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PARTIAL GRÖBNER BASES FOR MULTIOBJECTIVE INTEGER LINEAR

OPTIMIZATION

VÍCTOR BLANCO AND JUSTO PUERTO

Abstract. In this paper we present a new methodology for solving multiobjective integer linear programs using

tools from algebraic geometry. We introduce the concept of partial Gröbner basis for a family of multiobjective

programs where the right-hand side varies. This new structure extends the notion of Gröbner basis for the

single objective case, to the case of multiple objectives, i.e., a partial ordering instead of a total ordering over

the feasible vectors. The main property of these bases is that the partial reduction of the integer elements in

the kernel of the constraint matrix by the different blocks of the basis is zero. It allows us to prove that this

new construction is a test family for a family of multiobjective programs. An algorithm ’à la Buchberger’ is

developed to compute partial Gröbner bases and two different approaches are derived, using this methodology,

for computing the entire set of efficient solutions of any multiobjective integer linear problem (MOILP). Some

examples illustrate the application of the algorithms and computational experiments are reported on several

families of problems.

1. Introduction

The multiobjective paradigm appeared in economic theory in the nineteenth century in the seminal works

by Edgeworth [14] and Pareto [34] to define an economic equilibrium. Mathematically, the multiobjective

optimization approach consists of determining the maximal (minimal) elements of a partially ordered set. This

problem was already addressed by Cantor [7], Cayley [8] and Hausdorff [25] at the end of the nineteenth century.

Since then, multiobjective programming (including multicriteria optimization) has been a fruitful research field

within the areas of applied mathematics, operations research, and economic theory. Excellent textbooks and

survey papers are available in the literature, the interested reader is referred to the books by Sawaragi, Nakayama

and Tanino [36], Chankong and Haimes [9], Yu [50], Miettinen [33] or Ehrgott, Figueira and Gandibleux [20],

and to the surveys in [17] and [19].

The importance of multiobjective optimization is not only due to its theoretical implications but also to its

many applications. Witnesses of that are the large number of real-world decision problems that appear in the

literature formulated as multiobjective programs. Examples of them are flowshop scheduling (see [29]), analysis

in finance (see [17], Chapter 20), railway network infrastructure capacity (see [13]), vehicle routing problems

(see [30, 38]) or trajectory optimization (see [41]) among many others.

Multiobjective programs are formulated as optimization (without lost of generality, we restrict ourselves to

the minimization case) problems over feasible regions with at least two objective functions. Usually, it is not

possible to minimize all the objective functions simultaneously since the objective functions induce a partial

order over the vectors in the feasible region, so a different notion of solution is needed. A feasible vector is

said to be Pareto-optimal (efficient or non-dominated) if no other feasible vector has componentwise smaller

objective values, with at least one strict inequality.
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This paper studies multiobjective integer linear programs (MOILP). Thus, we assume that all objective functions

and constraints that define the feasible region are linear, and that the feasible vectors have non-negative integer

components.

There are nowadays several exact methods to solve MOILP (see [17]). Two of them claimed to be of general

use and have attracted the attention of researchers over the years: multiobjective implicit enumeration (see

[51], [52]) and multiobjective dynamic programming (see [31]). Nevertheless, although in principle they may be

applied to any number of objectives, one can mainly find, in the literature, applications to bicriteria problems.

On the other hand, there are several methods that apply to bicriteria problems but that do not extend to the

general case. Thus, one can see that there are two thresholds in multiobjective programming, a first step from

1 to 2 objectives and a second, and deeper one, from 2 to more than two objectives. Thus, most of the times,

algorithms to solve multiobjective integer problems are designed to compute only the solutions for the bicriteria

case. Moreover, some methods even do not provide the entire set of Pareto-optimal solutions, but the supported

ones (those that can be obtained as solutions of linearly scalarized programs).

It is worth noting that most MOILP problems are NP-hard and intractable (see [16] for further details). Even

in most cases where the single-objective problem is polynomially solvable the multiobjective version becomes

NP-hard. This is the case of spanning tree problems and min-cost flow problems, among others (see [24] and

[15]). Therefore, computational efficiency is not an issue when analyzing MOILP. The important point is to

develop tools that can handle these problems and that give insights into their intrinsic nature. The goal of

this paper is to present a new general methodology for solving MOILP using tools borrowed from algebraic

geometry. The usage of algebraic geometry tools in integer programming (single criterion) is not new (see [10],

[26], [46], [27], [49], [48]). The main idea is to compute a Gröbner basis for certain toric ideals (related to the

constraints matrix) with a monomial order induced by the objective function.

Gröbner bases were introduced by Bruno Buchberger in 1965 in his PhD Thesis [6]. He named them Gröbner

bases paying tribute to his advisor Wolfgang Gröbner. This theory emerged as a generalization, from the one

variable case to the multivariate polynomial case, of the greatest common divisor in an ideal sense. One of

the outcomes of Gröbner bases theory was its application to Integer Programming, firstly published by Conti

and Traverso [10]. After this paper, a number of publications using Gröbner bases to solve integers programs

appeared in the literature.

In [26], Hosten and Sturmfels gave two ways to implement Conti and Traverso algorithm that improve in many

cases branch-and-bound algorithm to solve, exactly, integer programs. Thomas presented in [46] a geometric

point of view of the Buchberger algorithm as a method to obtain solutions of an integer program. Later, Thomas

and Weissmantel [48] improved the Buchberger algorithm in its application to solve integer programs introducing

truncated Gröbner bases. At the same time, Urbaniak et al [49] published a clear geometric interpretation of

the reduction steps of this kind of algorithms in the original space (decision space). The interested reader can

find excellent descriptions of this methodology in the books by Adams and Loustanau [2], Sturmfels [42], Cox et

al [12] or Bertsimas and Weissmantel [5], and in the papers by Aardal et al. [1], Sturmfels [43], [44], Sturmfels

and Thomas [45] and Thomas [47]

The main contribution of this paper is to adapt some tools from algebraic geometry to solve multiobjective

integer linear programs. We present in this paper an algorithm to solve exactly multiobjective problems,

i.e. providing the whole set of Pareto-optimal solutions (supported and non-supported ones). One of the main

advantages of our approach is that the number of objective functions does not increase significantly the difficulty.

A new geometric approach of the concept of reduction based on a partial ordering is given. This reduction allows

us to extend the concept of Gröbner basis when a partial ordering rather than a total order is considered over

Nn. We call these new structures partial Gröbner bases or p-Gröbner bases. We prove that p-Gröbner bases

can be generated by a variation of the Buchberger algorithm in a finite number of steps. The main property of
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a p-Gröbner basis is that, for each pair in Zn × Zn
+ with first component in Ker(A), the reduction by maximal

chains in the basis is the zero set.

We propose two different algorithms to solve multiobjective integer programs based on this new construction.

Our first algorithm consists of three stages. The first one only uses the constraint matrix of the problem and it

produces a system of generators for the toric ideal IA (or its geometric representation, ℑA). In the second step,

a p-Gröbner basis is built using the initial basis given by the system of generators computed in the first step.

This step requires to fix the objective matrix since it induces the partial order used in the reduction steps. Once

the right-hand side is fixed, in the third step the Pareto-optimal solutions are obtained. This computation uses

the new concept of partial reduction of an initial feasible solution by the p-Gröbner basis.

This algorithm extends, to some extent, Hosten-Sturmfels’ algorithm [26] for integer programs because if we ap-

ply our method to single-objective problems, partial reductions and p-Gröbner bases coincide with the standard

notions of reductions and Gröbner bases, respectively.

Our second algorithm is based on the original idea by Conti and Traverso [10]. It consists of using the big-

M method that results in an increasing number of variables, in order to have an initial system of generators.

Moreover, this approach also provides an initial feasible solution. Therefore, the first step in the above algorithm

can be ignored and the third step is highly simplified. In any case, our first algorithm (the one extending Hosten-

Sturmfels approach) has proved to be more efficient than this second one since computation of a p-Gröbner

basis is highly sensitive to the number of variables.

Both algorithms have been implemented in MAPLE 10. In this paper we report on some computational

experiments based on two different families of problems with different number of objective functions.

This paper is organized as follows. In Section 2 we give the notation, the formulation of the problem, and its

algebraic codification. In this section we also introduce the notion of test family and its geometric description.

Section 3 presents the definition of p-Gröbner basis, based on the notion of partial reduction. Here, we also

state the relationship between test families and p-Gröbner bases: the reduced p-Gröbner basis for a family

of multiobjective programs varying the right-hand side coincides with the minimal test family for that family.

