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Abstract. A BDDC (balancing domain decomposition by constraints) method is developed for
elliptic equations, with discontinuous coefficients, discretized by mortar finite element methods for
geometrically nonconforming partitions in both two and three space dimensions. The coarse compo-
nent of the preconditioner is defined in terms of one mortar constraint for each edge/face, which is
the intersection of the boundaries of a pair of subdomains. A condition number bound of the form
C max;{(1 + log(H;/h;))?} is established under certain assumptions on the geometrically noncon-
forming subdomain partition in the three-dimensional case. Here H; and h; are the subdomain di-
ameters and the mesh sizes, respectively. In the geometrically conforming case and the geometrically
nonconforming cases in two dimensions, no assumptions on the subdomain partition are required.
This BDDC preconditioner is also shown to be closely related to the Neumann—Dirichlet version of
the FETI-DP algorithm. The results are illustrated by numerical experiments which confirm the
theoretical results.
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1. Introduction. This study concerns a scalable BDDC (balancing domain de-
composition by constraints) method for solving linear systems arising from mortar fi-
nite element discretizations of elliptic problems with discontinuous coefficients. BDDC
methods were first introduced by Dohrmann [5] as an alternative to and an improve-
ment of the balancing Neumann—Neumann methods. These more recent methods use
different and more flexible coarse finite element spaces which lead to sparser linear
systems. Additionally, as in the dual-primal finite element tearing and interconnect-
ing (FETI-DP) methods, all linear systems actually solved have symmetric, positive
definite coefficient matrices.

The coarse basis functions are related to a relatively small set of continuity con-
straints, across the interface between the subdomains, which are enforced throughout
the iteration. In the standard, conforming finite element case, these constraints are
given in terms of common values at subdomain vertices and/or common values of av-
erages computed over subdomain edges and/or faces. We will refer to these as primal
constraints and the corresponding subspace as the primal space of displacements. We
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note that the theory (and practice) of BDDC methods for conforming finite elements
is by now quite well developed; see [23, 26, 25].

In a FETI-DP method, a linear system, formulated for a set of Lagrange mul-
tipliers, is solved after eliminating the displacement variables. The resulting linear
system, in itself, contains a coarse problem, which also is directly related to the primal
constraints discussed above, i.e., they are given by matching conditions on averages
over edges/faces and/or by enforcing continuity of the solutions at vertices. Its pre-
conditioner, on the other hand, is built only from subdomain problems, while for a
BDDC method a linear system in the original degrees of freedom is solved in an iter-
ation with a preconditioner that has both coarse and subdomain components. This
appears to provide the BDDC methods with more flexibility, e.g., in allowing for the
use of inexact coarse problems. Thus, for standard finite element problems an inexact
coarse problem can be introduced by applying the BDDC method recursively to the
coarse problem; see Tu [30, 29] and a recent conference paper by Mandel, Sousedik,
and Dohrmann [27]. The use of inexact local problems for the BDDC preconditioners
has also been considered by Li and Widlund [24]. We also note that Klawonn and
Rheinbach [17] have developed and extensively tested algorithms which use inexact
solvers for the coarse problem of FETI-DP methods.

There are a number of articles on solving the algebraic problems given by the mor-
tar discretizations considered in this paper; see [32] and the literature cited therein.
Most of them concern the simpler case of geometrically conforming partitioning of
the original region ; see, however, Achdou, Maday, and Widlund [1], where some
iterative substructuring methods are developed and analyzed for problems in two di-
mensions in the geometrically nonconforming case, and Kim and Widlund [13], where
an additive Schwarz method with overlap is designed and analyzed. Among the pa-
pers on the geometrically conforming case that are related to this paper, we mention
[14, 12], where a Neumann-Dirichlet version of a FETI-DP method is analyzed. In [6],
a FETI-DP method is considered, which is a generalization of a variant known for the
standard conforming discretization. To the best of our knowledge, BDDC methods
for the mortar discretization have not previously been discussed in the literature even
for the geometrically conforming case.

A condition number bound of the form C(1 + log(H/h))? was first given for the
BDDC operator by Mandel and Dohrmann [26] for a standard conforming discretiza-
tion. This bound is of the same quality as the FETI-DP methods. In fact, the BDDC
methods have been shown to be closely related to the FETI-DP methods. Thus, Man-
del, Dohrmann, and Tezaur [25] have shown that the eigenvalues of the FETI-DP and
BDDC operators are the same except possibly for eigenvalues equal to 0 and 1. More
recently, a new formulation of the BDDC method was given by Li and Widlund [23].
They introduced a change of variables as well as an average operator for the BDDC
method closely related to the jump operator used in [19] in the analysis of FETI-DP
methods. The change of variables greatly simplifies the analysis; it has also led to
a successful and robust implementation of FETI-DP methods; see [16, 18]. We note
that the idea of changing the variables for FETI-DP algorithms was discussed already
in [20]. We also note that FETI-DP algorithms have also been implemented using
enough point constraints to assure that there are no floating subdomains. In addition,
optional admissible primal constraints (e.g., averages over edges or faces) are added to
enhance the rate of convergence of the iterations; see [9]. These constraints are then
handled by a separate set of Lagrange multipliers. We note that in our context, we
often have no point constraints, and therefore this second approach cannot be used.

In this paper, we will describe a BDDC method for mortar discretizations, after
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a brief introduction to mortar methods. We will use a change of variables, as in
[23] and Klawonn and Widlund [21], which is related to the primal constraints over
edges/faces. We will consider quite general geometrically nonconforming partitions,
i.e., we will not make any assumptions that the intersection of the boundaries of a
pair of subdomains is a full face, edge, or a subdomain vertex.

