
ar
X

iv
:0

70
7.

22
65

v1
 [

cs
.I

T
]

 1
6

Ju
l 2

00
7

SEPARABLE CONVEX OPTIMIZATION PROBLEMS WITH
LINEAR ASCENDING CONSTRAINTS ∗

ARUN PADAKANDLA AND RAJESH SUNDARESAN†

Submitted to the SIAM Journal on Optimization, Jul. 2007.

Abstract. Separable convex optimization problems with linear ascending inequality and equality
constraints are addressed in this paper. Under an ordering condition on the slopes of the functions at
the origin, an algorithm that determines the optimum point in a finite number of steps is described.
The optimum value is shown to be monotone with respect to a partial order on the constraint
parameters. Moreover, the optimum value is convex with respect to these parameters. Examples
motivated by optimizations for communication systems are used to illustrate the algorithm.

Key words. ascending constraints, convex optimization, linear constraints, separable problem.

AMS subject classifications. 90C25, 52A41

1. Problem description. Let gm,m = 1, 2, · · · , L be functions that satisfy the
following:

• gm : (am, bm) → R where am ∈ [−∞, 0) and bm ∈ (0,+∞] and therefore
am < 0 < bm;
• gm is strictly convex in its domain (am, bm);
• gm is continuously differentiable in its domain (am, bm);
• The slopes of the functions at 0, i.e., the values of the strictly increasing
function hm := g′m at 0, are in increasing order with respect to the index m:

h1(0) ≤ h2(0) ≤ · · · ≤ hL(0); (1.1)

• There is a point in the domain (am, bm) where the slope of gm equals h1(0), the
slope of the first function at 0. (This may be equivalently stated as h1(0) ≥
hm(am+), given (1.1) and that hm is continuous and strictly increasing).

In this paper, we minimize the separable objective function G : RL → R given by

G(y) :=

L
∑

m=1

gm(ym), (1.2)

where y = (y1, · · · , yL), subject to the following linear inequality and equality con-
straints:

ym ∈ [0, βm], m = 1, 2, · · · , L, (1.3)
l
∑

m=1

ym ≥

l
∑

m=1

αm, l = 1, 2, · · · , L− 1, (1.4)

L
∑

m=1

ym =
K
∑

m=1

αm. (1.5)

∗This work was supported by the University Grants Commission under Grant Part (2B) UGC-
CAS-(Ph.IV) and by the Department of Science and Technology under Grant DSTO748.

†Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore
560012, India. E-mail: rajeshs@ece.iisc.ernet.in

1

http://arxiv.org/abs/0707.2265v1

2 A. PADAKANDLA AND R. SUNDARESAN

In the above constraints, we assume βm ∈ (0, bm] for m = 1, 2, · · · , L, αm ≥ 0 for
m = 1, 2, · · · ,K, where K ≥ L, and naturally,

K
∑

m=1

αm ≤
L
∑

m=1

βm. (1.6)

We also assume

K
∑

m=L

αm > 0. (1.7)

The inequalities in (1.3) impose positivity and upper bound constraints. Note that
if βm = bm, the upper bound constraint is irrelevant because the domain of gm is
(am, bm). The inequalities in (1.4) impose a sequence of ascending constraints with

increasing heights
∑l

m=1 αm indexed by l. Assumption (1.6) is necessary for the
constraint set to be nonempty. Without (1.7), it is easy to see that yL = 0, and the
problem reduces to a similar one with fewer variables.

What we have described is a separable convex optimization problem with linear
inequality and equality constraints. A rich duality theory exists for such problems.
See Bertsekas [1, Sec. 5.1.6]. Here, we provide an algorithm that puts out a vector that
minimizes (1.2) and terminates in at most L steps. Section 2 contains a description
of the algorithm and Section 4 the proof of its optimality. While we may take K = L
without loss of generality, allowing K ≥ L simplifies the exposition of our algorithm.

Problems of the above kind arise in the optimization of multi-terminal communi-
cation systems where power utilized, measured in Joules per second, is minimized, or
throughput achieved, measured in bits per second, is maximized, subject to meeting
certain quality of service and feasibility constraints. See Viswanath & Anantharam [2]
for details and Section 3 for specific examples. Viswanath & Anantharam [2] provide
two algorithms for their power minimization and throughput maximization problems.
Our work unites their solutions and goes further to minimize any G that satisfies the
constraints mentioned above. Under a further condition on the functions which will
be stated in Section 2, we argue that our algorithm provides the solution to the above
optimization problem with the additional ordering constraint y1 ≥ y2 ≥ · · · ≥ yL.

2. The Main Results. We begin with some remarks on notation.
• For integers i, j satisfying i ≤ j, we let Ji, jK denote the set {i, i+ 1, · · · , j}.
• Let Em := hm((am, bm)), the range of hm. Thus the condition h1(0) >
hm(am+),m ∈ J1, LK in Section 1 may be written as

h1(0) ∈ ∩
L
m=1Em. (2.1)

• Denote by h−1
m : Em → (am, bm) the inverse of the continuous and strictly

increasing function hm. The inverse is also continuous and strictly increasing
in its domain.
• For convenience, define the functions Hm : Em → (am, βm] to be

Hm := h−1
m ∧ βm. (2.2)

Hm is clearly increasing.1 Assignments to the variable ym will be via eval-
uation of Hm so that the upper bound constraint in (1.3) is automatically
satisfied.

