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Abstract. Let p be a prime and V an integer of order t in the
multiplicative group modulo p. In this paper, we give an explicit
bound on the double exponential sums. For p

1
3+� � t � p

1
2 ; we

have

~Sa;b;c(t) =

tX
x;y=1

ep(aV
x + bV y + cV xy)� t2�

1
10400 :
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1. Introduction

The Di¢ e-Hellman Key exchange algorithm [DH] is the �rst
practical public key cryptosystem published and it remains one of the
cornerstones of modern crytography to date. The algorithm is a sim-
ple, but ingenious way for two parties to establish a common secret
key over an insecure channel. The security of this algorithm is based
on the assumption that certain desirable properties are possessed by
the Di¢ e-Hellman triples (V x; V y; V xy) where V is an integer of mul-
tiplicative order t modulo p � 3 that is V x 6� 1(mod p); x = 1; :::; t� 1;
V t � 1(mod p): It has been shown in [CFS] and then improved in
[CFKLLS] that such triples are uniformly distributed in the sense of
H. Weyl when x; y = 0; : : : ; t (See [W] for details on this notion of
uniformly). Although such results do not guarantee the security of the
Di¢ e-Hellman key, are nevertheless very desirable since it provides ev-
idence that Di¢ e-Hellman cryptosystem can withstand statistic-based
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attacks. On the other hand, studying the distribution of these triples
via �nding bounds on double exponential sums is a very natural and
attractive number theoretic question. Various other applications and
generalizations of the exponential sums bounds and related results of
[CFS] and [CFKLLS] can be found in [BCFS], [FHS], [FKS], [BFKS],
[FLS], [FLLS], [FS] and [S] :
In this paper we continue the study of double exponential sums re-

lated to the Di¢ e-Hellman triples (V x; V y; V xy) as initiated in [CFS] :
For integers a; b; c we de�ne the following exponential sums

~Sa;b;c(t) =
tX

x;y=1

ep(aV
x + bV y + cV xy);

where

ep(�) = exp

�
2�i�

p

�
:

We obtain an explicit bound on sums ~Sa;b;c(t) by studying slightly dif-
ferent sums

Sa;c(t) =
tX

y=1

�����
tX

x=1

ep(aV
x + cV xy)

�����
for which obviously

��� ~Sa;b;c(t)��� � Sa;c(t): An estimate of the sums Sa;c(t)

obtained in [CFS] was improved and generalize by [CFKLLS] : It had
been shown in [CFKLLS] that Sa;c(t)� t5=3p1=4 for t > p3=4+" and they
posted as an open question to �nd an estimate of the sum for t in a
lower range: In response to their open question, Bourgain [B] obtained
a bound of the sum that was nontrivial for t � p". Although his bound
Sa;c(t) � t2�� was not explicit in the sense that there was no clear
relationship between " and �; his estimates remained nontrivial over
remarkably short intervals. At about the same time, Garaev [G] was
not only able to improve the bound obtained in [CFKLLS] but more
importantly he was able to extend the range. His bound Sa;c(t) �
t7=4p1=8+" was nontrivial beginning with t > p1=2+" and was better than
the previous estimate. In this paper, we are able to give an explicit
bound on the range beginning with t > p1=3+". Although our bound
is not as sharp as Garaev�s estimate contains in [G] nor our applicable
range is as wide as Bourgain�s in [B], we are able to give an explicit
bound that will work in the range that was not covered by any explicit
bound so far.
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2. Lemmas

Our bound on the exponential sum Sa;c(t) relies on the following
lemmas. Each lemma is used to prove the subsequent lemmas or to
prove our main result. Our �rst lemma is a simple identity which is a
basic tool for using exponential sums in the study of di¤erent problems
module m; but we state the lemma here only for case p is a prime.

Lemma 1. For any integer u;
p�1X
�=0

ep(�u) =

�
p; if u � 0 (mod p) ;
0; if u 6� 0 (mod p) :

The next lemma is a generalization of lemma 1 to elements in �nite
�elds Fdp:
For d � 2; Fdp = Fp� : : :�Fp and we identify Fpwith f0; 1; :::; p� 1g
Furthermore, for y = (y1; :::; yd), x = (x1; :::; xd) 2 Fdp, we denote

x � y =
dX
i=1

xiyi:

Lemma 2. With the above notation and for an arbitrarily �xed element
ŷ of F d

p, we haveX
x2Fdp

ep(x � ŷ) =
�
pd; if yi � 0mod p 8i;
0; otherwise.

