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Abstract.

Although discrete formalisms have been successful at describing the sets of grammatical sentences
in human languages, new tools are needed to model language variation. An individual’s speech
pattern can be modeled more realistically by a stochastic grammar consisting of a set of idealized
grammars together with a set of usage rates. A population can then be represented as a probability
measure over a space of usage rates and physical or social locations. In this article, I investigate a
measure-valued differential equation for a spatially distributed population in which individuals use
stochastic grammars. Under appropriate hypotheses, and assuming that children learn based on an
average feature of the nearby population’s speech, the asymptotic behavior of the measure dynamics
are controlled by the feature’s dynamics, which can significantly reduce the dimension of the model.
I discuss the example of a single usage rate for choosing one of two grammatical options. If space is
unstructured, then all populations tend to a stable equilibrium dominated by one option or the other.
If space consists of two well-mixed compartments, then each compartment may choose a different
dominant idealized grammar, but increased migration causes a bifurcation in which one idealized
grammar goes extinct. If space is continuous, numerical experiments show that the measure and
feature dynamics can exhibit traveling waves.
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1. Introduction. Human language is a hybrid system. On one hand, the set
of grammatical sentences in a language can in general be described by discrete for-
malisms, such as context sensitive grammars, minimalism [1, 42], and optimality the-
ory [44]. Due in part to the influence of Chomsky [7, 8, 9], much of the research in
linguistics has been focused on developing discrete formal descriptions of sentences as
produced and understood by idealized speakers. Idealized grammatical descriptions
can be formulated for phonology (the sound system), morphology (word structure),
syntax (sentence structure), and semantics (meaning structure).

There are several shortcomings to this approach. First, many languages include
multiple grammatical constructions for expressing certain meanings, and discrete for-
malisms typically include no indication of why speakers should use one or the other
[26]. To give an example from [26], most English sentences can be expressed in either
active or passive voice with very little difference in meaning, and there are tenden-
cies but no hard rules for which voice to use in any given situation. Corpus studies
indicate that each individual writer varies the rates at which he or she uses various
constructions across manuscripts [46], and grammatical change seems to consist of a
more or less steady rise in preference for one alternative at the expense of another over
decades and across the population. Second, social context has significant influence on
the choices made during speech [22]. An idealized grammar states that both familiar
and polite forms of address are grammatical, for example, but it is difficult to state
precisely when to prefer one over the other. Third, speech production is imperfect.
Children in particular make a variety of interesting mistakes that mostly disappear
from their speech, but not entirely [2, 48]. Second language speakers almost always
maintain a noticeable level of variation from the language as spoken by typical native
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speakers [47]. Fourth, native speakers sometimes disagree on whether particular sen-
tences are grammatical, and grammaticality judgments are often graded rather than
binary [3]. Fifth, it is very difficult to model language acquisition and change using
discrete formalisms. Such models can be made [12, 35, 5, 13, 44] but they generally do
not take into account statistical properties of speech and do not describe how speakers
arrive at their usage rate for grammatical variants. They can also be overly sensitive
to noise in the input.

Thus, there is a growing need for more tools that address the fuzzier aspects
of speech. Some mathematical tools have been developed for addressing the lexi-
con [39, 19, 38, 41] and syntax [3], but there is a need for tools for modeling the
dynamics of grammatical change within a population of non-idealized speakers. In
this article, we formulate a general class of linguistic population dynamics that re-
laxes frequently-used simplifying assumptions. Specifically, speakers are allowed to
use arbitrary mixtures of idealized grammars. The learning process takes the entire
population state as input. Spatial and social structure are included in a speaker’s
state, and the dynamics include the flow of individuals from one state to another.

Since the resulting class of models involves infinite-dimensional dynamical sys-
tems, we prove a series of dimension-reduction propositions: Under certain assump-
tions, particularly that learning takes as input only macroscopic properties of the
population’s speech patterns, the infinite-dimensional dynamics are asymptotically
controlled by a closed system of differential equations for those macroscopic proper-
ties. These results are then applied to example models of language change, one in
which space is divided into two compartments, and one in which space is modeled
continuously and the change takes the form of a traveling wave.

1.1. The modeling process. Different mathematical models for a single phe-
nomenon can cover a huge range of detail, and each level has its advantages and
disadvantages. For example, if one needs to model a chemical dissolved in water,
the most detailed framework might be quantum mechanics, representing each sub-
atomic particle in each molecule of solvent and solute. On a coarser scale, atoms and
bonds can be represented by rods and springs. One can dispense with the individual
molecules altogether and use continuum mechanics. At the coarsest scale, the solution
can be represented as a homogeneous volume of liquid with a particular concentration
of solute.

Within linguistics, the same range of mathematical models can formulated. On
one extreme, each speaker, utterance, and meaning can be represented in full detail.
Coarser models might keep track of each individual’s state, but abstract away the de-
tails so that speaker states are representable as a few binary bits. Even coarser, one
might keep track of the number of speakers in each of a very few states, so individual
agents and sentences are not represented directly. At the coarsest level, a popula-
tion may be boiled down to compartments, each of which has a single bulk speech
pattern. The advantage of the detailed simulations is realism, but their disadvantage
is tractability: The experimenter can run computer simulations up to a certain size
and collect statistics, but proving meaningful theorems about their behavior or fitting
the huge number of parameters to data is not generally possible. The advantage of
the coarser models is tractability, but their disadvantage is realism: One can calcu-
late fixed points and prove stability results for a dynamical system representing an
infinite population, but its representation of language may be so simplified that its
applicability is in doubt. In-between models are compromises between realism and
tractability.
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Currently, the linguistics modeling community favors the extremes. For example,
there are detailed simulations of individuals learning a language [17, 5, 29], and con-
tinuous population dynamics [28, 33, 34, 30, 31, 20, 37, 36], but the middle ground
is somewhat sparse. One purpose of this project is to build models in that middle
ground, analogous to the mesoscale continuum mechanics that lie between microscale
quantum physics and macroscale bulk dynamics.

1.2. Population dynamics with probability measures. For linguistic pop-
ulation dynamics in the presence of non-idealized speech, a natural mathematical tool
is the probability measure, which can flexibly represent the distribution of speakers
as a function of possible states. Signed measures form a Banach space, of which
the probability measures are a closed subset. Much of the theory of ordinary dif-
ferential equations applies directly to dynamics in Banach spaces and therefore to
measure-valued differential equations. However, infinite dimensional geometry can be
counter-intuitive and requires careful treatment.

The use of probability measures rather than some simpler mathematical object
deserves some explanation. Let us consider a simple scenario where speakers use a
mixture of two idealized grammars G1 and G2 that are identical except for one syn-
tactic construction. Each individual’s speech pattern is represented by a real number
z ∈ [0, 1] indicating the frequency with which he or she uses G1. In the limit of a
large, well mixed population, the population state at time t might be represented by a
probability density function u(t, ·) where

∫

A
u(t, z) dz is the fraction of the population

whose usage rate is in A. It is possible to formulate a sensible differential equation
for which u(t, ·) takes values in the space L1 in which all continuous density functions
reside. However, there is a disadvantage to using this space: If the dynamics can drive
a language variant to extinction, it might be necessary to include a discrete feature
in the dynamics, such as a population state in which all people use the old variant at
rate 0. Representing distributions with mass concentrated at a point in a continuum
requires an atomic probability measure, often represented by a delta function, and
L1 does not include such generalized functions. Since both continuous and discrete
distributions are potentially necessary, it makes sense to work in the space of signed
measures rather than L1. Additionally, measures can represent sets of individual
agents as a sum of atomic measures, as well as infinite populations using continuous
densities, potentially providing a tool that can unify infinite population models as
limits of finite population models.

Therefore, consider a time-dependent probability measure u(t, dz), where u(t, A) =
∫

z∈A
u(t, dz) is the fraction of the population whose usage rate is in A. The population

dynamics are then given by

∂u(t, dz)

∂t
= Q(u(t, ·), dz) − u(t, dz) (1.1)

where Q(µ,A) is the distribution for the number of children with usage rate in A
given that they are learning from a population with usage frequencies distributed
according to the distribution µ. The Q term represents the distribution of births
contributing to usage frequency z, and the −u term represents deaths. In formulating
this equation, it is assumed that births and deaths occur at the same rate, that this
rate is independent of language, and that time has been rescaled so that this rate has
unit magnitude. This model is a step upward in complexity from [28, 33, 34, 31, 18]
in which it is assumed that each child learns primarily from his or her parents.
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Since (1.1) contains no partial derivative in z, we may interpret it as an au-
tonomous, infinite dimensional, ordinary differential equation rather than a functional
partial differential equation:

u′(t) = dz 7→ Q(u(t), dz) − u(t, dz)

or, leaving z and t implicit,

u′ = Q(u) − u. (1.2)

With that basic model in place, we introduce a spatial variable x and allow for
the population to be distributed continuously or discretely in space:

u′(t) = (dx, dz) 7→ Q(u(t), dx, dz) − u(t, dx, dz)

or with t, x and z all implicit:

u′ = Q(u) − u. (1.3)

What remains is to add a linear term representing spatial and linguistic flow. That
is, adults are allowed to move from place to place, but with the restriction that the
flow rates are expressible as a linear operator G:

u′ = Q(u) − u + Gu. (1.4)

The dynamics so formulated are deterministic, but represent random variation in
language as distributions over usage rates. The development of mesoscale models
with stochastic components is beyond the scope of this article, but is addressed in
other projects by the author [32].