We will work with mortar methods without any continuity constraints at sub-
domain vertices. Our results are valid for the traditional mortar methods as well as
the dual basis mortar methods first introduced by Wohlmuth [31, 32]. We propose a
preconditioner with a certain matrix of weights D and obtain the condition number
bound, C'max; {(1+ log(H;/h;))*}, under some assumptions on the geometrically
nonconforming subdomain partition in three dimensions. When the algorithm is ap-
plied to a geometrically conforming partition in three dimensions or a geometrically
nonconforming partition in two dimensions, we obtain the same bound without any
assumption on the partition. The subdomain partition can have interfaces that are
narrow faces and our bounds can be established for such quite general cases. Section 4
is devoted to proving our condition number bound in terms of a bound of an average
operator Fp in an appropriate norm.

In section 5, we show that our BDDC preconditioner is closely connected to
the Neumann-Dirichlet preconditioner for the FETI-DP methods given in [14, 12].
Connections are established between the average and jump operators, and the spectra
of the BDDC and FETI-DP methods are then shown to be the same except possibly
for an eigenvalue equal to 1.

Results of numerical experiments are reported in the final section and show that
the FETI-DP and BDDC methods perform well and very similarly when the same set
of primal constraints is selected.

Throughout this paper, C' denotes a generic constant that depends neither on the
mesh parameters nor on the coefficients of the elliptic problems.

We note that this paper originated from two projects developed separately by
the first and second authors; the contribution of the third began with a suggestion
that a theory could be developed for the geometrically nonconforming case using tools
similar to those of [23].

2. Finite element spaces and mortar matching constraints.

2.1. A model problem and the mortar methods. We consider a model
elliptic problem in a polygonal/polyhedral domain  C R? (R?): find u € HZ(£2) such
that

(2.1) /Qp(x)Vu(x) -Vo(z)de = /Q f(x)v(z)dz Yo € HY(Q),

where p(z) > po > 0 and f(x) € L?(Q).
We partition  into disjoint polygonal/polyhedral subdomains

N
a-Ja.
=1

As previously noted, the partition can be geometrically nonconforming; see further

discussion below. We assume that p(z) = p;, = € Q; for some positive constant p;.
We denote by X; the P;-conforming finite element space on a quasi-uniform tri-

angulation of the subdomain §2;. The finite element meshes typically do not align
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across subdomain interfaces. The trace space of X; on 02; is denoted by W;. We will
use the product spaces

For functions in these spaces, we will impose mortar matching conditions across the
interfaces using suitable spaces of Lagrange multipliers. Some of these matching
conditions will be enforced throughout the iteration; they are directly related to the
primal subspace.

In a geometrically nonconforming partition, the intersection of the boundaries of
neighboring subdomains may be only part of an edge/face of a subdomain. We define
the entire interface by

r={{Jounoo, |\ oo

)

Among the subdomain edges/faces, we select nonmortar (slave) edges/faces F; such
that

UFIZF, FENF, =0, 1+#Ek;
!

see Figure 1 for an example of the selection of the nonmortar edges. For the case
when p(z) are very different across the interface, it is beneficial to select the part with
smaller p; as the nonmortar; see Assumption 4.2.

Since the subdomain partition can be geometrically nonconforming, a single non-
mortar edge/face F; C 9€); may intersect the boundaries of several other subdomains
Q;. This provides F; with a partition

Fl = UFZ'J', Fij = 891 N an;
J
see Figure 1 for the mortar counter parts of the nonmortar edge Fj. A dual or standard

Lagrange multiplier space M (F}) is introduced for each nonmortar edge/face F;. We
require M (F}) to have the same dimension as the space

(2.2) W(F) = Wilg 0 HL(F),

1 || e—

Fic. 1. Nonmortar edges (black) and mortar edges (white) in a geometrically nonconforming
partition.
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that it is nonempty, and that it contains the constants. Constructions of such La-
grange multiplier spaces are given in [2, 3] using standard Lagrange multiplier spaces,
and in [31, 32] using dual Lagrange multiplier spaces; see also [11].

For (wi,...,wy) € W, w; € W;, we define ¢, € L?(F}) by ¢ = w; on Fy; C
F;. The mortar matching condition for the geometrically nonconforming partition is
given by

(2.3) /F (wi — é)Ads = 0 VA € M(F), VF,.

The mortar finite element method for problem (2.1) amounts to approximating the
solution of the continuous problem by a Galerkin method using the mortar finite
element space

X :={v € X : v|r satisfies the mortar matching condition (2.3)},

where v|r is the restriction of v to the interface I'. We introduce the space W as the
restriction of X to I,

W::{w:w:MvainX}.

2.2. Finite element spaces and a change of variables. In this subsection,
we introduce a change of variables for some of the unknowns in the space W. It
is based on the primal constraints that will be specified for our BDDC method. In
mortar discretizations, we may consider the following sets of primal constraints: vertex
constraints; vertex and edge average constraints, or edge average constraints only, for
two dimensions; and vertex constraints and face average constraints, or face average
constraints only, for three dimensions. We note that vertex constraints are appropriate
only for the first generation of the mortar methods, in which case the subdomain
vertex values are constrained to be continuous. In order to reduce the number of
primal constraints, we can also select only some edges/faces as primal. Such choices
have been considered for the FETI-DP methods and conforming finite elements in
[21], and for mortar finite elements in [15].

