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ON SOME PROPERTIES OF TRAVELING WATER WAVES WITH
VORTICITY∗

EUGEN VARVARUCA†

Abstract. We prove that for a large class of vorticity functions the crests of any corresponding
traveling gravity water wave of finite depth are necessarily points of maximal horizontal velocity.
We also show that for waves with nonpositive vorticity the pressure everywhere in the fluid is larger
than the atmospheric pressure. A related a priori estimate for waves with nonnegative vorticity is
also given.
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1. Introduction. In this article we consider the classical hydrodynamical prob-
lem concerning traveling two-dimensional gravity water waves with vorticity. This
problem has attracted considerable interest in recent years, starting with the system-
atic study of Constantin and Strauss [8] on periodic waves of finite depth.

The problem arises from the following physical situation. A wave of permanent
form moves with constant speed on the surface of an incompressible flow, the bottom
of the flow domain being horizontal. With respect to a frame of reference moving with
the speed of the wave, the flow is steady and occupies a fixed region Ω in the upper
half of the (x, y)-plane, which lies between the real axis B := {(x, 0) : x ∈ R} and some
a priori unknown free surface S := {(x, η(x)) : x ∈ R}, where η is a periodic function.
Since the fluid is incompressible, the flow can be described by a (relative) stream
function ψ which is periodic in the horizontal direction and satisfies the following
equations and boundary conditions:

Δψ = −γ(ψ) in Ω,(1.1a)

ψ = B on B,(1.1b)

ψ = 0 on S,(1.1c)

|∇ψ|2 + 2gy = Q on S,(1.1d)

ψy < 0 in Ω,(1.1e)

where B, g, and Q are positive constants. Equation (1.1a) involves a vorticity function
γ : [0, B] → R and expresses the fact that the vorticity of the flow ω := −Δψ and the
stream function ψ are functionally dependent. Equations (1.1b) and (1.1c) mean that
the bottom and the free surface are streamlines, while (1.1d) means that the pressure
at the surface of the flow is a constant. The relative velocity of the fluid particles
is given by (ψy,−ψx). The requirement (1.1e) means that the horizontal velocity of
each fluid particle is smaller than the speed of the wave and is motivated both by field
observations and by laboratory experiments; see [8] for references. It is customary [8]
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to assume that the constants g,B and the vorticity function γ are given. The problem
consists in determining the curves S for which there exists a function ψ in Ω which
satisfies (1.1a)–(1.1e) for some value of the parameter Q. For a full justification of
the equivalence between the problem of seeking solution triples (S, ψ,Q) of (1.1) and
that of seeking traveling-wave solutions of the two-dimensional Euler equations, the
reader is referred to [8].

When γ ≡ 0, the corresponding flow is called irrotational. Nowadays the mathe-
matical theory dealing with this situation contains a wealth of results, mostly obtained
during the last three decades, concerning the existence of large-amplitude solutions
and their properties. Global bifurcation theories were given for various types of waves
(periodic or solitary of finite depth; periodic of infinite depth) by Keady and Nor-
bury [14] and by Amick and Toland [1, 2]. Moreover, it was shown by Toland [20]
and McLeod [16] that in the closure of these continua of solutions there exist waves
with stagnation points at their crests, a stagnation point being one at which the
relative fluid velocity is zero, i.e., |∇ψ| = 0. The existence of such waves, called “ex-
treme waves,” was predicted by Stokes [18], who also conjectured that their profiles
necessarily have corners with included angle of 120◦ at the crests. This conjecture
was proved independently by Amick, Fraenkel, and Toland [3] and by Plotnikov [17].
Recently, the method of [3] was simplified and extended in [22].