1.3. Dimension reduction. We would like to determine if the dynamics for
u might be understood in terms of some mean field simplification. For example,
under the simplifying assumption of an unstructured population, speakers are indis-
tinguishable and sentences are selected uniformly at random from all speakers. Each
child effectively hears and learns from the population’s mean usage rates of possible
variants. This suggests that we investigate the circumstances under which a closed
dynamical system can be formulated for the mean of u, and determine the extent to
which information about the mean determines the dynamics of u. Such circumstances
would justify replacing the infinite dimensional dynamics of u with finite dimensional
dynamics representing the mean speech pattern of the population. Furthermore, if
the population is divided into physical patches or social classes, then the same sort
of finite dimensional approximation ought to be possible within each compartment,
with some additional terms indicating the migration rates among compartments.

The first step is to formalize (1.4) in Section 2, and prove that under appropriate
assumptions, it has unique probability-measure-valued solutions for all forward time.
We then focus on the case where learning depends only on aggregate features of the
population state. Rather than limit ourselves to mean dynamics, we suppose more
generally that features lie in some linear space, and that there is a linear operator
that extracts the aggregate features from probability measures. A crucial assumption
is that migration causes features to flow: The feature extraction operator needs to be
interchangeable with the migration rate operator using a feature flow rate operator.

The next step is to prove that the existence of certain stable structures within
the feature dynamics implies the existence of parallel stable structures within the
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the full measure dynamics. If the entire feature phase space is filled by the basins of
attraction of these stable structures, which is true for generic one- and two-dimensional
dynamical systems, then the asymptotic behavior of the full measure dynamics is
completely accounted for by the parallel structures.

With the general mathematical machinery developed, we will turn in Section 3
to the specific example of the dynamics of the usage rate of G1 as opposed to G2,
under the assumption that children learn from the mean usage rate. If the population
is unstructured, the dynamics are simple: Generically, the population converges to a
stable equilibrium dominated by G1 or G2. However, if the population is split into
compartments, then each compartment may choose a different dominant grammar,
and an increase in the migration between the compartments can lead to a bifurcation
that eliminates one of the grammars. If the population is distributed on a continuous
space, then (1.4) may be related to a reaction-diffusion equation, and numerical exper-
iments show that it can exhibit the traveling waves characteristic of such equations.
Each of these examples is connected to instances of language variation and change in
the linguistics literature.

Although the model is described as if the spatial variable represents physical space,
it could just as well be interpreted as social space, representing ethnicity, economic
class, or any combination. The migration process is then interpreted as including
social mobility.

2. Mathematical machinery.

2.1. Notation, assumptions, and fundamental results. To begin, here are
some assumptions and notation that will be used throughout.

Definition 2.1. Ω is a locally compact Hausdorff space of states that individuals

may be in. Associated with Ω is the Borel σ-algebra BΩ of measurable subsets of Ω.

All measures considered in this paper will be finite regular Borel measures.

For example, if the population is unstructured and there are two alternative speech
patterns whose usage frequency may vary, then Ω = [0, 1]. If the population has k
patches and two alternative speech patterns, then Ω = {1, 2, . . . , k}× [0, 1] to indicate
an individual’s location and speech pattern.

Definition 2.2. M is the Banach space of bounded measures on (Ω,BΩ) with

the total variation norm,

‖µ‖TV = sup
partitions {Fj} of Ω

∑

j

|µFj | .

The measure of a set A ∈ BΩ under µ ∈ M will be denoted µA, and the integral
of a function f over a set A with respect to µ will be denoted

∫

x∈A

f(x)µ(dx).

Equations satisfied by measures will sometimes be expressed in differential notation,
as in

ν(dx) =

∫

s∈A

f(s)µ(ds, dx) − κ(dx).

Delta measures, also called point measures or delta functions, will be denoted

δsX =

{

1 if s ∈ X

0 if s 6∈ X
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and
∫

x∈A

f(x) δs(dx) = f(s).

Measures are partially ordered; in this paper, the primary use of that order is the
notion of a positive measure: µ ≥ 0 means that for each A ∈ BΩ, µA ∈ R and
µA ≥ 0. Additionally, a measure can be strictly positive: µ > 0 means that µ ≥ 0
and µ 6= 0.

The mass of a measure µ is given by the measure of the whole space under µ,
µΩ. Note that for positive measures, µΩ = ‖µ‖TV .

Definition 2.3. M× is the subset of M of strictly positive measures,

M× = {µ ∈ M | µ > 0}. (2.1)

Definition 2.4. P is the set of probability measures on Ω.

P = {µ ∈ M× | µΩ = 1} (2.2)

and for each µ ∈ P, ‖µ‖TV = µΩ = 1.
Assumption 2.5. Q : P → P is the learning function. It must satisfy a Lipschitz

condition on P: There is a constant L > 0 such that

∀µ1, µ2 ∈ P ‖Q(µ1) − Q(µ2)‖TV < L ‖µ1 − µ2‖TV . (2.3)

The Q function takes as input a probability measure that represents how indi-
viduals in the population are distributed over their possible states. Its output is a
probability measure that represents the distribution of the state of a random person
born into that environment. The Lipschitz condition guarantees that it is continuous,
plus a bit smoother.

Definition 2.6. A function f : M → M is said to respect positivity if µ ∈ M×

implies f(µ) ∈ M×.

Assumption 2.7. G : M → M is a bounded linear operator such that for all

µ ∈ M,

(Gµ)Ω = 0, (2.4)

and M(t) = etG is a time-dependent bounded linear operator that respects positivity

for all t ≥ 0.
The M process represents part of the population flow, specifically, M(t)µ gives

the state of a population initially in state µ after experiencing migration (but not
birth and death) for a time t. The migration rate operator G represents instanta-
neous flow due to migration and will be used to incorporate these effects into the
population dynamics. The constraint (Gµ)Ω = 0 means that the net flow over the
entire population is zero, even for an un-normalized measure µ, so that the population
is self-contained and should not grow due to migration. More formally, an immediate
consequence of this constraint is that M(t) preserves the mass of measures, as is seen
from the power series

(M(t)µ)Ω =

(

µ + tGµ +
t2

2
G2µ + . . .

)

Ω

= µΩ
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because in each term past the first, (Gnµ)Ω = (G(Gn−1µ))Ω = 0. From this and the
assumption that M(t) respects positivity, it follows that for all t ≥ 0, M(t) : P → P.

For a single-compartment population with no migration, G = 0 and M(t) = I.
It is possible to generalize M to a semigroup and let G be its generator, but there is
no need for such generality in the examples in this paper. Instead, we will eventually
assume a somewhat more specific form for M and G.

Assumption 2.8. u : [0,∞) → P is the time-dependent population state. Sam-

pling the population at time t produces random a element of Ω distributed according

to u(t). The dynamics of u are

u′ = Q(u) − u + Gu, u(t0) = u0. (2.5)

As a technicality, there is no theoretical difficulty dealing with derivatives or integrals
of a Banach-space valued function of a real variable. See for example, chapter III of
[10]. Furthermore, bounded linear operators may be exchanged with derivatives and
integrals in t, which justifies operations such as

(∫

g(t) dt

)

S =

∫

(g(t)S) dt

where S ∈ BΩ and g : R → M.
The various assumptions on Q and G are required to prove that solutions to (2.5)

are well defined. A general result, Theorem 5.1 from section VI.5 of [27], will be
applied. The assumptions so far immediately satisfy the following hypotheses of this
theorem:

• P is closed.
• A(u) = Q(u) − u + Gu is continuous, A : P → M.
• For each u ∈ P, ‖A(u)‖TV ≤ 2 + ‖G‖, so A maps bounded sets to bounded

sets.
The theorem requires confirmation of two other hypotheses. First is a condition that
says A does not drive the dynamics off P.

Proposition 2.9. For all u ∈ P,

lim inf
h→0+

1

h
d (u + hA(u);P) = 0

where d(x;D) is the distance from the point x to the set D, as in

d(x;D) = inf{‖x − y‖TV | y ∈ D}.

Proof. We will need the expansions

eh(G−I) = I + h(G − I) +
1

2
h2(G − I)2 + . . .

e−h = 1 − h +
1

2
h2 + . . .

transformed into

I + h(G − I) = eh(G−I) + O
(
h2

)

h = 1 − e−h + O
(
h2

)
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The expression of interest is

u + hA(u) = (I + h(G − I))u + hQ(u)

= eh(G−I)u + (1 − e−h)Q(u) + O
(
h2

)

=

y0

︷ ︸︸ ︷

e−h(ehGu) + (1 − e−h)Q(u) +O
(
h2

)

Since Q(u) ∈ P and ehGu = M(h)u ∈ P, the dominant term y0 is a convex com-
bination of probability measures, so it is also a probability measure. Therefore,
d(u + hA(u);P) ≤ ‖u + hA(u) − y0‖TV = O

(
h2

)
.

Second is a bound on a sort of one-sided Gâteau differential.
Proposition 2.10. For each u and v ∈ P,

lim
h→0+

1

h
(‖u − v‖TV − ‖u − v − h(A(u) − A(v))‖TV )

≤ (L + 1 + ‖G‖) ‖u − v‖TV

Proof. The limit exists thanks to the convexity of ‖·‖TV and a monotonicity
argument, as in § II.5 of [27]. Thus we only need to show a bound.

Let r = ‖u − v‖TV −‖u − v − h(A(u) − A(v))‖TV . Using the triangle inequality,

|r| ≤ ‖h(A(u) − A(v))‖TV

≤ h (‖Q(u) − Q(v)‖TV + ‖u − v‖TV + ‖Gu − Gv‖TV )

≤ h(L + 1 + ‖G‖) ‖u − v‖TV

Proposition 2.11. Every initial value problem (2.5) has a unique solution u :
[0,∞) → P. If u1 and u2 satisfy the differential equation, then for all t ≥ 0

‖u1(t) − u2(t)‖TV ≤ e(L+1+‖G‖)t ‖u1(0) − u2(0)‖TV

Proof. This follows from Theorem 5.1 from § VI.5 of [27].

