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Abstract

We consider the mean-variance hedging problem under partial Information. The
underlying asset price process follows a continuous semimartingale and strategies
have to be constructed when only part of the information in the market is avail-
able. We show that the initial mean variance hedging problem is equivalent to a
new mean variance hedging problem with an additional correction term, which is
formulated in terms of observable processes. We prove that the value process of the
reduced problem is a square trinomial with coefficients satisfying a triangle system
of backward stochastic differential equations and the filtered wealth process of the
optimal hedging strategy is characterized as a solution of a linear forward equation.

2000 Mathematics Subject Classification: 90A09, 60H30, 90C39.
Key words and phrases: Backward stochastic differential equation, semimartin-
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1 Introduction

In the problem of derivative pricing and hedging it is usually assumed that the hedging
strategies have to be constructed using all market information. However, in reality in-
vestors acting in a market have limited access to the information flow. E.g., an investor
may observe just stock prices, but stock appreciation rates depend on some unobservable
factors; one may think that stock prices can only be observed at discrete time instants or
with some delay, or an investor would like to price and hedge a contingent claim whose
payoff depends on an unobservable asset and he observes the prices of an asset correlated
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with the underlying asset. Besides, investors may not be able to use all available infor-
mation even if they have access to the full market flow. In all such cases investors are
forced to make decisions based only on a part of the market information.

We study a mean-variance hedging problem under partial information when the as-
set price process is a continuous semimartingale and the flow of observable events not
necessarily contain all information on prices of the underlying asset.

We assume that the dynamics of the price process of the asset traded on the market
is described by a continuous semimartingale S = (St, t ∈ [0, T ]) defined on a filtered
probability space (Ω,F , F = (Ft, t ∈ [0, T ]), P ), satisfying the usual conditions, where
F = FT and T < ∞ is the fixed time horizon. Suppose that the interest rate is equal to
zero and the asset price process satisfies the structure condition, i.e., the process S admits
the decomposition

St = S0 +Mt +

∫ t

0

λud〈M〉u, 〈λ ·M〉T <∞ a.s., (1.1)

where M is a continuous F−local martingale and λ is a F -predictable process.
Let us introduce an additional filtration smaller than F

Gt ⊆ Ft, for every t ∈ [0, T ].

The filtrationG represents the information that the hedger has at his disposal, i.e., hedging
strategies have to be constructed using only information available in G.

Let H be a P -square integrable FT -measurable random variable, representing the
payoff of a contingent claim at time T .

We consider the mean-variance hedging problem

to minimize E[(Xx,π
T −H)2] over all π ∈ Π(G), (1.2)

where Π(G) is a class of G-predictable S-integrable processes. Here Xx,π
t = x+

∫ t
0
πudSu is

the wealth process starting from initial capital x, determined by the self-financing trading
strategy π ∈ Π(G).

In the case G = F of complete information the mean-variance hedging problem was
introduced by Föllmer and Sondermann [8] in the case when S is a martingale and then de-
veloped by several authors for price process admitting a trend (see, e.g., [6], [12], [26],[27],
[25], [10], [11]).

Asset pricing with partial information under various setups has been considered. The
mean-variance hedging problem under partial information was first studied by Di Masi,
Platen and Runggaldier (1995) when the stock price process is a martingale and the prices
are observed only at discrete time moments. For a general filtrations and when the asset
price process is a martingale this problem was solved by Schweizer (1994) in terms of
G-predictable projections. Pham (2001) considered the mean-variance hedging problem
for a general semimartingale model, assuming that the observable filtration contains the
augmented filtration F S generated by the asset price process S

F S
t ⊆ Gt, for every t ∈ [0, T ]. (1.3)
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In this paper, using the variance-optimal martingale measure with respect to the filtration
G and suitable Kunita-Watanabe decomposition, the theory developed by Gourieroux,
Laurent and Pham (1998) and Rheinländer and Schweizer (1997) to the case of partial
information was extended.

If F S
t ⊆ Gt, the price process is a G-semimartingale, the sharp bracket 〈M〉 is G-

adapted and the canonical decomposition of S with respect to the filtration G is of the
form

St = S0 +

∫ t

0

E(λu|Gu)d〈M〉s + M̃t, (1.4)

where M̃ is a G-local martingale.
In this case the problem (1.2) is equivalent to the problem

to minimize E[(Xx,π
T −E(H|GT ))

2] over all π ∈ Π(G) (1.5)

which is formulated in G-adapted terms, taking in mind the G-decomposition (1.4) of
S. Therefore the problem (1.5) can be solved as in the case of full information using
the dynamic programming method directly to (1.5) , although one needs to determine
E(H|GT ) and the G-decomposition terms of S.

If G is not containing F S, then S is not a G-semimartingale and the problem is more
involved, although we solve it under following additional assumptions:

A) 〈M〉 and λ are G-predictable,
B) any G- martingale is a F -local martingale,
C) the filtration F is continuous, i.e., all F - local martingales are continuous,
D) there exists a martingale measure for S that satisfies the Reverse Hölder condition.

We shall use the notation Ŷt for the process E(Yt|Gt)- the G-optional projection of Y .
Condition A) implies that

Ŝt = E(St|Gt) = S0 +

∫ t

0

λud〈M〉u + M̂t.

Let

Ht = E(H|Ft) = EH +

∫ t

0

hudMu + Lt (1.6)

and

Ht = EH +

∫ t

0

hGu dMu + LGt (1.7)

be the Galtchouk-Kunita-Watanabe (GKW) decompositions of Ht = E(H|Ft) with re-

spect to local martingales M and M̂ , where h, hG are F -predictable process and L, LG

are local martingales strongly orthogonal to M and M̂ respectively.
We show (Theorem 3.1) that the initial mean variance hedging problem (1.2) is equiv-

alent to the problem to minimize the expression

E
[
(x+

∫ T

0

πudŜu − ĤT )
2 +

∫ T

0

(π2
u(1− ρ2u) + 2πuh̃u)d〈M〉u

]
, (1.8)

3



over all π ∈ Π(G), where

h̃t = ĥGt ρ
2
t − ĥt and ρ2t =

d〈M̂〉t
d〈M〉t

.

Thus, the problem (1.8), equivalent to (1.2), is formulated in terms of G-adapted
processes. One can say that (1.8) is the mean variance hedging problem under complete
information with additional correction term and can be solved as in the case of complete
information.

Let us introduce the value process of the problem (1.8)

V H(t, x) = ess inf
π∈Π(G)

E
[
(x+

∫ T

t

πudŜu − ĤT )
2 (1.9)

+

∫ T

t

[π2
u(1− ρ2u) + 2πuh̃u]d〈M〉u|Gt

]
.

We show in section 4 that the value function of the problem (1.8) admits a represen-
tation

V H(t, x) = Vt(0)− 2Vt(1)x+ Vt(2)x
2, (1.10)

where the coefficients Vt(0), Vt(1) and Vt(2) satisfy a triangle system of backward stochastic
differential equations (BSDE). Besides, the filtered wealth process of the optimal hedging
strategy is characterized as a solution of the linear forward equation

X̂∗
t = x−

∫ t

0

ρ2uϕu(2) + λuVu(2)

1− ρ2u + ρ2uVu(2)
X̂∗
udŜu+

+

∫ t

0

ρ2uϕu(1) + λuVu(1) + h̃u
1− ρ2u + ρ2uVu(2)

dŜu. (1.11)

In the case of complete information (G = F ) we have ρ = 0, h̃ = 0 and (1.11) gives
equations for the optimal wealth process and for the coefficients of value function from
[20].

In section 5 we consider a diffusion market model which consists of two assets S and
Y , where St is a state of a process being controlled and Yt is the observation process.
Suppose that St and Yt are governed by

dSt = µtdt+ σtdw
0
t ,

dYt = atdt+ btdwt,

where w0 and w are Brownian motions with correlation ρ and the coefficients µ, σ, a
and b are F Y -adapted. So, in this case Ft = F S,Y

t and the flow of observable events is
Gt = F Y

t . We give in the case of markovian coefficients solution of the problem (1.2) in
terms of parabolic differential equations (PDE) and an explicit solution when coefficients
are constants and the contingent claim is of the form H = H(ST , YT ).
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2 Main definitions and auxiliary facts

Denote by Me(F ) the set of equivalent martingale measures for S, i.e., set of proba-
bility measures Q equivalent to P such that S is a F -local martingale under Q.