1We say f is increasing if a > b implies f(a) ≥ f(b). If there is strict inequality, we say f is
strictly increasing. Similarly we use positive for ≥ 0 and strictly positive for > 0.

CONVEX OPTIMIZATION WITH ASCENDING CONSTRAINTS 3

• For 1 ≤ i ≤ l < L, let θli denote the least θ ≥ h1(0) that satisfies the equation

l
∑

m=i

Hm(θ) =

l
∑

m=i

αm, (2.3)

provided the set of such θ is nonempty. Otherwise we say θli does not exist.

The domain of
∑l

m=iHm is ∩lm=iEm. The function
∑l

m=iHm is increasing,
and moreover, strictly increasing until all functions in the sum saturate. So
there is no solution to (2.3) when for example

∑l

m=i αm >
∑l

m=i βm. In
general, if we can demonstrate the existence of θ and θ, both in the set
∩lm=iEm, that satisfy

l
∑

m=i

Hm(θ) ≤
l
∑

m=i

αm ≤
l
∑

m=i

Hm

(

θ
)

, (2.4)

then the existence of θli ∈ ∩
l
m=iEm is assured, thanks to the continuity of

∑l

m=iHm. Indeed, we may always take θ = h1(0). This is because our
assumptions (2.1), (1.1), and the increasing property of Hm,m ∈ J1, LK imply

l
∑

m=i

Hm (h1(0)) ≤

l
∑

m=i

Hm (hm(0)) =

l
∑

m=i

(

h−1
m (hm(0)) ∧ βm

)

= 0 ≤

l
∑

m=i

αm.

The continuity and increasing property of
∑l

m=iHm further imply that

(θ ∧ h1(0)) ≤ θli ≤ θ. (2.5)

Thus, in order to show existence of θli, it is sufficient to identify a θ that
satisfies the right side inequality of (2.4). We will have occasion to use this
remark a few times in the proof of correctness of the algorithm.
• Similarly, for 1 ≤ i ≤ j ≤ L, we let Θj

i denote the least θ ≥ h1(0) that
satisfies the equation

j
∑

m=i

Hm(θ) =

K
∑

m=i

αm, (2.6)

provided the set of such θ is nonempty. Otherwise we say Θj
i does not exist.

The difference between (2.3) and (2.6) is the summation up to K in the right
side of (2.6) and the consequent difference in the upper limits on the left and
right sides of (2.6). Hence the upper case Θj

i . The remarks made above on

the existence of θli are applicable to Θj
i .

• We now provide a description of the variables used in the algorithm for ease
of reference.

– n: Iteration number.
– in and jn: Pointer locations of the first and the last variables, yin and

yjn , that are yet to be set.
– N : The last iteration number in which a variable is set.
– l,m : Temporary pointer locations that satisfy l,m ∈ Jin, jnK in iteration

n.

4 A. PADAKANDLA AND R. SUNDARESAN

– t : Pointer to the variable that satisfies the corresponding ascending
constraint with equality; t ∈ Jin, jnK.

– ξn : Choice of the best slope (marginal cost) in iteration n.
– pm : Iteration number when variable ym is set. (This is needed only in

the proof).
– cm : A label that indicates the type of ξn that set the variable ym. The

possible labels are {A,A∗} for Step 3(a) of the algorithm, {B∗} for Step
3(b) of the algorithm, and {C, C∗} for Step 3(c) of the algorithm. If cm
is assigned an asterisked label, then the ascending constraint is met with
equality for ym. (This is needed only in the proof).

We now provide a generalization of the two algorithms given by Viswanath &
Anantharam [2].

Algorithm 1.
• Inputs: K,L, (α1, α2, · · · , αK), (β1, β2, · · · , βL).
• Output: y∗ = (y∗1 , y

∗
2 , · · · , y

∗
L).

• Step 1: Initialization Set n← 1, i1 ← 1, j1 ← L and go to Step 2.
• Step 2: Termination If in > jn, then set N ← n − 1, output the

vector y∗ = (y∗1 , y
∗
2 , · · · , y

∗
L), and stop.

Else go to Step 3.
• Step 3: Find Θjn

in
, the solution of (2.6) with i ← in and j ← jn.

Also find θlin for l ∈ Jin, jn−1K. These are solutions of (2.3) for

i← in and l as chosen.2 Then set

ξn = max
{

Θjn
in
, hjn(0), θlin ; l ∈ Jin, jn − 1K

}

• Case 3(a): If ξn = Θjn
in
, then set

y∗m ← Hm (ξn) for m ∈ Jin, jnK

pm ← n for m ∈ Jin, jnK

cm ← A for m ∈ Jin, jn − 1K

cjn ← A
∗

in+1 ← jn + 1

jn+1 ← jn.

n← n+ 1

Go to Step 2.
• Case 3(b): If ξn = hjn(0), then set

y∗jn ← 0

pjn ← n

cjn ← B
∗

in+1 ← in

jn+1 ← jn − 1

n← n+ 1.

Go to Step 2.

2Theorem 1 gives a sufficient condition when these quantities can be identified in every iteration.