2.2. Feature dynamics and dimension reduction. Under the simplifying
assumption the population is unstructured and well mixed, we consider learning func-
tions Q that depend on u only through its mean. More generally, consider a bounded
linear operator T taking a population state u to those features that are relevant to
learning, and suppose that Q(u) = q(Tu). This yields the differential equation

u′ = q(Tu) − u + Gu (2.6)

where as in Proposition 2.11, there is a unique solution u : [0,∞) → P for each initial
condition u(0) = u0 ∈ P. The features m = Tu also satisfy a differential equation,
derived by applying T to both sides of (2.6):

Tu′ = q(Tu) − Tu + TGu

By making appropriate assumptions about how T interacts with G and introducing a
related feature flow rate operator H, the u dynamical system yields a closed dynamical
system for features m = Tu,

m′ = q(m) − m + Hm
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Thus, with appropriate assumptions, the infinite dimensional u dynamics can be re-
duced to much lower dimensional m dynamics, and many features of the u dynamics
are controlled by the underlying m dynamics. This section proves several results
about the extent to which the asymptotic dynamics of m determine the asymptotic
dynamics of u.

We need the following additional definitions and assumptions.
Assumption 2.12. Y is a Banach space representing interesting features of ele-

ments of M. Its norm will be denoted ‖·‖Y
Assumption 2.13. T : M → Y is a bounded linear operator that extracts aggre-

gate features from a probability density.

For example, T could be the mean usage rate, any moment of the usage rate, or
any tuple of moments, in which case Y = R

n. The assumption that T is linear allows
us to swap it with d/dt, which is important in connecting the full measure-valued
population dynamics with the feature-valued population dynamics. Typically, T will
be many-to-one and specified on P, but it generalizes to all of M by linearity.

Assumption 2.14. In this section, we consider the case where the learning func-

tion has the form Q(u) = q(Tu). Formally, q : Q → P is a Lipschitz-continuous

function defined on some closed and bounded subset Q ⊂ Y. We require for each

u ∈ P that Tu ∈ Q so that q ◦ T : P → P is well defined. We also require that for

each m ∈ Q there exists at least one u ∈ P such that Tu = m.

Assumption 2.15. H : Y → Y is a bounded linear operator representing feature

flow rates. If m ∈ Q then Hm ∈ Q. It is related to T and G by the identity

TG = HT. (2.7)

We also assume that ‖G‖ < 1 and ‖H‖ < 1.
The norm constraints on G and H ensure that G− I and H − I are non-singular,

and that

T (G − I)−1 = (H − I)−1T (2.8)

Using these assumptions in conjunction with power series for functions of the operators
G and H gives, for example,

Te(G−I)t = e(H−I)tT. (2.9)

The existence of H allows the feature operator T to be swapped with the migration
rate operator G. It represents the effects of migration on features rather than on the
population distribution.

Assumption 2.16. m : [0,∞) → Y is the time-dependent vector of features

representing the population state. The dynamics of m are derived from the dynamics

of u by applying T to both sides of (2.6):

T (u′) = Tq(Tu) − Tu + TGu

(Tu)′ = Tq(Tu) − Tu + HTu

Setting m = Tu yields the closed dynamical system

m′ = Tq(m) − m + Hm. (2.10)
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Proposition 2.17. For every initial condition m(t0) = m0 in Q there is a unique

solution to (2.10), defined for all t ≥ t0.
Proof. Since q is Lipschitz continuous, the standard Picard-Lindelöf theorem

guarantees the existence of unique solutions to initial value problems on finite time
intervals. (See for example Chapter VI of [27].)

Given m0, define u0 = q(m0). From Proposition 2.11, there is a unique solution
u(t) for (2.6) defined for all t ≥ t0. This gives a solution m(t) = Tu(t) for (2.10)
defined for all t ≥ t0. Since the solution for m is unique on every finite time interval,
it follows that m(t) = Tu(t) is the unique solution for m defined for all t.

It turns out that the asymptotic dynamics of m determine much about the asymp-
totic dynamics of u. First, we show that fixed points for one correspond exactly to
fixed points for the other.

Proposition 2.18. If ū ∈ P is a fixed point of (2.6), then m̄, defined as

m̄ = T ū

is a fixed point of (2.10).
Proof. Given that

q(T ū) + (G − I)ū = 0,

apply T to both sides to derive

Tq(m̄) + (H − I)m̄ = 0.

Proposition 2.19. For each fixed point m̄ of (2.10) there is a unique fixed point

ū of (2.6) such that T ū = m̄, and ū is given by

ū = −(G − I)−1q(m̄).

Proof. The hypothesis that m̄ is a fixed point gives

m̄ = −(H − I)−1Tq(m̄).

The definition of ū implies that

T ū = −T (G − I)−1q(m̄) = −(H − I)−1Tq(m̄) = m̄

and that

q(m̄) = −(G − I)ū.

With this information, the right hand side of (2.6) evaluated at ū gives

q(T ū) + (G − I)ū = q(m̄) + (G − I)ū = 0.

To prove uniqueness, let v̄ be another fixed point with T v̄ = m̄. Since 0 =
q(m̄) + (G − I)v̄, the non-singularity of G − I implies that v̄ = ū.

The basins of attraction of asymptotically stable features are also in parallel, as
the next two propositions prove.
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Proposition 2.20. Let m1 and m2 be solutions to (2.10), and let u1 and u2 be

solutions to (2.6) with Tu1(0) = m1(0) and Tu2(0) = m2(0). Suppose

lim
t→∞

‖u1(t) − u2(t)‖TV = 0.

Then

lim
t→∞

‖m1(t) − m2(t)‖Y = 0.

Proof. Applying T to (2.6) and using (2.7) shows that

(Tu1)
′ = Tq(Tu1) − Tu1 + HTu1

which means that Tu1 solves (2.10). Since initial value problems under (2.10) have
unique solutions, it follows that for all t ≥ 0, m1(t) = Tu1(t). Similarly, m2(t) =
Tu2(t).

Therefore,

‖m1(t) − m2(t)‖Y ≤ ‖T‖ ‖u1(t) − u2(t)‖TV

and since the right hand side converges to 0, so does the left.
Proposition 2.21. Let u1, u2 : [0,∞) → P be solutions to (2.6). Let m1 = Tu1

and m2 = Tu2. Note that m1 and m2 satisfy (2.10). Suppose

lim
t→∞

‖m1(t) − m2(t)‖Y = 0.

Then

lim
t→∞

‖u1(t) − u2(t)‖TV = 0.

Proof. If we regard m as known, we may think of the u dynamics as a linear
differential equation in u with a non-homogeneous term containing m, that is,

u′(t) − (G − I)u(t) = q(m(t)).

We multiply by the integrating factor e−(G−I)t and rearrange the terms to find

u(t) = e(G−I)tu(0) +

∫ t

0

e(G−I)(t−s)q(m(s)) ds. (2.11)

Applying this to u1 and u2 and taking the difference gives

‖u2(t) − u1(t)‖TV ≤
∥
∥
∥e(G−I)t

∥
∥
∥ ‖u2(0) − u1(0)‖TV

+

∫ t

0

∥
∥
∥e(G−I)(t−s)(q(m2(s)) − q(m1(s)))

∥
∥
∥

TV
ds

The assumption that ‖G‖ < 1 is key here, since it guarantees that e(G−I)t is shrinking
as t increases:

∥
∥
∥e(G−I)t

∥
∥
∥ =

∥
∥e−IteGt

∥
∥

= e−t
∥
∥eGt

∥
∥

≤ e−(1−‖G‖)t
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We need to split the integral. Given ε > 0, and a Lipschitz constant L for q, let τ be
sufficiently large that for each s ≥ τ ,

‖m2(s) − m1(s)‖Y <
ε(1 − ‖G‖)

L
, (2.12)

Introducing the positive constants

C1 = ‖u2(t0) − u1(t0)‖TV

C2 =

∫ τ

0

∥
∥
∥e−(G−I)s(q(m2(s)) − q(m1(s)))

∥
∥
∥

TV
ds

C3 = C1 + C2

it follows that

‖u2(t) − u1(t)‖TV ≤
∥
∥
∥e(G−I)t

∥
∥
∥ ‖u2(0) − u1(0)‖TV

+
∥
∥
∥e(G−I)t

∥
∥
∥

∫ τ

0

∥
∥
∥e−(G−I)s (q(m2(s)) − q(m1(s)))

∥
∥
∥

TV
ds

+

∫ t

τ

∥
∥
∥e(G−I)(t−s)

∥
∥
∥ ‖q(m2(s)) − q(m1(s))‖TV ds

≤ e−(1−‖G‖)t(C1 + C2)

+

∫ t

τ

e−(1−‖G‖)(t−s)L ‖m2(s) − m1(s)‖Y ds

≤ e−(1−‖G‖)tC3 + L ·
ε(1 − ‖G‖)

L

∫ t

τ

e−(1−‖G‖)(t−s) ds

≤ e−(1−‖G‖)tC3 + ε
(

1 − e−(1−‖G‖)(t−τ)
)

Letting t → ∞,

lim sup
t→∞

‖u2(t) − u1(t)‖TV ≤ lim sup
t→∞

e−(1−‖G‖)tC3 + ε(1 − e−(1−‖G‖)(t−τ))

≤ ε.