At the end of the section, an illustrative example is presented. Section 4 is devoted to present the results

of the computational experiments and its analysis. Here, we solve several families of MOILP, report on the

performance of the algorithms and draw some conclusions on their results and their implications.

2. The problem and its translation

The goal of this paper is to solve the multiobjective integer linear program (MOILP) in its standard form:

min (c1 x, . . . , ck x)

s.t.
n∑

j=1

aij xj = bi i = 1, . . . ,m(1)

xj ∈ Z+ j = 1, . . . , n

with bi nonnegative integers, xi non negative and the constraints are defining a polytope (bounded). Let us

denote by A = (aij) ∈ Zm×n, b = (bi) ∈ Zm
+ and C = (cij) ∈ Zk×n

+ . In the following, Problem (1) will be

referred to as MIPA,C(b) and we denote by MIPA,C the family of multiobjective problems where the right-hand

side varies.
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The reader may note that there is no loss of generality in our approach to multiobjective integer linear program-

ming since any general multiobjective integer linear problem with inequality constraints and rational components

in A, b and C can be transformed to a problem in the above standard form.

It is clear that the problem MIPA,C(b) is not an usual optimization problem since the objective function is a

vector, thus inducing a partial order among its feasible solutions. Hence, solving the above problem requires an

alternative concept of solution, namely the set of non-dominated or Pareto-optimal points (vectors).

A feasible vector x̂ ∈ Rn is said to be a Pareto-optimal solution of MIPA,C(b) if there is no other feasible vector

y such that

cj y ≤ cj x̂ ∀j = 1, . . . , k

with at least one strict inequality for some j.

If x is a Pareto-optimal solution, the vector (c1 x, . . . , ck x) is called efficient.

We say that a feasible point, y, is dominated by a feasible point x if ci x ≤ ci y for all i = 1, . . . , k, with at least

one strict inequality. According to the above concept, solving a multiobjective problem consists of finding its

entire set of Pareto-optimal solutions, including those that have the same objective values.

From the objective function C, we obtain a partial order over Zn as follows:

x ≺C y :⇐⇒ C x � C y or x = y

where Cx � Cy stands for Cx ≤ Cy and Cx 6= Cy.

Notice that since C ∈ Zm×n
+ , the above relation is not complete. Hence, there may exist incomparable vectors

(those x, y ∈ Zn
+ such that neither x ≺C y or y ≺C x). We use this partial order, induced by the objective

function of Problem MIPA,C as the input for the multiobjective integer programming algorithm developed in

this paper.

Remark 2.1. The above order distinguishes solutions with the same objective values and handles them as in-

comparable. This order can be refined so that those solutions with the same objective values are not incomparable.

Consider the binary relation:

x �C y :⇐⇒

{
C x � C y or

Cx = Cy and x ≺lex y

This alternative order allows us to rank those solutions that have the same objective values using the lexico-

graphical order of their components.

Let us consider the following equivalence relation in Zn:

x ∼C y :⇐⇒ Cx = Cy

The above partial order, �C, allows us to solve a simplified version of the multiobjective problem. In this

version, we obtain solutions in Zn/ ∼C , where x ∼C y :⇐⇒ Cx = Cy. The reader may note that when solving

the problem with the order �C, one would obtain only a representative element of each class of Pareto-optimal

solutions (the lexicographically smallest). With those efficient values, {v1, . . . , vt}, the remaining solutions can

be obtained solving the following system of diophantine equations, in x, for each vi, i = 1, . . . , t:




Cx = vi

Ax = b

x ∈ Zn
+

Remark 2.2. In some cases, the order ≺C can be refined to be adapted to specific problems. This is the case

when slack variables appear in mathematical programs. Two feasible solutions (x, s1) and (x, s2), where s1
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and s2 are the slack components, have the same objective values. The order ≺C considers both solutions as

incomparable, although they are the same because we are looking just for the x-part of the solution. In these

cases, we consider the following refined partial order in Zn × Zr,

(x, s) ≺s
C (y, s

′

) :⇐⇒

{
C x � C y or

Cx = Cy and s ≺lex s
′

where x, y ∈ Zn
+ are the actual decision variables and s, s

′

∈ Zr
+ the slack variables of our problem.

In the following we will use the partial order ≺C unless it is explicitly specified.

Our matrix A is encoded in the set

IA = {{u, v} : u, v ∈ Nn, u− v ∈ Ker(A)}.

Let π : Nn −→ Zn denote the map x 7→ Ax. Given a right-hand side vector b in Zn, the set of feasible solutions

to MIPA,C(b) constitutes π
−1(b), the preimage of b under this map. In the rest of this paper, we identify the

discrete set of points π−1(b) with its convex hull and we call it the b-fiber of MIPA,C . Thus, π−1(b) or the

b-fiber of MIPA,C is the polyhedron that is the convex hull of all feasible solutions to MIPA,C(b).

For any pair {u, v}, with u, v ∈ Nn, we define the set setlm(u, v) as follows:

setlm(u, v) =





{u} if v ≺C u

{v} if u ≺C v

{u, v} if u and v are incomparable by ≺C

The reader may note that setlm(u, v) is the set of degrees of the leading monomials according to the identification

{u, v} 7→ xu − xv ∈ R[x1, . . . , xn], induced by the partial order ≺C .

From the above definition, setlm(u, v) may have more than one leading term, since ≺C is only a partial order.

To account for all this information we denote by F(u, v) the set of triplets

F(u, v) = {(u, v, w) : w ∈ setlm(u, v)}.

The above concept extends to any finite set of pairs of vectors in Nn, accordingly. For a pair of sets u =

{u1, . . . , ut} and v = {v1, . . . , vt} the corresponding set of ordered pairs is:

F(u,v) = {(ui, vi, w) : w ∈ setlm(ui, vi), i = 1, . . . , t}.

F(u,v) can be partially ordered based on the third component of its elements. Therefore, we can see F(u,v)

as a directed graph G(E, V ) where V is identified with the elements of F(u,v) and ((ui, vi, w), (uj , vj , w
′

)) ∈ E

if (ui, vi, w), (uj , vj , w
′

) ∈ V and w
′

≺C w. We are interested in the maximal ordered chains of G. Note that

they can be efficiently computed by different methods, see e.g. [4], [37].

The above concepts are clarified in the next example.

Example 2.1. Let u = {(2, 3),(0, 2),(3, 0),(2, 1),(1, 1)}, v = {(1, 4),(1, 3),(4, 2),(1, 2),(1, 0)} and ≺C the partial

order induced by the matrix

C =

[
2 1

3 5

]
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(
(3, 0), (4, 2), (4, 2)

) (
(2, 3), (1, 4), (1, 4)

)

(
(2, 3), (1, 4), (2, 3)

)

≺C

OO

(
(0, 2), (1, 3), (1, 3)

)

≺C

??�������������������������
≺C

ggOOOOOOOOOOOOOOOO

(
(2, 1), (1, 2), (2, 1)

)

≺C

77oooooooooooooooo (
(2, 1), (1, 2), (1, 2)

)

≺C

ggOOOOOOOOOOOOOOOO

(
(1, 1), (1, 0), (1, 1)

)
≺C

77oooooooooooooooo

≺C

ggOOOOOOOOOOOOOOOO

Figure 1. Hasse diagram of the graph associated with the data in Example 2.1

then, setlm((2, 3), (1, 4)) = {(2, 3),(1, 4)}, setlm((0, 2), (1, 3)) = {(1, 3)}, setlm((3, 0), (4, 2)) = {(4, 2)},

setlm((2, 1), (1, 2)) = {(2, 1),(1, 2)} and setlm((1, 1), (1, 0)) = {(1, 1)}. Now, by definition we have:

F(u,v) ={
(
(2, 3), (1, 4), (2, 3)

)
,
(
(2, 3), (1, 4), (1, 4)

)
,

(
(0, 2), (1, 3), (1, 3)

)
,

(
(3, 0), (4, 2), (4, 2)

)
,
(
(2, 1), (1, 2), (2, 1)), ((2, 1), (1, 2), (1, 2)

)
,

(
(1, 1), (1, 0), (1, 1)

)
}.

Figure 1 corresponds to the directed graph associated with F(u,v), according to the partial ordering induced by

C. There are four maximal chains:

M1 = {
(
(3, 0), (4, 2), (4, 2)

)
,
(
(2, 3), (1, 4), (2, 3)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (2, 1)

)
,
(
(1, 1), (1, 0), (1, 1)

)
}

M2 = {
(
(3, 0), (4, 2), (4, 2)

)
,
(
(2, 3), (1, 4), (2, 3)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (1, 2)

)
,
(
(1, 1), (1, 0), (1, 1)

)
}

M3 = {
(
(2, 3), (1, 4), (1, 4)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (2, 1)

)
,
(
(1, 1), (1, 0), (1, 1)

)
}

M4 = {
(
(2, 3), (1, 4), (1, 4)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (1, 2)), ((1, 1), (1, 0), (1, 1)

)
}.

