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Abstract. We consider a class of Hamilton-Jacobi equations H(z, Du(xz)) = 0 with no u-
dependence and with continuity properties consistent with recent applications in queueing theory.
Continuous viscosity solutions are considered in a compact polyhedral domain, with oblique derivative
(Neumann-type) boundary conditions. Comparison and uniqueness results are presented, which use
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sets of the solution u(x). Several examples illustrate the results.
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1. Introduction. The theory of viscosity solutions to first order partial dif-
ferential equations provides a satisfying approach to Hamilton—Jacobi equations for
many types of optimal control problems and differential games. Bardi and Capuzzo-
Dolcetta [4] give an extensive introduction to the basic theory and its application to
a variety of optimization problems. At the heart of the theory are the fundamental
comparison and uniqueness results, which identify the optimal value function as the
unique viscosity solution of the appropriate Hamilton—Jacobi equation. Those com-
parison and uniqueness results generally depend on some monotonicity property of the
Hamiltonian H. For instance, in the case of discounted infinite horizon problems, the
Hamilton—Jacobi equation includes a term Au (A > 0 being the discount rate). This
provides monotonicity in u which is the key to the proof of the typical comparison
result, such as [4, Theorem II.3.1].

In this paper we consider problems of the form

H(z,Du(x)) =0,

in which the Hamiltonian H (z,p) has no u-dependence. It is well known that without
some additional property, solutions may be nonunique. (See Example 6 in section 5,
for instance.) Ishii [18] provides an approach which assumes convexity of p — H (x, p)
and the existence of a special smooth subsolution . (See also [4, section I1.5.3].) The
idea is to perturb a given subsolution by a (small) convex combination with ¢ to
obtain a “strict” subsolution. A basic comparison result (very like our Lemma 2) then
implies the desired inequality. An elementary example is the eikonal equation

H(z,p) = |p| — h(z),

where h is continuous and strictly positive on the spatial domain 2. This category
of problems can also be treated using the transformation of Kruzkov. This can be
applied generally when there is a strictly positive lower bound for the running cost L

*Received by the editors August 17, 2007; accepted for publication (in revised form) August 27,
2008; published electronically January 7, 2009.
http://www.siam.org/journals/sicon/47-6 /70040.html
fDepartment of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123 (day@math.vt.edu).

3167

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

of Hamilton-Jacobi


borrego
Typewritten Text
Copyright by Siam Publications. Day, M. V., "A uniqueness result for p-Monotone viscosity solutions of Hamilton-Jacobi equations in bounded domains," SIAM J. Control Optim., 47(6), 3167–3184, (2009). DOI: 10.1137/070700401


Downloaded 05/27/14 to 128.173.125.76. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3168 MARTIN V. DAY

of (19) below. See Bardi and Soravia [5] and the references in [18]. Our p-monotone
approach is also applicable to such problems; see Example 2 below.

Another approach is that of Camilli and Siconolfi [7]. They are interested in
equations of the form

H(z,p) — f(x) =0

and seek to identify maximal subsolutions. (In some control problems this is the
standard characterization of the desired viscosity solution; see Soravia [21].) They
obtain a definitive characterization of maximal subsolutions in terms of a special
singular solution property. Their approach is rather technical, using convexity of the
sets {p: H(x,p)— f(z) < 0} and a special topology in 2 associated with them. Among
their few simple hypotheses on the Hamiltonian is the assumption that ¢t — H (x, tp) is
strictly increasing in ¢ € [0, 1] for all p. We note that this is essentially the p-monotone
property that we exploit below. We would comment that our results also provide a
simple sufficient condition for a viscosity solution to be the maximal subsolution,
namely that it be a p-monotone supersolution.

We are motivated by a growing body of work using control problems and dif-
ferential games for asymptotic analysis of queueing networks. These problems often
involve oblique-derivative boundary conditions on some part of 9. (Although only
Dirichlet conditions were considered in [18] and [7], presumably generalizations are
possible.) These examples typically do not have the convexity needed for either the
approach of [18] or [7]; see Examples 4 and 5 in section 5. However, the literature
does contain some uniqueness results for certain problems of this type. The germ of
our p-monotone argument can be found in the proof of Theorem 5 of Atar, Dupuis,
and Schwartz [2] (see their equation (37)). Although it is not a viscosity solution
result, the structured verification theorem of Day [12] uses a “positive storage condi-
tion” which is related to p-monotonicity (as we will see in Example 5). The essential
feature underlying these results is monotonicity of ¢t — H(x,tp), not necessarily for
all p but just for those p = ¢ € DFu(z) that are not accounted for by the boundary
conditions. Our intent here is to develop comparison and uniqueness results based on
this property for problems with oblique-derivative boundary conditions, such as are
typical in queueing applications. This class of problems also motivates our regularity
hypotheses on H.

There are a few other comparison results in the literature which employ properties
of the p-dependence of H. For instance, the development in Crandall, Ishii, and Lions
[8] assumes that a special test function u(x) exists for which A — H(z,p+ ADu(z)) —
H (xz,p) satisfies a certain lower bound; see their (H2). We note that such a hypothesis
is entirely a property of the Hamiltonian and depends on the existence of p(z). In
general our notion of a p-monotone solution depends on the specific solution u(z), not
solely on H.