Since the final inequality holds for arbitrary ε > 0, it follows that ‖u2(t) − u1(t)‖TV →
0 as t → ∞.

Corollary 2.22. Let u be a solution to (2.6), and let m = Tu. Suppose m̄ ∈ Q
and m(t) → m̄ as t → ∞. Then u(t) → −(G − I)−1q(m̄) as t → ∞.

Proof. Observe that m̄ must be a fixed point of (2.10). Then ū = −(G −
I)−1q(m̄) is a fixed point of (2.6) by Proposition 2.19. The conclusion follows from
Proposition 2.21.

Another consequence of Propositions 2.20 and 2.21 is that if two u trajectories
are different but initially map to the same feature m0, then the difference between
the two trajectories shrinks to zero. In other words, only information derived from
the features persists.

Corollary 2.23. Suppose u01 and u02 are probability measures with Tu01 =
Tu02 = m0. Let u1 and u2 be the solutions of (2.6) with initial conditions u01 and

u02 respectively. Then

lim
t→∞

‖u1(t) − u2(t)‖TV = 0.

12



In addition to fixed points and their basins of attraction, limit cycles and their
basins of attraction exist in parallel.

Proposition 2.24. Let u be a solution to (2.6), and let m = Tu. Suppose m
converges to a limit cycle as t → ∞. Then u converges to a limit cycle as t → ∞ and

this limit cycle is unique.

Proof. The limit cycle ũ of (2.6) may be recovered from the limit cycle m̃ and its
period τ . Convergence of u with ũ then follows from Proposition 2.21.

To begin, if ũ0 is any element of P that happens to satisfy T ũ0 = m̃(0), then the
solution to (2.6) starting at ũ0 will satisfy T ũ(t) = m̃(t) and converge with u, but
there is no guarantee that a generic ũ is actually a limit cycle. Only one such ũ0 will
work.

Using an integrating factor of e−(H−I)t with (2.10), it follows that

m̃(t) = e(H−I)tm̃(0) +

∫ t

0

e(H−I)(t−s)Tq(m̃(s)) ds.

Since m̃(τ) = m̃(0),

m̃(0) =
(

I − e(H−I)τ
)−1

∫ τ

0

e(H−I)(τ−s)Tq(m̃(s)) ds.

Note that since
∥
∥e(H−I)τ

∥
∥ = e−τ

∥
∥eHτ

∥
∥ ≤ e−(1−‖H‖)τ and ‖H‖ < 1, we know that

∥
∥e(H−I)τ

∥
∥ < 1. Therefore, the operator I − e(H−I)τ is non-singular, so its inverse is

well defined. Similarly, the operator I − e(G−I)τ is non-singular because ‖G‖ < 1.
Using (2.9), we can swap the T all the way to the left to get

m̃(0) = T








ũ0

︷ ︸︸ ︷
(

I − e(G−I)τ
)−1

∫ τ

0

e(G−I)(τ−s)q(m̃(s)) ds








.

Using the ũ0 so defined as the initial condition, the solution ũ to (2.6) satisfies

ũ(τ) = e(G−I)τ ũ0 +

∫ τ

0

e(G−I)(τ−s)q(T ũ(s)) ds

= e(G−I)τ ũ0 +

∫ τ

0

e(G−I)(τ−s)q(m̃(s)) ds

= e(G−I)τ ũ0 +
(

I − e(G−I)τ
)

ũ0

= ũ0

which verifies that ũ is a limit cycle.
Uniqueness follows from the observation that if there were two u-limit cycles for

m̃(0), they would have to converge with each other as t → ∞, which is impossible
unless they coincide.

These theorems mean that if the m dynamics include a stable fixed point or stable
limit cycle, a parallel stable feature and its basin of attraction must exist in the u
dynamics. If the m dynamics lead all trajectories to converge to some fixed point
or limit cycle, then the u dynamics lead all trajectories to converge to parallel fixed
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points or limit cycles. If Y is one- or two-dimensional, then this argument will hold
for generic m dynamics [15, §1.9].

Intuitively, the formula (2.11) means that the initial condition is forgotten expo-
nentially rapidly, and at any given t, the measure u(t) is dominated by a weighted
average of recent values of q(m(t)). If at some t0 the value of m(t0) is known exactly
but the corresponding u(t0) is unknown, then the value of u(t) may be approximated
for t > t0 by choosing any initial condition v0 with Tv0 = m(t0) and using the
approximation

u(t) ≈ v(t) = e(G−I)(t−t0)v(t0) +

∫ t

t0

e(G−I)(t−s)q(m(s)) ds. (2.13)

The convergence of v with u follows from Proposition 2.21 with m1 = m2 = m.
However, if m(t0) can only be approximately estimated as m(t0) ≈ m̃0, and if the

nearby trajectories of m are unstable, then the approximation (2.13) is potentially
doomed: Since there is no way to guarantee Tv0 = m(t0), we would have to choose v0

such that Tv0 = m̃0, and consider a solution m̃(t) with m̃(t0) = m̃0. There is no way
to guarantee that m(t) and m̃(t) converge, so Proposition 2.21 does not apply. Thus,
sensitive dependence on initial conditions for m can result in sensitive dependence on
initial conditions for u.

2.3. More specific migration rate operators. In preparation for some spe-
cific instances of this family of models, we now consider a more specific form for the
migration rate operator G.

Assumption 2.25. K : M → M is a bounded linear operator that respects

positivity. We require ‖K‖ < 1/2.
Assumption 2.26. J : M → M is a bounded linear operator with the property

that for all t ∈ R, the linear operator etJ respects positivity. We require ‖J‖ < 1/2.
The K operator represents immigration (arrival) and J represents emigration

(departure). The overall migration rate is G = K − J . The norm constraints on K
and J ensure that ‖G‖ < 1.

These operators must have several special properties that are automatically true
in the case of G = 0. We need a conservation of population constraint so that everyone
who departs one location must arrive somewhere else:

Assumption 2.27. For each µ ∈ M×,

(Kµ)Ω = (Jµ)Ω (2.14)

This ensures that (2.4) is satisfied for G = K − J .

The different positivity constraints for K and J reflect the fact that departure
rates tend to be diagonal but arrival rates tend to be diffuse. That is, some fraction of
the people at each location leave in an infinitesimal time interval. Then the whole set
of moving people distributes itself over the whole space. In general, any realistic K
will respect positivity. The J operator, however, requires more care, as it is important
that the mass of people leaving a location does not exceed the number present.

Proposition 2.28. M(t) = e(K−J)t respects positivity, as required.

Proof. Let µ0 ∈ M×, and let µ(t) = e(K−J)tµ0. Note that µ is the unique solution
to µ′(t) = −Jµ + Kµ with initial condition µ0. This initial value problem may be
treated as semilinear, so that it falls under Theorem 5.1 in section VIII.5 of [27] as
follows. The operator −J is the generator of the semigroup e−Jt on the closed set
D = M× ∪ {0}. The function K takes the role of the potentially nonlinear term.
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The technical assumptions of this theorem are satisfied by the fact that K and J are
bounded linear operators. Its conclusion is that the solution µ takes values in D.

From the discussion following (2.4), the mass of µ is constant, so µ is never the
zero measure. Thus, for every t ∈ [0,∞), µ(t) ∈ M×.

2.4. Dynamics under a migration kernel and linear speech features.

To derive some more specific results, we suppose that the population inhabits some
space S, which might be a set of compartments, a subset of Euclidean space, a circle,
a torus, or some combination of such spaces. We also assume that speech patterns are
elements of a Banach space L, which might represent usage rates for various idealized
grammars, for example. The individual state space for this problem is Ω = S × L,
representing the fact that each individual has a spatial location x ∈ S and a language
or speech pattern z ∈ L. To simplify the notation, u(t,X,Z) will be synonymous with
u(t,X × Z) which is the probability that an individual is within X × Z at time t.

We assume that K and J are derived from a migration kernel κ as follows.
Assumption 2.29. κ : BS×S → R is a migration kernel such that the probability

that an individual at a location s moves to somewhere in X ⊂ S during the time

interval (t, t + ∆t) is κ(X, s)∆t + o(∆t) as ∆t → 0. Given X ⊂ S, κ(X, ·) is a

positive real-valued, bounded, measurable function. Given s ∈ S, κ(·, s) is a finite,

positive, regular Borel measure. To simplify certain results, κ does not incorporate

the probability that individuals do not move; that is, for each x, κ({x}, x) = 0 and

κ(S, ·) ≤ 1.
Note that κ does not depend on the speech pattern: We make the simplifying

assumption that migration is independent of speech pattern.
Assumption 2.30. k : S → [0,∞) is the net migration rate out of a point, given

by

k(s) = κ(S, s) =

∫

x∈S

κ(dx, s),

that is, the probability that an individual at s moves away in the time interval (t, t+∆t)
is k(s)∆t + o(∆t) as ∆t → 0. We assume that

sup
s∈S

k(s) <
1

2
(2.15)

to guarantee that the required bounds on the migration rate operators K, J , and G
hold.

Consequently, the time until an individual leaves s is approximately exponentially
distributed with rate k(s) and mean 1/k(s). The probability measure for the condi-
tional distribution of the destination x of individuals leaving s given that they leave
during the time interval (t, t + ∆t) is κ(dx, s)/k(s) + o(1) as ∆t → 0. The uncondi-
tional probability measure for the next location x of an individual currently at s after
the time interval (t, t + ∆t) is κ(dx, s)∆t + (1 − k(s)∆t)δs(dx) + o(∆t) as ∆t → 0.