For any pair of sets u = {u1, . . . , ut} and v = {v1, . . . , vt} with {ui, vi} ∈ IA, the corresponding set F(u,v)

may be seen as a set of pairs in Zn × Zn
+ through the following map

φ :Nn × Nn × Nn −→Zn × Zn
+

(u, v, w) 7→(u − v, w).

Then, the maximal chains, F1, . . . , Ft, of the image of F(u,v) under φ with respect to the order ≺C over the

second components, clearly satisfy the following properties:

(1) Fi is totally ordered by the second components of its images via φ with respect to ≺C , for i = 1, . . . , t.

(2) For all (α, β) ∈ Fi, i = 1, . . . , t, A (β − α) = Aβ.

The application φ and the above properties allow us to define the notion of test family for MIPA,C . This notion

is analogous to the concept of test set for a family of single objective integer programs when we have a partial
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order rather than a total order over Nn (see [46]). Test families are instrumental for finding the Pareto-optimal

set of each member MIPA,C(b) of the family of multiobjective integer linear programs.

Definition 2.1 (Test Family). A finite collection G = {G1
C , . . . ,G

r
C} of sets in Zn × Zn

+ is a test family for

MIPA,C if and only if:

(1) Gj
C is totally ordered by the second component with respect to ≺C , for j = 1, . . . , r.

(2) For all (g, h) ∈ Gj
C , j = 1, . . . , r, A (h− g) = Ah.

(3) If x ∈ Nn is a dominated solution for MIPA,C(b), with b ∈ Zn
+, there is some Gj

C in the collection and

(g, h) ∈ Gj
C , such that x− g ≺C x.

(4) If x ∈ Nn is a Pareto-optimal solution for MIPA,C(b), with b ∈ Zn
+, then for all (g, h) ∈ Gj

C and for all

j = 1, . . . , n either x− g is infeasible or x− g does not compare with x.

Given a test family for MIPA,C there is a natural approach to find the entire Pareto-optimal set. Suppose we

wish to solve MIPA,C(b) for which x∗ is a feasible solution.

If x∗ is dominated then there is some j and (g, h) ∈ Gj
C such that x∗ − g is feasible and x∗ − g ≺C x∗, whereas

for the remaining chains there may exist some (g, h) such that x∗ − g is feasible but incomparable with x∗. We

keep tracks of all of them.

If x∗ is non-dominated, we have to keep it as an element in our current solution set. Then, reducing x∗ by

the chains in the test family we can only obtain either incomparable feasible solutions, that we maintain in our

structure, or infeasible solutions that are discarded.

The above two cases lead us to generate the following set. From x∗ we compute the set of incumbent solutions:

IS(x∗) := {y∗ : y∗ = x∗ − gji , (gji , hji) is the largest element (g, h) in the chain

Gi
C such that x∗ − g is feasible , i = 1, . . . , r}.

Now, the scheme proceeds recursively on each element of the set IS(x∗). Finiteness of the above scheme is clear

since we are generating a search tree with bounded depth (cardinality of the test family) and bounded width,

each element in the tree has at most r (number of chains) followers. Correctness of this approach is ensured

since any pair of non-dominated solutions must be connected by a reduction chain through elements in the test

family (see Theorem 2.1 and Corollary 2.1).

The above approach assumes that a feasible solution to MIPA,C(b) is known (thus implying that the problem

is feasible). Methods to detect infeasibility and to get an initial feasible solution are connected to solving

diophantine systems of linear equations, the interested reader is referred to [35], for further details.

The following lemmas help us in describing the geometric structure of a test family for multiobjective integer

linear problems.

Lemma 2.1 (Gordan-Dickson Lemma, Theorem 5 in [11]). If P ⊆ Nn, P 6= ∅, then there exists a minimal

subset {p1, . . . , pm} ⊆ P that is finite and unique such that p ∈ P implies pj ≤ p (component-wise) for at least

one j = 1, . . . ,m.

Lemma 2.2. There exists a unique, minimal, finite set of vectors α1, . . . , αk ∈ Nn such that the set LC of all

dominated solutions in all fibers of MIPA,C is a subset of Nn of the form

LC =

k⋃

j=1

(αj + Nn).

Proof. The set of dominated solutions of all problems MIPA,C is:

LC = {α ∈ Nn : ∃β ∈ Nn with Aβ = Aα and β ≺C α}.
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Let α be an element in LC and β a Pareto-optimal point in the fiber π−1(Aα) that satisfies β ≺C α. Then, for

any γ ∈ Nn, A(α+ γ) = A(β + γ), α+ γ, β+ γ ∈ Nn and β + γ ≺C α+ γ, because the cost matrix, C, has only

nonnegative coefficients. Therefore, α+ γ is a feasible solution dominated by β + γ in the fiber π−1(A(α+ γ)).

Then, α+ γ ∈ LC for all γ ∈ Nn, so, α+Nn ⊆ LC . By Lemma 2.1 we conclude that there exists a minimal set

of elements α1, . . . , αk ∈ Nn such that LC =
⋃k

j=1(αj + Nn). �

Once the elements α1, . . . , αk that generates LC (in the sense of the above result) have been obtained, one

can compute the maximal chains of the set {α1, . . . , αk} with respect to the partial order ≺C . We denote by

C1
C , . . . , C

µ
C these maximal chains and set Li

C =
⋃ki

t=1(α
i
t+Nn), where αi

t ∈ Ci
C for t = 1, . . . , ki and i = 1, . . . , µ.

For details about maximal chains, upper bounds for its cardinality and algorithms to compute them for a

partially ordered set, the reader is refereed to [4].

It is clear that, with this construction, we have: LC =

µ⋃

i=1

Li
C .

We now describe a finite family of sets G≺C
⊆ Ker(A)∩Zn and prove that it is indeed a test family for MIPA,C .

Let G≺C
= {Gi

≺C
}µi=1, where

(2) Gi
≺C

= {(gkij , h
k
ij) = (αi

j − βk
ij , α

i
j), j = 1, . . . ki, k = 1, . . . ,mij}, i = 1, . . . , µ,

are the maximal chains of G≺C
(with respect to the order ≺C over the second components) and where αi

1, . . . , α
i
ki

are the unique minimal elements of Li
≺C

and β1
ij , . . . , β

mij

ij the Pareto-optimal solutions to the problemMIPA,C(Aα
i
j).

In the next section we give an algorithm that explicitly constructs G≺C
. Notice that for fixed i, j and k,

gkij = (αi
j −βk

ij) is a point in the subspace S = {x ∈ Qn : Ax = 0}, i.e., in the 0-fiber of MIPA,C . Geometrically

we think of (αi
j − βk

ij , α
i
j) as the oriented vector −→g k

ij =
−−−−−→
[αi

j , β
k
ij ] in the Aαi

j-fiber of MIPA,C directed to the

Pareto-optimal solution βk
ij . The vector is directed from the non-optimal point αi

j , to the Pareto-optimal

point βk
ij due to the minimization criterion in MIPA,C which requires us to move away from expensive points.

Subtracting the point −→g k
ij = αi

j − βk
ij to the feasible solution γ gives the new solution γ − αi

j + βk
ij which is

equivalent to translating −→g k
ij by a nonnegative integer vector.

Consider an arbitrary fiber of MIPA,C and a feasible lattice point γ in this fiber. For each vector −→g k
ij in G≺C

,

check whether γ − gkij is in Nn. At γ draw all such possible translations of vectors from G≺C
. The head of the

translated vector is also incident at a feasible point in the same fiber as γ since gkij is in the 0-fiber of MIPA,C .

We do this construction for all feasible points in all fibers of MIPA,C . From Lemma 2.2 and the definition of

G≺C
, it follows that no vector in G≺C

can be translated by a ν in Nn such that its tail meets a Pareto-optimal

solution on a fiber unless the obtained vector is incomparable with the Pareto-optimal point.

Theorem 2.1. The above construction builds a connected directed graph in every fiber of MIPA,C. The nodes

of the graph are all the lattice points in the fiber and (γ, γ
′

) is an edge of the directed graph if γ
′

= γ − gkij for

some i, j and k. For each maximal chain in the b-fiber of MIPA,C, its directed graph has a unique final node

at each Pareto-optimal solution for MIPA,C(b).