In our BDDC formulation, we will select primal constraints over edges/faces from
the set of mortar matching constraints (2.3). We consider {\;; i } «, the basis functions
of M(F;) that are supported in Fij C F,, and define

(2.4) Aij = Z Aij -
k

We assume that at least one such basis function \;; ;; exists for each Fj;.
We now introduce one primal constraint over each interface F;; C F; and for all
edges/faces Fj,

(25) / (wi - wj)/\ij ds = 0,
Fij
and define
(2.6) W= {w € W : w satisfies the primal constraints (2.5)}.
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We note that W ¢ W C W, where W is the restriction of X to I'. For the case
of a geometrically conforming partition, i.e., when each Fj; is a full edge/face of
two subdomains, these constraints are edge/face average matching conditions because
Aij = 1. In addition to these constraints, vertex constraints can be considered but
only if the partition is geometrically conforming.

Throughout this paper, we use hats for functions and function spaces that satisfy
all of the mortar matching conditions. We use tildes for functions and function spaces
that satisfy only the primal constraints across the subdomain interface.

Following Li and Widlund [23], we now introduce a change of variables based on
the primal constraints. We provide details for the two-dimensional case but note that
this approach can be extended to the three-dimensional case without any difficulty.

We recall that F; C 0€);, denoted from now on by F, is a nonmortar edge/face and
that {Fj;}; is a partition of F' given by F;; = F N9Q;, a mortar edge/face of ;. We
denote by {Uk}ﬁzl the values of the unknowns of w; € W; at the nodes on Fj;, with
nodal basis functions that are supported in Fij, and by {ny},_, the other unknowns
on F;;. We will now define a transformation that retains the unknowns {n;},_, and
changes {vg}£_, into {&}E_, as follows: we pick one unknown &, among {&,}E_,
and build a transformation TF,; so that

n B n B fFij U}l/\l] ds
(2.7) (U> =Tp,, <5> , bm = 7&” o ds

Here 7, v, and & denote vectors of the unknowns {nx}7_,, {vr}f_,, and {&}5_ 4,
respectively.

Let

. fFij (bnk )‘ij ds

A B fFij (bvk /\ij dS
Ne — fFij )\1] ds ’

Ay, = ;
k fFij )\ij ds

where ¢, and ¢,, are the nodal basis functions of the unknowns 7, and vy, respec-
tively. To make the presentation simpler, we assume that p = 2, but what follows can
be generalized to any p. We will use the following transformation TF,,:

- - 1 0 0 0 0 0 0
72 72 o 1 0 - 0 0 0 e 0
V1 & o o 1 - 0 A 0 -0

Vm—1 | = TF”- ¢m—1l=10 0 O --- 1 A 0 -0
Um &m cr ¢ 1o Tme1 A T oo TL

U1 Emit O 0 0 -~ 0 A 1 - 0
L 139 o0 0 -~ 0 A 0 - 1
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0

0 m

1 n2
T ) 51
2 : .
&1 :
: gmfl
b [ =Al | ent ||,
fm—i—l ' :
97 :

: L

1

where

Co=cim +camo+11& + 4 Tme1Emet + Tms1Emar + - + TLEL
and
n sy A a
- L . 1— ) - - )
Eé:l A'Uk A A

Um Um

We can then see that this transformation satisfies the (2.7) requirement. The trans-
formation TF,; can be applied to each face Fi; C F' independently, since it does not
change any nodal values other than {vg}£_,, which are associated with the unknowns
of the nodes interior to Fj;.

On the other side, the mortar side, of the interface Fj;, ie., Fj; C 09;, we
perform a change of basis to the unknowns in finite element space W;. In this case,
we introduce another set of unknowns {v;}{_, and {n}%_,. The unknowns {v;}{_,
are related to the nodes on F;; with nodal basis functions, which belong to W; and are
supported in F;;. The unknowns {n;}},_, are the remaining unknowns on Fj;. The
transformation T, is then defined for these unknowns similarly as for a nonmortar
interface.

Using the transforms TF,;, we represent the Schur complement of the local stiffness
and the mortar matching matrices, and the local force vector in the space of the new
unknowns by

k # m.

Um

N . . . . Nt
TO'SOTE  pOTH 66,

Here S is the reduced matrix obtained after eliminating all variables associated with
only the subdomain €;, and T() designates the transform of the original unknowns
into the new unknowns of the subdomain boundary 9<2;. In the following, we will use
the same notation, SV, B() and ¢!, for the matrices and vectors obtained after the
change of unknowns, to simplify the notation. We will also use the notation W; for
the space of the new unknowns.

The unknowns &,,, in (2.7), representing certain weighted averages over the edges,
are the primal variables. Using the new variables, the space W, defined in (2.6), can
be represented as

(2.8) W =Wa @ W,
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where Wa consists of the vectors of unknowns which are not primal unknowns, and
W consists of the vectors of global, primal unknowns.

We now derive the matrix representation of the mortar matching condition (2.3) in
the space W of the new unknowns. The mortar matching condition (2.3) is redundant
when enforced for the functions in the space W. We recall that {Nijk}x are the
Lagrange multiplier basis elements supported in F;;. To make the mortar matching
condition nonredundant, we eliminate one basis element among {)\ij, i} for each Fi; C
F}, and we denote the reduced Lagrange multiplier space by M (F}). The entire
nonredundant Lagrange multiplier space is then defined as

M = [[M(F).
l

The remaining nonprimal, mortar matching conditions of (2.3) are enforced using the
reduced space M (F}). In matrix form, this can be written as

(2.9) Bawa + Bnwp = 0.
The space Wa can be split into
Wa =Wan®Wa m,

where n and m denote unknowns in the interior of the nonmortar edges/faces and
the remaining unknowns, respectively. The mortar matching conditions can then be
written as

(2.10) B,w, + Bw,, + Bnwn = 0.