In section 2 we pose the specific type of boundary value problem we will address,
using oblique-derivative conditions on the boundary of a compact polyhedral domain.
Section 3 presents a basic comparison result (Lemma 2) for sub- and supersolutions
to a pair of “strictly separated” equations. (That strict separation generally implies a
comparison result is well known; see Crandall, Ishii, and Lions [9].) The p-monotone
results are then developed in section 4. Our main result (Theorem 4) implies that
when a p-monotone solution exists it is the unique viscosity solution—the “complete
solution” in the terminology of [4]. We conclude by looking at several examples in
section 5.
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2. Preliminaries and hypotheses. We consider a domain 2 which is assumed
to be a compact convex polyhedron in R"™, defined by a finite collection of m linear
constraints,

(1) Q={zeR": n;-x>¢ foreachi=1,...,m}.

The n; are unit vectors (inward normals) and the ¢; are constants. For z € 99 (the
boundary of ) we define the set of active constraints as

Ix)={i: n;-x=¢}

and take I(z) = 0 for z € Q° (the interior of 2). We consider a closed subset 7 C 2 on
which Dirichlet data will be prescribed. This could be part of the boundary, but that
it not necessary. Values for u are prescribed on 7 by a continuous function g : 7 — R,

(2) u(z) =g(z), z€T.
It will be convenient to use the notation
Qs ={x€Q: dist(z,7) > 0}

to refer to the part of Q at least § > 0 away from 7. (We allow 7 = (), in which case
Qs 7 = Q.) On the rest of the boundary, 0Q\ 7, we want to require oblique-derivative
boundary conditions using a collection of vectors d;, i = 1,...,m,

(3) —d; - Du(x) =0, i € I(z).
In Q\ 7 itself we consider a Hamilton—Jacobi equation,
4) H(xz, Du(x)) = 0.

If T = 09, we have a standard Dirichlet problem. If 7 = () we have a typical Neumann-
type problem. In general the problem is a mixture of these two types.

2.1. Continuity hypothesis on the Hamiltonian. Appropriate continuity
hypotheses for the Hamiltonian H are important. The examples we have in mind use
a Hamiltonian of the form (19) below, with f = f(a,b) independent of state and
running cost L = h(z)+ £(a, b) with separate state and player components. This leads
to a Hamiltonian of separated form, H (z,p) = Ho(p)— h(z). But all we really need are
continuity hypotheses consistent with that. We assume there exist m : [0, 00) — [0, 00)
with m(0) = 0 and continuous at 0, and M : [0,00)% — [0,00) with M (0, R) = 0 and
M (-, R) continuous at 0 for each R < oo, such that for all z,y € Q and p, ¢ € R? with
Ip|, lg| < R, we have

() [H (z,p) = H(y, )| <m(lz —y|) + M(lp—ql, R).

2.2. Technical hypotheses on © and d;. The oblique-derivative boundary
conditions (3) are closely associated with the Skorokhod problem for €; see Dupuis
and Ishii [14]. Control problems for systems including a Skorokhod problem in their
dynamics are common in queueing theory and lead to Hamilton—-Jacobi equations with
boundary conditions (3); see Lions [19], Dupuis and Ishii [15], and Day [11]. Although
the Skorokhod problem does not appear in our results below, hypotheses from [14]
regarding €2 and the d; of the boundary conditions are important ingredients for the
proof of Lemma 2. For that purpose we assume the following.
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e B-hypothesis [14, Assumption 2.1]. There exists a compact, convex B C R”
with 0 € B° and the following property: If z € 9B and |z - n;| < 1, then v - d; = 0 for
all unit outward normals to B at z. (v is an outward normal to B at z if v-(z —x) > 0
for all z € B.) For further discussion of this hypothesis and an illustrative figure, see
Dupuis and Ramanan [17].

o Coercivity hypothesis. For each x € 99, and any a; € R,

(6) Zaidi . Zaini >0,
I(z)

1(z)

with equality only if a; = 0 for all ¢ € I(z). It is shown in Day [10] that this,
together with the B-hypothesis, implies [14, Assumption 3.1] concerning the existence
of a discrete projection map. Moreover, it implies that, for each x € 90X, the d;,
1 € I(x), are linearly independent, which is needed for Lemma 1 below. We might
have assumed [14, Assumption 3.1] along with this linear independence property, but
(6) is a convenient sufficient condition for both and is easy to verify in examples, since
it reduces to checking positive definiteness of a small number of matrices.

These hypotheses provide the following technical result, which will be needed for
the proof of Lemma 2.

LEMMA 1. Assume the B-hypothesis and the coercivity hypothesis.

(a) There exists a C function p: Q — [0, 1] with the property that d; - Du(z) < 0
whenever x € 0X) and i € I(x).

(b) There exists a C* function & : R™ — [0, 00) with the properties that

(i) €2 is a norm on RY, and
(ii) for any x € R® andi=1,...,m, x -n; > 0 [< 0] implies d; - DE(x) > 0
[<0].

Proof. Part (a) is Lemma 3.2 of Dupuis and Ishii [15]. Their hypothesis (B.6)
follows from the independence of d;, i € I(x), pointed out above. The other hypotheses
are simple to check in our setting.

Part (b) follows from arguments given in Atar and Dupuis [1], which we outline.
(See their remark on page 1109.) First, it is shown that the property of B is equivalent
to an extended property, namely that if z € 9B and v is an outward normal to B at
z, then

z-n; > —1[< 1] implies d; - v > 0[< 0].

(Although [1] only considers 2 = R”}, the extension argument based on Dupuis and
Ramanan [17] applies in general.) Next, given that the set B exists, it is argued that
B can be assumed symmetric with a smooth boundary, in the sense that the unit
outward normal v(x) is uniquely determined and continuous as a function of x € 9B.
Such a B determines a (smooth) norm on R™, defined by

lz||g = inf{r >0: x € rB}.