CONVEX OPTIMIZATION WITH ASCENDING CONSTRAINTS 5

• Case 3(c): If ξn = θtin, for t = Jin, jn − 1K, pick the largest such

t and set

y∗m ← Hm (ξn) for m ∈ Jin, tK

pm ← n for m ∈ Jin, tK

cm ← C for m ∈ Jin, t− 1K

ct ← C
∗

in+1 ← t+ 1

jn+1 ← jn.

n← n+ 1.

Go to Step 2.

Remarks:

• Observe that in each iteration (i.e., a call to Step 3) at least one variable is
set. So the algorithm terminates within L steps.
• The iterations are indexed by n where n ∈ J1, NK. In each iteration, say n, the
pointers in and jn indicate the start and end variables that are yet to be set.
At the end of this iteration, either all the variables are set (Step 3(a)), or the
last one alone is set to 0 (Step 3(b)), or the variables with contiguous indices
Jin, tK are set (Step 3(c)). The corresponding sets of labels are {A,A∗}, {B∗},
and {C, C∗}, respectively.
• Suppose y is the vector of production levels of L production units. Let gm
represent the cost of operation for production unit m ∈ J1, LK, and G the
overall cost. The production levels ym set in a particular iteration are set to
have the same marginal cost ξn, or are set to operate at capacity. In symbols,
y∗m = Hm (ξpm

) = h−1
m (ξpm

) ∧ βm.

• Each iteration requires the evaluation of Θjn
in
, and θlin for l ∈ Jin, jn − 1K.

These are zeros of continuous increasing functions. In Theorem 1 below, we
provide sufficient conditions under which these zeros exist in each iteration
step.
• The question of evaluation of these zeros naturally arises. In the specific ex-
amples in Section 3, we give closed form expressions for Θjn

in
and θlin . In gen-

eral, this may not be available and one has to resort to numerical evaluation.
However, the observation that the functions are continuous and increasing
enables an efficient line search for the zeros. In the proof, we identify θ and θ
on either side of the zero (see (2.4) and (2.5)) that narrows the search window.

We now state the main result of the paper.

Theorem 1. If θl1, l ∈ J1, L− 1K and ΘL
1 exist, then the following hold.

• For every iteration n with in ≤ jn, the quantities Θjn
in

and θlin , l ∈ Jin, jn− 1K
exist.
• Algorithm 1 terminates in N ≤ L iterations.
• The output of Algorithm 1 minimizes (1.2) under the stated constraints.

6 A. PADAKANDLA AND R. SUNDARESAN

We next state a simple corollary to this result which solves a related problem with
additional constraints.

Corollary 2.1. If the functions Hm satisfy H1 ≥ H2 ≥ · · · ≥ HL, then under
the conditions of Theorem 1, the optimum y∗ satisfies y∗1 ≥ y∗2 ≥ · · · ≥ y∗L.

Remark: We may use Algorithm 1 to solve the minimization problem with the
additional constraints y1 ≥ y2 ≥ · · · ≥ yL if Hm is point-wise monotone decreasing in
the index m.

Before we state some properties of the optimum value function, we make some
more definitions for convenience.

• Observe that if K > L, the optimum value defined below depends on the

K-tuple α ∈ R
K
+ only through the L-tuple

(

α1, · · · , αL−1,
∑K

m=L αm

)

∈ R
L
+.

For studying the optimum value, we may therefore restrict our attention to
K = L. Let α ∈ R

L
+ and define G : RL

+ → R ∪ {+∞} as follows:

α
G
7→ G(α) := inf

{

G(y) : y ∈ R
L satisfies constraints (1.3)− (1.5)

}

We do not place the restrictions (1.6) and (1.7) on α; if the optimization is
over an empty set the infimum is taken to be +∞. Clearly G > −∞ because
it is the infimum of a strictly convex function over a bounded convex set, the
set being defined by the constraints (1.3)-(1.5).
• Define a partial order on R

K
+ as follows. We say α � α̃ if

l
∑

m=1

αm ≥

l
∑

m=1

α̃m, l = J1, LK,

with equality when l = L.
This partial order is stronger than majorization (see for example Marshall &
Olkin [3]) in the sense that if α � α̃, then α majorizes α̃. Loosely speaking,
α � α̃ indicates that the components for α are lopsided relative to those of
α̃. The proposition below says that lopsidedness increases cost.

Proposition 2.2. The function G satisfies the following properties:

• If α � α̃, then G(α) ≥ G (α̃).
• G is a convex function.

All the above results are generalizations of those of Viswanath & Anantharam
[2]. The proofs are in Section 4.

3. Examples. We first consider a special case of an example from Bertsekas [1,
Ex. 5.1.2] that is of interest in optimization of communication systems.

Example 1 (Vector Gaussian Channel). Consider L channels with noise vari-
ances σ2

m,m ∈ J1, LK. If power ym (≥ 0) is allocated to channel m, the throughput on

this channel is log
(

1 + ym

σ2
m

)

. Maximize the total throughput

L
∑

m=1

log

(

1 +
ym
σ2
m

)

(3.1)

CONVEX OPTIMIZATION WITH ASCENDING CONSTRAINTS 7

subject to a sum power constraint
∑L

m=1 ym = P .