The K and J operators applied to an arbitrary µ ∈ M are therefore defined by

(Kµ)(dx, dz) =

∫

s∈S

κ(dx, s)µ(ds, dz),

(Jµ)(dx, dz) =

∫

s∈S

κ(ds, x)µ(dx, dz)

= k(x)µ(dx, dz)
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The total migration rate operator is

(Gµ)(dx, dz) =

(∫

s∈S

κ(dx, s)µ(ds, dz)

)

− k(x)µ(dx, dz).

Clearly, K respects positivity. To check that etJ respects positivity, observe that
J is essentially diagonal, so that

(etJµ)(dx, dz) =

(

1 + tk(x) +
(tk(x))2

2!
+ . . .

)

µ(dx, dz)

= etk(x)µ(dx, dz).

As required by the conservation constraint (2.14),

(K − J)µΩ =

∫

z∈L

∫

x∈S

((∫

s∈S

κ(dx, s)µ(ds, dz)

)

− k(x)µ(dx, dz)

)

=

∫

z∈L

(∫

s∈S

k(s)µ(ds, dz) −

∫

x∈S

k(x)µ(dx, dz)

)

= 0.

The bound (2.15) on k ensures that the norm constraints on K and J are satisfied:

‖Jµ‖TV ≤

∫

z∈L

∫

x∈S

k(x) |µ| (dx, dz)

≤
1

2
‖µ‖TV

‖Kµ‖TV ≤

∫

z∈L

∫

x∈S

∫

s∈S

κ(dx, s) |µ| (ds, dz)

≤

∫

z∈L

∫

s∈S

k(s) |µ| (ds, dz)

≤
1

2
‖µ‖TV

With the assumptions so far, the requirements of Section 2.1 are satisfied, so
Proposition 2.11 applies and there is a unique solution to initial value problems for u.

To reduce the measure-valued dynamics to feature dynamics as in Section 2.2,
we must verify more properties of K and J and make several additional assumptions.
We assume that learning takes place from a local average of speech patterns. To
formulate the T operator, we need a representation of a physical neighborhood. This
is accomplished with a spatial influence kernel:

Assumption 2.31. φ : S × S → [0,∞) is an influence kernel, where φ(x, s)
represents the influence of speech patterns at location s on a child learning at location

x. We assume that φ is integrable and bounded. Furthermore, for each x, the function

φ(x, ·) should be strictly positive in some open neighborhood around x, indicating that

there is at least some local influence on children learning at x. For notational
convenience, define the operators

(M0µ)(dx) =

∫

z∈L

µ(dx, dz)

(M1µ)(dx) =

∫

z∈L

zµ(dx, dz)

(2.16)
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Note that M0µ is a probability measure on S if µ is a probability measure on Ω,
and represents the marginal spatial distribution of the population ignoring speech
patterns. In general, ‖M0µ‖TV = ‖µ‖TV . Also, M1 is an L-valued measure on
S. (See Chapter 8 of [40] for an introduction to vector-valued measures and further
references.)

To combine the mean speech patterns from all speakers in an area, we will need to
weight M0µ and M1µ against the influence kernel φ, for which the following notation
will be useful,

(φ ⊛ ν)(x) =

∫

s∈S

φ(x, s)ν(ds). (2.17)

Thus, the mean speech pattern seen by a child as a function of location x and weighted
by φ is

(φ ⊛ M1µ)(x)

(φ ⊛ M0µ)(x)
.

With the goal of expressing learning as a function of this mean while maintaining the
form Q(u) = q(Tu), we define

Tµ =

(
M0µ
M1µ

)

. (2.18)

Thus, Q = T (P) is a set of pairs, the first component of which is an R-valued probabil-
ity measure m0 representing the spatial distribution of the population, and the second
component of which is an L-valued measure m1 representing the average speech pat-
tern over a set of locations. We take Y ⊃ Q to be the Banach space of all such pairs
under the norm

∥
∥
∥
∥

(
m0

m1

)∥
∥
∥
∥
Y

= max {‖m0‖TV , ‖m1‖TV } (2.19)

For an L-valued measure ν, |ν| is the R-valued measure

|ν|A = sup
partitions {Fj} of A

∑

j

‖νA‖
L

and ‖ν‖TV = |ν|Ω. Therefore T : M → Y is a bounded linear operator with ‖Tµ‖Y ≤
‖µ‖TV . Given a local learning function qloc(p, dz) that gives the probability measure
representing the speech pattern z of a child who learns from hearing a local average
speech pattern p, the overall learning function is

q

((
m0

m1

)

, dx, dz

)

= qloc

(
(φ ⊛ m1)(x)

(φ ⊛ m0)(x)
, dz

)

m0(dx). (2.20)

As a technical point, we must be careful about the case (φ ⊛ m0)(x) = 0, which
happens only when a region around x is uninhabited and no births should take place
there. Since we assumed that φ(x, ·) is strictly positive in some open neighborhood
around x, the only way for (φ ⊛ m0)(x) to be zero is for m0 to be zero in an open
neighborhood around x, in which case m0(dx) = 0, and we adopt the convention
that q(m, dx, dz) should be zero for such values of x. Note that since q is defined in
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(2.20) as a product of the spatial distribution and a speech pattern measure, the birth
process does not change the spatial distribution of the population.

It remains to verify (2.7) for the appropriate operator H. It will be useful to
overload the ⊛ notation so that

(κ ⊛ ν)(dx) =

∫

s∈S

κ(dx, s)ν(ds)

which represents a flow rate into dx given a spatial distribution ν. The composition
of the operators M0 and M1 with the migration operators K and J can be reversed
with Fubini’s theorem, and expressed using ⊛,

(
M1(Kµ)

)
(dx) =

∫

z∈L

z

∫

s∈S

κ(dx, s)µ(ds, dz)

=

∫

s∈S

κ(dx, s)

∫

z∈L

zµ(ds, dz)

= (κ ⊛ M1µ)(dx)

(
M1(Jµ)

)
(dx) =

∫

z∈L

zk(x)µ(dx, dz)

=
(
k(x)M1µ

)
(dx)

and similarly for M0.
Treating m as a two-component vector,

m =

(
m0

m1

)

and interpreting integrals accordingly, the correct choice of H is

Hm = κ ⊛ m − km (2.21)

where κ ⊛ m gives the flow rate of features into a set of locations and km gives the
flow rate out of a set of locations.

A calculation verifies that ‖H‖ ≤ 1. First, we find a bound on the norm of the
operator κ ⊛ · acting on a C- or L-valued measure ν on S.

‖κ ⊛ ν‖TV = sup
partitions {Fj} of S

∑

j

∣
∣
∣
∣

∫

s∈S

κ(Fj , s)ν(ds)

∣
∣
∣
∣

≤ sup
partitions {Fj} of S

∫

s∈S

∑

j

κ(Fj , s) |ν| (ds)

=

∫

s∈S

κ(S, s) |ν| (ds)

=

∫

s∈S

k(s) |ν| (ds)

≤ ‖k‖sup ‖ν‖TV

Applying this result to the two components of m ∈ Y gives ‖κ ⊛ m‖Y ≤ ‖k‖sup ‖m‖Y ,
so ‖κ ⊛ ·‖ ≤ ‖k‖sup. Using the triangle inequality and the bound (2.15) on k, ‖H‖ =
‖(κ ⊛ ·) − kI‖ ≤ 2 ‖k‖sup < 1.
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Now the results of Section 2 apply, and the asymptotic dynamics of u under (2.6)
are controlled by the asymptotic dynamics of m under (2.10), reproduced here with
K and J filled in:

d

dt

(
m0(dx)
m1(dx)

)

=

(∫

z∈L

(
1
z

)

qloc

(
(φ ⊛ m1)(x)

(φ ⊛ m0)(x)
, dz

))

m0(dx)

−

(
m0(dx)
m1(dx)

)

+

(∫

s∈S

κ(dx, s)m(ds)

)

− k(x)m(dx)

= Tq(m) − m + κ ⊛ m − km

(2.22)

Since qloc(q, dz) is always a probability measure in dz, the upper component of the
integral with respect to z will always give 1. Thus the equation for m0 can be simpli-
fied:

d

dt
m0(dx) =

(∫

s∈S

κ(dx, s)m0(ds)

)

− k(x)m0(dx) (2.23)

Equation (2.23) is linear in m0 with no dependence on m1. It may therefore be solved
using an operator exponential, so m0 can be taken as known when investigating the
dynamics of m1.

3. Dynamics for a single binary choice. We now apply the mathematical
machinery of Section 2: Assume there are two grammatical options G1 and G2 for
expressing a particular meaning, and that each individual uses G1 some fraction of
the time and G2 the rest. Section 3.1 discusses a population with no spatial structure
or migration. In Section 3.2, the population is divided into two compartments. In
Section 3.3, the population is evenly distributed over a circle. For each of these
examples, the measure-valued differential equation has unique solutions for each initial
condition, and the dimension reduction propositions apply. We can then examine the
asymptotically stable structures of the feature dynamics and conclude that the full
measure-valued dynamics have parallel structures.

3.1. A well-mixed population. If we imagine a child learning from a rea-
sonably large sample of the population and retaining no memory of who said which
sentence, then the child will hear the G1 option at approximately the average usage
rate. Space consists of a single point, for which there is only a single probability
measure, so there is no need to represent it. The migration operators are very simple:
K = J = 0.

The changing population is therefore represented by a time-dependent probability
measure u(t) on Ω = [0, 1], and for a set A ⊂ Ω, A ∈ BΩ, the measure of A at time t,
denoted u(t)A, is the fraction of the population that uses the G1 option at a rate in
A.

