convex quadratic function f and the problem of deciding if a given
u is a W -image of some base, are intractable already for fixed d = 1 and uniform
matroids or partition matroids that are the direct sums of rank-1 uniform matroids.

Proposition 2.5. Given matroid M , a single nonnegative weight vector w ∈ Nn,
and nonnegative integer u ∈ N, encoded in binary, the following problems are NP-
complete, when already restricted to the class of matroids Mr,k, for any r, 1 ≤ r ≤ k:

1. Determining whether u = W (B) =
∑

j∈B wj for some base B ∈ B(M).
2. Determining whether the optimal objective value is zero for the 1-dimensional

nonlinear matroid optimization problem over M , with the explicit convex uni-
variate function f(y) := (y − u)2.

Proof. The NP-complete subset-sum problem is to decide, given a0, a1, . . . , ak ∈ N,
whether there is a subset S ⊆ K = {1, . . . , k} with

∑
j∈S aj = a0. Given such ai, let

u := a0, and let w := (a1, . . . , ak, 0, . . . , 0) ∈ NK × NK̄ . Then, for any r, a base B
of Mr,k satisfies W (B) = u if and only if S := B ∩K satisfies

∑
j∈S aj = a0. This

reduces the subset-sum problem to the problem considered in the first part of the
proposition, showing that it is indeed NP-complete.

For the second part, note that the objective value f(W (B)) = (W (B) − u)2 of
every base B is nonnegative, and B has f(W (B)) = 0 if and only if W (B) = u. Thus,
the optimal objective value is zero if and only if there is a base with W (B) = u. So
the problem in the first part of the proposition reduces to the problem in the second
part, showing the latter to be NP-complete as well.

3. Arbitrary matroids. In this section we develop a combinatorial algorithm
for nonlinear matroid optimization that runs in polynomial time for any matroid
presented by an independence oracle, provided that the number p of distinct values
taken by the entries wi,j of the weight vectors is fixed. In particular, the algorithm
applies to {0, 1}-valued weight vectors as well as to {0, 1, . . . , p}-valued weight vectors
for any fixed p.

As explained in section 2.2, we will filter the set U = {W (B) : B ∈ B(M)} of W -
images of bases out of a suitable superset Z. For this, we next show how to efficiently
decide if a given u ∈ Zd satisfies u = W (B) for some B ∈ B(M). We start with
{0, 1}-valued W -images with pairwise-disjoint supports.

Lemma 3.1. There is an algorithm that, given matroid M presented by an inde-
pendence oracle on the n-element ground set N , weight vectors w1, . . . , wd ∈ {0, 1}n
with pairwise-disjoint supports, and u ∈ Nd, determines if M has a base B with
W -image W (B) = u, in time polynomial in n and 〈u〉.

Proof. For each base B of M and for each i = 1, . . . , d we have wi(B) = |B ∩
supp(wi)|. Therefore, a base B has W (B) = u if and only if |B ∩ supp(wi)| = ui for

i = 1, . . . , d. So we may and do assume
∑d

i=1 ui ≤ rank(M) and ui ≤ |supp(wi)| for



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR MATROID OPTIMIZATION 909

all i else M has no base with W (B) = u. Let

B′ :=

{
B ⊆ N : |B ∩ supp(wi)| = ui, i = 1, . . . , d,

∣∣∣B ∩
(
N \

⋃d
i=1 supp(wi)

)∣∣∣ = rank(M) −
∑d

i=1 ui

}
.

It is easy to see that B′ = B(M ′) is the set of bases of a partition matroid M ′ on
ground set N , for which an independence oracle is efficiently realizable. Moreover,
M has a base B with W (B) = u if and only if B(M) ∩ B(M ′) is nonempty. These
observations justify the following algorithm:

if
∑d

i=1 ui ≤ rank(M) or ui > |supp(wi)| for some i = 1, . . . , d then return
NO;
Determine if B(M) ∩ B(M ′) is nonempty by computing a max-cardinality
S ∈ I(M) ∩ I(M ′);
if |S| = rank(M);
then

return YES and B := S;
else

return NO;
end

Computing a max-cardinality S ∈ I(M) ∩ I(M ′) can be efficiently carried out
using a maximum-cardinality matroid-intersection algorithm; see, e.g., [9] or [10] and
the references therein.