Let
Me

2(F ) = {Q ∈ Me(F ) : EZ2
T (Q) <∞},

where Zt(Q) is the density process (with respect to the filtration F ) of Q relative to P .
Remark 2.1. Since S is continuous, the existence of an equivalent martingale measure

and the Girsanov theorem imply that the structure condition (1.1) is satisfied.
Note that the density process Zt(Q) of any element Q of Me(F ) is expressed as an

exponential martingale of the form

Et(−λ ·M +N),

where N is a F - local martingale strongly orthogonal toM and Et(X) is the Doleans-Dade
exponential of X .

If the local martingale Zmin
t = Et(−λ ·M) is a true martingale, dQmin/dP = Zmin

T dP
defines an equivalent probability measure called the minimal martingale measure for S.

Recall that a measure Q satisfies the Reverse Hölder inequality R2(P ) if there exists
a constant C such that

E
(Z2

T (Q)

Z2
τ (Q)

|Fτ
)
≤ C, P − a.s.

for every F -stopping time τ .
Remark 2.2. If there exists a measure Q ∈ Me(F ) that satisfies the Reverse Hölder

inequality R2(P ), then according to Kazamaki [15] the martingale MQ = −λ ·M + N
belongs to the class BMO and hence −λ ·M also belongs to BMO, i.e.,

E
( ∫ T

τ

λ2ud〈M〉u|Fτ
)
≤ const (2.1)

for every stopping time τ . Therefore, it follows from Kazamaki [15] that Et(−λ ·M) is
a true martingale. So, condition D) implies that the minimal martingale measure exists
(but Zmin is not necessarily square integrable).

For all unexplained notations concerning the martingale theory used below we refer
the reader to [5],[19],[14].

Let Π(F ) be the space of all F -predictable S-integrable processes π such that the
stochastic integral

(π · S)t =

∫ t

0

πudSu, t ∈ [0, T ],

is in the S2 space of semimartingales , i.e.,

E
( ∫ T

0

π2
sd〈M〉s

)
+ E

( ∫ T

0

|πsλs|d〈M〉s
)2
<∞.
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Denote by Π(G) the subspace of Π(F ) of G-predictable strategies.
Remark 2.3. Since λ · M ∈ BMO (see Remark 2.2), it follows from the proof of

Theorem 2.5 of Kazamaki [15]

E
( ∫ T

0

|πuλu|d〈M〉u
)2

= E〈|π| ·M, |λ| ·M〉2T

≤ 2||λ ·M ||BMOE

∫ T

0

π2d〈M〉u <∞.

Therefore, under condition D) the strategy π belongs to the class Π(G) if and only if

E
∫ T
0
π2
sd〈M〉s <∞.

Define J2
T (F ) and J

2
T (G) as spaces of terminal values of stochastic integrals, i.e.,

J2
T (F ) = {(π · S)T : π ∈ Π(F )}.

J2
T (G) = {(π · S)T : π ∈ Π(G)}.

For convenience we give some assertions from [4] , which establishes necessary and
sufficient conditions for the closedness of the space J2

T (F ) in L
2.

Proposition 2.1. Let S be a continuous semimartingale. Then the following assertions
are equivalent:

(1) There is a martingale measure Q ∈ Me(F ) and J2
T (F ) is closed in L2.

(2) There is a martingale measure Q ∈ Me(F ) that satisfies the Reverse Hölder con-
dition R2(P ).

(3) There is a constant C such that for all π ∈ Π(F ) we have

|| sup
t≤T

(π · S)t||L2(P ) ≤ C||(π · S)T ||L2(P ).

(4) There is a constant c such that for every stopping time τ , every A ∈ Fτ and for
every π ∈ Π(F ) with π = πI]τ,T ] we have

||IA − (π · S)T ||L2(P ) ≥ cP (A)1/2.

Note that assertion (4) implies that for every stopping time τ and for every π ∈ Π(G)
we have

E
(
(1 +

∫ T

τ

πudSu)
2/Fτ

)
≥ c. (2.2)

Let us make some remarks on conditions B) and C).
Remark 2.4. Conditions B), C) imply that the filtration G is also continuous. By

condition B any G-local martingale is F -local martingale, which are continuous by con-
dition C). Recall that the continuity of a filtration means that all local martingales with
respect to this filtration are continuous.

Remark 2.5. Condition B) is satisfied if and only if the σ-algebras Ft and GT are
conditionally independent given Gt for all t ∈ [0, T ] (see Theorem 9.29 from Jacod 1978).

Now we recall some known assertions from the filtering theory. The following propo-
sition can be proved similarly to [19].

6



Proposition 2.2. If conditions A), B) and C) are satisfied, then for any F -local
martingale M and any G-local martingale mG

M̂t = E(Mt|Gt) =

∫ t

0

E
(d〈M,mG〉u

d〈mG〉u
|Gu

)
dmG

u + LGt , (2.3)

where LG is a local martingale orthogonal to mG.

It follows from this proposition that for any G-predictable, M-integrable process π
and any G-martingale mG

〈 ̂(π ·M), mG〉 =

∫ t

0

πuE
(d〈M,mG〉u

d〈mG〉u
|Gu

)
d〈mG〉u =

=

∫ t

0

πud〈M̂,mG〉u = 〈π · M̂,mG〉t.

Hence, for any G-predictable, M-integrable process π

̂(π ·M)t = E
( ∫ t

0

πsdMs|Gt) =

∫ t

0

πsdM̂s. (2.4)

Since π, λ and 〈M〉 are G-predictable, from (2.4) we have

̂(π · S)t = E
( ∫ t

0

πudSu|Gt) =

∫ t

0

πudŜu, (2.5)

where

Ŝt = S0 +

∫ t

0

λud〈M〉u + M̂t.

3 Separation principle. The optimality principle

Let us introduce the value function of the problem (1.2) defined as

UH(t, x) = ess inf
π∈Π(G)

E
(
(x+

∫ T

t

πudSu −H)2|Gt

)
. (3.1)

By GKW decomposition

Ht = E(H|Ft) = EH +

∫ t

0

hudMu + Lt (3.2)

for a F -predictable, M-integrable process h and a local martingale L strongly orthogonal
to M . We shall use also the GKW decompositions of Ht = E(H|Ft) with respect to the

local martingale M̂

Ht = EH +

∫ t

0

hGu dM̂u + LGt (3.3)

7



where hG is a F -predictable process and LG is a F - local martingale strongly orthogonal
to M̂ .

It follows from Proposition 2.2 ( applied for mG = M̂) and Lemma A.1 that

〈E(H|G.), M̂〉t =

∫ t

0

E(hGu |Gu)d〈M̂〉u =

∫ t

0

ĥGu ρ
2
ud〈M〉u. (3.4)

We shall use the notation
h̃t = ĥGt ρ

2
t − ĥt. (3.5)

Note that h̃ belongs to the class Π(G) by Lemma A.2.
Let us introduce now a new optimization problem, equivalent to the initial mean

variance hedging problem (1.2), to minimize the expression

E
[
(x+

∫ T

0

πudŜu − ĤT )
2 +

∫ T

0

(π2
u(1− ρ2u) + 2πuh̃u)d〈M〉u

]
, (3.6)

over all π ∈ Π(G). Recall that Ŝt = E(St|Gt) = S0 +
∫ t
0
λud〈M〉u + M̂t.

Theorem 3.1. Let conditions A), B) and C) be satisfied. Then the initial mean-
variance hedging problem (1.2) is equivalent to the problem (3.6). In particular, for any
π ∈ Π(G) and t ∈ [0, T ]

E
[
(x+

∫ T

t

πudSu −H)2|Gt

]
= E

[
(H − ĤT )

2|Gt

]
(3.7)

+E
[
(x+

∫ T

t

πudŜu − ĤT )
2 +

∫ T

t

(π2
u(1− ρ2u) + 2πuh̃u)d〈M〉u|Gt

]
.