B is the closed unit ball with respect to || - || 5. We define &(z) = ||z||%. It follows that
¢ is C1, and for a given z,

D¢(x) = bl|| 5 v,

where b = b(x) > 0 is a scalar function and v the unit outward normal to B at
z =z/||z|| g € OB. Therefore if x - n; > 0, then —1 < 0 < z - n;, so that the extended
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property of B above implies d; - v > 0, which in turn implies d; - D€(x) > 0. The other
case is proven analogously, or by appeal to symmetry. d
As a consequence of (a), observe that there exists a constant o > 0 such that

(7) o < —d; - Du(x) for all x € 09, i € I(x).

2.3. Viscosity solutions. In the proof of Lemma 2 we will use the generaliza-
tion of (3) to

(8) C—d; - Du(z) =0, i € I(z),

where C' is a constant. We want to state carefully what it means to be a viscosity
sub- or supersolution of (4) with boundary conditions (8) on  \ 7. Note that the
definitions will not refer to (2) on 7'; we prefer to express that separately by referring
to “subsolutions with u(z) < g(x) on 7”7 as needed.

We will consider only continuous functions v : 2 — R as possible solutions.
For z € Q the superdifferential set Dtu(zx) consists of those ¢ € R™ which occur
as the value ( = D¢(x) for some C* function ¢ : R® — R with the property that
u(x) —d(x) > u(y) — ¢(y) for all y € Q sufficiently close to . For the correct viscosity-
sense understanding of (8) it is important to note that x is a local maximum of u — ¢
only relative to Q. For x € 0N this means that even if u is smooth, D" u(z) can
contain many ¢ other that Du(x) itself. (See Lemma 7 in section 5.) Similarly, D~ v(z)
consists of ¢ arising as ( = D¢(x) for some C! function ¢(x) such that v — ¢ has a
local minimum at x relative to . The function u(z) € C(R) is called a subsolution of

(9) H(z,Du(x)) =00on Q\ 7 with C —d; - Du(z) =0 0on 9Q\ T

provided the following hold for all ¢ € D" u(x):

(i) if 2 € Q°\ 7, then H(z,{) <0;

(ii) if x € 90\ T, then either H(x,{) <0or C —d; - ¢ <0 for some i € I(z).
In other words, at boundary points only one of the inequalities H (z,¢{) <0, C—d;-¢ <
0 (¢ € I(z)) needs to hold. This is the, now standard, viscosity formulation of first
order equations with “Neumann-type” boundary conditions (see Barles and Lions
[6]), generalized to consider different boundary conditions C' — d; - Du(z) = 0 on the
different planar faces of 02. We can express this subsolution definition succinctly by
writing

(10) H(z,¢) A .rr}i(n)(C —d;i-¢)<0forallz € Q\7 and ¢ € DV u(z)
el(x

and using the convention that min;c;,;) = +oo if I(z) = 0. The definition of a
supersolution is obtained by reversing all the inequalities in (i) and (ii) and considering
¢ € D™ u(x) instead. We would replace (10) by H(z,() V max;e () (C —d; - ¢) > 0.

3. A basic comparison result for strictly separated equations. The task
of this section is to establish a basic comparison result for oblique-derivative boundary
conditions (3) analogous to that of Ishii [18, Lemma 1] . The comparison argument of
Atar, Dupuis, and Schwartz [2] is close to ours and is the source of our approach to
handling the boundary conditions. The use of a norm such as £ in the function ®. of
the proof below originated in Dupuis, Ishii, and Soner [16].

LEMMA 2. Assume that g : T — R is continuous and that u,v € C(Q) with
u<g<wvonT are such that
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(a) w is a subsolution of H(x, Du(x))+n4+(z) =0 on Q\ T, with —d;- Du(x) =0
on 00\ T; and

(b) v is a supersolution of H(x, Duv(x))—n—(z) =0 on Q\T, with —d;- Du(x) =0
on OQ\ 7T,
where Ny : Q — R have the property that for each § > 0,

11 inf inf n_ 0.
(11) wé&j”*(“’“)ﬂé&j” (z) >

Then u(xz) < v(x) for all x € Q.

We will say that the u and v of this lemma are viscosity sub- and supersolutions
to a strictly separated pair of equations. Note that because of (11) this notion of strict
separation depends on the choice of 7. Also observe that we have made no regularity
assumption on the 7n4. The inequality (11) is all the proof needs. An alternate hy-
pothesis would be to assume that infq; . [y () +n-(z)] > 0 along with continuity
of (one of) the ..

Proof. Let 0 < ¢, < 1 be a family of constants with ¢. — 0 as € | 0. Near the end
of the proof we will be more specific about how c. should be chosen, but that detail
is not needed yet. Given € > 0, define

ue(z) = u(@) — cep(x),  ve(z) = v(2) + cep(x),
where p(z) is as in Lemma 1 above. It follows that (. € DV u.(z) iff { = (c+c.Du(z) €
D™ u(z). Notice that

—d; - (= —di (G + ceDp(x)) > —d; - (e + cepo,

where g is as in (7). Therefore, the subsolution hypothesis of (a) implies that for all
¢ € DTu(x),

[H (2, Ce + ccDp(x)) + 04 ()] A ig}i(g)(ceuo —d; ) <0.

In other words, u. is a subsolution of

(12)
H(xz, Duc(x) 4+ ceDu(x)) +ny(x) =0 on Q\ 7T with cepg — d; - Duc(xz) =0 on 9Q\ 7.