Next, we consider weight vectors for which the number p of distinct wi,j values
is fixed. So, we assume that w1, . . . , wd ∈ {a1, . . . , ap}n for arbitrary given integer
numbers a1, . . . , ap. Note that the ai can vary and be very large, since they affect the
running time through their binary length 〈ai〉.

Lemma 3.2. For every fixed d and p, there is an algorithm that, given matroid
M presented by an independence oracle on ground set N , integers a1, . . . , ap, weight
vectors w1, . . . , wd ∈ {a1, . . . , ap}n, and u ∈ Nd, decides if M has a base B with
W (B) = u in time polynomial in n, max〈ai〉, and 〈u〉.

Proof. Let V := {a1, . . . , ap}d, and let Q be the d × pd pattern matrix having
columns that are all of the pd points in V . Let, as usual, W be the d × n matrix
with rows w1, . . . , wd. For j = 1, . . . , n, let wj denote the jth column of W . We will
exploit the fact that, no matter how large n is, the columns wj of W all lie in the
fixed set V —so the number of distinct columns wj of W is limited.

Define a pd × n selector matrix Ŵ , having rows ŵv indexed by V , columns ŵj

indexed by N , and

ŵv,j :=

{
1 if wj = v,

0 otherwise,

for v ∈ V , j ∈ N . Note that each column ŵj of Ŵ is a standard unit vector, selecting
the unique pattern (i.e., column) of V that agrees with the column wj of W . It should

be clear that the rows of Ŵ , namely the ŵv, lie in {0, 1}n and have pairwise-disjoint
supports—this will enable us to appeal to Lemma 3.1. We observe and will make use of
the fact that the weight matrix W factors as W = QŴ . Therefore, the W -image and
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Ŵ -image of a base B satisfy W (B) = QŴ (B). This implies that there exists a base
B ∈ B(M) with W (B) = u if and only if for some pd-dimensional vector û satisfying

u = Qû there exists a base B ∈ B(M) satisfying Ŵ (B) = û. Since Ŵ is {0, 1}-valued,

any such vector û = Ŵ (B) must lie in {0, . . . ,m}pd

, where m := rank(M). Therefore,
checking if there is a base B ∈ B(M) with W (B) = u reduces to going over all vectors

û ∈ {0, . . . ,m}pd

, and for each each vector û checking if Qû = u and if there is a base

B satisfying Ŵ (B) = û. This justifies the following algorithm:

let Q be the d× pd pattern matrix, and let Ŵ be the selector matrix (both
determined by W );

for û ∈ {0, 1, . . . ,m}pd

do
if Qû = u then

if there is a base B ∈ B(M) with Ŵ (B) = û then return B;
end

end
return NO;

Since d and p are fixed and m ≤ n, the number (m+1)p
d

of such potential vectors
û is polynomial in the data. For each such vector û, checking if Qû = u is easily done
by direct multiplication; and checking if there exists a base B ∈ B(M) satisfying

Ŵ (B) = û can be done in polynomial time using the algorithm of Lemma 3.1 applied

to the matroid M , the d̂ := pd weight vectors ŵv, v ∈ V (the {0, 1}-valued rows of

the matrix Ŵ , having pairwise-disjoint supports), and the vector û.

We are now in position to solve the nonlinear optimization problem over a matroid
that is presented by an independence oracle.

Theorem 1.1. For every fixed d and p, there is an algorithm that, given a ma-
troid M presented by an independence oracle on the n-element ground set N , integers
a1, . . . , ap ∈ Z, weight vectors w1, . . . , wd ∈ {a1, . . . , ap}n, and function f : Zd → R

presented by a comparison oracle, solves the nonlinear matroid optimization problem
in time that is polynomial in n and max〈ai〉.

Proof. We have three major steps.