The optimal allocation of powers is usually called “water-filling” allocation [4, Sec.
10.4] because it levels the noise-plus-signal power σ2

m + y∗m in the channels subject to
the sum power constraint, possibly leaving out a few of the noisiest dimensions. We
now arrive at this solution using our algorithm.

Without loss of generality, we arrange the indices so that

σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
L. (3.2)

Set gm(x) = − log
(

1 + x
σ2
m

)

, (am, bm) =
(

−σ2
m,+∞

)

, βm = +∞, K = L, αm = 0 for

m ∈ J1, L − 1K, and αL = P . It is easy to verify that gm,m ∈ J1, LK satisfy all the
conditions laid out in Section 1 and that

Hm(θ) = −θ−1 − σ2
m (3.3)

with domain Em = (−∞, 0). Consequently, θl1, the solution to (2.3), is given by

θl1 =
−l

∑l

m=1 σ
2
m

, l ∈ J1, L− 1K, (3.4)

and

ΘL
1 =

−L
∑L

m=1 σ
2
m + P

. (3.5)

Theorem 1 therefore indicates that Algorithm 1 is applicable. θl1 and Θj
1 are similarly

identified for 1 ≤ l < j ≤ L. The ordering in (3.2) implies that Θj
1 ≥ θl1 for all

l ∈ J1, j − 1K. An execution of Algorithm 1 therefore results in the following: identify
the largest j such that Θj

1 ≥ hj(0) = −σ
−2
j , or equivalently, σ2

j ≤ −1/Θ
j
1, set y

∗
m = 0

for m ∈ Jj + 1, LK, and set ym = Hm

(

Θj
1

)

for m ∈ J1, jK. From (3.3), we see that

y∗m + σ2
m = −1/Θj

1, the water level, for m ∈ J1, jK.

Our second example is closely related to Example 1 and is from Viswanath &
Anantharam [2]. It evaluates the sum throughput in a multi-user setting. Omitting
the details of the reduction, we present only the mathematical abstraction.

Example 2 (Sum Capacity). Let (3.2) hold. Let gm(x) = − log
(

1 + x
σ2
m

)

,m ∈

J1, LK, as in Example 1, and let α1 ≥ α2 ≥ · · · ≥ αK ≥ 0. Minimize (1.2) subject to
the constraints in Section 1.

The difference between Examples 1 and 2 is that the ascending constraints now
apply. Existence of θl1, l ∈ J1, L− 1K and ΘL

1 follows as in the previous example (see
(3.6) below), and Algorithm 1 can be used to solve the minimization. Analogous to
(3.4) and (3.5), θli and Θj

i are given by

θli =
−(l− i + 1)
∑l

m=i σ
2
m

and Θj
i =

−(j − i+ 1)
∑j

m=i σ
2
m + P

. (3.6)

for 1 ≤ i ≤ l < j ≤ L. At iteration step n, given in and jn, the assignment for ξn is

8 A. PADAKANDLA AND R. SUNDARESAN

explicitly given by

ξn = max

{

−(jn − in + 1)
∑jn

m=in
σ2
m +

∑K

m=in
αm

,
−1

σ2
jn

,

−(l− in + 1)
∑l

m=in
σ2
m +

∑l

m=in
αm

; l ∈ Jin, jn − 1K

}

. (3.7)

Viswanath & Anantharam [2] give the same condition in terms of −1/ξn. The optimal
allocation at this step sets either y∗jn = 0 indicating a rejection of the noisy channel

index jn, or y∗m = Hm (ξn), i.e., y
∗
m + σ2

m = −ξ−1
n for a contiguous set of channels

starting from index in. This optimal allocation thus partitions the channels into sets
of contiguous channels, with each partition having its own water level.

Remark: Viswanath & Anantharam make an incorrect claim in [2, Appendix A.5]
that the specific algorithm with ξn set via (3.7) puts out the optimal y∗ whenever

gm,m ∈ J1, LK are of the form gm(x) = f
(

1 + x
σ2
m

)

and f : R+ → R is a continuous,

increasing, strictly concave function. Their proof works only for some special cases.
In particular, it works for f(x) = log x as in Example 2 above. The error in their
proof can be traced to an incomplete proof for the case when L = 2 in [2, p.1309]; the
validity of their statement for L = 2 holds only in some special cases, f(x) = log(x)
being one of them. Of course, Algorithm 1 with the correct ξn based on the functions
gm,m ∈ J1, LK will yield the optimal y∗.

Our third example is also taken from Viswanath & Anantharam [2] and evaluates
the minimum power required to meet a quality-of-service constraint. It serves to
illustrate the use of Corollary 2.1. The mathematical abstraction is as follows.

Example 3. Let (3.2) hold. Let gm : (−∞, 1) → R+ be defined as gm(x) =
σ2
m

1−x
,m ∈ J1, LK. Let α1 ≥ α2 ≥ · · · ≥ αK . Minimize (1.2) subject to the constraints

in Section 1 and the additional set of constraints y1 ≥ y2 ≥ · · · ≥ yL.