Proof. Note that if yi � 0mod p for each i; then x � ŷ � 0mod p andX
x2Fdp

ep(x � ŷ) =
X
x2Fdp

1 = pd:

Otherwise, there exits an i such that yi 6= 0:
Without loss of generality, we may assume y1 6= 0, thenX

x2Fdp

ep(x � ŷ) =
X
x2Fdp

ep(
dX
i=1

xiyi)

=
X
x2Fdp

ep(x1y1) � � � ep (xdyd)

=

p�1X
xd=0

ep (xdyd) � � �
p�1X
x1=0

ep (x1y1) :
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Applying Lemma 1 to the quantity
p�1P
x1=0

ep (x1y1), gives us the desired

result. �

We let h : Fdp �! C and we denote

khk2 =

0@X
x2Fdp

jh(x)j2
1A 1

2

: (1)

Lemma 3. With the above notation and if f; g : Fdp �! C; then

������
X
x;y2Fdp

f(x)g(y)ep(x � y)

������ 6 p d2 kfk2 kgk2 :

Proof. Note that

����� Px;y2Fdpf(x)g(y)ep(x � y)
����� =

����� Px2Fdpf(x)
P
y2Fdp

g(y)ep(x � y)
����� :

To prove the lemma, we �rst apply the triangle inequality and then
apply the Cauchy Schwarz inequality:

������
X
x;y2Fdp

f(x)g(y)ep(x � y)

������
6
X
x2Fdp

jf(x)j

������
X
y2Fdp

g(y)ep(x � y)

������
6

0@X
x2Fdp

jf(x)j2
1A 1

2
0@X
x2Fdp

������
X
y2Fdp

g(y)ep(x � y)

������
21A

1
2

= kfk2

0@ X
y1;y22Fdp

g(y1)g(y2)
X
x2Fdp

ep(x � (y1 � y2))

1A 1
2

:
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Finally, we apply lemma 2 to the quantity
P
x2Fdp

ep(x � (y1 � y2)) to

obtain ������
X
x;y2Fdp

f(x)g(y)ep(x � y)

������ � kfk2
0@pdX

y2Fdp

jg(y)j2
1A 1

2

= p
d
2 kfk2 kgk2 ;

which is the desired result. �

The next lemma is a generalization of Lemma 2 to multiplicative
subgroup of

�
F�p
�d
, but �rst we de�ne the following notations.

Let k 2 N, ~H <
�
F�p
�d
with

��� ~H��� = H and we denote

u4k =

�����
(
(x1; :::; x4k) 2 ~H4k :

kX
i=1

xi �
2kX

i=k+1

xi =
3kX

i=2k+1

xi �
4kX

i=3k+1

xi

)����� :
(2)

Moreover, we let x = ( x1; :::; xd) ; y = (y1; :::; yd) ; z = (z1; :::; zd) 2
~H and denote

x � y � z =
dX
i=1

xiyizi:

Lemma 4. With the above notation and if x 2 ~H and b 2
�
F �p
�d
; then������

X
x2 ~H

ep (b � x)

������ 6 H1� 1
k p

d
8k2 (u4k)

1
4k2 :

Proof. Note that for any �xed element y of ~H,X
x2 ~H

ep (b � x) =
X
x2 ~H

ep (b � x � y) :

De�ne

S =

������
X
x2 ~H

ep (b � x)

������ :
Then,

S =
1

H

X
y2 ~H

������
X
x2 ~H

ep (b � x � y)

������ :
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To prove the lemma, we �rst apply the H½older�s inequality to the
right hand side with q = 2k to obtain

S 6 1

H
�H1� 1

2k

0B@X
y2 ~H

������
X
x2 ~H

ep (b � x � y)

������
2k
1CA

1
2k

= H� 1
2k

0B@X
y2 ~H

������
X
x2 ~H

ep (b � x � y)

������
2k
1CA

1
2k

: (3)

Next, we will bound the quantity
P
y2 ~H

����� P
x2 ~H

ep (b � x � y)
�����
2k

by again ap-

plying H½older�s inequality with q = 2k:
Note,

X
y2 ~H

������
X
x2 ~H

ep (b � x � y)

������
2k

=
X
y2 ~H

X
x1;:::;x2k2 ~H

ep (b � y � (x1 + � � �+ xk � xk+1 � � � � � x2k))