1. First, under the hypotheses of the theorem, assume that in polynomial time
we can calculate an optimal W -image for the problem. Then, for every subset
S ⊆ N , an optimal W -image for the subproblem on S can be computed in
polynomial time, since the entries of the restrictions of w1, . . . , wd to S also
attain values in {a1, . . . , ap}. By Lemma 2.2 this implies that an optimal
base can be found and the nonlinear matroid optimization problem solved
in polynomial time. So, it remains to show that in polynomial time we can
calculate an optimal W -image for the problem.

2. To accomplish this, we first show how to compute the set U of W -images of
bases of M , by working with an appropriately defined superset Z of U . Let
m := rank(M). Consider any i = 1, . . . , d and any m-subset B of N . Then,
since wi,j ∈ {a1, . . . , ap} for all j, we have that, for some nonnegative integers
λi,1, . . . , λi,p with

∑p
k=1 λi,k = m,

wi(B) =
∑
j∈B

wi,j =

p∑
k=1

λi,kak.
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Therefore, we find that the set U of W -images of bases satisfies

U = {W (B) : B ∈ B(M)}

⊆ {W (B) : B ⊆ N, |B| = m}

⊆ Z :=

{
p∑

k=1

λkak : λ ∈ {0, 1, . . . ,m}p,
p∑

k=1

λk = m

}d

.

These observations justify the following algorithm to compute the set U of
W -images of bases:

Compute m := rank(M) and let a := (a1, . . . , ap);
Start with Z := ∅;
for Λ ∈ {0, 1, . . . ,m}d×p do

if Λ1 = m1 then let Z := Z ∪ {Λa};
end
Start with U := ∅;
for u ∈ Z do

if there is a base B ∈ B(M) with W (B) = u then let
U := U ∪ {u};

end
return U ;

Observe that, since d and p are fixed, |Z| ≤ |{0, 1, . . . ,m}d×p| = (m+ 1)pd is
polynomially bounded in m ≤ n and hence so are the numbers of iterations
in each of the “for” loops of the algorithm. Also note that, in each iteration
of the second loop, we can apply the algorithm of Lemma 3.2 to determine,
in polynomial time, whether there is a base B ∈ B(M) with W (B) = u.
Therefore, we can efficiently determine U .

3. By repeatedly querying the comparison oracle of f on |U | − 1 suitable pairs
of points in U , we obtain a u∗ ∈ U that satisfies f(u∗) = min{f(u) : u ∈ U},
which by Proposition 2.1 is an optimal W -image.

Finally, by embedding steps 2 and 3 above as subroutines to solve the n + 1
restrictions of the problem to suitable subsets S ⊆ N in step 1, we obtain our desired
algorithm.

4. Vectorial matroids. In this section we develop an algebraic algorithm for
nonlinear matroid optimization over vectorial matroids. It applies to any matroid that
is vectorial over an ordered field. For matroids that are vectorial over the rationals Q,
it runs in time polynomial in the binary length 〈A〉 of the matrix A representing the
matroid and in the unary length max |wi,j | of the weights. It is much more efficient
than the combinatorial algorithm of section 3 and applies to weights with an unlimited
number of different values wi,j of entries.

First, we show that it suffices to deal with nonnegative weight vectors.
Lemma 4.1. The nonlinear matroid optimization problem with arbitrary integer

weight vectors w1, . . . , wd ∈ Zn is polynomial-time reducible to the special case of
nonnegative vectors w1, . . . , wd ∈ Nn.

Proof. Consider a matroid M , integer weights w1, . . . , wd ∈ Zn, and function
f : Zd → R. Let m := rank(M) and ω := max |wi,j |. Define nonnegative weights by
w′

i,j := wi,j +ω for all i, j, and define a new function f ′ : Zd → R by f ′(u1, . . . , ud) :=

f(u1−mω, . . . , ud−mω) for every u = (u1, . . . , ud) ∈ Rd. Note that the unary length
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of each new weight w′
i,j is at most twice the maximum unary length of the original

weights wi,j , and a comparison oracle for f ′ is easily realizable from a comparison
oracle for f . Then for every base B and for each i = 1, . . . , d, we have

w′
i(B) =

∑
j∈B

w′
i,j =

∑
j∈B

(wi,j + ω) =

⎛⎝∑
j∈B

wi,j

⎞⎠ + mω = wi(B) + mω,

implying the following equality between the new and original objective function values:

f ′(w′
1(B), . . . , w′

d(B)) = f ′(w1(B) + mω, . . . , wd(B) + mω) = f(w1(B), . . . , wd(B)).