Proof. We have

E
[
(x+

∫ T

t

πudSu −H)2|Gt

]
= E

[(
x+

∫ T

t

πudŜu −H +

∫ T

t

πud(Mu − M̂u)
)2
|Gt

]

= E
[(
x+

∫ T

t

πudŜu −H
)2
|Gt

]
+ 2E

[(
x+

∫ T

t

πudŜu −H
)( ∫ T

t

πud(Mu − M̂u)
)
|Gt

]

+ E
[( ∫ T

t

πud(Mu − M̂u)
)2
|Gt

]
= I1 + 2I2 + I3. (3.8)

It is evedent that

I1 = E
[
(x+

∫ T

t

πudŜu − ĤT )
2|Gt

]
+ E

[
(H − ĤT )

2|Gt

]
. (3.9)

Since π, λ and 〈M〉 are GT -measurable and the σ-algebras Ft and GT are conditionally
independent given Gt (see Remark 2.5), it follows from equation (2.4) that

E
[ ∫ T

t

πuλud〈M〉u

∫ T

t

πud(Mu − M̂u)|Gt

]
= E

[ ∫ T

t

πuλud〈M〉u

∫ T

0

πud(Mu − M̂u)|Gt

]
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−E
[ ∫ T

t

πuλud〈M〉u

∫ t

0

πud(Mu−M̂u)|Gt

]
= E

[ ∫ T

t

πuλud〈M〉uE(

∫ T

0

πud(Mu−M̂u)|GT )|Gt

]

− E
[ ∫ T

t

πuλud〈M〉u|Gt

]
E
[ ∫ t

0

πud(Mu − M̂u)|Gt

]
= 0 (3.10)

On the other hand using decomposition (3.2), equality (3.4), properties of square
characteristics of martingales and the projection theorem we obtain

E
[
H

∫ T

t

πud(Mu − M̂u)|Gt

]
= E

[
H

∫ T

t

πudMu|Gt

]
− E

[
ĤT

∫ T

t

πudM̂u|Gt

]

= E
[ ∫ T

t

πud〈M,E(H|F·)〉u|Gt

]
−E

[ ∫ T

t

πud〈Ĥ, M̂〉u|Gt

]

= E
[ ∫ T

t

πuhud〈M〉u|Gt]−E
[ ∫ T

t

πuĥGu ρ
2
ud〈M〉u|Gt

]
=

E
[ ∫ T

t

πu(ĥu − ĥGu ρ
2
u)d〈M〉u|Gt

]
= −E

[ ∫ T

t

πuh̃ud〈M〉u|Gt

]
. (3.11)

Finally, it is easy to verify that

2E
[ ∫ T

t

πuM̂u

∫ T

t

πud(Mu − M̂u)|Gt

]
+ E

[( ∫ T

t

πud(Mu − M̂u)
)2
|Gt

]
=

E
[
(

∫ T

t

π2
ud〈M〉u −

∫ T

t

π2
ud〈M̂〉u)|Gt

]
=

= E
[ ∫ T

t

π2
u(1− ρ2u)d〈M〉u|Gt

]
. (3.12)

Therefore equations (3.8), (3.9),(3.10), (3.11), and (3.12) imply the validity of equality
(3.7).

Thus, it follows from Theorem 3.1 that the optimization problems (1.2) and (3.6)
are equivalent. Therefore it is sufficient to solve the problem (3.6), which is formulated
in terms of G-adapted processes. One can say that (3.6) is a mean variance hedging
problem under complete information with correction term and can be solved as in the
case of complete information.

Let us introduce the value process of the problem (3.6)

V H(t, x) = ess inf
π∈Π(G)

E
[
(x+

∫ T

t

πudŜu − ĤT )
2+

+

∫ T

t

[π2
u(1− ρ2u) + 2πuh̃u]d〈M〉u|Gt

]
. (3.13)

It follows from Theorem 3.1 that

UH(t, x) = V H(t, x) + E
[
(H − ĤT )

2|Gt

]
. (3.14)

The optimality principle takes in this case the following form

9



Proposition 3.1. (Optimality principle). Let conditions A,B) and C) be satisfied.
Then

a) For all x ∈ R, π ∈ Π(G) and s ∈ [0, T ] the process

V H(t, x+

∫ t

s

πudŜu) +

∫ t

s

[π2
u(1− ρ2u) + 2πuh̃u)]d〈M〉u

is a submartingale on [s, T ], admitting an RCLL modification.
b) π∗ is optimal if and only if the process

V H(t, x+

∫ t

s

π∗
udŜu) +

∫ t

s

[(π∗
u)

2(1− ρ2u) + 2π∗
uh̃u]d〈M〉u

is a martingale.

This assertion can be proved in a standard manner (see, e.g., [7], [16]). The proof
more adapted to this case one can see in [20].

Let

V (t, x) = ess inf
π∈Π(G)

E
[
(x+

∫ T

t

πudŜu)
2 +

∫ T

t

π2
u(1− ρ2u)d〈M〉u|Gt

]
.

and

Vt(2) = ess inf
π∈Π(G)

E
[
(1 +

∫ T

t

πudŜu)
2 +

∫ T

t

π2
u(1− ρ2u)d〈M〉u|Gt

]
.

It is evident that V (t, x) (resp. V2(t)) is the value process of the optimization problem
(3.6) in the case H = 0 (resp. H = 0 and x = 1), i.e.,

V (t, x) = V 0(t, x) and V2(t) = V 0(t, 1).

Since Π(G) is a cone, we have that

V (t, x) = x2ess inf
π∈Π(G)

E
[
(1 +

∫ T

t

πu
x
dŜu)

2+

+

∫ T

t

(πu
x

)2
(1− ρ2u)d〈M〉u|Gt

]
= x2V2(t). (3.15)

Therefore from Proposition 3.1 and equality (3.15) we have the following

Corollary 3.1. a) The process

V2(t)(1 +

∫ t

s

πudŜu)
2 +

∫ t

s

(πu)
2(1− ρ2u)d〈M〉u,

t ≥ s) is a submartingale for all π ∈ Π(G) and s ∈ [0, T ].
b) π∗ is optimal iff

V2(t)(1 +

∫ t

s

π∗
udŜu)

2 +

∫ t

s

(π∗
u)

2(1− ρ2u)d〈M〉u,

t ≥ s, is a martingale.
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Note that in the case H = 0 from Theorem 3.1 we have

E
[
(1 +

∫ T

t

πudSu)
2|Gt

)
= (3.16)

E
[
(1 +

∫ T

t

πudŜu)
2 +

∫ T

t

π2
u(1− ρ2u)d〈M〉u|Gt

]

and, hence
V2(t) = U0(t, 1). (3.17)

Lemma 3.1. Let conditions A)−D) be satisfied. Then there is a constant 1 ≥ c > 0
such that Vt(2) ≥ c for all t ∈ [0, T ] a.s. and

1− ρ2t + ρ2tVt(2) ≥ c µ〈M〉a.e. (3.18)

Proof. Let

V F
t (2) = ess inf

π∈Π(F )
E
[
(1 +

∫ T

t

πudSu)
2|Ft

]
.

It follows from assertion 4) of Proposition 2.1 that there is a constant c > 0 such that
V F
t (2) ≥ c for all t ∈ [0, T ] a.s.. Note that c ≤ 1 since V F ≤ 1. Then by (3.17)

Vt(2) = U0(t, 1) = ess inf
π∈Π(G)

E
[
(1 +

∫ T

t

πudSu)
2|Gt

]
=

Vt(2) = ess inf
π∈Π(G)

E
[
E((1 +

∫ T

t

πudSu)
2|Ft)|Gt

]
≥

≥ V F
t (2) ≥ c.

Therefore, since ρ2t ≤ 1 by Lemma A.1,

1− ρ2t + ρ2tVt(2) ≥ 1− ρ2t + ρ2t c ≥ inf
r∈[0,1]

(1− r + rc) = c.

4 BSDEs for the value process

Let us consider the semimartingale backward equation

Yt = Y0 +

∫ t

0

f(u, Yu, ψu)d〈m〉u +

∫ t

0

ψudmu + Lt (4.1)

with the boundary condition
YT = η, (4.2)

where η is an integrable GT -measurable random variable, f : Ω × [0, T ] × R2 → R is
P × B(R2) measurable and m is a local martingale. A solution of (4.1)-(4.2) is a triple

11



(Y, ψ, L), where Y is a special semimartingale, ψ is a predictable m-integrable process and
L a local martingale strongly orthogonal to m. Sometimes we call Y alone the solution
of (4.1)-(4.2), keeping in mind that ψ ·m+ L is the martingale part of Y .

Backward stochastic differential equations have been introduced in [1] for the linear
case as the equations for the adjoint process in the stochastic maximum principle.The
semimartingale backward equation, as a stochastic version of the Bellman equation in an
optimal control problem, was first derived in [2]. The BSDEs with more general nonlinear
generators was introduced in [22] for the case of Brownian filtration, where an existence
and uniqueness of a solution of BSDEs with generators satisfying the global Lifschitz
condition was established. These results were generalized for generators with quadratic
growth in [17], [18] for BSDEs driven by a Brownian motion and in [21], [29] for BSDEs
driven by martingales. But conditions imposed in these papers are too restrictive for our
needs. We prove here existence and uniqueness of a solution by directly showing that the
unique solution of the BSDE we consider is the value of the problem.