The most obvious choice of features is the mean, or in general some moment or
vector of moments of the distribution. We set Y = R, Q = [0, 1], and

Tµ =

∫

z∈Ω

z µ(dz). (3.1)

We assume that the learning function q : Q → P is continuously differentiable, which
implies that g = T ◦ q is also continuously differentiable. We will focus on the fea-
ture dynamics and leave q unspecified, because the dimension reduction theorems
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imply that given g, any admissible q yields measure-valued dynamics with the same
asymptotic behavior. The shape of g is the driving force behind the dynamics.

The feature dynamics m′ = g(m)−m now take place in a one-dimensional interval.
Thus, the possible behaviors of m are sharply limited: m(t) must converge to a fixed
point as t → ∞. Different mean learning algorithms g(m) yield different fixed point
configurations.

3.1.1. The case of mean-perfect learning. If we suppose that learning is
mean-perfect, that is, children exactly reproduce the mean usage rate of G1 in the
overall population, then g(m) = m, and the m dynamics are simply m′ = 0. Thus,
the initial mean usage rate remains unchanged and the population converges to u =
q(Tu0).

This learning algorithm may be appropriate for cases in which a language stably
maintains multiple options for expressing a meaning. An example in English is the
dative alternation [4]. Many verbs such as give that take a subject and two objects
can be used with or without a preposition on the indirect object:

(3.2) John gives a book to Fred

(3.3) John gives Fred a book

This choice has been present in English for centuries, and there is no sign that either
of these options is in danger of disappearing.

Other persistent alternations include stranding vs. pied-piping of certain verbal
particles,

(3.4) I turned the light on — The particle on is stranded

(3.5) I turned on the light — The particle on follows the verb turn via pied-piping

and the choice of that as a complementizer or a null complementizer, known as that-

deletion

(3.6) I know that the light is on

(3.7) I know the light is on

See [21], for example.

3.1.2. The case of sigmoid learning. Frequently, languages prefer to use
one option almost exclusively. As an example from English, a few special verbs
occur before the negative word not or its contraction -n’t and before the subject of a
question:

(3.8) I can see the other side.

(3.9) He can’t see the other side.

(3.10) Can you see the other side?

However, most verbs are left in a lower position in the syntactic tree and cannot
appear before not or in inverted questions. A syntactic process called do-support

inserts the auxiliary verb do in negative statements and questions:

(3.11) I like mowing grass.

(3.12) *He likes not mowing grass.

(3.13) He doesn’t like mowing grass.
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(3.14) *Like you mowing grass?

(3.15) Do you like mowing grass?

(The * indicates an ungrammatical sentence.) Old English had a syntactic process
called verb raising that raised all verbs to a higher position. In a verb-raising grammar
main verbs appear before negation and in inverted questions and there is no need
for the auxiliary do. Old English used verb raising almost exclusively, but over the
centuries the grammar changed. Modern English uses do-support almost exclusively.

Despite this change, both grammars were more or less stable for centuries. To
model this mutual exclusion, a one-dimensional phase portrait must contain two stable
fixed points close to the extremes, separated by an unstable fixed point. This implies
that g(m) is sigmoid shaped. That is, g is smooth, strictly monotone, and bounded,
with one inflection point, but g is not necessarily an exponential sigmoid as in f(x) =
1/(1+ e−x). Furthermore, there must be three solutions to g(m) = m to generate the
correct number of fixed points. See Figure 3.1.

This one-dimensional model is not capable of representing language change. Ev-
ery population tends to one of the stable fixed points and stays there. Even given
a fairly large perturbation, trajectories in this model tend to return to their original
equilibrium because the stable fixed points are well away from the boundary point
separating their basins of attraction. Propositions 2.18, 2.19, 2.20, 2.21 and their
corollaries apply. Therefore, the measure-valued dynamics are also constrained to
exhibit two stable fixed points for any admissible learning function q. A more com-
plex, inherently higher-dimensional model is required to model transitions between
grammars.

3.2. A single binary choice with two regions. The mathematical machinery
developed so far also works if the population is divided into compartments. Consider
the simplest case, a linguistic population with two regions which will be called north
and south. As before, we assume that there are two idealized grammars, that children
learn from a sample of sentences spoken by people in their native region, that they
effectively learn from the mean speech pattern of their native region, and that such
learning takes place under a sigmoid learning function as in Section 3.1.2. In addition,
people move from one region to another. This model of was analyzed heuristically
in [30] assuming idealized speech, but it lies within the current rigorous framework
and there is no longer any need to assume that each individual’s speech pattern is
limited to strictly G1 or G2. Instead, the dimension reduction results from Section 2.2
allow us to formulate the same two-dimensional dynamical system on the foundation
of measure dynamics. We will relate the behavior of this reduced system to a change
in English syntax.

Each individual is in either the north (N) or the south (S), and may be charac-
terized by a usage rate for G1 between 0 and 1. Thus, S = {N, S} and L = [0, 1]. A
measure ν on S is a linear combination of delta measures on the two points of S, or
essentially a pair of numbers (νN , νS):

ν(dx) = νNδN(dx) + νSδS(dx)

Integration against such a measure is just a sum.

∫

x∈S

f(x)ν(dx) = f(N)νN + f(S)νS .
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Fig. 3.1. If the mean learning function g(m) is a sigmoid as shown in the graph, the phase
portrait for the m dynamics includes two stable fixed points separated by one unstable fixed point.
Generically, the population will tend toward one of the stable fixed points thereby settling into a
state where one of the two grammars is used almost exclusively. The specific function given here is
used as an example throughout.

A measure µ on Ω is essentially pairs of measures (µN , µS) on L:

µ(dx, dz) = µN (dz)δN(dx) + µS(dz)δS(dx).

This suggests that measures should be written as row vectors and elements of Ω should
be written as column vectors with indices N and S instead of 1 and 2, as in

µ(X × Z) = µ
(
({N} × ZN ) ∪ ({S} × ZS)

)

=
(
µN µS

)
(

ZN

ZS

)

= µNZN + µSZS
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Thus, the migration kernel may be represented as a matrix that acts on the right

κ =

(
0 ηN

ηS 0

)

.

The migration operators are

K =

(
0 ηN

ηS 0

)

, J =

(
ηN 0
0 ηS

)

(3.16)

with the understanding that the action of a matrix A on a measure µ is multiplication
on the right

(
µN µS

)
(

a11 a12

a21 a22

)

=
(
a11µN + a21µS a12µN + a22µS

)
(3.17)

With the migration operators handled, we turn our attention to the feature op-
erator T :

Tµ =

( ∫ 1

0
µN (dz)

∫ 1

0
µS(dz)

∫ 1

0
z µN (dz)

∫ 1

0
z µS(dz)

)

(3.18)

That is, Tµ is the mass and mean of the north and south submeasures of µ. The
corresponding H operator is the matrix K − J with its normal right action on R

2.
The feature-based learning function q is defined by applying a local learning function
qloc : [0, 1] → P to the mean usage rate in each region. Because the individual
submeasures do not in general have unit mass, we must divide by their masses when
applying qloc.

q

(
mN0 mS0

mN1 mS1

)

=
(

mN0 qloc

(
mN1

mN0

)

mS0 qloc

(
mS1

mS0

))

(3.19)

It should be understood that if mN0 = 0, then the left entry should be 0, and similarly
for the right entry. These conditions cover the cases when one of the regions is empty
and no births should take place there. To unify (3.19) with (2.20), note that since
S = {N, S} and children learn only from others in their native region, the influence
kernel φ may be represented as the identity matrix.

The results of Section 2 apply, so we may focus our attention on the feature matrix
m,

m =

(
mN0 mS0

mN1 mS1

)

=

( ∫ 1

0
µN (dz)

∫ 1

0
µS(dz)

∫ 1

0
z µN (dz)

∫ 1

0
z µS(dz)

)

(3.20)

The dynamics of m in this case simplify to

m′
N0 = ηSmS0 − ηNmN0

m′
S0 = ηNmN0 − ηSmS0

m′
N1 = mN0

(∫ 1

0

z qloc

(
mN1

mN0
, dz

))

+ ηSmS1 − ηNmN1 − mN1

m′
S1 = mS0

(∫ 1

0

z qloc

(
mS1

mS0
, dz

))

+ ηNmN1 − ηSmS1 − mS1

(3.21)
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The equations for the masses are uncoupled from the others, as in (2.23). Since the
feature matrix also satisfies mN0 + mS0 = 1, we may eliminate one of those two
variables entirely, as knowing one determines the other. We eliminate mS0, thus,

m′
N0 = ηS(1 − mN0) − ηNmN0 = ηS − (ηN + ηS)mN0. (3.22)

This equation implies that mN0 and mS0 converge exponentially fast to equilibrium
values, representing the long-term behavior of the migration process alone:

mN0 → m̄N0 =
ηS

ηN + ηS

mS0 → m̄S0 =
ηN

ηN + ηS

as t → ∞.
(3.23)

It is advantageous at this point to introduce new variables representing the mean
usage rates of the two regions

xN =
mN1

mN0

xS =
mS1

mS0

(3.24)

and derive the following dynamics for them from (3.21).

x′
N = g(xN ) + ηS

mS0

mN0
xS − ηNxN − xN

x′
S = g(xS) + ηN

mN0

mS0
xN − ηSxS − xS

where g(p) =

∫ 1

0

z qloc(p, dz)

(3.25)

Since mN0 and mS0 each flow toward a unique fixed value, the variables xN and xS

are ultimately controlled by simple two dimensional dynamics,

x′
N = g(xN ) − xN + ηN (xS − xN )

x′
S = g(xS) − xS + ηS(xN − xS)

(3.26)

For the rest of this section, we will assume that g is a sigmoid, as in Figure 3.1.
If no mixing at all occurs, that is ηN = ηS = 0, then xN and xS uncouple

completely. Intuitively, each region picks a dominant language independently of the
other. The population as a whole can stably maintain both G1 and G2 through split
states in which one region is dominated by G1 and the other by G2. The resulting
(xN , xS) phase portrait has four stable fixed points separated by a variety of unstable
fixed points, as in Figure 3.2(a).