Therefore, a base B ∈ B(M) is optimal for the nonlinear matroid optimization prob-
lem with data M , w1, . . . , wd and f if and only if it is optimal for the problem with
M , w′

1, . . . , w
′
d and f ′.

So we assume henceforth that the weights are nonnegative. As explained in
section 2.2 and carried out in section 3, we will filter the set U = {W (B) : B ∈ B(M)}
of W -images of bases out of a suitable superset Z. However, instead of checking if
u ∈ U for one point u ∈ Z after the other, we will filter here the entire set U out of
Z at once. We proceed to describe this procedure.

Let A be an m× n integer matrix of full row rank m, and let M be the vectorial
matroid of A. Note that m = rank(M). Let w1, . . . , wd ∈ Nn be nonnegative integer
weight vectors, and let ω := maxwi,j . Then for each i = 1, . . . , d and each m-subset
B of N , we have wi(B) ∈ {0, 1, . . . ,mω}, and therefore

U = {W (B) : B ∈ B(M)} ⊆ {W (B) : B ⊆ N, |B| = m}

⊆ Z := {0, 1, . . . ,mω}d ⊆ Nd.

We will show how to filter the set U out of the above superset Z of potential W -images
of bases. For each base B ∈ B(M), let A·B denote the nonsingular m×m submatrix
of A consisting of those columns indexed by B ⊆ N . Define the following polynomial
in d variables x1, . . . , xd:

(1) g = g(x) :=
∑
u∈Z

gux
u :=

∑
u∈Z

gu

d∏
k=1

xuk

k ,

where the coefficient gu corresponding to u ∈ Z is the nonnegative integer

(2) gu :=
∑{

det2(A·B) : B ∈ B(M), W (B) = u
}
.

Now, det2(A·B) is positive for every base B ∈ B(M). Thus, the coefficient gu corre-
sponding to u ∈ Z is nonzero if and only if there exists a matroid base B ∈ B(M)
with W (B) = u. So the desired set U is precisely the set of exponents of monomials
xu with nonzero coefficient in g. We record this for later use.

Proposition 4.2. Let M be the vectorial matroid of an m× n matrix A of rank
m, let w1, . . . , wd ∈ Nn, and let g(x) be the polynomial in (1). Then U := {W (B) :
B ∈ B(M)} = {u ∈ Z : gu �= 0}.

By Proposition 4.2, to compute U , it suffices to compute all coefficients gu. Unfor-
tunately, they cannot be computed directly from the definition (2), since this involves
again checking exponentially many B ∈ B(M)—precisely what we are trying to avoid!
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Instead, we will compute the gu by interpolation. However, in order to do so, we need
a way of evaluating g(x) under numerical substitutions. We proceed to show how this
can be efficiently accomplished.

Let X be the n×n diagonal matrix whose jth diagonal component is the monomial∏d
i=1 x

wi,j

i in the variables x1, . . . , xd, that is, the matrix of monomials defined by

X := diag

(
d∏

i=1

x
wi,1

i , . . . ,

d∏
i=1

x
wi,n

i

)
.

The following lemma will enable us to compute the value of g(x) under numerical
substitutions.

Lemma 4.3. For any m × n matrix A of rank m and nonnegative weights
w1, . . . , wd ∈ Nn we have

g(x) = det(AXAT ).

Proof. By the classical Binet–Cauchy identity, for any two m × n matrices C,D
of rank m we have det(CDT ) =

∑
{det(C·B) det(D·B) : B ∈ B(M)}. Applying this

to C := AX and D := A, we obtain

det(AXAT ) =
∑

B∈B(M)

det ((AX)·B det(A·B)) =
∑

B∈B(M)

∏
j∈B

d∏
i=1

x
wi,j

i det(A·B) det(A·B)

=
∑

B∈B(M)

d∏
i=1

x
wi(B)
i det2(A·B) =

∑
u∈Z

∑
B∈B(M):
W (B)=u

det2(A·B)

d∏
i=1

xui
i

=
∑
u∈Z

gux
u = g(x).