On the other hand, when γ �≡ 0, the flow is called rotational or with vorticity, and
significant advances in the corresponding mathematical theory have been made only
in the last few years. The existence of global continua of smooth solutions was proved
by Constantin and Strauss [8] for the periodic finite depth problem, and by Hur [13]
for the related problem of periodic waves of infinite depth. For the solutions found in
[8, 13] the wave profiles have exactly one crest and one trough per minimal period,
are monotone between crests and troughs, and have a vertical axis of symmetry. (The
symmetry assumption is in fact not a restriction since, for any vorticity function, any
wave profile with the above monotonicity properties is necessarily symmetric [5, 11].)
Of particular significance is the fact that the continuum of solutions found in [8]
contains waves for which the values of maxΩ ψy are arbitrarily close to 0. Thus it
is natural to expect that, as in the irrotational case, waves with stagnation points,
referred to above as “extreme waves,” exist for many vorticity functions, and that
they can be obtained as limits, in a suitable sense, of certain sequences of regular
waves found in [8]. In the case of constant vorticity, numerical evidence [15, 19]
strongly points to the existence of extreme waves for any negative vorticity and for
small positive vorticity, and also indicates that, for large positive vorticity, continua of
solutions bifurcating from a line of trivial solutions develop into overhanging profiles
(a situation which is not possible in the irrotational case; see [23] for references) and
do not approach extreme waves. Further references to numerical investigations of
waves with vorticity can be found in [15].

One of the questions addressed in this article concerns the location of the points
at which the maximum over Ω of the relative horizontal velocity ψy is attained for
smooth waves with vorticity. In the irrotational case, the crests of the wave are the
only such points; see Toland [21]. Very recently, Constantin and Strauss [9, Theorem
4.1] showed that this is also the case for the waves in the continuum in [8] under
the assumption that γ is a nonpositive constant which satisfies a smallness condition
involving B and g. Here we prove, with a novel approach, a slightly weaker result
under substantially more general assumptions. Namely, for wave profiles with finitely
many local extrema on a period, if the vorticity function γ satisfies γ ≤ 0 and γ′ ≥ 0
everywhere on [0, B], then any point of maximal relative horizontal velocity must lie on
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the free surface and the crests are necessarily such points. An immediate consequence
of this result is that, whenever γ ≤ 0 and γ′ ≥ 0, the continuum of solutions in [8]
contains waves for which the values of |∇ψ| at their crests are arbitrarily close to 0.
Thus in this case the existence of waves with stagnation points at their crests is to be
particularly expected.

Another contribution of this article is that we establish some new a priori bounds
for waves corresponding to vorticity functions γ which do not change sign, without any
assumptions on γ′. When γ ≤ 0, the estimate in question means that the pressure
everywhere in the fluid is larger than the atmospheric pressure. This estimate is
the main ingredient in the proof of the previously mentioned result concerning the
location of the points where maxΩ ψy is attained. When γ ≥ 0, a slightly different,
but related, estimate is given. Both these estimates play an essential role in the
investigation in [24] concerning the existence of extreme waves with vorticity and the
Stokes conjecture.

The proofs here are based on simple applications of the maximum principle [12,
Chapters 2 and 3]. Analogous results to those of this article hold in the case of
periodic rotational waves of infinite depth. They will be presented, together with
some applications, in a subsequent article.

Of the many other directions in which the theory of traveling gravity water waves,
with or without vorticity, has seen recent progress and is currently being further
developed, we mention here only a few: variational formulations [7], stability [10],
and properties of the fluid particle trajectories [4, 6].

2. The main results. We always deal with classical solutions of (1.1), in the
sense that γ ∈ C1([0, B]), η ∈ C3(R), ψ ∈ C3(Ω). We assume that η is a periodic
function of minimal period 2L, and that ψ is 2L-periodic in the horizontal direction.
However, we do not assume that η has exactly one local maximum and one local
minimum per minimal period.

Let Γ̂ : [0, B] → R be given by

(2.1) Γ̂(s) =

∫ s

0

γ(t) dt for all s ∈ [0, B].

(Note that in [8] a function Γ is considered which is related to Γ̂ by Γ̂(s) = −Γ(−s).
The quantity of interest both here and there is Γ̂(ψ), which is denoted there by
−Γ(−ψ); we find our notation more convenient.) Let us also consider the function
R : Ω → R given by

(2.2) R =
1

2
|∇ψ|2 + gy − 1

2
Q + Γ̂(ψ).

The function R is (up to a constant) the negative of the pressure in the fluid domain;
see [8].