Since these equations are obtained using only the nonredundant Lagrange multiplier
space M, the matrix B,, is invertible.

After a symmetric permutation, we can write the local Schur complement and
the local Schur complement vector as

g — S(AZ)A SX%I (i) _ gX)
Tl @ ) 9T\ 0]
Stna St 9n

and define a partially subassembled matrix and two vectors by

)

g
(2.11) S = (SAA SAH) ga = : g = i\f: R(i)tg(i)
' B ’ - ’ - n 91 >
Sna S (N) i=1
N
where
SAn = diagi]\il (SX)A) ,
_ Nt o Nt (N ot

N
)t o i
Sun =3 RO SGLRY.
i=1

Here Rg) is the restriction of the global primal unknowns to the subdomain primal
unknowns. The matrix S is central to the description of our BDDC algorithm.
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3. A BDDC method for the mortar discretizations. In this section, we
will define a BDDC operator for the discrete elliptic problem described in section 2.1.
We consider the same finite element space and subdomain partition as in section 2.1
and, as in section 2.2, we will work with the unknowns obtained after the change of
variables.

Since the matrix B, of (2.10) is invertible, we can solve for wy,,

wy, = —B;l(Bmwm + Briwr).

We next define the matrix

-B;'B,, —B,'Bn

(3.1) Rp = I 0 :
0 I

t

which maps (w!,, w})? into a vector (w, w!,, wk)! that satisfies the mortar matching

condition (2.10). The mortar finite element space of section 2.1 can then be charac-
terized as

—

W = {w cW - (Wy,, Wi, wrp) satisfies (2.10)}.

In the BDDC method, we work with the following discrete problem:

3.2 RLSRr (™) = RL (™),
(32) e () = i (4
where g,,, is the component of the vector ga in (2.11) not related to the nonmortar

part.
Let us now define, with Rp given by (3.1),

Dnn
(33) RDJ_‘ - DRF = Dmm RF7
Dnn

where the scaling matrices are selected to be

(3.4) Dy =0, Dpm=1, Dpn=1.
We now propose the following preconditioner:

(3.5) M~'=RL .S 'Rpr

for problem (3.2). Using the block Cholesky decomposition of S as in Li and Wid-
lund [23], we have

o Sxhn O -
St = ( AA >+fome11sz,

0 O
where
ram = 3~ (R (i - S5 )
o= 3 () (s) s
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Here RS) . Wi — Wr(f) is the restriction of the global primal variables to those of
the subdomain ;, and R}; : Wi — Wa @ Wy and (RX))t : WX) — Wa® Wi provide
extensions by zero. The columns of the matrix ¥ are coarse basis functions of minimal
energy with the value 1 at one of the primal unknowns and vanishing at the other
primal unknowns; see [5].

The BDDC operator of the problem, given in (3.2), with the preconditioner M 1,
given in (3.5), is then given by

(3.6) Bppc = R, 1S'RprRESRr.

4. Condition number analysis using a bound on Ep. In this section, we
will estimate the condition number of the BDDC operator by using the approach
introduced in [22]. A bound for the average operator Ep in the S-norm is central in the
analysis; see below. For definitions of Rr and Rp r, see (3.1) and (3.3), respectively.
The operator Ep is defined by

(4.1) Ep = RrRp r.
In the following, we will show that the weight matrix D has been chosen so that

(P1) RiRpr = RppRr =1,
H\?
(P2) |EDw|% < C’mzax { <1 + logh—Z) } |w|2§

Here |w|?§ — (Sw,w). We then consider

Rt RD r W — _Bqtn(Bqtl)_annzn + Dmmwm
r ’ wr1 _B{‘I(Bfl)iannzn + DHHwH ’

where
Zn = —B;l(Bmwm + Bpwn).

We recall the scaling factors of the weight matrix D in (3.4) and we can easily see
that these weights give the (P1) property.
Remark 4.1. The weights above lead to an operator Ep of the form

Wh, —B;l(Bmwm + BHwH)
Ep|wn | = W
wrr wrr

In contrast to the case of conforming finite elements, this does not involve any aver-
aging across the interface. We will still call Ep the average operator, borrowing the
name from the conforming case.

We will now show that the average operator Ep satisfies the (P2) property for the
weight matrix D just given. As a preparation, we need to establish an estimate for
the mortar projection of a function w in W in the HSéQ(F)—norm. For an edge/face

F C 0%, the space Héé *(F) consists of the functions for which the zero extension to
the whole boundary 9€2; belongs to the Sobolev space H'/? (09;). It is equipped with
the norm

|w(z)|?

2 _ 2
||wHHé[§2(F) = |w|H1/2(F) + - 7d1bt($,aF) dS(CE)
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This norm has the well-known property that
(4.2) clw] g2 90,y < HWHH%?(F) < Clwlgr2a0,)

where w is the zero extension of w to 9€; \ F’; see [10, Lemma 1.3.2.6].

We recall that a nonmortar edge/face F' of 9Q; is a union of mortar interfaces Fj;
common to 0€; and 0€2;. We recall that ¢ is a function defined on F' with ¢ = w;
on each Fj; C F, and with w; € W}, the finite element space provided for 9€2;. We
then have ¢ € H'/27¢(F) for any ¢ > 0. Because of the slightly weaker regularity of
the function ¢, caused by the geometrically nonconforming partition, we have some
difficulty obtaining the condition number bound with only two logarithmic factors
for geometrically nonconforming partitions in three dimensions. We will overcome
this difficulty by using an additional finite element space for the interface F;; and
an L2-projection onto this space. This will result in a condition number bound with
two logarithmic factors under some assumptions on the geometry of the subdomain
partition; see Assumption 4.3 below.