Lemma 4.3 paves the way for computing the coefficients of the polynomial g(x) =∑
u∈Z gux

u by interpolation. We will choose sufficiently many suitable points on the
moment curve in RZ , substitute each point into x, and evaluate g(x) using the lemma.
We will then solve the system of linear equations for the coefficients gu. The next
lemma describes the details and shows that this can be done efficiently.

Lemma 4.4. For every fixed d, there is an algorithm that, given any m×n matrix
A of rank m and weights w1, . . . , wd ∈ Nn, computes all coefficients gu of g(x) in time
polynomial in maxwi,j and 〈A〉.

Proof. Let ω := maxwi,j and s := mω+1. Then a superset of potential W -images
of bases is Z := {0, 1, . . . ,mω}d and satisfies |Z| = sd. For t = 1, 2, . . . , sd, let X(t)

be the numerical matrix obtained from X by substituting ts
i−1

for xi, i = 1, . . . , d.
By Lemma 4.3 we have g(x) = det(AXAT ), and therefore we obtain the following
system of sd linear equations in the sd variables gu, u ∈ Z:

det(AX(t)AT ) = det

(
A diagj

(
d∏

i=1

twi,js
i−1

)
AT

)
=

∑
u∈Z

gu

d∏
i=1

tuis
i−1

=
∑
u∈Z

t
∑d

i=1 uis
i−1

gu, t = 1, 2, . . . , sd.
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As u runs through Z, the sum
∑d

i=1 uis
i−1 attains precisely all |Z| = sd distinct

values 0, 1, . . . , sd − 1. This implies that, under the total order of the points u in Z
by increasing value of

∑d
i=1 uis

i−1, the vector of coefficients of the gu in the equation

corresponding to t is precisely the point (t0, t1, . . . , ts
d−1) on the moment curve in

RZ ∼= Rsd . Therefore, the equations are linearly independent and hence the system
can be uniquely solved for the gu.

These observations justify the following algorithm to compute the gu, u ∈ Z:

Compute m := rank(A);
let ω := maxwi,j , and let s := mω + 1;

let X := diagj

(∏d
i=1 x

wi,j

i

)
;

for t = 1, 2, . . . , sd do

let X(t) be the numerical matrix obtained by substituting ts
i−1

for xi,
i = 1, 2, . . . , d, in X; Compute det(AX(t)AT );

end

let Z := {0, 1, . . . ,mω}d;
Compute and return the unique solution gu, u ∈ Z, of the square linear
system:

det(AX(t)AT ) =
∑

u∈Z t
∑d

i=1 uis
i−1

gu, t = 1, 2, . . . , sd.

We now show that this system can be solved in polynomial time. First, the
number of equations and indeterminates is sd = (mω + 1)d and hence polynomial in
the data. Second, for each i, j = 1, . . . , n and t = 1, 2, . . . , sd, it is easy to see that the
(i, j)th entry of AX(t)AT satisfies∣∣∣∣∣

n∑
h=1

ai,h

d∏
k=1

ts
k−1wk,haj,h

∣∣∣∣∣ ≤
n∑

h=1

|ai,haj,h|pds
d maxwk,h ,

implying that the binary length 〈AX(t)AT 〉 of AX(t)AT is polynomially bounded in
the data as well.

It follows that det(AX(t)AT ) can be computed in polynomial time by Gaussian
elimination for all t, and the system of equations can indeed be solved for the gu in
polynomial time. We further note that the system of equations is a Vandermonde
system, so the number of arithmetic operations needed to solve it is just quadratic in
its dimensions.

We can now efficiently solve the nonlinear optimization problem over vectorial
matroids with unary weights.

Theorem 1.3. For every fixed d, there is an algorithm that, given integer m× n
matrix A, weight vectors w1, . . . , wd ∈ Zn, and function f : Zd → R presented by a
comparison oracle, solves the nonlinear optimization problem over the (real) vectorial
matroid of A in time polynomial in 〈A〉 and max |wi,j |.