Proof. Pick a fiber of MIPA,C and at each feasible lattice point construct all possible translations of the vector
−→g k

ij from the set Gi
≺C

as described above. Let α be a lattice point in this fiber. By Lemma 2.2, α = αi
j + ν for

some i ∈ {1, . . . , t} and ν ∈ Zn
+. Now, since α

′

k = βk
ij + ν also lies in this fiber, then α

′

k ≺C α or α
′

k and α are

incomparable. Therefore, −→g k
ij translated by ν ∈ Nn is an edge of this graph and we can move along it from α

to a point α
′

in the same fiber, such that α
′

≺C α or α and α
′

are incomparable. This proves that from every

dominated point in the fiber we can reach an improved or incomparable point (with respect to ≺C) in the same

fiber by moving along an edge of the graph.
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By the construction above, the outdegree of any terminal element in any maximal chain is 0. Therefore, any

directed maximal path from a dominated point must end exactly at one Pareto-optimal point. �

We call the graph in the b-fiber of MIPA,C built from elements in G≺C
, the ≺C-skeleton of that fiber.

The reader may note that from each dominated solution α, one can easily build paths to its comparable Pareto-

optimal solutions subtracting elements in G≺C
. Indeed, let αi be a minimal element of LC such that α = αi+γ,

with γ ∈ Nn, and let βi be the Pareto-optimal solution in the Aαi-fiber that is comparable with αi and such

that βi + γ is comparable with β. Then α
′

= βi + γ is a solution in the Aα-fiber with β ≺C α
′

≺C α. Now,

one repeats this process but starting with α
′

and β, until α
′

= β. Moreover, the case where α and β are

incomparable reduces to the previous one by finding a path from α to any intermediate point β
′

that compares

with β. This analysis leads us to the following result.

Corollary 2.1. In the ≺C-skeleton of a fiber there exists a directed path from every feasible point α to each

Pareto-optimal point, β, in the same fiber. The vectors of objective function values of successive points in the

path do not increase componentwise from α to β.

Corollary 2.2. The family G≺C
is the unique minimal test family for MIPA,C . It depends only on the matrix

A and the cost matrix C.

Proof. By definition of G≺C
, the conditions 1. and 2. of Definition 2.1 are satisfied. From Theorem 2.1 it follows

that properties 3. and 4. are also satisfied, so G≺C
is a test family for MIPA,C . Minimality is due to the fact

that removing any element (gkij , h
k
ij) from G≺C

results in G≺C
\ {(gkij, h

k
ij)}. However, this new set is not a test

family since no oriented vector in G≺C
\ {(gkij , h

k
ij)} can be translated through a nonnegative vector in Nn such

that its tail meets αi
j . It is clear by definition that G≺C

depends only on A and C. �

Example 2.2. Let MIPA,C be the family of multiobjective problems, with the following constraints and objective

function matrices:

A =

[
2 2 −1 0

0 2 0 1

]
, C =

[
10 1 0 0

1 10 0 0

]
.

Let (x1, x2, s1, s2) be the vector of variables, where s1 and s2 are slack variables. In this example, using the

order ≺s
C (see Remark 2.2), GC = {G1

C ,G
2
C}, where G1

≺C
= {−→g 1

1 = ((0, 1, 2,−1), (0, 1, 2, 0)),
−→g 1

2 = ((−1, 1, 0,−2), (0, 1, 0, 0))} and G2
≺C

= {−→g 2
1 = ((1, 0, 2, 0), (1, 0, 2, 0)),−→g 2

2 = ((1,−1, 0, 2), (1, 0, 0, 2))}.

Figure 2 shows, on the (x1, x2)-plane, the ≺C-skeleton of the fiber corresponding to the right-hand side vector

(17, 11)t. In the box over the graph of the ≺C-skeleton, we show the second components of the elements of G≺C
.

The reader may note that in the graph, the arrows have opposite directions due to the fact that the directed paths

(improving solutions) are built subtracting the elements in G≺C
. We describe how to compute the sets G1

≺C
and

G2
≺C

in Section 3.

Given G≺C
, there are several ways to build a path from each feasible point in a fixed fiber to any Pareto-optimal

solution. However, there is a canonical way to do it: Fix σ a permutation of the set {1, . . . , µ} and subtract

from the initial point the elements of G
σ(i)
≺C

, for i = 1, . . . , µ. Add this element to an empty list. After each

substraction by elements in G
σ(i)
≺C

, i = 1, . . . , µ, remove from the list those elements dominated by the new

element. We prove in Section 3 that the result does not depend on the permutation σ chosen.

Example 2.2 (Continuation). This example shows the abovementioned different ways to compute paths from

dominated solutions to any Pareto-optimal solution. The vector (9, 4, 9, 3) is a feasible solution for MIPA,C

in the (17, 11)t-fiber. Figure 3 shows the sequence of Pareto-optimal points obtained from the feasible point

(9, 4, 9, 3) using the permutation σ1 = (1, 2) (on the left) and using σ2 = (2, 1) (on the right).
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Figure 2. The ≺C-skeleton of the (17, 11)t-fiber of MIPA,C projected on the x1, x2-plane.
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Figure 3. Two different ways to compute paths from (9, 4, 9, 3) to the Pareto-optimal solutions
in its fiber.

Remark 2.3. With the partial order, ≺C, induced by C a directed path from a dominated point α to each

Pareto-optimal point β in a fiber, applying the above method, cannot pass through any lattice point in this fiber

more than µ times (recall that µ is the number of maximal chains in G≺C
). This implies that obtaining the

Pareto-optimal solutions of a given MIPA,C using G≺C
cannot cycle.

3. Test families and Partial Gröbner bases

In the previous section we motivate the importance of having a test family forMIPA,C since this structure allows

us obtaining the entire set of Pareto-optimal solutions of the above family of multiobjective integer programs

(when the right-hand side varies). Our goal in this section is to provide the necessary tools to construct test

families for any multiobjective integer problem. Our construction builds upon an extension of Gröbner bases

on partial orders.
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In order to introduce this structure we define the reduction of a pair (g, h) ∈ Zn ×Zn
+ by a finite set of ordered

pairs in Zn × Zn
+. Given is a collection GC ⊆ Zn × Zn

+ where GC = {(g1, h1), . . . , (gl, hl) : hk+1 ≺C hk, k =

1, . . . , l− 1}.

The reduction of (g, h) by GC consists of the process described in Algorithm 1.

Algorithm 1: Partial reduction algorithm

input : R = {(g, h)}, S = {(g, h)}

For each (g̃, h̃) ∈ S : repeat

if h̃− gi and h̃− g̃ are comparable by ≺C then

Ro = {(g̃ − gi,max≺C
{h̃− g̃i, h̃− g̃})}

else

Ro = {(g̃ − gi, h̃− gi), (g̃ − gi, h̃− g̃)}

end

For each r ∈ Ro and s ∈ R:

if r ≺C s then

R := R\{s};

end

S := Ro

R := R ∪Ro;

until {i : h̃− hi ≥ 0} = ∅ ;

output: R, the partial reduction set of (g, h) by GC

The above reduction process extends to the case of a finite collection of ordered sets of pairs in Zn × Zn
+

by establishing the sequence in which the sets of pairs are considered. We denote by pRem((g, h), (Gi))σ the

reduction of the pair (g, h) by the family {Gi}ti=1 for a fixed sequence of indices σ. The following result allows

us to consider any sequence of indices for this process, since it establishes that the partial reduction does not

depend on the chosen sequence.

Theorem 3.1. Let G be a finite set in Zn×Zn
+, whose maximal chains are G1, . . . ,Gt, and σ, σ

′

two permutations

of the indices (1, . . . , t). Then,

pRem((g, h),G)σ = pRem((g, h),G)σ′

for each (g, h) ∈ Zn × Zn
+.

Proof. Consider Λσ := {g̃ : g̃ = g −
t∑

i=1

kσ(i)∑

j=1

λσ(i) g
σ(i)
j }, where Gi = {(gij, h

j
i ) : j = 1 . . . , ki}. It is clear that the

elements in Λσ does not depend on the permutation σ, since reordering the sums does not give new elements.

The elements in pRem((g, h),G)σ are the element in Λσ deleting the comparable largest ones. Then, since

Λσ = Λσ
′ , pRem((g, h),G)σ = pRem((g, h),G)σ′ .

�

From now on, we denote by pRem((g, h),G) the set of remainders of (g, h) by the family G = {Gi}ti=1 for any

sequence of indices.

The reduction of a pair that represents a feasible solution, by a test family, gives the entire set of Pareto-optimal

solutions. In order to obtain that test family, we introduce the notion of p-Gröbner basis. This concept has

been motivated by the fact that in the case where the ordering induced in Nn by a single cost vector is total,

a Gröbner basis is a test set for the family of integer programs IPA,c (see [10] or [46] for extended details). In

the single objective case the Buchberger algorithm computes the Gröbner basis. However, in the multiobjective
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case the cost matrix induces a partial order, so division or the Buchberger algorithm are not applicable. Using

the above reduction algorithm we present in this section an “à la” Buchberger algorithm to compute the so

called p-Gröbner basis to solve MOILP problems.