Similarly, v, is a supersolution of

(13)
H(xz, Dvc(z)—c.Du(z))—n—(z) =0 on Q\7T with —ccpo—d;-Duc(x) =0 on OQ\7T.

Now suppose that supg(u(z) — v(z)) > 0. Then because p(z) is bounded and
ce — 0, there is a positive constant p so that for all sufficiently small € > 0,

(14) 0<p< Sup[ue(x) - Ue(ﬁ)]'
Q
We now give a version of the usual argument leading to a contradiction. Define

q)e(xa y) = UE(CE) - ve(y) - €7lf($ - y)7

where £(+) is as in Lemma 1, and let (z,y.) € Q x Q be a maximizing pair for ®.. By
comparison to x = y, we have

(15) q)e(xeaye) > p-
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From @ (x,,zc) < Pc(we, ye) it follows that

(16) eilf(xe - yé) < U6(336) - UE(ye)-

Since v and p are bounded, and 0 < ¢ < 1, it follows that v, is bounded (independent
of €). We deduce that £(ze — yc) = O(e). Since all norms on R™ are equivalent, we
have

(17) lze = yell = O(e'/?).

Next, we claim that none of the limit points of x. (as € | 0) can be in 7. Indeed,
if (along a sequence of € | 0) we had z. — z € 7, then by (17) y. — z as well. It
follows that

limfuc(ze) = ve(ye)] < 9(2) = 0nu(z) — [9(2) + 0u(2)] = 0.

Since v and p are continuous, v, is equicontinuous with respect to e. This, together

with (16), implies that e '¢(zc — y.) — 0. Therefore ®(z¢,y.) — 0, contrary to

(15), and this proves our claim. The claim means that there exists § > 0 so that

Ze,Ye € Q57 for all sufficiently small e. By hypothesis (11), there exists 19 > 0 so that
1o < 14 (2e) +n-(ye),

for all € > 0 sufficiently small.
Now uc(z) — [ve(ye) + € '&(x — ye)] is maximized at z = z.. Therefore (. =
e 'DE(xe — ye) € DT ue(ze). Since DE is continuous and € is compact, it follows that

Ce = 0(6_1)-

If it were the case that z. € 99, then by definition of  we would have n;-(x.—y.) <0
for all i € I(x.). By property (ii) of £ in Lemma 1, it follows that d; - (¢ < 0 for all
i € I(z¢). Therefore,

Cefto — di - Ge > cepro > 0.

Since we know x. ¢ 7, (12) implies that

H(xe, G + ceDplxe)) + 1y (zc) < 0.
Arguing in the same way, from the fact that y = y. maximizes

ve(y) = [ulwe) — € E(we —v)]

we are led to the conclusion that

H(ye, Ce — ceDp(ye)) = n-(ye) = 0.
Therefore,

0 <no <14 (xe) +1-(ye) < H(ye, G — ceDpu(ye)) — H(@e, G + ceDp(e)).

Now we know that for some constant K (independent of € > 0), |( £ c.Du| < e K.
Our continuity hypotheses on H(z,p) imply that the right-hand side of the above
expression is bounded above by

m(|ze — yel) + M (2¢|pl, 5_1K)-

The first term converges to 0 because |z — y.| — 0. We can choose ¢, | 0 so that
the second term — 0 as well. For such choices we have a contradiction to the positive
lower bound 9. This contradiction implies that supq[u(z) —v(z)] < 0, concluding the
proof. |
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4. p-monotone uniqueness. We want to use monotonicity properties of H
in the p variable to produce the additional n4(z) terms needed for application of
Lemma 2. Intuitively, we want to use a property such as

H(z,s¢) < H(z,() for0<s<1 and H(z,() < H(z,s¢) for 1 < s.

However, this is considerably stronger than needed for the proof. For the subsolution
case, 0 < s < 1, we don’t really need H(x,s() < H(xz,(), only H(x,s() < 0, but
holding uniformly on compacts disjoint from 7. We express this as

H(z,sC) +ns(z) <0

for some function 7s(z) which is uniformly positive on each s 7. Moreover, we only
need these properties for those ( € DVu(z) such that the inequality (10) is not
satisfied by virtue of the —d; - ¢ terms. This can be stated succinctly by saying that
u(x) is a subsolution of

H(z,sDu(z)) +ns(x) =0 on Q\ 7 with —d; - Du(z) =0 on 0Q\ 7,

which is what we need to invoke Lemma 2. The following definition is based on this
weakened monotonicity requirement.
DEFINITION 3. A wiscosity subsolution u(zx) of

(18) H(z,Du(z)) =0 on Q\ T with —d; - Du(z) =0 on 0Q\ T

is called p-monotone if, for some d9 > 0 and each 1 — §y < s < 1, there exists
a function ns : Q — [0,00) with infq, , ns > 0 for each 6 > 0, so that u(x) is a
subsolution of

H(z,sDu(zx)) +ns(x) =0 on Q\ T with —d; - Du(z) =0 on 00\ 7.

A wiscosity supersolution v(z) of (18) is called p-monotone if, for some dg > 0
and each 1 < s < 14 dy, there exists a function ns : Q — [0, 00) with infg, , ns >0
for each § >0, so that v(x) is a supersolution of

H(z,sDv(x)) —ns(x) =0 on Q\ T with —d; - Dv(z) =0 on 0N\ 7.

A wiscosity solution which is both a p-monotone subsolution and a p-monotone
supersolution is called a p-monotone solution.