In this section we characterize optimal strategies in terms of solutions of suitable
Semimartingale Backward Equations.

Theorem 4.1. Let H be a square integrable FT -measurable random variable and let
conditions A), B), C) and D) be satisfied. Then the value function of the problem (3.6)
admits a representation

V H(t, x) = Vt(0)− 2Vt(1)x+ Vt(2)x
2, (4.3)

where the processes Vt(0), Vt(1) and Vt(2) satisfy the following system of backward equa-
tions

Yt(2) = Y0(2) +

∫ t

0

(
ψs(2)ρ

2
s + λsYs(2)

)2

1− ρ2s + ρ2sYs(2)
d〈M〉s

+

∫ t

0

ψs(2)dM̂s + Lt(2) YT (2) = 1, (4.4)

Yt(1) = Y0(1) +

∫ t

0

(
ψs(2)ρ

2
s + λsYs(2)

)(
ψs(1)ρ

2
s + λsYs(1)− h̃s

)

1− ρ2s + ρ2sYs(2)
d〈M〉s

+

∫ t

0

ψs(1)dM̂s + Lt(1), YT (1) = E(H|GT ), (4.5)

Yt(0) = Y0(0) +

∫ t

0

(
ψs(1)ρ

2
s + λsYs(1)− h̃s

)2

1− ρ2s + ρ2sYs(2)
d〈M〉s

+

∫ t

0

ψs(0)dM̂s + Lt(0), YT (0) = E2(H|GT ), (4.6)

where L(2), L(1) and L(0) are G-local martingales orthogonal to M̂ .

Besides the optimal filtered wealth process X̂x,π∗

t = x +
∫ t
0
π∗
udŜu is a solution of the

linear equation

X̂∗
t = x−

∫ t

0

ρ2uϕu(2) + λuVu(2)

1− ρ2u + ρ2uVu(2)
X̂∗
udŜu+
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+

∫ t

0

ϕu(1)ρ
2
u + λuVu(1)− h̃u

1− ρ2u + ρ2uVu(2)
dŜu. (4.7)

Proof. Similarly to the case of complete information one can show that the optimal
strategy exists and that V H(t, x) is a square trinomial of the form (4.3) (see, e.g., [20]).
More precisely the space of stochastic integrals

J2
T (G) = {(π · S)T : π ∈ Π(G)}

is closed by Proposition 2.1 and condition A). Hence there exists optimal strategy π∗(t, x) ∈

Π(G) and UH(t, x) = E[|H−x−
∫ T
t
π∗
u(t, x)dSu|

2|Ft]. Since
∫ T
t
π∗
u(t, x)dSu coincides with

the orthogonal projection of H − x ∈ L2 on the closed subspace of stochastic integrals,
then the optimal strategy is linear with respect to x, i.e., π∗

u(t, x) = π0
u(t) + xπ1

u(t). This
implies that the value function UH(t, x) is a square trinomial. It follows from the equality
(3.14)that V H(t, x) is also a square trinomial and it admits the representation (4.3).

Let us show that Vt(0), Vt(1) and Vt(2) satisfy the system (4.4)-(4.6). It is evident that

Vt(0) = V H(t, 0) = ess inf
π∈Π(G)

E
[
(

∫ T

t

πudŜu − ĤT )
2

+

∫ T

t

[π2
u(1− ρ2u) + 2πuh̃u]d〈M〉u|Gt

]
(4.8)

and

Vt(2) = V 0(t, 1) = ess inf
π∈Π(G)

E
[
(1 +

∫ T

t

πudŜu)
2

+

∫ T

t

π2
u(1− ρ2u)d〈M〉u|Gt

]
. (4.9)

Therefore, it follows from the optimality principle (taking π = 0) that Vt(0) and Vt(2) are
RCLL G-submaringales and

Vt(2) ≤ E(V2(T )|Gt) ≤ 1,

V0(t) ≤ E(E2(H|GT )|Gt) ≤ E(H2|Gt).

Since

Vt(1) =
1

2
(Vt(0) + Vt(2)− V H(t, 1)), (4.10)

the process Vt(1) is also a special semimartingale and since Vt(0) − 2Vt(1)x + Vt(2)x
2 =

V H(t, x) ≥ 0 for all x ∈ R, we have that V 2
t (1) ≤ Vt(0)Vt(2), hence

V 2
t (1) ≤ E(H2|Gt).

Expressions (4.8), (4.9) and (3.13) imply that VT (0) = E2(H|GT ), VT (2) = 1 and
V H(T, x) = (x − E(H|GT ))

2. Therefore from (4.10) we have VT (1) = E(H|GT ) and
V (0), V (1), V (2) satisfy the boundary conditions.
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Thus, the coefficients Vt(i), i = 0, 1, 2 are special semimartingales and they admit the
decomposition

Vt(i) = V0(i) + At(i) +

∫ t

0

ϕs(i)dM̂s +mt(i), i = 0, 1, 2, (4.11)

where m(0), m(1), m(2) are G-local martingales strongly orthogonal to M̂ .
There exists an increasing continuous G-predictable process K such that

〈M〉t =

∫ t

0

νudKu, At(i) =

∫ t

0

au(i)dKu, i = 0, 1, 2,

where ν and a(i), i = 0, 1, 2, are G-predictable processes.

Let X̂x,π
s,t ≡ x+

∫ t
s
πudŜu and

Y x,π
s,t ≡ V H(t, X̂x,π

s,t ) +

∫ t

s

[π2
u(1− ρ2u) + 2πuh̃u)]d〈M〉u.

Then using (4.3), (4.11) and the Itô formula for any t ≥ s we have

(X̂x,π
s,t )

2 = x+

∫ t

s

[2πuλuX̂
x,π
s,u + π2

uρ
2
u]d〈M〉u+

+ 2

∫ t

s

πuX̂
x,π
s,u dM̂u (4.12)

and

Y x,π
s,t − V H(s, x) =

∫ t

s

[(X̂x,π
s,u )

2au(2)− 2X̂x,π
s,u au(1) + au(0)]dKu+

∫ t

s

[
π2
u(1− ρ2u + ρ2uVu−(2)) + 2πuX̂

x,π
s,u (λuVu−(2) + ϕu(2)ρ

2
u)−

− 2πu(Vu−(1)λu + ϕu(1)ρ
2
u − h̃u)]νudKu +mt −ms, (4.13)

where m is a local martingale.
Let

G(π, x) = G(ω, t, π, x) = π2(1− ρ2u + ρ2uVu−(2)) + 2πx(λuVu−(2) + ϕu(2)ρ
2
u)−

−2π(Vu−(1)λu + ϕu(1)ρ
2
u − h̃u)

It follows from the optimality principle that for each π ∈ Π(G) the process

∫ t

s

[(X̂x,π
s,u )

2au(2)− 2X̂x,π
s,u au(1)) + au(0)]dKu+

+

∫ t

s

G(πu, X̂
x,π
s,u )νudKu (4.14)
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is increasing for any s on s ≤ t ≤ T and for the optimal strategy π∗ we have the equality

∫ t

s

[(X̂x,π∗

s,u )2au(2)− 2X̂x,π∗

s,u au(1) + au(0)]dKu =

−

∫ t

s

G(π∗
u, X̂

x,π∗

s,u )νudKu. (4.15)

Since νudKu = d〈M〉u is continuous, without loss of generality one can assume that
the process K is continuous (see [20] for details). Therefore, taking in (4.14) τs(ε) =
inf{t ≥ s : Kt −Ks ≥ ε} instead of t we have that for any ε > 0 and s ≥ 0

1

ε

∫ τs(ε)

s

[(X̂x,π
s,u )

2au(2)− 2X̂x,π
s,u au(1) + au(0)]dKu ≥

−
1

ε

∫ τs(ε)

s

G(πu, X̂
x,π
s,u )ν(u)dKu. (4.16)

Passing to the limit in (4.16) as ε→ 0, from Proposition B of [20] we obtain that

x2au(2)− 2xau(1) + au(0) ≥ −G(πu, x)νu µK − a.e.

for all π ∈ Π(G). Similarly from (4.15) we have that µK-a.e.

x2au(2)− 2xau(1) + au(0) = −G(πu, x)νu

and hence
x2au(2)− 2xau(1) + au(0) = −νuess inf

π∈Π(G)
G(πu, x). (4.17)