Definition 3.1 (Partial Gröbner basis). A family G = {G1, . . . ,Gt} ⊆ IA is a partial Gröbner basis (p-Gröbner

basis) for the family of problems MIPA,C, if G1, . . . ,Gt are the maximal chains for the partially ordered set
t⋃

i=1

Gi and for any (g, h) ∈ Zn × Zn
+:

g ∈ Ker(A) ⇐⇒ pRem((g, h),G) = {0}.

A p-Gröbner basis is said to be reduced if every element at each maximal chain cannot be obtained by reducing

any other element of the same chain.

Given a p-Gröbner basis, computing a reduced p-Gröbner basis is done by deleting the elements that can be

reduced by other elements in the basis. After the removing process, the family is a p-Gröbner basis having only

non redundant elements. It is easy to see that the reduced p-Gröbner basis for MIPA,C is unique and minimal,

in the sense that no element can be removed from it maintaining the p-Gröbner basis structure.

This definition clearly extends to p-Gröbner bases for the ideal IA induced by A, once we fix the partial order,

≺C , induced by C.

The goal of this paper is to present algorithms to solve multiobjective problems analogous to the methods that

solve the single objective case, using usual Gröbner basis. These methods are based on computing the reduction

of a feasible solution by the basis. The key for that result is the fact that the reduction of any pair of feasible

solutions is the same, therefore the algorithm is valid for any initial feasible solution. The following lemma

assures the same statement for the multiobjective case and p-Gröbner bases.

Lemma 3.1. Let G be the reduced p-Gröbner basis for MIPA,C and α1, α2 two different feasible solutions in

the same fiber of MIPA,C. Then, pRem((α1, α1),G) = pRem((α2, α2),G).

Proof. Let (β, β) ∈ pRem((α1, α1),G), then β − α2 is in the same fiber and it cannot be reduced, so (β, β) ∈

pRem((α2, α2),G). �

The following theorem states the relationship between the three structures introduced before: test families,

reduced p-Gröbner bases and the family G≺C
.

Theorem 3.2. The reduced p-Gröbner basis for MIPA,C is the unique minimal test family for MIPA,C .

Moreover, G≺C
, introduced in (2), is the reduced p-Gröbner basis for MIPA,C .

Proof. Let G = {G1, . . . ,Gt} be the reduced p-Gröbner basis for MIPA,C . By definition of p-Gröbner basis, it

is clear that each Gi is totally ordered by its second component with respect to ≺C (Condition 1). Condition

2 follows because for each i and for each (g, h) ∈ Gi ⊆ Zn × Zn
+, clearly pRem((g, h),G) = {0}, so g ∈ Ker(A)

and then A(h− g) = Ah.

Now, let x ∈ Nn be a dominated solution for MIPA,C(b) then there is a Pareto-optimal solution, β, such

that β ≺C x. By Lemma 3.1, pRem((x, x),G) = pRem((β, β),G), and by construction of the set of partial

remainders, β ∈ pRem((β, β),G), and then x 6∈ pRem((x, x),G). This implies that (g, h) ∈ Gi must exist such

that x− gi ≺C x, for some i ∈ {1, . . . , t}.

On the other hand, if x is a Pareto-optimal solution for MIPA,C(b), x ∈ pRem((x, x),G), and then, there exists

no (g, h) in any Gi such that x− g ≺C x. Therefore, for every i and for each (g, h) ∈ Gi, either x− g is infeasible

or incomparable with x.
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Minimality is due to the fact that removing an element from the reduced p-Gröbner basis, that is the minimal

partial Gröbner basis that can be built for MIPA,C we cannot guarantee to have a test family because it may

exist a pair (g, h) ∈ Zn × Zn
+ with g ∈ Ker(A) that cannot be reduced to the zero set.

The second statement of the theorem follows from Corollary 2.2. �

In the following we describe an extended algorithm to compute a p-Gröbner basis for IA, with respect to

the partial order induced by C. First, for (g, h), (g
′

, h
′

) in Zn × Zn
+ we denote by S1((g, h), (g

′

, h
′

)) and

S2((g, h), (g
′

, h
′

)) the pairs

S1((g, h), (g
′

, h
′

)) =





(g − g
′

− 2(h− h
′

), γ + g − 2h) if γ + g − 2h ≺C γ + g
′

− 2h
′

(g
′

− g − 2(h
′

− h), γ + g
′

− 2h
′

) if γ + g
′

− 2h
′

≺C γ + g − 2h

(g − g
′

− 2(h− h
′

), γ + g − 2h) if γ + g
′

− 2h
′

and γ + g − 2h are incomparable

S2((g, h), (g
′

, h
′

)) =





(g − g
′

− 2(h− h
′

), γ + g − 2h) if γ + g − 2h ≺C γ + g
′

− 2h
′

(g
′

− g − 2(h
′

− h), γ + g
′

− 2h
′

) if γ + g
′

− 2h
′

≺C γ + g − 2h

(g
′

− g − 2(h
′

− h), γ + g
′

− 2h
′

) if γ + g
′

− 2h
′

and γ + g − 2h are incomparable

where γ ∈ Nn and γi = max{hi, h
′

i}, i = 1, . . . , n.

The pairs S1((g, h), (g
′

, h
′

)) and S2((g, h), (g
′

, h
′

)) are called 1− Svector and 2− Svector of (g, h) and (g
′

, h
′

),

respectively.

The notation is due to the analogy with the algebraic-geometrical notion of S-polynomial for a pair of polynomials

with a given term order. Since we consider a partial order, it may happen that in the standard construction of a

Svector (see [46]), we cannot decide which is the leading term. Therefore, in our definitions of Svectors we follow

the standard construction but we must consider all possible combinations of leading terms, with respect to the

partial order ≺C . The following lemma is used in the proof of our extended criterion and it is an adaptation of

the analogous result for total orders and usual S-polynomials.

In the following, we denote by leadmonC(f) the set of leading monomials with respect to the order induced by

C, for any multivariate polynomial f ∈ K[x1, . . . , xn] and by 1-Spolynomial and 2-Spolynomial the binomial

transcriptions of 1-Svector and 2-Svector (recall the equivalence between the pairs (u, v) and the binomial

xu−v − xu if u is dominated by v).

Lemma 3.2. Let f1, . . . , fs ∈ K[x1, . . . , xn] be such that there exists p ∈
s⋂

i=1

leadmonC(fi). Let f =

s∑

i=1

ci fi

with ci ∈ K. If there exists q ∈ leadmonC(f) such that q ≺C p, then f is a linear combination with coefficients

in K of the k-Spolynomial, k = 1, 2, of fi and fj, 1 ≤ i < j ≤ s.

Proof. By hypothesis, fi = ai p+ other smaller or incomparable terms, with ai ∈ K, for all i. Then, f can be

rewritten as f =

s∑

i=1

ci fi =

s∑

i=1

ci ai p+ other smaller or incomparable terms . Since q ≺C p, then

s∑

i=1

ci ai = 0.
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By definition, for k = 1, 2, Sk((fi, p), (fj , p)) =
1
ai

fi −
1
aj

fj, thus,

f = c1 f1 + · · ·+ cs fs

= c1 a1(
1

a1
f1) + · · ·+ cs as(

1

as
fs)

= c1 a1(
1

a1
f1 −

1

a2
f2) + (c1 a1 + c2 a2) (

1

a2
f2 −

1

a3
f3) + · · ·

+ (c1 a1 + · · ·+ cs−1 as−1) (
1

as−1
fs−1 −

1

as
fs) + (c1 a1 + · · ·+ cs as)

1

as
fs

= d1 S((f1, p), (f2, p)) + · · ·+ ds−1 S((fs−1, p), (fs, p)) +

s∑

i=1

ci ai =

s−1∑

i=1

di S((fi, p), (fi−1, p)).

where di =
i∑

j=1

cj aj . This proves the lemma. �

The algorithm to compute standard Gröbner bases is based on the Buchberger criterion, whose analogous for a

partial order is the following.

Theorem 3.3 (Extended Buchberger’s criterion). Let G = {G1, . . . ,Gt} with Gi ⊆ IA for all i = 1, . . . , t, be the

maximal chains of the partially ordered set {gi : gi ∈ Gi, for some i = 1, . . . , t}. Then the following statements

are equivalent:

(1) G is a p-Gröbner basis for the family MIPA,C .