We also need the following assumption on the coefficients of the elliptic problem.
We note that this assumption basically reflects a weakness of the mortar methods in
the case of geometrically nonconforming partitions.

ASSUMPTION 4.2. The coefficients satisfy

pi < Cpj,

where Q; and §1; correspond to the nonmortar and mortar side of the common set
Fi; = 0Q; N 0KY;, respectively.
We also will use the following assumption.
ASSUMPTION 4.3. A geometrically nonconforming partition {;}; in three di-
mensions satisfies the following three assumptions.
1. The subdomains are polytopes.
2. A quasi-uniform triangulation, with a mesh size comparable to h;, is possible
for the interface Fj;.
3. Any subdomain has a diameter comparable to those of its neighbors.

We recall that the finite element space I/f/’(F)7 given in (2.2), and a Lagrange
multiplier space M (F') are provided for the nonmortar edge/face F. We now define
the mortar projection.

DEFINITION 4.4. The mortar projection mp : L?(F) — I/(IJ/'(F) of the nonmortar
edge/face F' is defined by

/ (v—mp(W)Ads =0 VA e M(F).
F

This mortar projection has been shown to be stable in the L?- and Héf—norms in
[3, 2, 32].

LEMMA 4.5. Under Assumptions 4.2 and 4.3 and with w = (w1, ...,wy) € /VI7,
we have

H\?
pillTr(é — wi)HiISéQ(F) <C <1 + logh—i) Z( )<S(k)wk7U1k>.
kEI(F

Here F' C 0%); is an edge/face, ¢ = w; on Fy; C F, and I(F) is the set of indices of
the subdomains with boundaries that intersect F.
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Proof. We will prove the result for a geometrically nonconforming partition in
three dimensions under Assumption 4.3. In the case of a geometrically conforming
partition in three dimensions and for any partition in two dimensions, the same result
can be obtained straightforwardly without any assumption on the partition.

For each interface Fj;, we define a characteristic function x;; € L*(F) with the
value 1 on Fj; and the value 0 on F'\ Fj;. In addition, we introduce a quasi-uniform
finite element space U(Fj;) on the interface F;; with a mesh size comparable to h;,
that of the finite element space W; of the subdomain €2; of the nonmortar side. The
L?-projection onto U(Fj;) is denoted by @;; and it satisfies the following properties
(see [4, Chapter I1]: Vw € HY/2(F;)):

43)  lw = Qijwlap,) < Chilwlips g,y Qi (s, < Cllwllkiz g,
where the L2-term in the H'/?-norm is scaled by 1/|Fj;|. Here |F};| is the diameter

of Ej .
Then, on F|, consider

w; — ¢ = ZXij(wi — wy)
B sz‘j ((wi = ¢ij) = (wj — ¢ij)) -

Here ¢;; denotes the common average value of w; and w; defined by

o fFij ’LUZ/\” ds B fFij wj/\ij ds
ij = fFi]‘ Aij ds B fFij Xijds

where \;; are defined in (2.4); ¢;; is closely related to the primal mortar matching
condition (2.5).
It suffices to show that

H\>
(4.4) 7 (xij (w; — Cij))llfqééz(m <C (1 + log h_l-) [w; 1572 (00,):

and to give a similar estimate for w;—c;;. We will prove (4.4) but leave out the estimate

for w; — ¢5, which is quite similar. The required estimate then follows from Assump-

tion 4.2 and the fact that |wj|§{1/2(aﬂj) is spectrally equivalent to (1/p;)(SWw;,w;).
Let

Z = Wj — Cij.
We decompose Q;;(z) into
(4.5) Qij(2) = Ir,; (Qij (2)) + Lok, (Qij(2)),

where the first term is equal to Q;;(z) at all interior nodal points of F;; and vanishes
on OF;; while the second term is equal to Q;;(z) at the nodal points of 0F;; and
vanishes at the remaining nodal points of Fj;. We have

s — e N2 _ 2
7 r (x5 (w; CU))HH%%F) = HWF(XUZ)||H362(F)
< 2||mr (x5 (2 — Qz‘j(z)))Hi,ééz(F)
(4.6) + 2H7TF(XijQz'j(Z))Hi,éézm-
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The first term above is estimated by

e (xi (2 — Qij(z)))Hi,émF) < Chi Y (2 = Qij ()72
=Ch; Yz - Qij(z)H%?(Fij)
< O|Z|§11/2(FU)
(4.7) < Clwjlgi/2a0,)-

We have used an inverse inequality, the L2-stability of 7, and the properties of Q;;(2)
given in (4.3).

There remains for us to estimate the second term of (4.6). By Assumption 4.3, the
subdomain interfaces F;; are polygonal regions. For a geometrically nonconforming
partition, the area of the interface F;; might be comparable to that of F}, the face of
) such that F; N 0SY; = Fjj. In the other case, when Fj; is only a small part of Fj,
it could be a narrow strip, e.g., [0, H] x [0,d], or a rectangular region with its area
comparable to [0,0] x [0, d], where 0 is comparable to the mesh size h.