The infinum in (4.17) is attained for the strategy

π̂t =
Vt(1)λt + ϕt(1)ρ

2
t − h̃t − x(Vt(2)λt + ϕt(2)ρ

2
t )

1− ρ2t + ρ2tVt(2)
. (4.18)

From here we can conclude that

ess inf
π∈Π(G)

G(πt, x) ≥ G(π̂t, x) =

= −
(Vt(1)λt + ϕt(1)ρ

2
t − h̃t − x(Vt(2)λt + ϕt(2)ρ

2
t ))

2

1− ρ2t + ρ2tVt(2)
. (4.19)

Let πnt = I[0,τn[(t)π̂t, where τn = inf{t : |Vt(1)| ≥ n}.
It follows from Lemma A.2, Lemma 3.1 and Lemma A.3 that πn ∈ Π(G) for every

n ≥ 1 and hence
ess inf
π∈Π(G)

G(πt, x) ≤ G(πnt , x)

for all n ≥ 1. Therefore

ess inf
π∈Π(G)

G(πt, x) ≤ lim
n→∞

G(πnt , x) = G(π̂t, x). (4.20)
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Thus (4.17), (4.19) and (4.20) imply that

x2at(2)− 2xat(1) + at(0) =

= νt
(Vt(1)λt + ϕt(1)ρ

2
t − h̃t − x(Vt(2)λt + ϕt(2)ρ

2
t )

2

1− ρ2t + ρ2tVt(2)
, µK a.e. (4.21)

and equalizing the coefficients of square trinomials in (4.21) (and integrating with respect
to dK) we obtain that

At(2) =

∫ t

0

(
ϕs(2)ρ

2
s + λsVs(2)

)2

1− ρ2s + ρ2sVs(2)
d〈M〉s, (4.22)

At(1) =

∫ t

0

(
ϕs(2)ρ

2
s + λsVs(2)

)(
ϕs(1)ρ

2
s + λsVs(1)− h̃s

)

1− ρ2s + ρ2sVs(2)
d〈M〉s, (4.23)

At(0) =

∫ t

0

(
ϕs(1)ρ

2
s + λsVs(1)− h̃s

)2

1− ρ2s + ρ2sVs(2)
d〈M〉s, (4.24)

which, together with (4.11), implies that the triples (V (i), ϕ(i), m(i)), i = 0, 1, 2, satisfy
the system (4.4)-(4.6).

Note that A(0) and A(2) are integrable increasing processes and relations (4.22) and
(4.24) imply that the strategy π̂ defined by (4.18) belongs to the class Π(G).

Let us show now that if the strategy π∗ ∈ Π(G) is optimal then the corresponding

filtered wealth process X̂π∗

t = x+
∫ t
0
π∗
udŜu is a solution of equation (4.7).

By the optimality principle the process

Y π∗

t = V H(t, X̂π∗

t ) +

∫ t

0

[(π∗
u)

2(1− ρ2u) + 2π∗
uh̃u]d〈M〉u

is a martingale. Using the Itô formula we have

Y π∗

t =

∫ t

0

(X̂π∗

u )2dAu(2)− 2

∫ t

0

X̂π∗

u dAu(1) + At(0)

+

∫ t

0

G(π∗
u, X̂

π∗

u )d〈M〉u +Nt, (4.25)

where N is a martingale. Therefore applying equalities (4.22),(4.23) and (4.24) we obtain
that

Y π∗

t =

∫ t

0

(
π∗
u −

Vu(1)λu + ϕu(1)ρ
2
u − h̃u

1− ρ2u + ρ2uVu(2)

+ X̂π∗

u

Vu(2)λu + ϕu(2)ρ
2
u

1− ρ2u + ρ2uVu(2)

)2
(1− ρ2u + ρ2uVu(2))d〈M〉u +Nt, (4.26)

which implies that µ〈M〉-a.e.

π∗
u =

Vu(1)λu + ϕu(1)ρ
2
u − h̃u

1− ρ2u + ρ2uVu(2)
− X̂π∗

u

(Vu(2)λu + ϕu(2)ρ
2
u)

1− ρ2u + ρ2uVu(2)
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Integrating both parts of this equality with respect to dŜ (and adding then x to the both

parts) we obtain that X̂π∗

satisfies equation (4.7).
The uniqueness of the system (4.4)-(4.6) we shall prove under following condition D∗),

stronger than condition D).
Assume that
D∗) ∫ T

0

λ2u
ρ2u
d〈M〉u ≤ C.

Since ρ2 ≤ 1 ( Lemma A.1), it follows from D∗) that the mean-variance tradeoff of S is
bounded, i.e., ∫ T

0

λ2ud〈M〉u ≤ C,

which implies that the minimal martingale measure for S exists and satisfies the Reverse-
Hölder condition R2(P ). So, condition D

∗) implies condition D). Besides it follows from

the condition D∗) that the minimal martingale measure Q̂min for Ŝ

dQ̂min = ET (−
λ

ρ2
· M̂)

also exists and satisfies Reverse-Hölder condition.
Recall that the process Z belongs to the class D if the family of random variables

ZτI(τ≤T ) for all stopping times τ is uniformly integrable.

Theorem 4.2. Let conditions A), B), C) andD∗) be satisfied. If a triple (Y (0), Y (1), Y (2)),
where Y (0) ∈ D, Y 2(1) ∈ D and c ≤ Y (2) ≤ C for some constants 0 < c < C, is a solu-
tion of the system (4.4)-(4.6), then such solution is unique and coincides with the triple
(V (0), V (1), V (2)).

Proof. Let Y (2) be a bounded strictly positive solution of (4.4) and let

∫ t

0

ψu(2)dM̂u + Lt(2)

be the martingale part of Y (2).
Since Y (2) solves (4.4), it follows from the Itô formula that for any π ∈ Π(G) the

process

Y π
t = Yt(2)(1 +

∫ t

s

πudŜu)
2 +

∫ t

s

π2
u(1− ρ2u)d〈M〉u, (4.27)

t ≥ s, is a local submartingale.
Since π ∈ Π(G), from Lemma A.1 and the Doob inequality we have

E sup
t≤T

(1 +

∫ t

0

πudŜ)
2 ≤

≤ const
(
1 + E

∫ T

0

π2
uρ

2
ud〈M〉u + E

( ∫ T

0

|πuλu|d〈M〉u
)2
<∞ (4.28)
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Therefore, taking in mind that Y (2) is bounded and π ∈ Π(G) we obtain that

E
(

sup
s≤u≤T

Y π
u

)2
<∞

which implies that Y π ∈ D. Thus Y π is a submartingale (as a local submartingale from
the class D) and by the boundary condition YT (2) = 1 we obtain

Ys(2) ≤ E
(
(1 +

∫ T

s

πudŜu)
2 +

∫ T

s

π2
u(1− ρ2u)d〈M〉u|Gs

)

for all π ∈ Π(G) and hence
Yt(2) ≤ Vt(2). (4.29)

Let

π̃t = −
λtYt(2) + ψt(2)ρ

2
t

1− ρ2t + ρ2tYt(2)
Et

(
−
λY (2) + ψ(2)ρ2

1− ρ2 + ρ2Y (2)
· Ŝ

)
.

Since 1+
∫ t
0
π̃udŜu = Et(−

λY (2)+ψ(2)ρ2

1−ρ2+ρ2Y (2)
·Ŝ), it follows from (4.4) and the Itô formula that the

process Y π̃ defined by (4.27) is a positive local martingale and hence a supermartingale.
Therefore

Ys(2) ≥ E
(
(1 +

∫ T

s

π̃udŜu)
2 +

∫ T

s

π̃2
u(1− ρ2u)d〈M〉u|Gs

)
. (4.30)

Let us show that π̃ belongs to the class Π(G).
From (4.30) and (4.29) we have for every s ∈ [0, T ]

E
(
(1 +

∫ T

s

π̃udŜu)
2 +

∫ T

s

π̃2
u(1− ρ2u)d〈M〉u|Gs

)
≤ Ys(2) ≤ Vs(2) ≤ 1 (4.31)

and hence

E
(
1 +

∫ T

0

π̃udŜu)
2 ≤ 1, (4.32)

E

∫ T

0

π̃2
u(1− ρ2u)d〈M〉u ≤ 1. (4.33)

By D*) the minimal martingale measure Q̂min for Ŝ satisfies the Reverse-Hölder condition
and hence all conditions of Proposition 2.1 are satisfied . Therefore the norm

E
( ∫ T

0

π̃2
sρ

2
sd〈M〉s

)
+ E

( ∫ T

0

|π̃sλs|d〈M〉s
)2

is estimated by E
(
1 +

∫ T
0
π̃udŜu)

2 and hence

E

∫ T

0

π̃2
uρ

2
ud〈M〉u <∞, E

( ∫ T

0

|π̃sλs|d〈M〉s
)2
<∞.