(2) For each i, j = 1, . . . , t and (g, h) ∈ Gi, (g
′

, h
′

) ∈ Gj, pRem(Sk((g, h), (g
′

, h
′

)),G) = {0} , for k =, 1, 2.

Proof. The original Buchberger criterion was stated in a polynomial language. Therefore, we adapt our notation

to follow the line of that proof. Each pair {u, v} is identified with the binomial xu − xv, in the polynomial ring

Z[x1, . . . , xn], and our set IA, with ℑA = 〈xu − xv : u − v ∈ Ker(A)〉. The definition of partial remainders,

pRem, is adapted accordingly. With these changes in the notation, the set setlm({u, v}) is identified with the

elements in leadmonC(x
u − xv).

Let G be a p-Gröbner basis for IA, i, j ∈ {1, . . . , t} and (g, h) ∈ Gi, (g
′

, h
′

) ∈ Gj . Then, Sk((g, h), (g
′

, h
′

)), for

k = 1, 2, is in IA, so by definition of p-Gröbner basis, pRem(Sk((g, h), (g
′

, h
′

)),G) = {0}.

Conversely, assume that for each (g̃, h̃) ∈ Gi and (g
′

, h
′

) ∈ Gj , pRem(Sk((g̃, h̃), (g
′

, h
′

)),G) 6= {0} , for k =, 1, 2.

Let (g, h) ∈ Zn × Zn
+ with g ∈ Ker(A). We define f = xh − xg−h ∈ Z[x1, . . . , xn], and we denote by G∗ the

polynomial set associated with G.

Then, f can be written as a linear combinations of all the elements in G∗ (this representation is not unique):

f =

m∑

i=1

hi gi.

Let X = {X1, . . . , XN} be the set of maximal elements of the set {HiGi : Hi ∈ leadmonC(hi), Gi ∈

leadmonC(gi)}, with respect to the partial order ≺C .

If X = leadmonC(f), the polynomial f can be partially reduced by the elements in G. This proves the result.

Otherwise, assume that l ∈ leadmonC(f)\X . Then, l comes from some simplification of the linear combination

defining f . Then, the construction ensures that it must exist at least one element, Xi ∈ X , such that l ≺C Xi.

Set S = {j : Hj Gj = Xi with Hi ∈ leadmonC(hi), Gi ∈ leadmonC(gi)}. For any j ∈ S, we write hj =

Hj + other terms and g =
∑

j∈S

Hj gj. Then, Xi ∈ leadmonC(Hj gj), for all j ∈ S. However, by hypothesis

there exists G ∈ leadmonC(g), with G ≺ Xi.
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Hence, by Lemma 3.2, there exists dks,r ∈ K such that:

g =

2∑

k=1

∑

r,s∈S,r 6=s,gs,gr∈Gk

ds,r S
k(Xs gs, Xr gr).

Now, for any r, s ∈ S, Xi = lcm(Lr, Ls) for some Lr ∈ leadmonC(Hr gr) and Ls ∈ leadmonC(Hs gs), so:

Sk((Hr gr, Lr), (Hs gs, Ls)) =
Xi

Lr

Hr gr −
Xi

Ls

Hs gs

=
Xi

lr
gr −

Xi

ls
gs =

Xi

Hr,s

Sk((gr, lr), (gs, ls)

where lr =
lr
Hr

, ls =
lr
Hs

and Hr,s := lcm(lp(gr), lp(gs)).

By hypothesis, pRem(Sk(gr, gs),G) = {0}. From the last equation we deduce that:

pRem(Sk(Hr gr, Hs gs),G) = {0}

this gives a representation:

Sk(Hr gr, Hs gs) =
∑

ν

hν
r,s gν

with gν ∈ G:

max
ν

{Hν
r,sG

ν : Hν
r,s ∈ leadmonC(h

ν
r,s), G

ν ∈ leadmonC(gν)} = leadmonC(S(Hr gr, Hs gs)
k) =: Sk

r,s.

By construction of S-polynomials, we have that there exists p ∈ Sk
r,s such that p ≺C Xi, so, substitut-

ing these expressions into g above and using that f =
∑

j 6∈S

hj gj +
∑

j∈S

hj gj =
∑

j 6∈S

hj gj + g =
∑

j 6∈S

hj gj +

∑

r,s

dr,s S(Hs gs, Hr gr) =
∑

j 6∈S

hj gj +
∑

r,s

∑

ν

hν
r,s gν , we have expressed f as:

f =
∑

i

h
′

i gi

with one leading term, p, smaller than Xi. However, this is a contradiction proving the theorem. �

This criterion (the one in Theorem 3.3) allows us to describe a geometric algorithm which constructs a p-Gröbner

basis GC for MIPA,C , and then a test family for that family of multiobjective problems.

The first approach to compute a p-Gröbner basis for a family of multiobjective programs, is an algorithm based

on Conti and Traverso method for the single objective case [10]. For this algorithm, the key is transforming the

given multiobjective program into another one where computation is easier and an initial set of generators for

IA are known.

Notice that finding an initial set of generators for IA can be done by a straightforward modification of the Big-M

method (see details, e.g. in [3]).

Given the program MIPA,C(b), we consider the associate extended multiobjective program, EMIPA,C(b) as

the problem MIP eA, eC
(b) where Ã =




−1

Idm
... A

−1


 ∈ Zm×(m+1+n), C̃ = (M · 1|C) ∈ Z(m+1+n)×k, Idm

stands for the m×m identity matrix, M is a large constant and 1 is the (m+1)× k matrix whose components

are all 1. This problem adds m+1 new variables, whose weights in the multiobjective function are big, and so,

solving this extended minimization program allows us to solve directly the initial program MIPA,C . Indeed,

any feasible solution to the original problem is a feasible solution to the extended problem with the first m
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components equal to zero, so any feasible solution of the form (0,m+1. . . , 0, α1, . . . , αn) is non-dominated, upon

the order ≺ eC
, by any solution without zeros in the first m components. Then, computing a p-Gröbner basis for

the extended program, allows us detecting infeasibility of the original problem. Furthermore, a trivial feasible

solution, x̃0 = (b1, . . . , bm, 0, n+1. . . , 0), is known and the initial set of generators for IA are given by {{Mi−Pi,Mi} :

i = 0 . . . , n} where Mi = (a1i −min{0,minj{aji}}, . . . , ami −min{0,minj{aji}},−min{0,minj{aji}}, 0, n. . ., 0),

Pi = (0,m+1. . . , 0|ei), for all i = 1, . . . , n, M0 = (1,m+1. . . , 1, 0, n. . ., 0) and P0 = 0, Mi, Pi,M0, P0 ∈ Zn+m+1
+ (see [2]

for further details).

Algorithm 2: Partial Buchberger algorithm I

input : F1 = {M0,M1, . . . ,Mn} and F2 = {P0, P1, . . . , Pn},

Mi = (a1i −min{0,minj{aji}}, . . . , ami −min{0,minj{aji}},−min{0,minj{aji}}, 0, n. . ., 0) (i > 0)

Pi = (0,m+1. . . , 0|ei) ∈ Nm+n+1 (i > 0)

M0 = (1,m+1. . . , 1, 0, n. . ., 0)

P0 = (0, n+m+1. . . , 0).

repeat

Compute, G1, . . . ,Gt, the maximal chains for G = φ(F(F1, F2)).

for i, j ∈ {1, . . . , t}, i 6= j, and each pair (g, h) ∈ Gi, (g
′, h′) ∈ Gj do

Compute Rk = pRem(Sk((g, h), (g
′

, h
′

)),G), k = 1, 2.

if Rk = {0} then

Continue with other pair.

else

Add φ(F(r)) to G, for each r ∈ Rk.

end

end

until Rk = {0} for every pairs ;

output: G = {G1, . . . ,GQ}

p-Gröbner basis for IA with respect to ≺C .

Then, we can state the following result.

Theorem 3.4. Let G = {Gi}ti=1 be a p-Gröbner basis for EMIPA,C. If (0,m+1. . . , 0, α1, . . . , αn) ∈ pRem((0,m+1. . .

, 0, b1, . . . , bn),G), then α = (α1, . . . , αn) is a Pareto-optimal solution for MIPA,C(b). The entire set of Pareto-

optimal solutions of MIPA,C(b) can be computed using the above construction. Moreover, if there are no α in

the set pRem((0, b),G) whose m+ 1 first components are zero MIPA,C(b) is infeasible.

Proof. Let α be a vector obtained by successive reductions over G. It is clear that α is feasible because (0, α) is

in the set of remainders of (0, β) and then, in the same fiber. Besides, α is a Pareto-optimal solution because

G is a test family for the problem (Theorem 3.2).