Our next result shows that when γ is everywhere nonpositive the pressure in the
fluid domain is larger than the atmospheric pressure.

Theorem 2.1. Suppose that γ(s) ≤ 0 for all s ∈ [0, B]. Then R ≤ 0 in Ω.
Remark 2.2. Under the much more restrictive assumptions that

γ ≤ 0, γ′ ≤ 0 and −ψy(x, 0)γ(B) ≥ −g for all x ∈ R,

the conclusion of Theorem 2.1 was previously obtained in [9, Example 3.1].
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The importance of the inequality R ≤ 0 in Ω in relation to the monotonicity of
ψy along the free surface S was first recognized for waves with vorticity by Constantin
and Strauss [9, Proposition 3.4]. We give here a slightly more general statement of
their result and a somewhat more direct proof.

Theorem 2.3. Let η : R → R be such that there exists N ∈ N and points x0 <
x1 < · · · < x2N = x0 + 2L with the property that η′(xj) = 0 for all j ∈ {0, . . . , 2N},
η is strictly increasing on [x2j , x2j+1] for all j ∈ {0, . . . , N − 1}, and η is strictly
decreasing on [x2j−1, x2j ] for all j ∈ {1, . . . , N}. Suppose that R ≤ 0 in Ω. Then the
function x 	→ ψy(x, η(x)) is increasing on [x2j , x2j+1] for all j ∈ {0, . . . , N − 1} and
decreasing on [x2j−1, x2j ] for all j ∈ {1, . . . , N}. Therefore, maxS ψy is attained at
the points of maximal height on S.

The preceding result leads with little effort to one concerning the location of the
points where maxΩ ψy is attained.

Theorem 2.4. Let η : R → R be as in Theorem 2.3. Suppose that γ(s) ≤ 0 and
γ′(s) ≥ 0 for all s ∈ [0, B]. Then any point at which maxΩ ψy is attained lies on S,
and the crests of the wave are necessarily such points.

Remark 2.5. For a more restrictive class of wave profiles and under the assump-
tion that γ is a nonpositive constant which satisfies

g2 ≥ 2g(−2Bγ3)1/2 − 2Bγ3,

Constantin and Strauss [9, Theorem 4.1] proved that the crests of the wave are the
only points at which maxΩ ψy is attained. This slightly stronger conclusion does not
seem to be readily obtainable by the methods used in the proof of Theorem 2.4.

The next result gives a new estimate in the case when γ is everywhere nonnegative,
which is in the same spirit as that of Theorem 2.1. Let us consider the function
T : Ω → R given by

(2.3) T := R−�ψ,

where R is given by (2.2) and

(2.4) � :=
1

2
max

s∈[0,B]
γ(s).

Theorem 2.6. Suppose that γ(s) ≥ 0 for all s ∈ [0, B]. Then T ≤ 0 in Ω.

3. Proofs of the main results. A simple calculation shows that, everywhere
in Ω,

Rx = ψyψxy − ψxψyy,(3.1a)

Ry = ψxψxy − ψyψxx + g,(3.1b)

and

(3.2) ΔR = 2ψ2
xy − 2ψxxψyy.

Proof of Theorem 2.1. Note that R = 0 everywhere on the free surface S. We
claim that the maximum of R over Ω must be attained on S.

Observe first that, since Ry = g > 0 everywhere on the bottom B, maxΩ R cannot
be attained anywhere on B.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1690 EUGEN VARVARUCA

Suppose now that maxΩ R is attained at some point A in Ω. Then necessarily

Rx(A) = 0, Ry(A) = 0, ΔR(A) ≤ 0.

It follows from this, (3.1), and (3.2) that

ψy(A)ψxy(A) = ψx(A)ψyy(A),(3.3a)

ψx(A)ψxy(A) < ψy(A)ψxx(A),(3.3b)

ψ2
xy(A) ≤ ψxx(A)ψyy(A).(3.3c)

Since (1.1e) holds, it follows that ψy(A) < 0. We now distinguish two cases, depending
on whether or not ψyy(A) = 0.