Let us first solve the problem ignoring the constraint y1 ≥ y2 ≥ · · · ≥ yL. Observe
that (am, bm) = (−∞, 1) for all m and all the conditions outlined in Section 1 are
satisfied by the given set of functions. Furthermore, it is easy to verify that Em =
(0,∞) and Hm(θ) = 1 − σm√

θ
. The quantities θl1 and ΘL

1 exist if
∑l

m=1 αm < l and
∑K

m=1 αm < L. More generally, for 1 ≤ i ≤ l < j ≤ L, θli and Θj
i are given by

θli =

(

∑l

m=i σm

l− i+ 1−
∑l

m=i αm

)2

and

Θj
i =

(

∑j

m=i σm

j − i+ 1−
∑K

m=i αm

)2

.

Theorem 1 then assures us that Algorithm 1 yields the optimum solution. At iteration
step n, given in and jn, the assignment for ξn can once again be made more explicit
and our algorithm reduces to the second algorithm of Viswanath & Anantharam.

CONVEX OPTIMIZATION WITH ASCENDING CONSTRAINTS 9

Observe now that (3.2) implies that H1 ≥ H2 ≥ · · · ≥ HL so that the optimal y∗ put
out by Algorithm 1 also satisfies y∗1 ≥ y∗2 ≥ · · · ≥ y∗L.

Our final example illustrates the handling of the upper bound constraint. This
is another special case of the example from Bertsekas [1, Ex. 5.1.2] that arises in a
power optimization problem for sensor networks (see Zacharias & Sundaresan [5]).

Example 4. Let gm(x) = 1
2x

2,m ∈ J1, LK, K = L, αm = 0,m ∈ J1, L − 1K,
αL = α > 0, and βm ∈ (0,∞) for m ∈ J1, LK. Further, order the indices so that
β1 ≤ β2 ≤ · · · ≤ βL. Minimize (1.2) under this setting.

Once again, all conditions outlined in Section 1 hold. It is easy to verify that
Hm(θ) = θ ∧ βm. The function

∑l

m=1 Hm is a piece-wise linear continuous function
passing through the origin with slope l in (−∞, β1), slope (l − 1) in (β1, β2), and so
on, and zero-slope in (βl,+∞). Clearly θl1 = 0, l ∈ J1, L − 1K. We assume that ΘL

1

exists which is equivalent to α ≤
∑L

m=1 βL. Yet again, Theorem 1 assures us that
Algorithm 1 is applicable.

An application of Algorithm 1 results in the following. Identify the unique k such
that α ∈ [ak, ak+1) where

ak := (L− k)βk +
k
∑

m=1

βm.

(It is easy to see that ak ≤ ak+1). Then

ΘL
1 =

α−
∑k

m=1 βm

L− k
.

Moreover, y∗m = Hm

(

ΘL
1

)

= βm for m ∈ J1, kK. For m = Jk + 1, LK, the values are
suitably lowered from their upper bounds. Note that this assignment is completed in
just one iteration of Algorithm 1.

4. Proofs.

4.1. Preliminaries. We first prove some facts on the individual cases.

Lemma 4.1. Suppose that in iteration n, the quantities θlin , l ∈ Jin, jn − 1K and

Θjn
in

exist. Suppose further that ξn = hjn(0) and Step 3(b) is executed. Then the
following hold.

• The quantities θlin+1
, l ∈ Jin+1, jn+1 − 1K and Θ

jn+1

in+1
exist.

• ξn ≥ ξn+1.

Proof: Given that ξn = hjn(0) and Step 3(b) is executed, we see that in+1 = in
and jn+1 = jn− 1. We may assume in+1 ≤ jn+1; otherwise there is nothing to prove.
Since the start pointer does not change and the end pointer decrements by 1, it is clear
that θlin+1

= θlin for l = Jin+1, jn+1 − 1K because θlin+1
and θlin are zeros of identical

functions for the indicated values of l.
The question of existence now reduces to that of only Θ

jn+1

in+1
(recall definition in

(2.6)). First observe that if Step 3(b) is executed, we must have ξn = hjn(0) > Θjn
in
,

and therefore

0 = h−1
jn

(hjn(0)) = h−1
jn

(ξn) ≥ Hjn (ξn) ≥ Hjn

(

Θjn
in

)

, (4.1)

10 A. PADAKANDLA AND R. SUNDARESAN

where the last inequality follows because Hjn is increasing. Consequently, we must
have

K
∑

m=in+1

αm =

K
∑

m=in

αm =

jn
∑

m=in

Hm

(

Θjn
in

) (

from definition of Θjn
in

)

=

jn−1
∑

m=in

Hm

(

Θjn
in

)

+Hjn

(

Θjn
in

)

≤

jn−1
∑

m=in

Hm

(

Θjn
in

)

+ 0 (from (4.1))

=

jn+1
∑

m=in+1

Hm

(

Θjn
in

)

.

So we may take θ = Θjn
in

in (2.4). On the lower side, we may simply use θ = h1(0).
However, we can find a tighter bound from the following sequence of inequalitites

jn+1
∑

m=in+1

Hm

(

θjn−1
in

)

=

jn−1
∑

m=in

Hm

(

θjn−1
in

)

=

jn−1
∑

m=in

αm

(

from definition of θjn−1
in

)

<

K
∑

m=in

αm (from (1.7))

=
K
∑

m=in+1

αm;

i.e., we may take θ = θjn−1
in

in (2.4). Θ
jn+1

in+1
therefore exists and

θjn−1
in

< Θ
jn+1

in+1
≤ Θjn

in
. (4.2)

This establishes the existence part of the Lemma.
To establish ξn ≥ ξn+1, we simply observe that ξn is at least as large as all the

candidates that determine ξn+1. Indeed, ξn = hjn(0) ≥ hjn−1(0) = hjn+1
(0). Next

ξn ≥ θlin = θlin+1
for l ∈ Jin+1, jn+1 − 1K, and finally, ξn > Θjn

in
≥ Θ

jn+1

in+1
by the right

side inequality of (4.2). This completes the proof of the lemma.