Proof. Let M be the vectorial matroid of A. Recall that linear-algebraic opera-
tions on A can be done in polynomial time, say by Gaussian elimination. Dropping
some rows of A if necessary without changing M , we may assume that A has rank m.
An independence oracle for M is readily realizable since S ⊆ N is independent in M
precisely when the columns of A indexed by S are linearly independent. Applying, if
necessary, the procedure of Lemma 4.1 and adjusting the weights while at most dou-
bling the unary length of the maximum weight, we may also assume that the weights
are nonnegative.
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We will show how to compute an optimal W -image u∗ in polynomial time. This
will also imply that, for every subset S ⊆ N , an optimal W -image for the subproblem
on S can be computed in polynomial time. By Lemma 2.2 this will show that an
optimal base can be found and the nonlinear matroid optimization problem solved in
polynomial time.

Let ω := maxwi,j and consider the superset Z := {0, 1, . . . ,mω}d of potential
W -images of bases and the polynomial g(x) =

∑
u∈Z gux

u as defined in (1) and (2).
By Proposition 4.2 we have

U = {W (B) : B ∈ B(M)} = {u ∈ Z : gu �= 0}.

Applying now the algorithm of Lemma 4.4, we can compute in polynomial time the
right-hand side and hence the left-hand side, providing the filtration of the set U of
W -images of bases out of Z. By repeatedly querying the comparison oracle of f on
suitable pairs of points in U , we obtain a u∗ ∈ U satisfying f(u∗) = min{f(u) : u ∈ U},
which by Proposition 2.1 is the desired optimal W -image.

5. Experimental design. We now discuss applications of nonlinear matroid
optimization to experimental design. For general information on experimental de-
sign, see, e.g., the monograph [15] and the references therein. As outlined in the
introduction, we consider the following rather general framework. We wish to learn
an unknown system whose output y is an unknown function Φ of a multivariate input
x = (x1, . . . , xk) ∈ Rk. It is customary to call the input variables xi factors of the
system. We perform several experiments. Each experiment i is determined by a point
pi = (pi,1, . . . , pi,k) and consists of feeding the system with input x := pi ∈ Rk and
measuring the corresponding output yi := Φ(pi) ∈ R. Based on these experiments,
we wish to fit a model for the system, namely, determine an estimation Φ̂ of Φ, that:

• lies in a prescribed class of functions;
• is consistent with the outcomes of the experiments;
• minimizes the aberration—a suitable criterion—among models in the class.

We concentrate on (multivariate) polynomial models defined as follows. Each
nonnegative integer vector α ∈ Nk serves as an exponent of a corresponding monomial
xα :=

∏k
h=1 x

αh

h in the system input x ∈ Rk. Each finite subset B ⊂ Nk of exponents
provides a model for the system, namely a polynomial supported on B, i.e., having
monomials with exponents in B only,

ΦB(x) =
∑
α∈B

cαx
α,

where the cα are real coefficients that need to be determined from the measurements
by interpolation.

We assume that the set of design points {p1, . . . , pm} ⊂ Rk is prescribed. Indeed,
in practical applications, it may be impossible or too costly to conduct experiments
involving arbitrarily chosen points. The problem of choosing the design (termed the
inverse problem in the statistics literature; see [2] and the references therein), is of
interest in its own right, and its computational aspects will be considered elsewhere.
We collect the design points in an m × k design matrix P . Thus, the ith row of
this matrix is the ith design point pi. A model B ⊂ Nk is identifiable by a design
P if for any possible measurement values zi = Φ(pi) at the design points, there is
a unique polynomial ΦB(x) supported on B that interpolates Φ, that is, satisfies
ΦB(pi) = zi = Φ(pi) for every design point pi = (pi,1, . . . , pi,k).
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Among models identifiable by a given design, we wish to determine one that
is best under a suitable criterion. Roughly speaking, common criteria ask for low
degree polynomials. To make this precise, for each identifiable model B, consider the
following total degree vector whose ith entry is the total degree of variable xi over all
monomials supported on B:

∑
α∈B

α =

(∑
α∈B

α1, . . . ,
∑
α∈B

αk

)
.

Now, given any function f : Zk → R, the aberration of model B induced by f is
defined to be

A(B) := f

(∑
α∈B

α

)
.