We observe that p-monotonicity concerns s¢ for s < 1 in the case of a subsolution,
but 1 < s for a supersolution. It is possible for a viscosity solution to have the p-
monotone property in the supersolution sense but not the subsolution sense. This
would be a viscosity solution and a p-monotone supersolution, but not a p-monotone
solution.

We are now ready for our main theorem. The basic idea is that if u(z) is a subso-
lution, then p-monotonicity will imply that su(z) + (s — 1)c is a “strict” subsolution.
(The constant term (s — 1)c is to insure that su(x) + (s — 1)c < g in case g(z) < 0.
The fact that H has no u-dependence allows us to add such constants with impunity.)
We then appeal to Lemma 2 and let s T 1.

THEOREM 4. Suppose u is a p-monotone subsolution of (9) with u < g on T, and
v is (any) supersolution with g < v on T. Then u(x) < v(z) for all x € Q. Likewise
if w is (any) subsolution and v is a p-monotone supersolution with u < g <v on 7T,
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then u(z) < v(x) for all x € Q. If (9) has a p-monotone solution v, then v is the
complete solution (i.e., it is the unique solution, the maximal subsolution, and the
minimal supersolution).

COROLLARY 5. A wiscosity solution which is a p-monotone supersolution is the
mazimal subsolution.

Proof. We focus on the p-monotone subsolution case. Let

—c=min g(x).

On 7 we have u(z)+c¢ < g(x)+c. Since 0 < g(z)+c, it follows that (for any 0 < s < 1)
s(u(z) + ¢) < g(z) + ¢ on 7. This is equivalent to

us(z) = su(z) + (s —1)c < g(z), x €T.

Now (s € D ug(z) iff (s = s¢ for some ¢ € DVu(x). If . € 92\ 7 and —d; - (s > 0
for all ¢ € I(x), then —d; - ¢ > 0 for all ¢ € I(x), so by the p-monotone subsolution
property for u(x),

H(z, () +ns(x) = H(z,sC) +15(x) < 0.

The same inequality holds for x € Q°. We conclude that ug is a viscosity subsolution
of

H(z,Dus(x)) +ns(x) =0 0on Q\ 7 with —d; - Dus(z) =0 on 0Q\ 7.

We can now apply Lemma 2 to us and v, using 74 (z) = ns(x) for us and n_(z) =0
for v. The lemma implies that us(z) < v(x) all z € Q as follows: for all 1 —§p < s < 1,

su(z) + (s — e < v(x).

Letting s T 1 implies u(z) < v(zx), as claimed. The supersolution case (using s |
1) is analogous. The rest of the assertions of the theorem and corollary are now
elementary. 0

In general the p-monotone property may depend on the specific solution, since
the definition only concerns ¢ € D*u(x). However, for some Hamiltonians all (sub-
or super-) solutions will be p-monotone. We consider in particular Hamiltonians
associated with a running cost L(z, a, b),

(19) H(z,p) = inf sup{—p- f(x,a,b) — L(x,a,b)},
beEB e A
still assuming the continuity hypotheses of section 2.1 above. The next lemma shows
that uniform positivity of the running cost provides a simple sufficient condition for all
solutions to have the p-monotone property. (The argument is embedded in the proof
of [2, Theorem 5].) When the lemma applies, Theorem 4 becomes a simple comparison
and uniqueness theorem for all viscosity solutions.

LEMMA 6. Suppose that H(z,p) is given by (19), and that there exists a function
o : Q1 — [0,00) with the property that 0 < infq; , o(x) for each 6 > 0 and for which

o(xz) < L(z,a,b)

forallae A, be B, z €. Then every subsolution and every supersolution of (9) is
p-monotone.
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Note that since o(x) is allowed to vanish on 7, the choice of 7 may affect the appli-
cability of the lemma.
Proof. Suppose that 0 < s < 1 and consider any ¢ € R"™. We have

—SC~f(a7b)—L($7a,b)=S[ ¢-f(a,b) = L(z,a,b)] = (1 — s)L(z,a,b)
s[=C- f(a,b) = L(z,a,b)] — (1 = s)o(x).

Taking infyep sup, e 4 yields H(x, s¢) < sH(z,()—(1—s)o(z). Let ny(z) = (1—s)o(x).
We have

H(z,sC) +ns(z) < sH(x, (),

holding for all €. It follows from this that any subsolution is a p-monotone subsolution.
The supersolution argument is analogous by using 1 < s, ns(z) = (s — 1)o(z),
with the appropriate inequalities reversed. O

5. Examples. We now discuss several examples, most of which are taken from
existing literature, which illustrate the applicability and limitations of the above re-
sults. In all the examples, the Hamiltonian has the form H(x,p) = Ho(p) — h(x),
for which the hypotheses (5) are easy to verify. We omit those details, as well as the
confirmations of the B-hypothesis and the coercivity hypothesis.

Numerous optimal control or differential game problems have been posed for
“fluid limits” of queueing networks. The most common domain for these examples is
the nonnegative orthant Q) = Ri. Being unbounded, this is outside the scope of our
results above. Our first example makes the point that our main result, Theorem 4,
can fail in unbounded domains.