We will first consider the second term in (4.6) when the area of the interface Fj;
is comparable to that of Fj. Using (4.5), we have

IIWF(XijQij(Z))llzégz(F) = |7r(xii (I, Qij (2) + IaFijQij(Z)))||i,ééz(F)
< € (M (Qu N 2073 o) + 7 1 Tor, Qus () 2y )
(18) < 0 (I, @5 Ny o ) + IHom, Qi o)
where TFU (v) and fapij (v) are the extensions of Ir,; (v) and Iy, (v) by zero, respec-

tively. Here, we have used an inverse inequality, the stability of 7 in the L?- and
1T1T(}(§2—110rrrls7 and the following inequalities:

HIFU (QU(Z))||H%2(F) < HIFU (QU(Z))”H(%?(F”)a
1Tor, Qi ()72 < ChillTor, Qi (2)lI72(0r,,)-

By applying Lemmas 4.17, 4.19, and 4.24 of [28] to the terms of (4.8), and using
(4.3) and the Poincaré inequality, we obtain

j

H
2
49 el QNI < (141085

2
i 2
: ) |wj|H1/2(an)’
where H;; is the diameter of Fj;, which satisfies H,;; < H;.
We now consider the second term in (4.6) for the case when Fj; is only a small
part of F;. Then,

|\7TF(XijQij(Z))||f{éé2(F) < Oy Hlmr (xig Qig ()1 22y
< Chi 2l 2,y = Chi Hlw; = cijl2(r,)
< Chi Hwill7zem,,)
< Ch; 6 (1 +log(H;/9)) ijH%Il/?(Fj)
(4.10) < C(1+log(Hi/h;)) |U’j|§{1/2(a§zj)~
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Here we have used an inverse inequality, the stability of 7F and Q in the L?-norm,
the inequality

leisl3ace,) < Cllwsage, ),

Lemma 3.4 of Dryja and Widlund [7] for the fourth inequality, the Poincaré inequality
in the last inequality, and that ¢ is comparable to the mesh size h;. We note that we
have only one log factor in this case.

Therefore, (4.6) combined with (4.7) and (4.9) or (4.10) proves the desired bound
(4.4). O

With the help of Lemma 4.5, we can establish property (P2) for the operator Ep.

LEMMA 4.6. With Assumptions 4.2 and 4.3, the operator Ep satisfies

Hi 2 T
|EDw|2§ < C'max { (1 + logF> } |w|2§ for any w e W,

where S is defined in (2.11).
Proof. Using the weight matrix D of (3.4), the average operator Ep, given by
(4.1), satisfies

W, wy, — B Y (Bpwy, + Bmwy, + Browr)
ED W, = W )
wII wrt

as in Remark 4.1. Here w = (wy,, Wy, wyy) € W. Let
Wy, = Wy, — B;l(ann + BpnWa, + Brywn),

and construct w; by restricting the unknowns (@, wy,,wr) to the subdomain ;.
Similarly, we construct w; from (ws,,wy,,wn). We note that (wi,...,wy) satisfies
the primal constraints on the edges/faces. By definition, @ = (w1, ...,WN) € Wi ie.,
w satisfies all of the mortar matching conditions, and each w; is of the form

W; = w; — Z r(w; — @),
FCO;

where F is a nonmortar edge/face of 9Q;, T (w; —¢) is the zero extension of 7p (w; — @)
to all of 0Q; \ F, and ¢ = w; on Fj; := 02; N 0Q; C F. We then obtain

N
|Epwl|% = Z<s<i>@-,@->

\/\
i Mz -

(s@ wi,wi) + Y <S(i)%p(¢—wi),%p(¢—wi)>>

FCoQ;

\ /\

N
<Z S(l ’wz,’wz +Z Z szTrF (b wZ)'?{éf(F))

i=1 FCOQ;

§Omax{<1+log—> }Z wl,wl

HN\2] -~
= Cmax{(l —|—logh—_l> } (Sw,w).
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Here we have used that (S@Ww;, w;) ~ pi|wi|§11/2(am)’ the bounds in (4.2), and
Lemma 4.5. d

By using the properties (P1) and (P2), we can show the following condition
number bound for the BDDC operator (3.6). A proof for a quite similar case is given
in Li and Widlund [22] in their analysis of a BDDC method for the Stokes problem
with conforming meshes. We do not include a proof, which would be almost identical
to that of [22].

THEOREM 4.7. With Assumptions 4.2 and 4.3, we have the condition number

bound
2
k(Bppc) < C'max { <1 + logh—_z> } )

Remark 4.8. For a geometrically nonconforming partition, the number of pri-
mal constraints tends to be larger than for a conforming partition if only edge/face
constraints are used. We note that there are several previous studies which explore
the possibility of selecting primal constraints for only some of the edges/faces; see
[15, 21, 19].

5. A connection between the FETI-DP and BDDC methods. In this
section, we will show that the BDDC method developed in the previous sections is
closely connected to the FETI-DP method developed by the first author in [14, 15]
and jointly with Lee in [12]. We will show that the two methods share the same
spectra except possibly for an eigenvalue equal to 1.

As previously noted, a comparison of the spectra of the BDDC method to that
of the FETI-DP method was made by Mandel, Dohrmann, and Tezaur [25] for con-
forming finite elements. They showed that the two algorithms have the same set of
eigenvalues except possibly for eigenvalues equal to 1. A simpler proof of this fact was
given more recently by Li and Widlund [23]. They formulated the BDDC operators,
as well as the FETI-DP operators, using a change of variables and introducing certain
projections and average operators. These projections and average operators provide
an important connection between the FETI-DP and the BDDC operators.

We now formulate an FETI-DP operator after the same change of variables as
in section 2.2. We then show that the FETI-DP operator has essentially the same
spectrum as the BDDC operator by establishing several properties of the projections
and average operators that were used by Li and Widlund [23].