Now, if β∗ is a Pareto-optimal solution, by Lemma 3.1 pRem((β∗, β∗),G)) = pRem((β, β),G)), but since β∗ is

a Pareto-optimal solution, it cannot be reduced so (β∗, β∗) ∈ pRem((β∗, β∗),G)), and then, also to the list of

partial remainders of (β, β) by G. �

Hosten and Sturmfels [26] improved the method by Conti and Traverso to solve single-objective programs

using standard Gröbner bases. Their improvement comes from the fact that it is not necessary to increase

the number of variables in the problem, as Conti and Traverso’s algorithm does. Hosten-Sturmfels’s algorithm

allows decreasing the number of steps in the computation of the Gröbner basis, but on the other hand, it needs

an algorithm to compute an initial feasible solution, that in Conti and Traverso algorithm was trivial. We have

modified this alternative algorithm to be used to compute the entire set of Pareto-optimal solutions. The first
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step in the algorithm is computing an initial basis for the polynomial toric ideal ℑA = 〈xu−xv : u−v ∈ Ker(A)〉,

that we are identifying with IA. This step does not depend on the order induced by the objective function,

so it can be used to solve multiobjective problems. Details can be seen in [26]. Algorithm 3 implements

the computation of the set of generators of ℑA. This procedure uses the notion of LLL-reduced basis (see

[32] for further details). In addition, we use a ω-graded reverse lexicographic term order, ≺gri
ω , induced by

xi+1 > · · · > xi−1 > xi (with xn+1 := x1), that is defined as follows:

α ≺gri
ω β :⇐⇒

{ ∑n
i=1 ωiαi <

∑n
i=1 ωiβi or

∑n
i=1 ωiαi =

∑n
i=1 ωiβi and α ≺lex β

where ω ∈ Rn
+ is chosen such that xi+1 > · · · > xi−1 > xi.

Algorithm 3: setofgenerators(A)

input : A ∈ Zm×n

(1) Find a lattice basis B for Ker(A) (using the Hermite Normal Form).

(2) Replace B by the LLL-reduced lattice basis Bred in the sense of Lòvasz (see [32] for more details).

Let J0 := 〈xu+ − xu− : u ∈ Bred〉.

for i = 1, . . . , n do

Compute Ji = (Ji−1 : x∞
i ) as:

(a) Compute Gi−1 the reduced Gröbner basis for Ji−1 with respect to ≺gri
ω .

(b) Divide each element f ∈ Gi−1 by the highest power of xi that divides f .

end

output: ℑA := Jn = {xu1 − xv1 , . . . , xus − xvs} system of generators for IA.

ℑA consists of binomials xui − xvi with ui − vi ∈ Ker(A), for i = 1, . . . , s. Coming back to our notation, each

binomial, xu−xv, in ℑA is identified with {u, v} ∈ IA, so computing a set of generators for ℑA gives us, in some

sense, a finite number of generators for the set that represents the constraints matrix. We compute in the next

step a partial Gröbner basis from the initial sets F1 = {u1, . . . , us} and F2 = {v1, . . . , vs} using our extended

Buchberger algorithm:

Algorithm 4: pgrobner(F1, F2)

input : F1 = {M1, . . . ,Mr} and F2 = {P1, . . . , Pr}.

repeat

Compute, G1, . . . ,Gt, the maximal chains for G = φ(F(F1, F2)).

for i, j ∈ {1, . . . , t}, i 6= j, and each pair (g, h) ∈ Gi, (g
′, h′) ∈ Gj do

Compute Rk = pRem(Sk((g, h), (g
′

, h
′

)),G), k = 1, 2.

if Rk = {0} then

Continue with other pair.

else

Add φ(F(r)) to G, for each r ∈ Rk.

end

end

until Rk = {0} for every pairs ;

output: G = {G1, . . . ,GQ}

p-Gröbner basis for the set spanned by {{Mi, Pi} : i = 1, . . . , r} with respect to ≺C .
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Once we have obtained the partial Gröbner basis using the above algorithm, we can compute the entire set of

Pareto-optimal solutions for MIPA,C(b) by the following algorithm:

Algorithm 5: Pareto-optimal solutions computation for MIPA,C(b)

input : MIPA,C(b)

Step 1. : Compute an initial feasible solution, αo, for MIPA,C(b). It consists of finding a solution for

the diophantine system of equations Ax = b, x ∈ Zn.

Step 2. : Compute a system of generators for IA: {{ui, vi} : i = 1, . . . , s}, using setofgenerators(A).

Step 3. : Compute the partial reduced Gröbner basis for MIPA,C , GC = {G1, . . . ,Gt}, using pgrobner(

F1, F2 ), where F1 = {ui : i = 1, . . . , r} and F2 = {vi : i = 1, . . . , r}.

Step 4. : Calculate the set of partial remainders: R := pRem(αo,GC).

output: Pareto-optimal Solutions : R.

There are some interesting cases where our methodology is highly simplified due to the structure of the set

of constraints. One of these cases is when the dimension of the set of constraints is n − 1. The next remark

explains how the algorithm simplifies in this case.

Remark 3.1. Let A be a m × n integer matrix with rank n − 1. Then, since dim(Ker(A)) = 1, the system

of generators for IA (Step 2) has just one element, (g, h), and the p-Gröbner basis (Step 3) is the family

G = {{(g, h)}} because no Svector appears during the computation of the Buchberger algorithm. In this case,

Pareto-optimal solutions are obtained as partial remainders of an initial feasible solution (α, α) by (g, h), i.e.,

the entire set of Pareto-optimal solutions is a subset of Γ = {α − λg : λ ∈ Z+}. More explicitly, the set of

Pareto-optimal solutions for MIPA,C(b) is the set of minimal elements (with respect to ≺C) of Γ.

In order to illustrate the above algorithm, we present an example of MOILP with two objectives where all the

computations are done in detail.

Example 3.1.

(3)

min {10x+ y, x+ 10y}

s.a.

2x+ 2y > 17

2y 6 11

x 6 10

x, y ∈ Z+

Transforming the problem to the standard form results in:

(4)

min {10x+ y + 0z + 0t+ 0q, x+ 10y + 0z + 0t+ 0q}

s.a.

2x+ 2y − z = 17

2y + t = 11

x+ q = 10

x, y, z, t, q ∈ Z+

Step 1. : Feasible solution for MIPA,C(b): u = (9, 4, 9, 3, 1).

Step 2. : Following the steps of Algorithm 3:

(1) Basis for Ker(A) : B := {(0, 1, 2,−2, 0), (−1, 0,−2, 0, 1)}.

(2) LLL-reduced basis for B : Bred := B := {(−1, 0,−2, 0, 1), (−1, 1, 0,−2, 1)}.

(3) J0 := 〈xu+ − xu− : u ∈ Bred〉 = 〈x5 − x1x
2
3, x2x5 − x1x

2
4〉
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(4) Ji+1 := (Ji : x
∞
i )

(a) G̃0 := {x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4} ⇒ J1 := 〈x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4〉

(b) G̃1 := {x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4} ⇒ J2 := 〈x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4〉

(c) G̃2 := {x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4} ⇒ J3 := 〈x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4〉

(d) G̃3 := {x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4} ⇒ J4 := 〈x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4〉

(5) ℑA = 〈x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4, x1x
2
3 − 1〉 7→

IA = 〈{
(
(1, 0, 0, 0, 1), (0, 1, 0, 2, 0)

)
,
(
(1, 0, 2, 0, 0), (0, 0, 0, 0, 1)

)
,
(
(0, 1, 2, 0, 0), (0, 0, 0, 2, 0)

)
}

Step 3. : Computing a p-Gröbner basis for IA, using the order ≺s
C (Remark 2.2), and following Algorithm

4 we obtain G, whose maximal chains are:

G1: {
(
(0, 1, 2, 0, 0), (0, 0, 0, 2, 0), (0, 1, 2, 0, 0)

)
,
(
(0, 1, 0, 0, 2), (2, 0, 2, 2, 0), (0, 1, 0, 0, 2)

)
,(

(0, 1, 0, 0, 1), (1, 0, 0, 2, 0), (0, 1, 0, 0, 1)
)
}.

G2: {
(
(1, 0, 0, 4, 0), (0, 2, 2, 0, 1), (1, 0, 0, 4, 0)

)
,
(
(1, 0, 2, 0, 0), (0, 0, 0, 0, 1), (1, 0, 2, 0, 0)

)
,(

(1, 0, 0, 2, 0), (0, 1, 0, 0, 1), (1, 0, 0, 2, 0)
)
}.