The term aberration is the one used in the statistics literature in this context; see, e.g.,
[5, 18] and the references therein. We now give some concrete examples of functions
providing useful aberrations.

Example 5.1 (some concrete useful aberrations).
• Consider the function f(u) := 1

|B| (u1 + · · · + uk). Then the aberration of

model B is

A(B) =
1

|B|
∑
α∈B

α1 + · · · + 1

|B|
∑
α∈B

αk =
1

|B|
∑
α∈B

k∑
i=1

αi,

which is the average total degree of monomials supported on B.
• Consider f(u) := 1

|B| (π1u1 + · · · + πkuk) for some real weights π1, . . . , πk.

Then

A(B) = π1
1

|B|
∑
α∈B

α1 + · · · + πk
1

|B|
∑
α∈B

αk

is the weighted average degree, allowing for preferences of some variables over
others.

• Consider the function f(u) := 1
|B| (max{u1, . . . , uk}). Then the aberration of

B is

A(B) = max

{
1

|B|
∑
α∈B

α1, . . . ,
1

|B|
∑
α∈B

αk

}
,

and is the maximum over variables of the average variable degree of monomials
supported on B.

• More generally, consider f(u) := 1
|B| (‖π ·u‖q) = 1

|B|
((∑k

i=1 |πiui|q
) 1

q
)
. Then

the aberration of B is

A(B) =

∥∥∥∥∥π ·
(

1

|B|
∑
α∈B

α

)∥∥∥∥∥
q

,

which is the lq-norm of the weighted average degree vector of monomials
supported on B.
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We can now formally define the minimum-aberration model-fitting problem.
Minimum-aberration model-fitting problem. Given a design P = {p1, . . . , pm}

of m points in Rk, a set N = {β1, . . . , βn} of n potential exponents in Nk, and a
function f : Zk → R, find a model B ⊆ N that is identifiable by P and is of minimum
aberration

A(B) = f

⎛⎝ ∑
βj∈B

βj

⎞⎠ .

Next, we demonstrate how to formulate the minimum-aberration model-fitting
problem as a nonlinear matroid optimization problem. Consider the following m× n
matrix A having rows indexed by P and columns indexed by N , defined by

ai,j := p
βj

i =

k∏
h=1

p
βj,h

i,h , i = 1, . . . ,m, j = 1, . . . , n.

It can be verified that a model B ⊆ N is identifiable by a design P if and only
if the m × m matrix A·B is invertible. (In the terminology of algebraic geometry,
the model B is identifiable if the congruence classes of the monomials xβ1 , . . . , xβm

form a basis for the quotient of the algebra of polynomials R[x1, . . . , xk] modulo the
ideal of polynomials vanishing on the design points; see [3, 13] and the references
therein for more on this.) If B is identifiable, then, given any vector of measurements
y ∈ Rm at the design points, the vector of coefficients c ∈ Rm of the unique polynomial

ΦB(x) =
∑m

j=1 cj
∏k

h=1 x
βj,h

h supported on B that is consistent with the measurements

is given by c := (A·B)
−1

y.
If the rank of A is less than m, then no B ⊆ N is identifiable, and the set N of

potential exponents should be augmented with more exponents. So assume that A
has rank m. Let M be the vectorial matroid of A, so that

B(M) := {B ⊆ N : B is identifiable by P}.

Now define k weights vectors w1, . . . , wk ∈ Nn by wi,j := βj,i for i = 1, . . . , k, j =
1, . . . , n. Then the aberration of model B is

A(B) = f

⎛⎝ ∑
βj∈B

βj

⎞⎠ = f

⎛⎝ ∑
βj∈B

w1,j , . . . ,
∑
βj∈B

wk,j

⎞⎠ .

Thus, the aberration of a model B identifiable by the design P is precisely the objective
function value of the base B in the nonlinear matroid optimization problem over the
matroid M above, with d := k and the weights w1, . . . , wk ∈ Nn as above, and with
the given function f : Zk → R. Assuming that a comparison oracle for the function
f can be realized, which is practically always true, and that the design points are
rational so that they can be input and processed on a digital computer, we obtain the
following corollary of Theorems 1.1 and 1.3.