After the change of variables, the linear system considered in the FETI-DP for-
mulation is given by

Saa  San Bh ua ga
(5.1) Stua St Bﬁ umn | = | 9u |,
Ba B 0 A 0

where the matrices Saa, Sam, Sna, and Spn are defined in (2.12) and the matri-
ces Ba and By are obtained from the mortar matching condition (2.9). We recall
that the subscripts II and A stand for the unknowns or submatrices related to the
primal variables and the remaining part, respectively, and that A\ € M, the reduced,
nonredundant Lagrange multiplier space.

After eliminating the unknowns ua and up, we obtain an equation for A € M:

(5.2) BrS—'BiA =d,
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where

5_ (San San
5.3 Br=(Ban Bm), S= ,
(5.3) r=(Ba Bn) <SHA St
and d is also the result of the Gaussian elimination.
We will now express the Neumann—Dirichlet preconditioner considered in [14, 15,
12] using the new unknowns. The Neumann—Dirichlet preconditioner M 5}1, is defined
by

(5.4) (MppA, A\ = wa,gleav)éA,n <§<§Fwi(w)A£()l’Ui>2 ) ;

where E(wa ) is the extension by zero of wa , € Wa , to elements in the space
W = WA,n ©® WA,m &) WH-
We recall that the matrix Ba is partitioned into

BA = (Bn Bm) )

where n denotes the columns of the nonmortar unknowns and m those that remain.
The formula (5.4) can then be written as

<anA n )\>2
5.5 Mpph,\) = B i o 1. R A
( ) < br > wA,Igleav)‘(/A,n <SnnwA,n, wAm}

where S, is the submatrix of Saa in (5.1) corresponding to the nonmortar part. We

see that Sy, : Wa,, — WA, and Bl : M — W}, are invertible. Here W} ,, is the
space dual to Wa . The maximum in (5.5) occurs when Sy,wa n, = BfLA, and hence
it follows that

M[_)113 = (B;)ilsnntl-

Furthermore, this matrix can be written as

(5.6) Mp} = BsrSBS p,
where
Som B!
Bip = S Bt
>/ \Bj

with the weights given by
Son = (BLBL) ™Y, Zmm =0, Spm = 0.
Therefore, the FETI-DP operator with the Neumann—Dirichlet preconditioner
MB}D is given by
MpbFpp = Be rSBS 1 BrS™' Bt
while the preconditioned BDDC operator is given by
Bppc = RY 1S~ 'Rp rRESRy.
Let us now define the following jump and average operators:
Py =By rBr, Ep=RrRp .

The following results are provided in [23, section 5].
THEOREM 5.1. Assume that Py, and Ep satisfy
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1. Ep+ Py =1,

2. B3, = Ep, Pi=Ps, and

3. EpPy = PyEp =0.
Then the operators MB}DFDP and Bppc have the same eigenvalues except possibly
for an eigenvalue equal to 1.

We will now show that the assumptions of Theorem 5.1 hold for the operators

Ps, and Ep. We recall the definition of the space of functions satisfying the primal
constraints

W = {(w;,wfwwf{)t t Ywy, € Wa n, W € WA m, wn € WH} ,
and the mortar finite element space
W= {we W B wp, + Brywn + Bpw, = 0}

We note that Ps; and Ep are operators defined on the space w.
LEMMA 5.2. The operators Py, and Ep satisfy the assumptions of Theorem 5.1.
Proof. From

me = 07 2HH = 07 Enn = (BZBTL)_lv
Dmm:I; DHH:I; Dnn:()a

we have
B Y(Bnwy, + Bnwn + Bpw,)
Pzw = 0 y
0
—B;l (Bmwm =+ Bn’wn)
EDw = Wm
wi
Hence,
(5.7) Ep+ Ps=1.

From Epw = w and Psw = 0 for all w € /W, and from Range(Ep) C /W, we obtain
(5.8) E%? =FEp, PsEp=0.
From (5.7), we have the identities
Ep(Ep+ Ps)=Ep, Ps(Ep+ Px)= P,
and combining them with (5.8), we obtain
EpPs =0, Pi=Ps. 0O

Remark 5.3. Other FETI-DP preconditioners in two dimensions with different
weights
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with nonzero weights 3,,,,, and Xy, have been developed and shown to give condition
number bounds of the form

Cm?x {(1 +1log(H;/hs))?}

for geometrically conforming partitions; see [8, 6]. We have not found any weight
matrix D that results in Ep + Ps; = I for such a choice of X.

6. Numerical results. In this section, we present numerical results. We first
compare the BDDC and the FETI-DP methods with the suggested preconditioners,
for geometrically conforming cases, and we then illustrate the performance of our
BDDC methods for some geometrically nonconforming partitions. We solve an elliptic
problem with the exact solution u(z,y) = sin(mx)(1 — y)y,

—Au = f in Q,
u =0 on 0,

where (2 is the unit square in R2. The conjugate gradient iteration is halted when the
¢3-norm of the relative residual has been reduced by a factor of 10°.

In the first series of experiments, the domain (Q is divided into uniform square
subdomains, as in Figure 2, that are geometrically conforming. Common values at
the subdomain vertices are selected as the primal constraints for this case. Each
subdomain has either a nonuniform mesh or a uniform mesh with n nodes on each
subdomain edge. The meshes do not match and have comparable mesh sizes across
the interface as in Figure 2.