Step 4. : Partial remainders: Reducing first by G1:

pRem((9, 4, 9, 3, 1),G1) = {(9, 0, 1, 11, 1)}.

Then, reducing each remainder by G2:

pRem((9, 0, 1, 11, 1),G2) = {(9, 0, 1, 11, 1), (8, 2, 3, 7, 2), (7, 2, 1, 9, 3), (6, 3, 1, 5, 4), (5, 4, 1, 3, 5), (4, 5, 1, 1, 6)}.

The entire set of Pareto-optimal solutions is:

{(9, 0, 1, 11, 1), (8, 1, 1, 9, 2), (7, 2, 1, 7, 3), (6, 3, 1, 5, 4), (5, 4, 1, 3, 5), (4, 5, 1, 1, 6)}

Figure 4 shows the feasible region and the Pareto-optimal solutions of the example above.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
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b
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b

b

Figure 4. Feasible region, Pareto-optimal solutions and improvement cone for Example 3.1

In addition, we have evaluated the problem with the same feasible region but choosing a cost matrix such that the

respective normal vectors of each of the rows in the matrix form an acute angle. Then, non supported solutions

appear in the set of Pareto-optimal solutions. Figure 5 shows the Pareto-optimal solutions for the same feasible

region and C =

[
10 −1

−1 10

]
.
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Figure 5. Feasible region, Pareto-optimal solutions and improvement cone for Example 3.1
with C = [[10,−1], [−1, 10]]

4. Computational Results

A series of computational experiments have been performed in order to evaluate the behavior of the proposed

solution method. Programs have been coded in MAPLE 10 and executed in a PC with an Intel Pentium

4 processor at 2.66GHz and 1 GB of RAM. In the implementation of Algorithm 4 to obtain the p-Gröbner

basis, the package poset for Maple [40] has been used to compute, at each iteration, the maximal chains for

the p-Gröbner basis. The implementation has been done in a symbolic programming language, available upon

request, in order to make the access easy to both optimizers and algebraic geometers.

The performance of the algorithm was tested on randomly generated instances for knapsack and transportation

multiobjective problems for 2, 3 and 4 objectives. For the knapsack problems, 4, 5 and 6 variables programs

were considered, and for each group, the coefficients of the constraint were randomly generated in [0, 20] and

the coefficients of the objective matrices range in [0, 20]. Once the constraint vector, (a1, . . . , an), is generated,

the right-hand side is fixed as b = ⌈ 1
2

∑n
i=1 ai⌉ to ensure feasibility.

The computational tests have been done in the following way for each number of variables: (1) Generate 5

constraint vectors and compute the initial system of generators for each of them using Algorithm 3; (2) Generate

five random objective matrices for each number of objectives (2, 3 and 4) and compute the corresponding p-

Gröbner basis using Algorithm 4; and (3) with b = ⌈ 1
2

∑n
i=1 ai⌉ and for each objective matrix, compute the

Pareto-optimal solutions using Algorithm 5.

Table 1 contains a summary of the average results obtained for the considered knapsack multiobjective problems.

The second, third and fourth columns show the average CPU times for each stage in the algorithm: sog is the

CPU time for computing the system of generators, pgröbner is the CPU time for computing a p-Gröbner basis,

and pos is the time for computing a feasible solution and partially reduce it to obtain the set of Pareto-optimal

solutions. The fifth column shows the total time for computing the set of Pareto-optimal solutions for the

problem. Finally, the sixth and seventh columns show the average number of Pareto-optimal solutions and the

number of maximal chains in the p-Gröbner basis for the problem. The problems have been named as knapN_O

where N is the number of variables and O is the number of objectives.

For the transportation problems, instances with 3 origins × 2 destinations, 3 origins × 3 destinations and 4

origins × 2 destinations were considered. In this case, for fixed numbers of origins, s, and destinations, d, the

constraint matrix, A ∈ Z(s+d)×(sd), is fixed. Then, we have generated 5 instances for each problem of size s×d.
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Problem sog pgröbner pos total |POS| |MaxChains| steps act_pGB

knap4_2 0.063 249.369 1.265 250.697 11 20 2 164.920

knap4_3 0.063 1002.689 2.012 1004. 704 5 46 2 772.772

knap4_4 0.063 1148.574 2.374 1151.011 16 98 2.4 763.686

knap5_2 0.125 1608.892 0.875 609.892 3 29 2 1187.201

knap5_3 0.125 3500.831 2.035 3503.963 2 30 2.2 2204.123

knap5_4 0.125 3956.534 2.114 3958.773 9 45.4 3 3044.157

knap6_2 0.185 2780.856 2.124 2783.165 18 156 2.4 2241.091

knap6_3 0.185 3869.156 2.018 3871.359 16.4 189 2.4 2790.822

knap6_4 0.185 4598.258 3.006 4601.449 26 298 3.2 3096.466

Table 1. Summary of computational experiments for knapsack problems

Each of these instances is combined with 5 different right-hand side vectors. The procedure is analogous to

the knapsack computational test: a first step where a system of generators is computed, a second one, where

the p-Gröbner basis is built and in the last step, the set of Pareto-optimal solutions is computed using partial

reductions. Table 2 shows the average CPU times and the average number of Pareto-optimal solutions and

maximal chains in the p-Gröbner basis for each problem. The step column shows the average number of steps

in the p-Gröbner computation, and act_pGB is the average CPU time in the computation of the p-Gröbner

basis elapsed since the last element was added to the basis until the end of the process. The problems have been

named as transNxM_O where N is the number of origins, M is the number of destinations and O is the number of

objectives.

Problem sog pgröbner pos total |POS| |MaxChains| steps act_pGB

tranp3x2_2 0.015 11.813 0.000 11.828 5.2 6 2 7.547

tranp3x2_3 0.015 7.218 13.108 30.341 12 2.6 2 6.207

tranp3x2_4 0.015 6.708 15.791 21.931 6 5 2.2 4.561

tranp3x3_2 0.047 1545.916 1.718 1547.681 5 92 2 928.222

tranp3x3_3 0.047 3194.333 11.235 3205.615 9 122 2.4 2172.146

tranp3x3_4 0.047 3724.657 7.823 3732.527 24 187.4 2.2 2112.287

tranp4x2_2 0.046 675.138 2.122 677.306 3.4 35.2 2 398.093

tranp4x2_3 0.046 1499.294 6.288 1505.628 5.8 42.4 2.2 119.519

tranp4x2_4 0.046 2285.365 7.025 2292.436 12 59 2.2 1654.048

Table 2. Summary of computational experiments for the battery of multiobjective transporta-
tion problems

As can be seen in tables 1 and 2, the overall CPU times are clearly divided into the three steps, being the

most costly the computation of the p-Gröbner basis. In all the cases more than 99% of the total time is spent

computing the p-Gröbner basis. Once this structure is computed, obtaining the Pareto-optimal solutions is

done very efficiently.

The CPU times and sizes in the different steps of the algorithm are highly sensitive to the number of variables.

However, our algorithm is not very sensitive to the number of objectives, since the increment of CPU times

with respect to the number of objectives is much smaller than the one with respect to the number of variables.

It is clear that one can not expect fast algorithms for solving MOILP, since all these problems are NP-hard.

Nevertheless, our approach gives exact tools that apart from solving these problems, give insights into the

geometric and algebraic nature of the problem.

As mention above, using our methodology one can identify the common algebraic structure within any multi-

objective integer linear problem. This connection allows to improve the efficiency of our algorithm making use
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of any advance that improves the computation of Gröbner bases. In fact, any improvements of the standard

Gröbner bases theory may have an impact in improving the performance of this algorithm. In particular, one

can expect improvements in the efficiency of our algorithm based on the special structure of the integer program

(see for instance Remark 3.1). In addition, we have to mention another important issue in our methodology. As

shown in Theorem 3.2, solving MOILP with the same constraint and objective matrices requires computing only

once the p-Gröbner basis. Therefore, once this is done, we can solve different instances varying the right-hand

side very quickly.

Finally, we have observed from our computational tests that a significant amount of the time, more than 60%

of the time (see column act_pGB), for the computation of the p-Gröbner basis is spent checking that no new

elements are needed in this structure. This implies that the actual p-Gröbner basis is obtained much earlier

than when the final test is finished. A different truncation strategy may be based on the number of steps

required to obtain the p-Gröbner basis. According to the exact method, the algorithm stops once in a step no

new elements are added to the structure. Our tables show that in most cases the number of steps is 2, actually

only one step is required to generate the entire p-Gröbner basis (see column steps). These facts can be used to

accelerate the computational times at the price of obtaining only heuristic Pareto-optimal solutions. This idea

may be considered an alternative primal heuristic in MOILP and will be the subject of further research.
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