If ηN and ηS are sufficiently large, then the two regions mix strongly with each
other and effectively become a single region. This yields phase portraits as in Fig-
ure 3.2(d) where the stable population states require both regions to be dominated
by the same grammar.

In between, there are intermediate states and a pair of bifurcations representing
the loss of the stable split states, as in Figure 3.2(c). These bifurcations may be inter-
preted as a model of language change through contact between dialects: Two initially
separate populations maintain different dialects, but as contact between the regions
increases, they effectively become unified and one dialect or the other disappears.
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the stable manifolds of saddles. Thin lines are the unstable manifolds of saddles.

Fig. 3.2. Phase portraits for (3.26) with ηN = ηS = η. In (a), η = 0. As η increases in (b),
(c), and (d), the fixed points shift until bifurcations wipe out the stable split states. In (c), both
stable split states bifurcate at the same value of η because of the symmetric choice of ηN = ηS = η.

We may even set the migration parameters ηN = ηS = η, put η into motion as a
function of t, and visualize the change as a time trace as in Figure 3.3. We start the
population near the split state closest to (1, 0), which represents a population whose
northern region uses G1 and whose southern region uses G2. At first, the population
tracks the stable split state as it shifts, and maintains both grammars. Once η is
large enough, the bifurcation occurs and the stable split state vanishes. Then the
population converges quickly to the single-language fixed point near (0, 0), and G1

becomes essentially extinct.
As a final detail, since all trajectories tend to a fixed point in this model, the di-

mension reduction theorems guarantee that the full measure-valued dynamical system
has the same asymptotic behavior for any admissible learning function q: All trajec-
tories converge to a steady-state probability measure. For small values of η, there are
stable split states, but as η increases, a bifurcation eliminates those split-state fixed
points.

3.2.1. The loss of V2 in English. There is a change in word order in Middle
English that is thought to have been caused by contact between different grammars.
Middle English can be divided into two or more regional dialects. Initially, all had
some form of the verb-second or V2 rule, still present in modern German, which moved
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Fig. 3.3. Values of xN (solid) and xS (dotted) as functions of time, starting from xN ≈ 1 and
xS ≈ 0, where ηN = ηS = η and η (dashed) increases linearly as a function of time. The population
state (xN , xS) tracks the stable fixed point representing a split state until the bifurcation annihilates
it around t = 65. Then the population converges quickly to the single-language fixed point near (0, 0)
representing the extinction of G1.

the finite verb to the front of the sentence, and a topic in front of that. Northern
Middle English already had a different form of V2 than southern Middle English be-
cause of contact with Norse-speaking settlers. Apparently, increased contact between
the northern and southern dialects led to the development of a non-V2 word order
similar to Modern English [25, 30]. Although this scenario is somewhat more com-
plicated than the two-grammar choice studied here, the two-grammar dynamics and
bifurcation still give some insight into how contact can lead to language change.

3.3. A single binary choice in continuous space. As an alternative to a
compartment model, we will consider in this section a population spatially distributed
over a circle, so S is the interval [0, 1] with periodic boundary points. As before, an
individual’s speech pattern is represented by a usage rate between 0 and 1. Initially,
the model is in integral form, but it can be related to a reaction-diffusion equation,
and we will investigate the possibility of traveling wave solutions, which represent
the spread of a language change. The traveling wave can be related to a phonology
change taking place in Pennsylvania.

To simplify this example, we assume that m0 is fixed at a uniform distribution,

m0(dx) = dx

and omit explicit dependence on m0 where possible. The migration kernel κ(ds, x)
is assumed to have a peak with mirror symmetry centered at x when viewed as a
function of s. In particular, for each x,

∫

s∈S

(s − x)κ(ds, x) = 0.
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Thus, the population effectively diffuses through space.
We assume that the mean of the learning distribution q has a smooth sigmoid-

shaped density function g(p) as in Figure 3.1,

g(p) =

∫

z∈[0,1]

z qloc(p, dz) (3.27)

Additionally, φ(x, ·) must also have a peak with mirror symmetry centered at
x, indicating that the greatest influence is from nearby speakers. Since we will be
holding the spatial distribution m0 constant and uniform, φ ⊛ m0 is constant. The
assumed form of φ means that φ ⊛ µ is a scaled smoothing of µ.

3.3.1. Connection to a reaction-diffusion equation. Continuing from Sec-
tion 2.4, it is natural to consider cases where m1 has a smooth time-dependent density
w with respect to Lebesgue measure,

m1(dx) = w(x)dx

and use asymptotic arguments to relate the m1 dynamics to a reaction-diffusion equa-
tion in w. Because of the assumptions on φ, the local average usage rate passed to
qloc is nearly an identity transformation,

(φ ⊛ m1)(x)

(φ ⊛ m0)(x)
≈ w(x)

This means that the learning term in (2.22) is a sort of local average of a sigmoid,

G(w, x) =

∫

z∈[0,1]

z qloc

(
(φ ⊛ m1)(x)

(φ ⊛ m0)(x)
, dz

)

≈ g(w(x)).

(3.28)

Using a series for w about x and dropping terms of higher order than quadratic,
the w dynamics derived from the m1 dynamics of (2.22) become (suppressing the
explicit dependence of w on t)

∂tw(x) = G(w, x) − w(x)

+

∫

s∈S

(

w(x) − ∂xw(x)(s − x) +
∂2

xw(x)

2
(s − x)2

)

κ(ds, x)

− k(x)w(x) + · · ·

(3.29)

Integrating term by term,

∂tw(x) = G(w, x) − w(x)

+ w(x)

(∫

s∈S

κ(ds, x)

)

− ∂xw(x)

(∫

s∈S

(s − x)κ(ds, x)

)

+
1

2
∂2

xw(x)

(∫

s∈S

(s − x)2κ(ds, x)

)

− k(x)w(x) + · · ·

the first integral
∫

s
κ(ds, x) = k(x) cancels out. The second integral

∫

s
(s−x)κ(ds, x) =

0 because κ is assumed to have mirror symmetry about x. The remaining integral
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Fig. 3.4. Graph of φ(x, 0).

∫

s
(s − x)2κ(ds, x) is some function we will denote σ2(x) that represents the space-

dependent variance of κ. Dropping the remaining terms, we are left with a reaction-
diffusion partial differential equation [11, 14],

∂tw(x) = G(w, x) − w(x) +
σ2(x)

2
∂2

xw(x). (3.30)

If as supposed G(w, x) ≈ g(w(x)), then G(w, x)−w(x) will be roughly a cubic-shaped
function of w(x), and this equation will have traveling wave solutions [11, Section 4.2].
The interpretation of such a solution is that a language change can begin at one point
and propagate throughout the space.

With this connection to reaction-diffusion equations, it is reasonable to suppose
that the measure dynamics may exhibit solutions typical of reaction-diffusion equa-
tions, such as traveling waves, diffusive Turing instabilities, and pattern formation,
depending on the specific choice of q, K, and J .

3.3.2. Some numerical results. We now examine some pictures of the measure-
valued dynamics at work. To keep the numerics simple, the choice of S is a circle
S1 represented as the interval [0, 1] with periodic boundary conditions. The fea-
ture extraction operator T takes a space-dependent probability measure to its space-
dependent mean, with an influence kernel

φ(x, s) =
128

6435
(1 + cos 2π(x − s))

8

representing the assumption that children learn from the average speech patterns of
nearby speakers. See Figure 3.4. The 1 + cos structure creates positive function with
a bump around x. The power 8 narrows the bump. The constant factor 128/6435
ensures that for each x, the total influence is 1, that is (φ⊛m0)(x) =

∫

S
φ(x, s)ds = 1.

This normalization is convenient but not strictly necessary because φ is always used
in a quotient as in (2.20).
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The migration kernel is similar:

κ(ds, x) =
16

6435
(1 + cos 2π(x − s))

8
ds

with

k(x) ≡
1

8
.

The population remains uniformly distributed in space and only the speech patterns
change.

The learning function qloc(p) is defined to be a β-distribution with mean g(p) and
variance p2(1−p)2, where g is the polynomial sigmoid function depicted in Figure 3.1.
This choice of the variance is so that the β-distributions have no singularities in their
densities, which seems to improve numerical stability. The choice of the β-distribution
is so that we have a realistic specific example for this demonstration. Any single-mode
family of distributions supported on [0, 1] and determined smoothly by the mean usage
rate would work as well.

The calculations are performed by a Mathematica notebook. At each time step,
u(t, x, z) is represented by samples for (x, z) ∈ [0, 1] × [0, 1] based on the function’s
value at each point on a 64 by 65 grid. Each step in the numerical method is an
Euler step in t with step size 0.1, followed by a normalization step that ensures
∫ 1

0
u(t, x, z)dz = 1 for every x on the grid. Integrals are computed using the trapezoid

rule. Since these figures are for demonstration purposes and no numerical instability
is apparent, there is no need at this point for more sophisticated numerical methods.