Ezample 1. In Day [11] an example in two dimensions was considered for the
Hamiltonian

1 1
(20) H(z,p) = 5 lIpll* = 5 ll=[I*.
2 2
This arises as in (19) using
Loz Ly
(21) Lwa,0) = Slal + Slal?, f00) =a

with A = R?. (B is irrelevant.) With 7 = {(0,0)} and o(z) = 1|/z||* we see that
Lemma 6 applies, and therefore all viscosity solutions are p-monotone. The equation,
however, was considered in the unbounded half-space Q = {(x1,22) € R? : x1 < 1},
using d = (—1,0) (= —y(z) in the notation of [11]) for the boundary condition on
08, and taking ¢g(0,0) = 0. If Theorem 4 were valid for unbounded domains solutions
would be unique. However, in [11] it was shown that both v(z) = 3z? + 123 are
viscosity solutions.

The rest of our examples will use compact 2 as hypothesized. Examples 2—4
illustrate the applicability of Lemma 6.

Ezxample 2. The “eikonal” equation

|Du(z)| — h(z) =0, u(x) = g(x) on 99,
with h(z) > 0 on Q was cited above in reference to the approach of Ishii [18]. We

simply observe that H(z,p) = |p| — h(x) is obtained from (19) using f(z,a,b) = a,
a€ A= {a:|a| <1}, and L(z,a,b) = h(z). (B is irrelevant.) Lemma 6 applies, so
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that all solutions are p-monotone, and Theorem 4 provides the usual comparison and
uniqueness results for this Hamiltonian on bounded domains, for any choice of 7.

Ezample 3. The doctoral dissertation of Menendez [20] considers an example
using dynamics of the form

(22) f(z,a,0) =X —Ga

in a bounded rectangle 2 in two dimensions. The running cost L(z, a,b) = %|;1c|2 +1.1
is strictly positive. The control set A is compact and there is no dependence on b. This
problem again falls within the scope of Lemma 6 (regardless of 7'), so that Theorem 4
applies to all viscosity solutions. Although [20] does not employ viscosity solution
techniques, our results above show that they would be a viable alternative approach.

Example 4. A rather different problem is considered by Atar, Dupuis, and
Schwartz [2]. Here a differential game is studied which provides an asymptotic de-
scription of a risk-sensitive stochastic control problem. In the stochastic control prob-
lem, reaching the target set 7 (0,G in their notation) is viewed as an event to be
avoided, so the control attempts to maximize the time until this occurs. This becomes
the maximizing player in the limiting game. The minimizing player emerges from the
asymptotic analysis as the limiting representation of the random fluctuations.

The problem fits our format in the case that all the arrival parameters \; are
positive. (If some \; = 0, then different boundary conditions are to be used on some
parts of 90\ 7.) We recast their problem in our notation. 2 (their G) is the rectangle
x{[0, z;] in RY. T consists of the portion of the boundary where z; = 2; for one or more
coordinates. The d; are the —9; (below) for the respective faces 9;Q2 = {x : x; = 0}.
The maximizing player chooses the control b = (u1,...,uq) in a compact polygon 5.
The minimizing player chooses a vector of rate perturbation factors a = (a}, ol : i =
1,...,d), with a € A = [0,00)2%. The state dynamics are

f(z,a,b) = Z /\iaf‘ei + Z wi ok vy,

where e; are the standard unit vectors in R¢, and @; are the service event vectors,
U; = ey — e;, where 7 — ¢’ indicates the routing sequence in the network. The running
cost is

L(z,a,b) =c+ Z Nib(a) + Z wipil(ak'),
where {(a) = alog(a) — a + 1.

Here ¢ > 0 is a positive constant, A; > 0, and g; > 0, so L(x,a,b) > ¢. Thus the
hypotheses of Lemma 6 are satisfied once again, so that Theorem 4 applies to all
viscosity solutions.

Our last two examples are beyond the scope of Lemma 6, and the details are more
involved. The following lemma will assist us in checking the boundary conditions for
(locally) smooth solutions.

LEMMA 7. Assume the coercivity condition (6). Suppose x € 02 and wu is contin-
uwously differentiable in a neighborhood of x.

(a) ¢ € DYu(z) iff ¢ = Du(x) + Y ici(x) Bini for some choice of B; > 0. Analo-
gously, ¢ € D~ u(x) iff = Du(z) — Ziel(z) Bin; for some 3; > 0.
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(b) If —d; - Du(x) < 0 for all i € I(x), then the viscosity subsolution property
with boundary conditions holds as follows: for all ¢ € DT u(x),

H(z, () Aig}i(g)(—di () <0.

Analogously, if —d; - Du(x) > 0 for all i € I(x), then for all ( € D™ u(x),

H(z,¢)V max (—d; - ¢) > 0.
i€l(x)

Proof. The proof of (a) is the first paragraph of the proof of [12, Theorem 2.1].
For (b), suppose that —d; - Du(z) < 0 for all i € I(z) and consider any ¢ € D u(z).
By (a) we know that ( = Du(x) +Z](w) B;n; with 3; > 0. We can assume some 3; > 0
for some ¢ € I(x); else —d; - ( = —d; - Du(z) < 0 follows directly. Observe that

S Bidi-C= > Bidi-Duw) | + | D Bidi | - [ D Bina

I(z) I(z) I(z) I(z)

By hypothesis, the first term on the right side is nonnegative. The last term is positive
by the coercivity hypothesis and our assumption that 8; > 0 for some i. Therefore
the left side is positive. This implies that d; - ¢ > 0 for some i € I(x). Consequently,

H(z,¢) A min (=d; - () <0,
i€l (x)

regardless of the value of H(xz,(). The supersolution case in (b) is argued
analogously. |

Ezample 5. The recent papers [3], [13], and [12] of Day and others explore a
robust control approach to fluid queueing models, using state dynamics of the form

f({l:,a,b):b—GCL,

a compact control space A, and opposing quadratic costs for the state and “distur-
bance” b € B =R" as follows:

1 1
(23) L(z,a.8) = 5o — 5 oI
The resulting Hamiltonian is
1,0 1. 5
H(z,p) = supp- Ga — gllz]|” = S|pll
acA

1
(24) = 5 sup (IGal* = |lp = Gal* — [|=]?) -
acA

Since ||Ga||, a € A is bounded, we see from the second form that H(z,p) > 0 implies
a bound on ||z||. Thus these problems are reasonable to consider only in bounded
domains 2. The examples in the literature consider a bounded polygon €2 consisting
of z € R? with #; > 0 and n-a < ¢ for a particular vector 7. In [3] and [13] the boundary
7 - x = c is omitted from ) and in its place an admissibility condition is imposed on
controls, which prohibits the state from approaching this missing boundary. (See the
“minimum performance criterion” and its discussion in section 2.4 of [13].) In [12]
all of 99 is included, consistent with our formulation. Section 6 of [12] considers a
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specific example of the type considered here. We will need to take advantage of certain
explicit calculations, which would be cumbersome for that example. Instead, we will
consider a simple instance of the example(s) of [3, sections 1-3], modified to include
all of 99 in accordance with our hypotheses here.

We let G be the 2 x 2 identity matrix. (In [3] this corresponds to s; = v = 1.) The
control set is A = {(ay,a2) : 0 < a;, a1 + az = 1}. The Hamiltonian (24) simplifies
to

1 1
(25) H(z,p) = max(pr,p2) — 51 —
We consider the planar domain
Q:{xERi: x1+ a9 <71}

for r < 1. If » = 1, then our  would be (the closure of) the domain considered in
[3]. With r < 1 the domain here is slightly smaller. This reduction of the domain is
important for the p-monotone property. We identify the faces and respective normal
vectors as follows:

IQ={xeQ: z, =0}, n;=(1,0),
RN ={recQ: x;1 =0}, n2=(0,1),
BU={zecQ: zi+a0=7}, nzg=(-1/V2,-1/V2).

We take d; = n; for all the faces. The target set will be the origin, 7 = {(0,0)}, with
9(0,0) = 0.

The constructions of [3] produce a C' solution to H(z, Du(z)) = 0. We will see
that this is a p-monotone solution, even though Lemma 6 does not apply. We will first
indicate briefly how the viscosity solution properties are verified, and then turn our
attention to p-monotonicity. The solution is symmetric about the diagonal z; = xs.
We confine our discussion to the lower-right half of Q: 0 < x5 < x1 < r. The analysis
on the other half follows by symmetry.

In the subregion 0 < x5 < x1 < r the solution is most conveniently described in
terms of the orthogonal basis,

w=(1/2,-1/2), 5= (1/2,1/2).

(In the notation of [3, page 335], u = p1 = np1y — Nq1,2y and 1 = p2 = Ng123.) The
gradient Du(x) is related to x in terms of parameters 0 < t; < to < 7/2 by the
expressions

(26) x =sin(t1)p + sin(t2)n, Du(z) = [1 — cos(ty)]u + [1 — cos(t2)]n.
The parameters can be eliminated to obtain the explicit expressions for 0 < x5 <
Z1 S r,

1

T =7 ( 1— (21 — 22)% (21 — 20) +sin" (21 — )

+ (21 + 2)\/1 — (21 + 29)2 +sin" (21 + 332)) ,

88—51:1—%(\/1—(;101—x2)2+\/1—(x1+x2)2),

aaxu? (\/1 — (o1 —22)? = V1 (a1 + $2)2) )

DN =
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The parametric representation is more convenient for most purposes. For instance,
observe that for p = Du(z), max(p1, p2) = p1 is equivalent to p-u = %[1 —cos(t1)] >0,
which does hold. Therefore,

1 1 1 1
(27) H(z,p) = p1 = Sl21” = Slpll* = p- (w+n) = 5ll=l* = S lIpll*.

It is now straightforward to evaluate this, using the orthogonality of 1+ and 7 to confirm
that H(z, Du(x)) = 0. The explicit formulae provide the easiest way to check that

(28) Ou/0x; > 0 for both 17,
because zo < 21, and
(29) Ou/Oxe = 0 when x5 = 0.

By Lemma 7(b), (29) implies that the viscosity boundary conditions are satisfied
on 0. On 03 we have from (28) that —ds - Du(z) > 0, so that the supersolution
boundary condition is satisfied there, as well as at the corner (r,0).

The subsolution property on 05 and at the corner takes more careful examina-
tion. For these x we need to identify the ¢ € D" u(z), for which —d; - Du(z) > 0 for
all i € I(z), and for these we need to check that H(x,{) < 0 holds. Consider the
corner z = (r,0) specifically. From the explicit formulas, Du(z) = (1 — v1 —72,0).
By Lemma 7, the ¢ € DT u(x) are

¢ = Du(z) + Bona + B3nz, [ > 0.
One finds that the ¢ with §; > 0 and —d; - ( > 0 comprise the triangle in the {-plane

with vertices (0,0), Du(z) = [1 — 1 —7r%](1,0), and [1 — v1 —r?](3, —3). For future
reference, notice that all such ( satisfy

(30) Il < [Du()]-

What we need at the moment is that (; < 0 < (o, so that just as in (27),

H(,Q) = C- (utm) — gl — I

For the particular ¢ identified above, this works out to be

H(z,¢) = % (—522 + V28362 — B3 (ﬂs +V2V1 - 7"2)) ;

from which one may verify that H(x,{) < 0 for all 8; > 0. This confirms the viscosity
subsolution property at the corner.