If ψyy(A) = 0, then (3.3a) implies that ψxy(A) = 0. It then follows from (3.3b)
that ψxx(A) < 0, and hence γ(ψ(A)) = −Δψ(A) > 0, which contradicts the assump-
tion that γ(s) ≤ 0 for all s ∈ [0, B].

If ψyy(A) �= 0, then it follows from (3.3a) and (3.3b) that

ψy(A)ψ2
xy(A)

ψyy(A)
< ψy(A)ψxx(A).

It then follows from this and (3.3c) that ψyy(A) < 0. We now deduce from (3.3c)
that ψxx(A) ≤ 0, and therefore γ(ψ(A)) = −Δψ(A) > 0, which again contradicts the
assumption that γ(s) ≤ 0 for all s ∈ [0, B].

We conclude that the maximum of R over Ω must be attained on S, which implies
that R ≤ 0 in Ω. This completes the proof of Theorem 2.1.

Proof of Theorem 2.3. The proof is based on a remarkable, though straightforward
to verify, identity observed by Toland [21] in the irrotational case and by Constantin
and Strauss [9] in the general case:

(3.4)
d

dx

[
1

2
ψ2
y(x, η(x))

]
= Rx(x, η(x)) for all x ∈ R.

Since R ≤ 0 in Ω and R = 0 on S, the required result concerning the monotonicity of
x 	→ ψy(x, η(x)) is immediate from (3.4). It follows that

(3.5) max
S

ψy = max
j∈{0,...,N−1}

ψy(x2j+1, η(x2j+1)).

But for every j ∈ {0, . . . , 2N}, ψx(xj , η(xj)) = 0 and therefore

ψy(xj , η(xj)) = −(Q− 2gη(xj))
1/2.

Hence maxS ψy is attained at the points of maximal height on S. This completes the
proof of Theorem 2.3.

Proof of Theorem 2.4. It follows from (1.1a) that

Δψy = −γ′(ψ)ψy in Ω.

Since ψy < 0 in Ω and γ′(s) ≥ 0 for all s ∈ [0, B], it follows immediately from the
maximum principle that maxΩ ψy cannot be attained anywhere in Ω.

We now show that maxΩ ψy cannot be attained anywhere on B either. This
is trivial when γ(B) < 0, since then ψyy = −γ(B) > 0 everywhere on B. When
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γ(B) = 0, we use a reflection argument. Let γ̃ : [0, 2B] → R be an extension of γ such
that γ̃(s) = −γ(2B − s) for all s ∈ (B, 2B]. Let ΩR be the reflection of Ω into B,

Ω̃ := Ω ∪ B ∪ ΩR,

and ψ̃ : Ω̃ → R be an extension of ψ such that ψ̃(x, y) = 2B − ψ(x,−y) for all

(x, y) ∈ ΩR. Then it is easily checked that γ̃ ∈ C1([0, 2B]), ψ̃ ∈ C3(Ω̃) and

Δψ̃ = −γ̃(ψ̃) in Ω̃.

Since ψ̃y < 0 in Ω̃ and γ̃′(s) ≥ 0 for all s ∈ [0, 2B], the maximum principle yields the
required result.

We conclude that maxΩ ψy can only be attained on S. Next note that, since
γ(s) ≤ 0 for all s ∈ [0, B], Theorem 2.1 shows that R ≤ 0 in Ω. An application of
Theorem 2.3 now yields that maxΩ ψy is attained at the crests of the wave. This
completes the proof of Theorem 2.4.

Proof of Theorem 2.6. Note first that Ty = g−�ψy > 0 everywhere on B, so that
the maximum of T over Ω cannot be attained anywhere on B.

Next note from (3.2) that

ΔR ≥ −1

2
γ2(ψ) in Ω.

Since

ΔT = ΔR + �γ(ψ),

it is immediate, upon using (2.4) and the assumption that γ(s) ≥ 0 for all s ∈ [0, B],
that T is a subharmonic function in Ω. Therefore, the maximum of T over Ω cannot
be attained anywhere in Ω.