The results of the u dynamics are shown in Figure 3.5. The results of Section 2
apply, so the asymptotic behavior of u reflects the asymptotic behavior of the feature
dynamics. Since m0 is fixed, the interesting feature is the location-dependent mean
usage rate m1. The corresponding m1 dynamics are shown in Figure 3.6. There
are two spatially uniform steady states given by m̄1 = a solution to g(m) = m.
These represent the states where everyone everywhere strongly prefers one idealized
grammar over the other.

The initial condition in these figures represents a population where half of the
population, centered about x = 1/2, prefers G1 and the other half prefers G2. Near
the boundaries at 1/4 and 3/4, the two mix due to migration. Since the sigmoid
function is slightly asymmetric in favor of G2, the preference for G2 tends to spread.
Two waves develop, travel toward each other, and meet in the middle, resulting in
the disappearance of G1. Since the m1 dynamics show that the initial condition is
attracted to that steady state, the full u dynamics must be attracted to a parallel
steady state.

The m1 computation is substantially faster than the full measure dynamics. The
good agreement of the u and m1 calculations shows that the dimension-reduction
results are of practical as well as theoretical value.

It is also possible to do numerical experiments with the reaction-diffusion equa-
tion (3.30). Using Mathematica’s built-in numerical solver and the approximation
G(w, x) ≈ g(w(x)), we obtain the pictures in Figure 3.7. This calculation is even
faster than the m1 dynamics. Compared to the u and m1 dynamics, the w dynam-
ics are qualitatively the same: Two waves meet in the middle and G1 goes extinct.
However, the waves take about 5 times as long to disappear, which suggests that the
approximation (3.28) for G(w, x) is too crude.
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Fig. 3.5. Density plots of u(t, x, z) for t = 0, 2, 4, . . . reading left to right and top to bottom. In
each plot, the lighter colors represent higher values of u and the darker colors represent values close
to 0. The horizontal axis is x ∈ [0, 1] and the vertical axis is z ∈ [0, 1].

3.3.3. An example of a traveling wave from the linguistics literature. A
well-studied feature of speech in western Pennsylvania is the so-called low back merger,

in which the low back vowels as in cot and caught are no longer distinguished. Data
collected in 1940 and 1988, as displayed in [16], indicates that the region in which the
vowels are merged is growing. The eastern boundary is moving to the east, and part
of the wave seems to have stopped at the Susquehanna river and the Pennsylvania
German region. Other parts of the boundary coincide “with a weakness in the face-
to-face oral communication network, as indicated by population density and traffic
patterns” [16, p. 171–172]. This barrier indicates that the process by which the
change spreads is spatial and local (although [16] discusses a second region in eastern
Pennsylvania where the merger seems to have arisen more or less independently).
Furthermore, there is inherent asymmetry in the acquisition of the vowel system with
the merger compared to the vowel system without it: In the presence of speakers
that use the merged system frequently, a child will have less evidence that the vowels
are distinct, making the acquisition and use of the non-merged vowel system more
unlikely.

The model described here in Section 3.3 agrees qualitatively with the linguistic
data. A combination of local influence and migration, in conjunction with asymmetric
learning tendencies, suffice to create a traveling wave in which one grammar disappears
in favor of the other.

4. Discussion and conclusion. We began by considering the dynamics of a
population of individuals whose speech patterns are variable. Each individual’s state,
including a location and a speech patten, is represented as an element of a set Ω.
The population is represented as a probability measure on Ω, and learning, birth, and
migration cause it to evolve deterministically. If children learn primarily from some
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Fig. 3.6. Plots of m1(t, x) for t = 0, 2, 4, . . . reading left to right and top to bottom. The
horizontal axis is x ∈ [0, 1] and the vertical axis is m ∈ [0, 1].

average feature of the population, then it is tempting to formulate the dynamics in
some simpler Banach space rather than try to deal with the measure dynamics. How-
ever, there is some question as to whether the resulting mean-field feature dynamics
accurately represent the original measure dynamics.

The proofs in this paper demonstrate that for a general class of non-linear learn-
ing algorithms and linear migration processes, the measure dynamics can indeed be
reduced to a dynamical subsystem in an appropriate Banach space without losing
any essential information. If the feature dynamics are simple enough that all trajec-
tories converge to some limit cycle or fixed point, then the same is true of the original
measure dynamics, and a single observation of the state of the feature dynamics suf-
fices to give an approximation to the corresponding state of the measure dynamics
that improves exponentially as time advances. However, if the feature dynamics are
chaotic, then sensitive dependence on initial conditions makes it practically impossible
to recover the state of the measure dynamics from a single observation of the feature
dynamics.

We explored a scenario in which children must learn rates at which to use two
alternative grammatical constructions to communicate a single meaning. We assume
that children learn only from the mean usage rates. In the case of a well-mixed single-
compartment population, the one-dimensional mean-field dynamics have two stable
fixed points, one for each alternative construction. An unstable fixed point separates
their basins of attraction. For a population with two compartments, children learn
only from the mean usage rate within their native compartment. The resulting feature
dynamics are two dimensional. If there is very low migration between the regions, then
stable split states are possible, in which one compartment prefers one grammatical
option and the other compartment prefers the other. As the migration rate increases,
the compartments effectively merge. Bifurcations take place that annihilate the stable

31



Fig. 3.7. Plots of w(t, x) for t = 0, 10, 20, . . . reading left to right and top to bottom. The
horizontal axis is x ∈ [0, 1] and the vertical axis is w ∈ [0, 1]. Note the difference in time scale
compared to Figures 3.5 and 3.6.

split states, and the entire population ends up with a single preferred choice. This
scenario suggests a mechanism by which increased contact among dialects can lead to
the extinction of one of them, as seems to have happened in the loss of the verb-second
property of Middle English. The mathematical framework for the two-compartment
population dynamics could be extended to deal with many compartments.

In addition, we considered the same grammatical scenario with a continuous rep-
resentation of space. We assume that children learn from other individuals based
on their proximity, so the dominant influence is a mean speech pattern weighted by
a spatial influence kernel. After verifying that the general mathematical machinery
applies, we used an asymptotic argument to relate the feature dynamics to a reaction-
diffusion equation, which suggests that the feature and measure dynamics might have
traveling wave solutions. A numerical experiment further supports the existence of
such solutions. The traveling wave seen in the numerical experiment is associated with
the disappearance of one grammar in favor of the other, which agrees qualitatively
with observations by Herold of a change in the vowel system spreading eastward in
western Pennsylvania [16].

Throughout, the spatial component of Ω has been interpreted as being literally
spatial. However, it is certainly possible to include social or economic status using
exactly the same mathematics. All that changes is the interpretation: compartments
might represent social classes, and a continuous scale could represent wealth. Migra-
tion would then include social and economic mobility.

Similarly, the elements of L in the examples have all been usage rates of idealized
grammars. More generally, any Banach-space-valued feature of speech could be used,
for example, the frequencies of vowel formants [22, 23].

There are several shortcomings of this general modeling framework and the spe-
cific examples. These provide opportunities for further research.
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First, the feature dynamics assume that the population is large enough that chil-
dren see only mean features. A more realistic model would directly take into account
the discrete nature of human populations and the fact that children learn from a large
but finite number of sentences spoken primarily by individuals that they have spatial
and social proximity to. See for example [5, 12, 29, 44] for learning models based on
simulated sentences. It should be possible to prove that under certain hypotheses,
discrete finite population models in the framework of Section 2 converge to continuous
infinite population models.

Second, we have assumed throughout that migration is independent of language,
which simplifies the mathematics but is unrealistic. People tend to form social and
economic neighborhoods within cities, for example, and language is correlated with
these factors. Adults can change their speech patterns as they age and move among
social classes. People also tend to sort themselves spatially into culturally and lin-
guistically homogeneous clusters. To model these effects, the framework discussed
here would have to be adapted to allow K and J to depend on x and u, thereby
introducing additional nonlinearities into the u dynamics.

Third, we have assumed that each individual’s speech pattern is drawn from an
unconditional probability distribution, but people are known to change their speech
pattern as they age and within the social context of each conversation. To account for
social context, an additional parameter, say c, would have to be added to u, so that
u(t, x, c) is a probability measure on speech patterns indicating how someone located
at x speaks in social context c.

An important feature of one- and two-dimensional deterministic continuous dy-
namical systems is that generically all trajectories converge to a fixed point or a limit
cycle. This means that such models of language change are doomed to be “single
shot,” meaning they are only able to mimic a single instance of a language change in
one direction. Some external force is required to push the model to repeat or reverse
the change. For example, the traveling wave in Section 3.3 models the merger of two
vowels. Given that vowels can merge, that known languages have been experiencing
phonemic change for centuries, and that languages exist with as few as three phonem-
ically distinct vowels, it is paradoxical that any language has more than a few vowels.
The resolution is that there are competing forces that can cause vowels to split, such
as is happening with the short a vowel in some northern dialects of English in the
United States [24]. To model a fluctuating vowel system in which vowels merge, split,
and shift would require a higher dimensional representation of individual speech pat-
terns, plus some source of random fluctuations. That would give room for a merger
in one part of the vowel inventory to be followed by a split elsewhere, preventing a
total collapse, and eventually a restoration of a lost distinction.

In summary, the framework outlined in this article puts certain mean-field models
of language variation and change on a more secure mathematical footing as reductions
of measure-valued dynamical systems. Specifically, it provides a way to eliminate
the simplifying assumption that individuals use a single idealized grammar. It also
provides for spatially and socially distributed dynamics. Further studies could include
relaxing the assumption that the learning and spatial dynamics are independent, and
the incorporation of age structure. These possibilities will be addressed in future
articles.
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