It follows from (4.33) and the latter inequality that π̃ ∈ Π(G) and from (4.30) we obtain
that

Yt(2) ≥ Vt(2),
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which together with (4.29) gives the equality Yt(2) = Vt(2).
Thus V (2) is a unique bounded strictly positive solution of equation (4.4). Besides

∫ t

0

ψ(2)udM̂u =

∫ t

0

ϕ(2)udM̂u, Lt(2) = mt(2) (4.34)

for all t, P -a.s.
Let Y (1) be a solution of equation (4.5) such that Y 2(1) ∈ D. By the Itô formula the

process

Rt = Yt(1)Et(−
ϕ(2)ρ2 + λV (2)

1− ρ2 + ρ2V (2)
· Ŝ)+

∫ t

0

Eu(−
ϕ(2)ρ2 + λV (2)

1− ρ2 + ρ2V (2)
· Ŝ)

h̃u
1− ρ2u + ρ2uVu(2)

d〈M〉u (4.35)

is a local martingale. Let us show that Rt is a martingale.
As it was already shown the strategy

π̃ =
ψu(2)ρ

2
u + λuYu(2)

1− ρ2 + ρ2Yu(2)
Et(−

ψ(2)ρ2 + λY (2)

1− ρ2 + ρ2Y (2)
· Ŝ)

belongs to the class Π(G).
Therefore, (see (4.28))

E sup
t≤T

E2
t (−

ψ(2)ρ2 + λY (2)

1 − ρ2 + ρ2Y (2)
· Ŝ) = E sup

t≤T
(1 +

∫ t

0

π̃udŜ)
2 <∞ (4.36)

and hence

Yt(1)Et(−
ϕ(2)ρ2 + λV (2)

1 − ρ2 + ρ2V (2)
· Ŝ) ∈ D.

On the other hand equation (4.36), Lemma A.2 and Lemma 3.1 imply that

E sup
t≤T

∫ t

0

Eu(−
ϕ(2)ρ2 + λV (2)

1 − ρ2 + ρ2V (2)
· Ŝ)

h̃u
1− ρ2u + ρ2uVu(2)

d〈M〉u ≤

≤
1

c
E

∫ T

0

Eu(−
ψ(2)ρ2 + λY (2)

1− ρ2 + ρ2Y (2)
· Ŝ)|h̃u|d〈M〉u

≤
1

c
E1/2 sup

t≤T
E2
t (−

ψ(2)ρ2 + λY (2)

1− ρ2 + ρ2Y (2)
· Ŝ)E1/2

∫ T

0

h̃2ud〈M〉u <∞.

Therefore, the process Rt belongs to the class D and hence it is a true martingale.
Using the martingale property and the boundary condition we obtain that

Yt(1) = E
(
ĤTEtT (−

ϕ(2)ρ2 + λV (2)

1 − ρ2 + ρ2V (2)
· Ŝ)+

+

∫ T

t

Etu(−
ϕ(2)ρ2 + λV (2)

1− ρ2 + ρ2V (2)
· Ŝ)

h̃u
1− ρ2u + ρ2uVu(2)

d〈M〉u|Gt

)
. (4.37)

Thus, any solution of (4.5) is expressed explicitly in terms of (V (2), ϕ(2)) in the form
(4.37). Hence the solution of (4.5) is unique and it coincides with Vt(1).

It is evident that the solution of (4.6) is also unique.
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Corollary 4.1. In addition to conditions A)-C) assume that ρ is a constant and the
mean-variance tradeoff 〈λ ·M〉T is deterministic. Then the solution of (4.4) is the triple
(Y (2), ψ(2), L(2)), with ψ(2) = 0, L(2) = 0 and

Yt(2) = Vt(2) = ν(ρ, 1 − ρ2 + 〈λ ·M〉T − 〈λ ·M〉t), (4.38)

where ν(ρ, α) is the root of the equation

1− ρ2

x
− ρ2 ln x = α. (4.39)

Besides

Yt(1) = E
(
HEtT (−

λV (2)

1− ρ2 + ρ2V (2)
· Ŝ)

+

∫ T

t

Etu(−
λV (2)

1 − ρ2 + ρ2V (2)
· Ŝ)

h̃u
1− ρ2 + ρ2Vu(2)

d〈M〉u|Gt

)
. (4.40)

uniquely solves equation (4.5) and the optimal filtered wealth process satisfies the linear
equation

X̂∗
t = x−

∫ t

0

λuVu(2)

1− ρ2 + ρ2Vu(2)
X̂∗
udŜu

+

∫ t

0

ϕu(1)ρ
2 + λuVu(1)− h̃u

1− ρ2 + ρ2Vu(2)
dŜu. (4.41)

Proof. The function f(x) = 1−ρ2

x
−ρ2 ln x is differentiable, strictly decreasing on ]0,∞[

and takes all values from ] − ∞,+∞[. So equation (4.39) admits a unique solution for
all α. Besides the inverse function α(x) is differentiable. Therefore Yt(2) is a process of
finite variation and it is adapted since 〈λ ·M〉T is deterministic.

By definition of Yt(2) we have that for all t ∈ [0, T ]

1− ρ2

Yt(2)
− ρ2 lnYt(2) = 1− ρ2 + 〈λ ·M〉T − 〈λ ·M〉t.

It is evident that for α = 1 − ρ2 the solution of (4.39) is equal to 1 and it follows from
(4.38) that Y (2) satisfies the boundary conditione YT (2) = 1. Therefore

1− ρ2

Yt(2)
− ρ2 lnYt(2)− (1− ρ2)

= −(1 − ρ2)

∫ T

t

d
1

Yu(2)
+ ρ2

∫ T

t

d lnYu(2)

=

∫ T

t

(
1− ρ2

Y 2
u (2)

+
ρ2

Yu(2)

)
dYu(2)

and ∫ T

t

1− ρ2 + ρ2Yu(2)

Y 2
u (2)

dYu(2) = 〈λ ·M〉T − 〈λ ·M〉t
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for all t ∈ [0, T ]. Hence

∫ t

0

1− ρ2 + ρ2Yu(2)

Y 2
u (2)

dYu(2) = 〈λ ·M〉t

and integrating both parts of this equality with respect to Y (2)/(1 − ρ2 + ρ2Y (2)) we
obtain that Y (2) satisfies equation

Yt(2) = Y0(2) +

∫ t

0

Y 2
u (2)λ

2
u

1− ρ2 + ρ2Yu(2)
d〈M〉u, (4.42)

which implies that the triple (Y (2), ψ(2) = 0, L(2) = 0) satisfies equation (4.4) and
Y (2) = V (2) by Theorem 4.2. Equations (4.40) and (4.41) follow from (4.37) and (4.7)
respectively, taking ϕ(2) = 0.

Remark 4.1. In the case of complete information, M = M̂ and ρ = 1. Therefore
equation (4.42) is linear and Y (2) = e〈λ·M〉t−〈λ·M〉T .

Remark 4.2. Finally let us make a comment on condition B). It would be desirable
to replace condition B) by requiring that any G-martingale is a F -semimartingale, but
up to now we can’t do this, although one can weaken this condition imposing that any
G-martingale is a σ(F S ∨ G)- martingale, where σ(F S

t ∨ Gt) is the minimal σ−algebra
containing F S and Gt, which is satisfied if F S

t ⊆ Gt.

5 Diffusion market model

Let us consider the financial market model

dS̃t = S̃tµt(Y )dt+ S̃tσt(Y )dw
0
t ,

dYt = at(Y )dt+ bt(Y )dwt,

subjected to initial conditions, where only the second component Y is observed. Here w0

and w are corelated Brownian motions with Edw0
t dwt = ρdt, ρ ∈ (−1, 1).

Let us write
wt = ρw0

t +
√

1− ρ2w1
t ,

where w0 and w1 are independent Brownian motions. It is evident that w⊥ = −
√

1− ρ2w0+
ρw1 is a Brownian motion independent of w and one can express Brownian motions w0, w1

in terms of w and w⊥ as

w0
t = ρwt −

√
1− ρ2w⊥

t , w1
t =

√
1− ρ2wt + ρw⊥

t . (5.1)

We assume that b2 > 0, σ2 > 0 and coefficients µ, σ, a and b are such that F S,Y
t =

Fw0,w
t , F Y

t = Fw
t . So the stochastic basis will be (Ω,F , Ft, P ), where Ft is the natural

filtration of (w0, w) and the flow of observable events is Gt = Fw
t .