Lemma 4.2. Suppose that in iteration n, the quantities θlin , l ∈ Jin, jn − 1K and

Θjn
in

exist. Suppose further that ξn = θtin for some t ∈ Jin, jn − 1K, and Step 3(c) is
executed. Then the following hold.

• y∗m ∈ [0, βm],m ∈ Jin, tK.

•
∑l

m=in
y∗m ≥

∑l

m=in
αm, l ∈ Jin, tK, with equality when l = t.

• The quantities θlin+1
, l ∈ Jin+1, jn+1 − 1K and Θ

jn+1

in+1
exist.

• ξn ≥ ξn+1.

Proof: Note that in this case t is chosen to be the largest one in Jin, jn − 1K
that satisfies ξn = θtin . Step 3(c) is executed; therefore θtin ≥ hjn(0) ≥ hm(0) for
m = Jin, tK. The assignment for y∗m in the algorithm satisfies

y∗m = Hm

(

θtin
)

≥ Hm (hm(0)) = h−1
m (hm(0)) ∧ βm = 0 ∧ βm = 0.

CONVEX OPTIMIZATION WITH ASCENDING CONSTRAINTS 11

That y∗m ≤ βm is obvious from the definition of Hm. This proves the upper and lower
bound constraints on y∗m.

To show that the ascending constraints (with the sum starting from in) hold for
l = Jin, tK, observe that θtin ≥ θlin and the increasing property of Hm imply

l
∑

m=in

y∗m =
l
∑

m=in

Hm

(

θtin
)

≥
l
∑

m=in

Hm

(

θlin
)

=
l
∑

m=in

αm,

with equality when l = t.
We next consider existence of θlin+1

. Recall that in Step 3(c), in+1 = t + 1 and
jn+1 = jn. Fix l ∈ Jin+1, jn+1 − 1K. We simply set θ = h1(0) in (2.4). Moreover,

l
∑

m=in+1

αm =

l
∑

m=in

αm −

t
∑

m=in

αm

=

l
∑

m=in

Hm

(

θlin
)

−

t
∑

m=in

Hm

(

θtin
) (

from the definitions of θlin and θtin
)

≤
l
∑

m=in

Hm

(

θlin
)

−
t
∑

m=in

Hm

(

θlin
)

(because Hm is increasing)

=

l
∑

m=in+1

Hm

(

θlin
)

,

and therefore we may set θ = θlin in (2.4). θlin+1
therefore exists and

h1(0) ≤ θlin+1
≤ θlin . (4.3)

The same argument (mutatis mutandis to account for the sum of αm up to K) estab-

lishes the existence of Θ
jn+1

in+1
and that

h1(0) ≤ Θ
jn+1

in+1
≤ Θjn

in
. (4.4)

Finally, to show ξn ≥ ξn+1, observe that ξn ≥ hjn(0) = hjn+1
(0), ξn ≥ Θjn

in
≥ Θ

jn+1

in+1
,

and ξn ≥ θlin ≥ θlin+1
, l ∈ Jin+1, jn+1 − 1K. The last two facts follow from (4.4)

and (4.3). So ξn is at least as large as all the candidates that determine ξn+1, i.e.,
ξn ≥ ξn+1, and the proof is complete.

Lemma 4.3. Suppose that in iteration n, the quantities θlin , l ∈ Jin, jn − 1K and

Θjn
in

exist. Suppose further that ξn = Θjn
in
. Then the following hold.

• y∗m ∈ [0, βm],m ∈ Jin, jnK.

•
∑l

m=in
y∗m ≥

∑l

m=in
αm, l = Jin, jnK, with equality when l = jn.

Proof: Under the hypotheses, Step 3(a) is executed. The proofs of the statements
are identical to the proofs of the first two parts of Lemma 4.2 and is omitted.

Proposition 4.4. If θl1, l ∈ J1, L − 1K and ΘL
1 exist, the following statements

hold.
• For every iteration step n with in ≤ jn, the quantities Θjn

in
and θlin , l ∈

Jin, jn − 1K exist.

12 A. PADAKANDLA AND R. SUNDARESAN

• Algorithm 1 terminates in N ≤ L steps.
• The output y∗ of Algorithm 1 is feasible.
• ξ1 ≥ ξ2 ≥ · · · ≥ ξN .
• In iteration N , Step 3(a) is executed.

Proof: The key issue is the existence of θlin and Θjn
in

in Step 3 of each iteration.
The hypothesis of this Proposition resolves the issue for n = 1. Lemmas 4.1, 4.2,
and 4.3 resolve the issue for subsequent iterations via induction. The first statement
follows.

At least one variable is set in every iteration. The algorithm thus runs to com-
pletion in N ≤ L iterations, and the second statement holds.

The third and fourth statements also follow from Lemmas 4.1, 4.2, 4.3, and in-
duction.