�
X

x1;:::;x2k2 ~H

������
X
y2 ~H

ep

 
b � y �

 
kX
i=1

xi �
2kX

j=k+1

xj

!!������
6
��
H2k

�1� 1
2k

�0B@ X
x1;:::;x2k2 ~H

������
X
y2 ~H

ep

 
b � y �

 
kX
i=1

xi �
2kX

j=k+1

xj

!!������
2k
1CA

1
2k

= H2k�1

0BB@ X
x1;:::;x2k
y1;:::y2k

2 ~H

ep

 
b �
 

kX
i=1

yi �
2kX

j=k+1

yj

!
�
 

kX
i=1

xi �
2kX

j=k+1

xj

!!1CCA
1
2k

:

Now, we combine the above bound with (3) to obtain

S � H1� 1
k

0BB@ X
x1;:::;x2k
y1;:::y2k

2 ~H

ep

 
b �
 

kX
i=1

yi �
2kX

j=k+1

yj

!
�
 

kX
i=1

xi �
2kX

j=k+1

xj

!!1CCA
1
4k2

:

(4)



AN EXPLICIT BOUND ON DOUBLE EXPONENTIAL SUMS 7

Furthermore, we de�ne

f (x) =

�����
(
(x1; :::; x2k) 2 ~H2k :

kX
i=1

xi �
2kX

j=k+1

xj = x

)����� ;
and

f (by) =

�����
(
(y1; :::; y2k) 2 ~H2k :

kX
i=1

b � yi �
2kX

j=k+1

b � yj = b � y
)����� :

Also, by (1) and (2), we have

kfk22 =
X
x2Fdp

jf(x)j2 = u4k:

With the above notation we can express (4) as follows,

S � H1� 1
k

0@ X
x;y2Fdp

f(x)f(b � y)ep(b � x � y)

1A 1
4k2

:

Finally, we apply Lemma 3 to the right hand side of the above equal-
ity to obtain

S 6 H1� 1
k

�
p
d
2 kfk22

� 1
4k2

= H1� 1
k p

d
8k2
�
kfk22

� 1
4k2

= H1� 1
k p

d
8k2 (u4k)

1
4k2

which is the desired result. �

3. Main Theorem

Theorem 1. Let a; c be integers that are coprime to p. Let � � 0 and
� 2 F�p with ord (�) = t :
If p

1
3
+� � t � p 1

2 ; then for each � in the interval
�
0; 1

6

�
; there exits

a positive even integer r such that

Sa;c(t) =

tX
y=1

�����
tX

x=1

ep(a�
x + c�xy)

������ t
2� 1

20r+20r3 :

Proof. Let Ĥ = Ĥy = f(�x; �xy) : x = 1; : : : ; tg <
�
F�p
�2
:

As before, we denote (a; c) � (�x; �xy) = a�x + c�xy:
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To prove the theorem, we apply Lemma 4 to the quantity

�����
tX

x=1

ep(a�
x + c�xy)

�����
with d = 2; r = 2k; b = (a; c) and x = (�x; �xy) :
We obtain, �����

tX
x=1

ep (a�
x + c�xy)

����� 6 t1� 2
r p

1
r2 (u2r (y))

1
r2

where

u2r (y) =

����� (x1; :::; x2r) 2 f1; : : : ; tg2r : �x1 + � � �+ �xr = �xr+1 + � � �+ �x2r
and �yx1 + � � �+ �yxr = �yxr+1 + � � �+ �yx2r

����� :
Furthermore, we note that for r 2 2N, p�1t2r�

r
20�20r2 � 0. We let

" =
r

20� 20r2 ; (5)

then

Sa;c(t) =
tX

y=1

�����
tX

x=1

ep(a�
x + c�xy)

�����
�

X
1�y�t

u2r(y)�t2r�"p�1

t1�
2
r p

1
r2 (u2r (y))

1
r2 +

X
1�y�t

u2r(y)>t2r�"p�1

�����
tX

x=1

ep(a�
x + c�xy)

�����
�

tX
y=1

t1�
2
r p

1
r2
�
t2r�"p�1

� 1
r2 + vt

= t2�
"
r2 + vt; (6)

where
v =

���y : u2r (y) > t2r�"p�1	�� :
Next, we de�ne

T =

����� (x1; :::; x2r; y) 2 f1; : : : ; tg2r+1 : �x1 + � � �+ �xr = �xr+1 + � � �+ �x2r (�)
and �yx1 + � � �+ �yxr = �yxr+1 + � � �+ �yx2k (��)

����� :
Then since T � vt2r�"p�1, we have v � Tt"�2rp:
Furthermore we write

T =
X
x2

Tx

where


 =
�
x = (x1; :::; x2r) 2 f1; : : : ; tg2r : x satisfy (�)

	
;

Tx = jfy = 1; : : : ; tg : y satisfy (��)j :