21



Also denote dSt = µtdt+ σtdw
0
t , so that dS̃t = S̃tdSt and S is the return of the stock.

Let π̃t be the number shares of the stock at time t. Then πt = π̃tS̃t represents an
amount of money invested in the stock at the time t ∈ [0, T ]. We consider the mean
variance hedging problem

to minimize E[(x+

∫ T

0

π̃tdS̃t −H)2] over all π̃ for which π̃S̃ ∈ Π(G), (5.2)

which is equivalent to study the mean variance hedging problem

to minimize E[(x+

∫ T

0

πtdSt −H)2] over all π ∈ Π(G).

Remark 5.1. Since S is not G−adapted, π̃t and π̃tS̃t can not be simultaneously G-
predictable and the problem

to minimize E[(x+

∫ T

0

π̃tdS̃t −H)2] over all π̃ ∈ Π(G), (5.3)

is not equivalent to the problem (5.2) and it needs separate consideration.
Comparing with (1.1) we get that in this case

Mt =

∫ t

0

σsdw
0
s , 〈M〉t =

∫ t

0

σ2
sds, λt =

µt
σ2
t

.

It is evident that w is a Brownian motion also with respect to the filtration Fw0,w1

and
condition B) is satisfied. Therefore by Proposition 2.2

M̂t = ρ

∫ t

0

σsdws.

By the integral representation theorem the GKW decompositions (3.2), (3.3) take follow-
ing forms

cH = EH, Ht = cH +

∫ t

0

hsσsdw
0
s +

∫ t

0

h1sdw
1
s , (5.4)

Ht = cH + ρ

∫ t

0

hGs σsdws +

∫ t

0

h⊥s dw
⊥
s . (5.5)

Putting expressions (5.1) for w0, w1 in (5.4) and equalizing integrands of (5.4) and (5.5)
we obtain that

ht = ρ2hGt −
√
1− ρ2

h⊥t
σt

and hence

ĥt = ρ2ĥGt −
√

1− ρ2
ĥ⊥t
σt
.
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Therefore by definition of h̃

h̃t = ρ2ĥGt − ĥt =
√

1− ρ2
ĥ⊥t
σt

(5.6)

Using notations

Zs(0) = ρσsϕs(0), Zs(1) = ρσsϕs(1), Zs(2) = ρσsϕs(2), θs =
µs
σs

we obtain the following corollary of Theorem 4.1

Corollary 5.1. Let H be a square integrable FT -measurable random variable. Then
the processes Vt(0), Vt(1) and Vt(2) from (4.3) satisfy the following system of backward
equations

Vt(2) = V0(2) +

∫ t

0

(
ρZs(2) + θsVs(2)

)2

1− ρ2 + ρ2Vs(2)
ds+

∫ t

0

Zs(2)dws VT (2) = 1, (5.7)

Vt(1) = V0(1) +

∫ t

0

(
ρZs(2) + θsVs(2)

)(
ρZs(1) + θsVs(1)−

√
1− ρ2 ĥ⊥s

)

1− ρ2 + ρ2Vs(2)
ds

+

∫ t

0

Zs(1)dws, VT (1) = E(H|GT ), (5.8)

Vt(0) = V0(0) +

∫ t

0

(
ρZs(1) + θsVs(1)−

√
1− ρ2 ĥ⊥s

)2

1− ρ2 + ρ2Vs(2)
ds

+

∫ t

0

Zs(0)dws, VT (0) = E2(H|GT ), (5.9)

Besides the optimal wealth process X̂∗ satisfies the linear equation

X̂∗
t = x−

∫ t

0

ρZs(2) + θsVs(2)

1− ρ2 + ρ2Vs(2)
X̂∗
s (θsds+ ρdws)

+

∫ t

0

ρZs(1) + θsVs(1)−
√
1− ρ2 ĥ⊥s

1− ρ2 + ρ2Vs(2)
(θsds+ ρdws). (5.10)

Example. Suppose that θt and σt are deterministic. Then the solution of (5.7) is the
pair (Vt(2), ϕt(2)), where ϕ(2) = 0 and V (2) satisfies the ordinary differential equation

dVt(2)

dt
=

θ2t V
2
t (2)

1− ρ2 + ρ2Vt(2)
, VT (2) = 1. (5.11)

Solving this equation we obtain that

Vt(2) = ν(ρ, 1− ρ2 +

∫ T

t

θ2sds) ≡ νθ,ρt , (5.12)
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where ν(ρ, α) is the solution of (4.39). From (5.11) follows that

(ln νθ,ρt )′ =
θ2t ν

θ,ρ
t

1− ρ2 + ρ2νθ,ρt
and ln

νθ,ρs

νθ,ρt
=

∫ s

t

θ2rν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
. (5.13)

If we solve the linear BSDE (5.8) and use (5.13) we obtain

Vt(1) = E

[
ĤT (w)EtT

(
−

∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr
(θrdr + ρdwr)

)
|Gt

]

∫ T

t

θsν
θ,ρ
s σs

1− ρ2 + ρ2νθ,ρs
E

[
h̃s(w)Ets

(
−

∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr
(θrdr + ρdwr)

)
|Gt

]
ds

= νθ,ρt E

[
ĤT (w)EtT

(
−

∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr
ρdwr

)
|Gt

]

+νθ,ρt

∫ T

t

µs

1− ρ2 + ρ2νθ,ρs
E

[
h̃s(w)Ets

(
−

∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr
ρdwr

)
|Gt

]
ds

Using the Girsanov theorem we finally get

Vt(1) = νθ,ρt E

[
ĤT

(∫ ·

t

ρ
θrν

θ,ρ
r

1− ρ2 + ρ2νθ,ρr
dr + w

)
|Gt

]

+νθ,ρt

∫ T

t

µs

1− ρ2 + ρ2νθ,ρs
E

[
h̃s

(
ρ

∫ ·

t

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr
dr + w

)
|Gt

]
ds. (5.14)

Suppose now that H = H(w0
T , wT ), Y = w and µt

σt
= θ(t, wt) for some continuous

function θ(t, x) and a differentiable function H(x, y). Then using the elementary ideas of
Malliavin’s calculus we get

ρhGt σt ≡ hG(t, w0
t , wt) = E[ρ∂xH(w0

T , wT ) + ∂yH(w0
T , wT )|Ft],

h⊥t = h⊥(t, w0
t , wt) = −

√
1− ρ2E[∂xH(w0

T , wT )|Ft],

where ∂xH(x, y), ∂yH(x, y) denote the partial derivatives of H. It is evident that

E[f(t, w0
t , wt)|F

w
t ] = E[f(t, ρwt −

√
1− ρ2w⊥

t , wt)|wt] for f = hw, h⊥, H . Thus we obtain

the exact expression for ĤT (y), ĥ
G(t, y) and ĥ⊥(t, y)

ĤT (y) = EH(ρy −
√

1− ρ2w⊥
T , y) ≡ E[H(w0

T , y)|wT = y], (5.15)

ĥG(t, y) = EhG(t, ρy −
√

1− ρ2w⊥
t , y),

ĥ⊥(t, y) = Eh⊥(t, ρy −
√

1− ρ2w⊥
t , y) = −

√
1− ρ2E[Hx(w

0
T , wT )|wt = y]

≡ −
√

1− ρ2E∂xH(ρ(y + wT − wt)−
√

1− ρ2w⊥
T , ρ(y + wT − wt)).
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Remark 5.2. For deterministic θt the equalities

E

[
ĤT

(
ρ

∫ T

t

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr
dr + wT

)
|wt = y

]

= E

[
H

(
ρ

(
ρ

∫ T

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT

)
−

√
1− ρ2 w⊥

T ,

ρ

∫ T

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT

)
|wt = y

]

≡ EH

(
ρ

(
ρ

∫ T

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT − wt + y

)
−

√
1− ρ2 w⊥

T ,

ρ

∫ T

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT − wt + y

)

and

E

[
ĥ⊥s

(
ρ

∫ s

t

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr
dr + ws

)
|wt = y

]

= −
√

1− ρ2E

[
E

[
∂xH

(
ρ

(
ρ

∫ s

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT

)
−
√

1− ρ2 w⊥
T ,

ρ

∫ s

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT

)
|ws

]
|wt = y

]