We conclude that maxΩ T must be attained somewhere on S. Since T = 0
everywhere on S, it follows that T ≤ 0 in Ω. This completes the proof of Theorem
2.6.

Acknowledgments. I am grateful to John Toland and Markus Lilli for many
useful discussions, and to the anonymous referees for suggestions which helped improve
the presentation.

REFERENCES

[1] C. J. Amick and J. F. Toland, On solitary water-waves of finite amplitude, Arch. Rational
Mech. Anal., 76 (1981), pp. 9–95.

[2] C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary
waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A, 303 (1981), pp. 633–
669.

[3] C. J. Amick, L. E. Fraenkel, and J. F. Toland, On the Stokes conjecture for the wave of
extreme form, Acta Math., 148 (1982), pp. 193–214.

[4] A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006),
pp. 523–535.

[5] A. Constantin, M. Ehrnström, and E. Wahlèn, Symmetry of steady periodic gravity water
waves with vorticity, Duke Math. J., 3 (2007), pp. 591–603.

[6] A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer.
Math. Soc., 44 (2007), pp. 423–431.

[7] A. Constantin, D. Sattinger, and W. Strauss, Variational formulations for steady water
waves with vorticity, J. Fluid Mech., 548 (2006), pp. 151–163.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1692 EUGEN VARVARUCA

[8] A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm.
Pure Appl. Math., 57 (2004), pp. 481–527.

[9] A. Constantin and W. Strauss, Rotational steady water waves near stagnation, Philos.
Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), pp. 2227–2239.

[10] A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity,
Comm. Pure Appl. Math., 60 (2007), pp. 911–950.

[11] M. Ehrnström, Deep-water waves with vorticity: Symmetry and rotational behaviour, Discrete
Contin. Dyn. Syst., 19 (2007), pp. 483–491.

[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
2nd ed., Springer-Verlag, Berlin, 1983.

[13] V. M. Hur, Global bifurcation theory of deep-water waves with vorticity, SIAM J. Math. Anal.,
37 (2006), pp. 1482–1521.

[14] G. Keady and J. Norbury, On the existence theory for irrotational water waves, Math. Proc.
Camb. Philos. Soc., 83 (1978), pp. 137–157.

[15] J. Ko and W. Strauss, Large-amplitude steady rotational water waves, Eur. J. Mech. B Fluids,
to appear.

[16] J. B. McLeod, The Stokes and Krasovskii conjectures for the wave of greatest height, Stud.
Appl. Math., 98 (1997), pp. 311–334. (In preprint form: Univ. of Wisconsin MRC Report
no. 2041, 1979).

[17] P. I. Plotnikov, Proof of the Stokes conjecture in the theory of surface waves, Dinamika
Splosh. Sredy, No. 57 (1982), pp. 41–76 (in Russian). English translation: Stud. Appl.
Math., 108 (2002), pp. 217–244.

[18] G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves
which can be propagated without change of form, in Math. and Phys. Papers I, Cambridge
University Press, Cambridge, 1880, pp. 225–228.

[19] A. F. Teles da Silva and D. H. Peregerine, Steep, steady surface waves on water of finite
depth with constant vorticity, J. Fluid Mech., 195 (1988), pp. 281–302.

[20] J. F. Toland, On the existence of a wave of greatest height and Stokes’s conjecture, Proc.
Roy. Soc. London Ser. A, 363 (1978), pp. 469–485.

[21] J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), pp. 1–48; Errata, 8
(1996), pp. 412–414.

[22] E. Varvaruca, Singularities of Bernoulli free boundaries, Comm. Partial Differential Equa-
tions, 31 (2006), pp. 1451–1477.

[23] E. Varvaruca, Bernoulli free-boundary problems in strip-like domains and a property of per-
manent waves on water of finite depth, Proc. Roy. Soc. Edinburgh Sect. A, to appear; also
available online at http://arXiv.org/abs/0708.4371.

[24] E. Varvaruca, On the existence of extreme waves and the Stokes conjecture with vorticity,
submitted; also available online at http://arXiv.org/abs/0707.2224.