Corollary 5.2. For every fixed k, there is an algorithm that, given a rational
design P = {p1, . . . , pm} in Rk, a set N = {β1, . . . , βn} in Nk, and a function f :
Zk → R presented by a comparison oracle, solves the minimum-aberration model-
fitting problem in time polynomial in m,n, 〈P 〉, and maxβi,j.

It is very natural and common in practice to consider hierarchical models; that
is, models B with the property that β ≤ α ∈ B implies β ∈ B. In [3, 13], in the
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context of the theory of Gröbner bases in commutative algebra, it was shown that the
smallest set containing all m-point hierarchical models B (termed staircases therein)
in Nk is the following set, consisting of roughly O(m logm) points,

N :=

{
α ∈ Nk :

k∏
h=1

(αh + 1) ≤ m

}
.

Thus, Corollary 5.2 will be typically applied with this set N as the set of potential
monomial exponents.

We proceed to describe a more general useful class of aberrations that can be
treated, which is naturally suggested by the nonlinear matroid optimization for-
mulation. As before, we are given a design P = {p1, . . . , pm} in Rk and a set
N = {β1, . . . , βn} of potential exponents in Nk. But now we are also given d weight
vectors w1, . . . , wd ∈ Zn. The function f is now defined on Rd rather than Rk. The
aberration induced by the weights and the function is now simply the objective func-
tion of the nonlinear matroid optimization problem, which for an identifiable model
B ⊆ N is given by

A(B) := f (W (B)) ,

where W is the matrix with rows wi. Note that aberrations of the type considered
before can be recovered as a special case with d := k and wi,j := βj,i for all i, j. Here
are a few useful examples.

Example 5.3 (some concrete useful generalized aberrations). Let N = {β1, . . . ,
βn} ⊂ Nk be any set of exponents. Let θ be a small positive integer, say θ = 1 or
θ = 2, that will serve as a desired bound on the degrees of variables in monomials of
the sought after models B contained in N .

• Let d := 1, and define the single weight vector w1 ∈ Nn by

w1,j :=

{
0 if βj,i ≤ θ for every i = 1, . . . , k,

1 otherwise,

for j = 1, . . . , n. Then
∑

βj∈B w1,j is the number of monomials supported
on B ⊆ N that do not meet the degree bound; in particular, for θ = 1
it is the number of non square-free monomials. Taking f : Z → R to be
the identity f(u) := u, the aberration A(B) of model B is the number of
undesired monomials. In particular, an optimal model B has A(B) = 0 if
and only if the design admits an identifiable model with all variables in all
monomials having degree at most θ.

• Now let d := k, and define weight vectors w1, . . . , wk ∈ Nn by

wi,j :=

{
0 if βj,i ≤ θ,

1 otherwise,

for i = 1, . . . , k, j = 1, . . . , n. Then
∑

βj∈B wi,j is the number of monomials
supported on model B ⊆ N for which variable xi violates the degree bound
θ. Defining f : Zk → R by f(u) := maxk

i=1 ui, we get that the aberration
A(B) of model B is the maximum over variables of the number of monomials
having xi violating the degree bound θ. The optimal model will minimize the
maximum violation.
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We have the following generalized minimum-aberration model-fitting problem and
corollary.

Generalized minimal-aberration model-fitting problem. Given a design P =
{p1, . . . , pm} in Rk, a set N = {β1, . . . , βn} of potential exponents in Nk, weight
vectors w1, . . . , wd ∈ Zn, and a function f : Zd → R, find a model B ⊆ N that is
identifiable by P and is of minimum aberration

A(B) = f (W (B)) = f

⎛⎝ ∑
βj∈B

w1,j , . . . ,
∑
βj∈B

wd,j

⎞⎠ .

Corollary 5.4. For every fixed k and d, there is an algorithm that, given any
rational design P = {p1, . . . , pm} in Rk, any set N = {β1, . . . , βn} of potential expo-
nents in Nk, weight vectors w1, . . . , wd ∈ Zn, and function f : Zd → R presented by a
comparison oracle, solves the generalized minimum-aberration model-fitting problem
in time polynomial in m,n, 〈P 〉, maxβj,i, and max |wi,j |.
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