We now argue that Step 3(a) is executed in the last iteration. If this is not the
case, the last iteration must be Step 3(b). This implies iN = jN and hjN (0) > ΘjN

jN
.

The latter inequality and the definition of ΘjN
jN

yield

K
∑

m=jN

αm = HjN

(

ΘjN
jN

)

≤ h−1
jN

(

ΘjN
jN

)

≤ h−1
jN

(hjN (0)) = 0

contradicting our assumption (1.7) that
∑K

m=L αm > 0.

4.2. Proof of Theorem 1. Proposition 4.4 implies the first two statements of
Theorem 1. We now proceed to show the optimality of y∗ to complete the proof of
Theorem 1.

We use the Karush-Kuhn-Tucker (KKT) conditions (see for example [1, Sec. 3.3])
to show that the vector put out by the algorithm is a stationary point of a Lagrangian
function with appropriately chosen Lagrange multipliers. The Lagrangian function for
the problem is

L
∑

m=1

gm(ym) +

L
∑

m=1

λ(1)
m (−ym) +

L
∑

m=1

λ(2)
m (ym − βm)

+

L−1
∑

l=1

λ
(3)
l

(

−

l
∑

m=1

ym +

l
∑

m=1

αm

)

+ µ

(

−

L
∑

m=1

ym +

K
∑

m=1

αm

)

(4.5)

where λ
(1)
m is the Lagrange multiplier that relaxes the positivity constraint −ym ≤ 0,

λ
(2)
m relaxes the upper bound constraint ym − βm ≤ 0, λ

(3)
m the ascending constraint

(1.4), and µ the equality constraint (1.5). The KKT necessary and sufficient conditions
for optimality of this convex optimization problem are given by:

λ(1)
m ym = 0,m = J1, LK (4.6)

λ(2)
m (ym − βm) = 0,m = J1, LK (4.7)

λ
(3)
l

(

l
∑

m=1

ym −

l
∑

m=1

αm

)

= 0, l = J1, L− 1K (4.8)

λ(1)
m ≥ 0, λ(2)

m ≥ 0, m = J1, LK, and λ
(3)
l ≥ 0, l = J1, L− 1K, (4.9)

hm(ym)− λ(1)
m + λ(2)

m −
L−1
∑

l=m

λ(3)
m − µ = 0,m = J1, LK. (4.10)

CONVEX OPTIMIZATION WITH ASCENDING CONSTRAINTS 13

Conditions (4.6), (4.7), and (4.8) are the complementary slackness conditions, (4.9) are
the positivity conditions, and (4.10) identifies a stationary point for the Lagrangian
function. We now choose appropriate values for the Lagrange multipliers and verify
the KKT conditions.

First, let

λ(1)
m =

{

ξpm
− ξN , if cm = B∗,

0, otherwise.
(4.11)

Recall that pm is the iteration number in which variable ym was set, and that cm = B∗

whenever Step 3(b) is executed, i.e., y∗m = 0. From the assignment in (4.11), λ
(1)
m 6= 0

implies that cm = B∗ and therefore y∗m = 0. Thus the complementary slackness
condition (4.6) is satisfied for m = J1, LK.

Second, let

λ(2)
m =

{

0, if cm = B∗,
ξpm
− hm (Hm (ξpm

)) , otherwise.
(4.12)

If λ
(2)
m 6= 0, then from (4.12) we have ξpm

6= hm (Hm (ξpm
)). From the strictly increas-

ing property of hm and the definition of Hm, we have

hm (Hm (ξpm
)) = hm

(

h−1
m (ξpm

) ∧ βm

)

= hm

(

h−1
m (ξpm

)
)

∧hm (βm) = ξpm
∧hm (βm) ,

(4.13)
so that hm (Hm (ξpm

)) 6= ξpm
implies that Hm (ξpm

) must have saturated to βm, i.e.,
y∗m = Hm (ξpm

) = βm. The complementary slackness conditions (4.7) are therefore
fulfilled.

Third, for l = J1, L− 1K let

λ
(3)
l =

{

ξpl
− ξpk

, if cl = C
∗,

0, otherwise,
(4.14)

where

pk := min {pm : m ∈ J1, LK, pm > pl, cm ∈ {C
∗,A∗}} . (4.15)

The last iteration is always via Step 3(a) (Proposition 4.4). Thus, when cl = C
∗,

there is a later iteration that executes Step 3(a) which implies that the set in (4.15) is

nonempty and that the assignment (4.14) is well-defined. Suppose λ
(3)
l 6= 0. Then cl =

C∗, an asterisked assignment. The second statement of Lemma 4.2 therefore ensures
that the ascending constraint is satisfied with equality for this l. The complementary
slackness condition (4.8) is thus fulfilled for l = J1, L− 1K.

The assignment of λ
(3)
l in (4.14) can be equivalently expressed as

λ
(3)
l =

{
∑pk−1

n=pl
ξn − ξn+1, if cl = C

∗,

0, otherwise,
(4.16)

where pk is given by (4.15). This will be useful in verifying (4.10).
Finally, we set µ = ξN .
The Lagrange multiplier assignments in (4.11), (4.12), and (4.14) are positive.