In Table 1, we show the performance of the two algorithms when (2 is partitioned
into N = 4 x4 subdomains (see Figure 2) and with the local problem size n increasing.
In this case, the upper and the right edges of each subdomain are selected to be
nonmortar edges; see Figure 2. We provide the L?- and H!'-errors between the exact
solution and the solution of the iterative method, the number of conjugate gradient
iterations, and the minimum and the maximum eigenvalues of the BDDC and the
FETI-DP methods. For the H'-error, we use the broken H!'-norm given by the
subdomain partition. Table 2 shows the numerical results when we fix the local
problem size to n — 1 = 4 and increase N, the number of subdomains to N = 8 x 8,
16 x 16, and 32 x 32, and divide 2 into square subdomains in the same manner as
for N = 4 x 4. We observe that the two methods give the same L?- and H'-errors.
The minimum eigenvalue of the BDDC operator is always equal to 1 while that of the

Q33

QOl

|
mE
N

QOO H QIO

Fic. 2. A subdomain partition (left: white edges are mortar and black edges are nonmortar)
with N =4 X 4 and nonmatching comparable meshes with the local problem size n — 1 = 4.
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TABLE 1
Comparison of FETI-DP and BDDC methods where n, the local problem size, increases with a
fized subdomain partition (N =4 x 4).

MB}DFDP BDDC
n—1 ”u — uh”O ”u — uh ”1 Iter )\min Amax Iter )\min Amax
4 5.0850e-4 6.0126e-2 10 1.40 4.09 12 1.00 4.09
8 1.2865e-4 3.0128e-2 13 1.01 5.72 15 1.00 5.72
16 3.2231e-5 1.5072e-2 15 1.00 7.72 16 1.00 7.72
32 8.0621e-6 7.5374e-3 16 1.01 1.00e+1 17 1.00 1.00e+1
64 2.0134e-6 3.7688e-3 17 1.01 1.28e+1 19 1.00 1.28e+1

TABLE 2
Comparison of FETI-DP and BDDC methods when N, the number of subdomains, increases
with a fized local problem size (n —1=4).

ME;FDP Bppc
N [lu — uh||o [lu — uh||1 Tter | Amin | Amax Tter | Amin | Amax
4 x4 5.0850e-4 6.0126e-2 10 1.40 4.09 12 1.00 4.09
8 x 8 1.1744e-4 2.9900e-2 11 1.37 4.41 12 1.00 4.41
16 x 16 2.9743e-5 1.4980e-2 12 1.32 4.49 13 1.00 4.49
32 x 32 7.4317e-6 7.4917e-3 12 1.30 4.57 13 1.00 4.62

FETI-DP operator is greater than 1. The maximum eigenvalues of both operators
are almost the same; the eigenvalues are estimated by using the parameters of the
conjugate gradient iteration. We note that the minimum eigenvalue of the FETI-DP
operator converges to 1 when the number of nodes increases; see Table 1. The two
algorithms perform quite similarly with good scalability in terms of the local problem
size and the number of subdomains.

We next illustrate the performance of the BDDC method for geometrically non-
conforming partitions. We divide the unit square 2 into rectangular subdomains that
are geometrically nonconforming. For a given N, we first divide € into N uniform
vertical strips and then each strip into NV or N + 1 rectangles, in succession; see
Figure 3 for N = 4. Each subdomain has a uniform mesh with a number of nodes
across the subdomain equal to n, n + 2, or n + 4; see Figure 3. We consider the case
when the coefficient p(z) = 1 in Q and the case when the coefficient p(x) has jumps
across the subdomain interfaces; i.e., p(x) = p;, with different constants in different
subdomains §2;. See Figure 3 for the distribution of the p; with the values 1,10, 100,
and 1000 in a partition with NV = 4, and for the selection of nonmortar and mortar
edges which satisfies Assumption 4.2 with C less than 1. For the uniform case with
p(z) = 1, we use the same selection of nonmortar and mortar edges. For a larger N,
we copy the same pattern periodically. We run the BDDC method with increasing
numbers of nodes in a fixed subdomain partition and with an increase of the number
of subdomains with a fixed local problem size.

Table 3 presents the condition numbers and the number of iterations for both
continuous and discontinuous p(x). Since the subdomain partitions are geometrically
nonconforming, we have chosen

/ (’Ui — ’Uj)/\ij ds =10
Fi'

as the primal constraints for each face F;; = 9€Q; N 0Q;. Here Aij is the sum of
the Lagrange multiplier basis functions that are supported in F;;. We observe good
scalability in terms of the number of subdomains and the local problem size for both
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F1a. 3. A geometrically nonconforming partition with N = 4 and the number of nodes for each
subdomain edge for a given n, and the values of p; (in parentheses) in the jump coefficient case:
nonmortar edges (black) and mortar edges (white) which satisfy Assumption 4.2 for the given p;
with C' less than 1.

TABLE 3
Performance of the BDDC' algorithm with an increase of N with a fixed local problem size
(n=6) and with an increase of the local problem size, n, in a geometrically nonconforming partition
with N=4. Cond (the condition number) and Iter (the number of iterations) are provided.

p(z) =1 Jump coefficient p;
N | Cond | Iter n Cond | Iter N | Cond | Iter n Cond | Iter
16 | 12.36 23 6 11.57 20 16 6.68 15 6 6.67 14
32 | 12.37 24 12 | 14.85 22 32 6.68 15 12 7.94 15
48 | 12.40 24 24 | 18.54 23 48 6.68 15 24 9.52 17
64 | 12.41 24 48 | 22.69 26 64 6.69 15 48 11.37 18

0 5 10 15 20 25 C.i() 35 40 45 50
Local problem size (n)

FIG. 4. Plot of the values, Cond/(1+1logn)?, with an increase of the local problem size, n, in a

fized geometrically nonconforming subdomain partition with N = 4; the dashed line is for the case

p(z) =1 and the solid line for the case with a jump coefficient p;.

cases. In addition, the behavior of the condition number with an increase of the local
problem size shows that the condition number bound (1 + log(H/h))? appears to be
optimal; see Figure 4.
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