= −
√

1− ρ2E

[
∂xH

(
ρ

(
ρ

∫ s

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT

)
−
√

1− ρ2 w⊥
T ,

ρ

∫ s

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT

)
|wt = y

]

≡ −
√

1− ρ2E∂xH

(
ρ

(
ρ

∫ T

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT − wt + y

)
−
√

1− ρ2 w⊥
T ,

ρ

∫ T

t

θrν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr
+ wT − wt + y

)

are valid.
Using the well known connection between BSDEs and PDEs we can prove the following

Proposition 5.1. The system of nonlinear PDEs

∂tv(2) +
1

2
∂2yv(2) =

(θ(t, y)v(2) + ρ∂yv(2))
2

1− ρ2 + ρ2v(2)
, v(2, T, y) = 1, (5.16)

∂tv(1) +
1

2
∂2yv(1) (5.17)

=
((θ(t, y)v(2) + ρ∂yv(2)) ((θ(t, y)v(1) + ρ∂yv(1)) + (1− ρ2)E[∂xH(w0

T , wT )|wt = y])

1− ρ2 + ρ2v(2)
,

v(1, T, y) = E[H(w0
T , y)|wT = y]
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admits sufficiently smooth solution and the solution of (4.4),(4.5) can be represented as
Vt(1) = v(1, t, wt), Zt(1) = ∂yv(1, t, wt), Vt(2) = v(2, t, wt), Zt(2) = ∂yv(2, t, wt).

Besides the optimal strategy is of the form

π∗(t, X, y) = −
θ(t, y)v(2, t, y) + ρ∂yv(2, t, y)

1− ρ2 + ρ2v(2, t, y)
X (5.18)

+
(θ(t, y)v(1, t, y) + ρ∂yv(1, t, y) + (1− ρ2)E[∂xH(w0

T , wT )|wt = y])

1− ρ2 + ρ2v(2, t, y)
,

where X and y are states at time t of the wealth and of an observable process.

Example(continued). We suppose in addition that θ, σ are constants and H =

H(ST , YT ) ≡ H(µT + σw0
T , YT ). Then using the equality 1

θ
ln νθ,ρs

νθ,ρt

=
∫ s
t

θνθ,ρr dr

1−ρ2+ρ2νθ,ρr

the

formula (5.14) can be simplified. It is easy to see that

lim
θ→0

1

θ
ln νθ,ρt = 0.

Thus we can set that expression 1
θ
ln νθ,ρt is zero as θ = 0. For simplicity we also assume

that a = 0, b = 1. For v(1) using (5.14) and Remark 5.2 we get

v(1, t, y) = νθ,ρt E
[
Ĥ

(
−
ρ

θ
ln νθ,ρt + wT − wt + y

)]

+νθ,ρt

∫ T

t

µ

1− ρ2 + ρ2νθ,ρs
E

[
h̃s

(
ρ

θ
ln
νθ,ρs

νθ,ρt
+ ws − wt + y

)]
ds,

or equivalently

v(1, t, y) = νθ,ρt (5.19)

×EH
(
µT + σρ(−

ρ

θ
ln νθ,ρt + wT − wt + y)− σ

√
1− ρ2w⊥

T , ρ(−
ρ

θ
ln νθ,ρt + wT − wt + y)

)

+(1− ρ2)µνθ,ρt

∫ T

t

1

1− ρ2 + ρ2νθ,ρs

×E∂xH

(
µT + σρ(

ρ

θ
ln
νθ,ρs

νθ,ρt
+ wT − wt + y)− σ

√
1− ρ2w⊥

T , ρ(
ρ

θ
ln
νθ,ρs

νθ,ρt
+ wT − wt + y)

)
ds.

taking in mind (5.15). This formula together with (5.12) and(5.18) gives an explicit
solution of the problem (5.2) for the case of constant coefficients.

A Appendix

For convenience we give the proofs of the following assertions used in the paper.
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Lemma A.1. Let conditions A)–C) be satisfied and M̂t = E(Mt|Gt). Then 〈M̂〉 is
absolutely continuous w.r.t 〈M〉 and µ<M> a.e.

ρ2t =
d〈M̂〉t
d〈M〉t

≤ 1

Proof. By (2.4) for any bounded G-predictable process h

E

∫ t

0

h2sd〈M̂〉s = E

(∫ t

0

hsdM̂s

)2

= E

(
E

(∫ t

0

hsdMs

∣∣Gt

))2

≤

≤ E

(∫ t

0

hsdMs

)2

≤ E

∫ t

0

h2sd〈M〉s (A.1)

which implies that 〈M̂〉 is absolutely continuous w.r.t 〈M〉, i.e.,

〈M̂〉t =

∫ t

0

ρ2sd〈M〉s

for a G-predictable process ρ.
Moreover (A.1) implies that the process 〈M〉 − 〈M̂〉 is increasing and hence ρ2 ≤ 1

µ〈M〉 a.e.

Lemma A.2. Let H ∈ L2(P, FT ) and let conditions A)− C) be satisfied. Then

E

∫ T

0

h̃2ud〈M〉u <∞. (A.2)

Proof. It is evident that

E

∫ T

0

(hGu )
2d〈M̂〉u <∞, E

∫ T

0

h2ud〈M〉u <∞.

Therefore, by definition of h̃ and Lemma A.1,

E

∫ T

0

h̃2ud〈M〉u

≤ 2E

∫ T

0

E2(hu|Gu)d〈M〉u + 2E

∫ T

0

E2(hGu |Gu)ρ
4
ud〈M〉u

≤ 2E

∫ T

0

h2ud〈M〉u + 2E

∫ T

0

(hGu )
2ρ2ud〈M̂〉u <∞.

Thus h̃ ∈ Π(G) by remark 2.3.
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Lemma A.3. a) Let Y = (Yt, t ∈ [0, T ]) be a bounded positive submartingale with the
canonical decomposition

Yt = Y0 +Bt +mt

where B is a predictable increasing process and m is a martingale. Then m ∈ BMO.
b) In particular the martingale part of V (2) belongs to BMO. If H is bounded, then

martingale parts of V (0) and V (1) also belong to the class BMO, i.e., for i = 0, 1, 2,

E(

∫ T

τ

ϕ2
u(i)ρ

2
ud〈M〉u|Gτ ) + E(〈m(i)〉T − 〈m(i)〉τ |Gτ) ≤ C (A.3)

for every stopping time τ .

Proof. Applying the Itô formula for Y 2
T − Y 2

τ we have

〈m〉T − 〈m〉τ + 2

∫ T

τ

YudBu + 2

∫ T

τ

Yudmu = Y 2
T − Y 2

τ ≤ Const. (A.4)

Since Y is positive and B is an increasing process, taking conditional expectations in
(A.4) we obtain

E(〈m〉T − 〈m〉τ |Fτ ) ≤ Const.

for any stopping time τ , hence m ∈ BMO.
(A.3) follows from assertion a) applied for positive submartingales V (0), V (2) and

V (0) + V (2)− 2V (1). For the case i = 1 one should take into account also the inequality

〈m(1)〉t ≤ const(〈m(0) +m(2)− 2m(1)〉t + 〈m(0)〉t + 〈m(2)〉t).
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[8] H. Föllmer and D. Sondermann, Hedging non-redundant contingent claims. Contri-
butions to mathematical economics hon. G. Debreu (W. Hildenbrand and A. Mas-
Collel, eds.),. North Holland, Amsterdam, (1986), 205–223.

[9] R. Frey and W. J. Runggaldier, Risk-minimizing hedging strategies under restricted
information: the case of stochastic volatility models observable only at discrete
random times. Financial optimization. Math. Methods Oper. Res. 50 (1999), no. 2,
339–350.

[10] C. Gourieroux, J. P. Laurent, and H. Pham, Mean-variance hedging and numeraire.
Math. Finance 8, No. 3(1998), 179–200.

[11] D. Heath, E. Platen, and M. Schweizer, A comparision of two quadratic approaches
to hedging in incomplete markets. Math. Finance 11 No. 4 (2001) 385–413.

[12] C. Hipp, Hedging general claims. Proc. 3rd AFIR Colloquium 2, 603–613, Rome,
1993.

[13] N. Hoffman, E. Platen and M. Schweizer, Option pricing under incompleteness and
stochastic volatility, Math. Finance, Vol. 2, N. 3, 1992, pp. 153-187.

[14] J. Jacod, Calcule Stochastique et problèmes des martingales. Lecture Notes in Math.
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