Indeed, the positivity in (4.11) and (4.14) follow from the monotonicity property

ξn ≥ ξn+1, n = J1, N − 1K (Proposition 4.4). The positivity of λ
(2)
m follows from

hm (Hm (ξpm
)) ≤ hm

(

h−1
m (ξpm

)
)

= ξpm
.

14 A. PADAKANDLA AND R. SUNDARESAN

All that remains is to verify (4.10). To do this, first consider m > jN . Then
the assignments y∗m = 0 and y∗l = 0, l = Jm + 1, L − 1K are via Step 3(b); therefore

ξpl
= hl(0) and cl = B

∗. The latter implies λ
(1)
m = ξpm

− ξN , λ
(2)
m = 0, and λ

(3)
l = 0

for l = Jm,L− 1K. Substitution of these assignments in (4.10) yields

hm(0)− λ(1)
m + λ(2)

m −
L−1
∑

l=m

λ
(3)
l − µ = ξpm

− (ξpm
− ξN) + 0− 0− ξN = 0.

Now consider m ∈ J1, jN K and pm < N , i.e., variable ym is not set in the last
iteration. Then cm ∈ {C, C

∗}, and thus cm 6= B
∗. Substitution of (4.11), (4.12), and

(4.14) in (4.10) yields

hm (y∗m)− λ(1)
m + λ(2)

m −
L−1
∑

l=m

λ
(3)
l − µ

= hm (Hm (ξpm
))− 0 + (ξpm

− hm (Hm (ξpm
)))−

L−1
∑

l=m

λ
(3)
l − ξN

= ξpm
− ξN −

L−1
∑

l=m

λ
(3)
l (4.17)

= ξpm
− ξN −

N−1
∑

n=pm

(ξn − ξn+1) (4.18)

= ξpm
− ξN − (ξpm

− ξN)

= 0.

In the above sequence of inequalities, (4.18) holds because of the following. In (4.17),
the summation over l has only one nonzero entry per iteration, i.e., whenever cl =
C∗. We may therefore sum over the iteration index n instead of the variable index
l. Iterations pm to N − 1 involve the execution of either Step 3(b) or Step 3(c).
Substitution of (4.16) in (4.17) then results in (4.18).

Lastly, consider m ∈ J1, jN K and pm = N , i.e., ym is assigned in the last iteration.
From Proposition 4.4, Step 3(a) is executed in this iteration, and therefore cm ∈
{A,A∗}. Then

hm (ym)− λ(1)
m + λ(2)

m −

L−1
∑

l=m

λ
(3)
l − µ

= hm (Hm (ξpm
))− 0 + (ξN − hm (Hm (ξpm

)))− 0− ξN = 0.

The output y∗ of Algorithm 1 and the Lagrange multiplier assignments satisfy
the KKT conditions; y∗ therefore minimizes (1.2), and the proof of Theorem 1 is
complete.

4.3. Proof of Corollary 2.1. The assignments in Algorithm 1 are

y∗m = Hm (ξpm
) ,m = J1, LK.

By hypothesis, Hm ≥ Hm+1,m ∈ J1, L − 1K, and by Proposition 4.4, ξn ≥ ξn+1, n ∈
J1, N − 1K. These monotonicity properties imply

y∗m = Hm (ξpm
) ≥ Hm+1 (ξpm

) ≥ Hm+1

(

ξpm+1

)

= y∗m+1,m ∈ J1, L− 1K.

CONVEX OPTIMIZATION WITH ASCENDING CONSTRAINTS 15

4.4. Proof of Proposition 2.2. : Recall that here K = L. Define

L(α) :=
{

y ∈ R
L : y satisfies (1.3)− (1.5)

}

.

L(α) is convex, but may not be closed because the domains (am, bm) may not be
closed. From the ascending constraints (1.4) and (1.5), it is clear that if α � α̃ then
L(α) ⊆ L (α̃), and therefore G(α) ≥ G (α̃). The first statement is therefore proved.
(Note that the conditions on gm,m ∈ J1, LK stated in Section 1 are not necessary for
this property).

To show convexity, consider α, α̃ ∈ R
L
+. Fix λ ∈ (0, 1). If either of L(α) or L (α̃)

is empty, there is nothing to prove. We may therefore assume both are nonempty
and therefore G(α) and G (α̃) are finite. For every ε > 0, there exist y ∈ L(α) and
ỹ ∈ L (α̃) satisfying G(y) < G(α) + ε and G (ỹ) < G (α̃) + ε. The linearity of the
constraints implies λy + (1 − λ)ỹ ∈ L (λα+ (1 − λ)α̃). The convexity of G implies

G (λα+ (1 − λ)α̃) ≤ G (λy + (1− λ)ỹ)

≤ λG(y) + (1− λ)G (ỹ)

≤ λG(α) + (1− λ)G (α̃) + ε.

Since ε is arbitrary, the convexity of G is established.

REFERENCES

[1] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific, 2003.
[2] P. Viswanath and V. Anantharam, “Optimal sequences for CDMA with colored noise: A schur-

saddle function property,” IEEE Trans. Inform. Theory, vol. IT-48, pp. 1295–1318, Jun.
2002.

[3] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications. New
York: Academic, 1979.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley &
Sons, 1991.

[5] L. Zacharias and R. Sundaresan, “Decentralized sequential change detection using physical layer
fusion,” Manuscript under preparation., Jul. 2007.