AN EXPLICIT BOUND ON DOUBLE EXPONENTIAL SUMS 9

Now we will bound j
j by applying the bound (7) and Konyagin�s

bound on

���� tP
x=1

ep (j�
x)

���� (see Theorem 6 in [K]) for t � p 13+� to obtain

j
j = 1

p

p�1X
j=0

�����
tX

x=1

ep (j�
x)

�����
2r

� t2r

p
+max

j2F�p

�����
tX

x=1

ep (j�
x)

�����
2r

<
t2r

p
+
�
p�108t

�2r
=
t2r

p
+

t2r

p216r

� t2r

p
:

Next, we will bound Tx by following the same argument as in [CFKLLS] :
Let � = gm where m = p�1

t
and g is a primitive root of F�p:

To bound Tx; we need to bound the solutions in y = 1; : : : ; t of the
equation

gyk1 + � � �+ gykr = gykr+1 + � � �+ gyk2r with ki = mxi:

The number of these solutions is equal to N
m
; where N is the number

of solutions in z 2 F�p of the equation

zk1 + � � �+ zkr = zkr+1 + � � �+ zk2r :

Apply Lemma 7 of [CFKLLS] with n = 2r; �i = ki and a1 = � � � =
ar = 1 = �ar+1 = � � � = �a2r:
We have N � p1�

1
2r�1D

1
2r�1 where D = min

1�i�2r
max
j 6=i

(kj � ki; p� 1) =
m min
1�i�2r

max
j 6=i

(xj � xi; p� 1) :

Hence, Tx � t1�
1

2r�1D (x1;:::;x2r)
1

2r�1 withD (x1;:::;x2r) = min
i
max
j 6=i

(xj � xi; t) :
Thus,

T =
X
x2

Tx �

X
x2

t1�

1
2r�1D (x)

1
2r�1 = t1�

1
2r�1
X
x2

D (x)

1
2r�1 :

Then, we follow the same argument as in [B] to bound T .
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Let 
 = 
 [ e
 where 
 = nx : D (x) � t 910o and e
 = 
 n 
 then
T =

X
x2


Tx +
X
x2e

Tx

� j
j t1�
1

2r�1

�
t
9
10

� 1
2r�1

+
���e
��� t

= j
j t1�
1

10(2r�1) +
���e
��� t:

Since j
j < 2 t2r
p
, we have

T < 2
t2r

p
t1�

1
10(2r�1) +

���e
��� t
< 2t2r+1�

1
20r p�1 + t

���e
��� : (7)

Next, we will apply Bourgain�s bound on
���e
��� (see [B]) for which

D (x) > t
9
10 :

With r = Q in Bourgain�s bound, we have���e
��� < t 8r5 : (8)

Next, note one can easily check that if p
1
3
+� � t and � � 60r�8r2+1

3(8r2�1) ;

then

t2r+1�
1
20r p�1 � t 8r5 +1: (9)

Note it is clear that when r � 8 the expression on the right hand
side is less than zero. Thus, one may choose r = 8 for any � in

�
0; 1

6

�
and recall that p

1
3
+� � t is part of our assumption.

Now we combine the bound (7) ; (8) and (9) to bound T .

T � t2r+1�
1
20r p�1 + t

���e
���� t2r+1�
1
20r p�1 + t

8r
5
+1 � t2r+1�

1
20r p�1: (10)

Next we apply (10) the bound for T to the inequality v � Tt"�2rp
to obtain a bound for v.

v � Tt"�2rp�
�
t2r+1�

1
20r p�1

�
t"�2rp = t1+"�

1
20r :
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Then we apply the bound of v to (6) and we have

Sa;c(t) =

tX
y=1

�����
tX

x=1

ep(a�
x + c�xy)

�����
� t2�

"
r2 + t � v

� t2�
"
r2 + t � t1+"� 1

20r

= t2�
"
r2 + t2+"�

1
20r

� t2�
"
r2 :

Substituting (5) to the above inequality gives us

Sa;c (t) � t2�
1

20r+20r3 :

Finally, we substitute r = 8 in (11) to obtain the desired result. �

Theorem 1 and the inequality
��� ~Sa;b;c(t)��� � Sa;c(t) imply the following

Corollary.

Corollary 1. Given p � 3 and V 2 Z of multiplicative order tmod p,
if p

1
3
+� � t � p 1

2 ; then

max
gad(a;b;c;p)=1

����� ~Sa;b;c(t) =
tX

x;y=1

ep(aV
x + bV y + cV xy)

������ t2�
1

10400 :
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