For x € 050 with 2o < z1 < r the calculations are similar but simpler. The
¢ € DTu(x) with —ds - ¢ > 0 are ¢ = Du(xz) + S3ng with
(31) 0 < V283 < 1— cos(ty).
Since n3 = —+/27, we have

(32) ¢ =[1—cos(ty)]u+ |1—cos(ta) — V20| n.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/27/14 to 128.173.125.76. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

p-MONOTONE UNIQUENESS 3181

Notice that (32) implies that (30) again holds. Since p - ¢ = - Du(x) > 0, we can
again work out that

1
¢ (utm) = gl Sl?

-1
= 7@3 \/ﬁcos(tl) + B3| < 0 since (3 > 0.

H(z,¢)

This completes the verification that u(x) is a viscosity solution to our problem.

We now consider p-monotonicity. Note that due to the —||b||?> term, there is no
finite lower bound for the L of (23). Thus Lemma 6 does not apply. Even so, we
will see that u(z) is a p-monotone solution. Observe that for any s > 0, we have
max(s(1, $C2) = smax((1,(2). As a consequence we have the following identity:

(33) H(w.56) = st(z.6) + (5= 1) lal? - S1c1?].

Consider the supersolution p-monotonicity property first. As observed above, —d; -
Du(z) > 0 on all boundary faces, so that only the interior points are involved in the
p-monotonicity supersolution property. Since H(x, Du(z)) = 0, we see from (33) that
p-monotonicity requires that

1 s
(34) 0 < 5 lal* = 5|1 Du(2)]*

2 2
for  # 0 and s ~ 1. For s = 1 this is the positive storage condition (see [3, (2.25)] and
[12, (33)]), which was important for the verification results obtained in those papers.

Here we are interested in 1 < s. The parametric representation of Du(zx) allows us to
check (34) directly as follows:

Szl = 21Du()|? = Fsin(ta)? — (1 — cos(t1)’] + §fsin(t2)” — s(1 — cos(2))?]

Now 0 < t; < t9 and %sin(tz) =n-x <% Thus t; < sinfl(r) < g, since r < 1. It is
elementary to check that there exists dg > 0, so that

sin(t)? — s(1 — cos(t))? > 0

for all 0 < ¢ < sin"'(r) and all 0 < s < 1+ &y. This implies that (34) holds, and so
u(x) is indeed a p-monotone supersolution, using

mo(@) = (s = 1) g lal* = SDu@)|P|.

Finally, consider the subsolution p-monotone property. Based on (33), for s—1 < 0,
we need to know that, for ¢ € DM u(z) with —d; - ¢ > 0 all i € I(x),

Loz 52
But we observed in (30) above that for all such ¢, ||¢|| < ||Du(z)||, and so

1 2 S 2 2 S 2
— - — > — —||D .
Szl = 21¢2 2 52l — 2 Du()]

1
2
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o
o
i

Fic. 1. w(z).

Thus we can again use
L2 8 2
1e(@) = (s = 1) | 5o = S| Du(@)]?]

which is strictly positive on Q\ 7', as shown above.

In summary, u(z) is a p-monotone viscosity solution and hence the complete
solution of our problem.

Finally, we offer a new example which exhibits nonuniqueness of solutions when
no p-monotone solution exists, but for which comparisons based on p-monotonicity
properties are still possible.

Ezample 6. We return to the Hamiltonian (20) but consider the cube

Q= {($177x2) :0<zg; < 1}
We number the boundary faces as

MhQ={zxeQ: v1=0}, ©Q={zxecQ: xy=0}
83Q:{$EQZ$1:1}, 84Q:{$EQISE2:1}.

The normals are ny = (1,0), no = (0,1), ng = (—1,0), and ny = (0, —1), and we take
d; = n; for all faces. Consider the target set consisting of the two off-diagonal corners,
T ={(1,0),(0,1)}, taking g = % at both corners.

It is elementary to check that v(z) = (2} + 23) is a classical solution of 0 =
H(z,Dv(z)) in the interior of Q. A second solution w is illustrated in Figure 1. Tt is
symmetric about the diagonal line I' = {x € Q : 7 = x2}, but is nondifferentiable
on I' (and at the corners in 7). In the upper left triangle, 0 < 27 < a9 < 1, it is

constructed from the family of characteristics (illustrated in the left pane of Figure 1),

$'=Hp(a:,p):p; 33(0):(0,1),
p=—H,(z,p) = x; p(0) = (cos(8), —sin(h)), 0 <0 < 7/2,
W=p-i; w(0) =1/2 = g(z(0)),
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and extended by symmetry across I'. It turns out that both v and w are viscosity
solutions of H(x, Du(z)) =0 in Q\ 7 with —d; - Du(z) =0 on 02\ 7 and u = g on
7T . Moreover, v satisfies the oblique derivative boundary conditions at the points of 7°
as well. The verification of these assertions is similar to that of the previous example;
we omit it for brevity.

In light of Theorem 4, neither v nor w can be a p-monotone solution. Lemma 6
does not apply here since = = (0, 0) does not belong to 7 and L of (21) has no positive
lower bound at this point. In fact, neither v nor w is a p-monotone solution in either
the sub- or supersolution sense. In order for v to be a p-monotone subsolution we
would need, for 0 < s < 1, a function ns(x) > 0 (off 7) with

H(z,sDv(x)) < —ns(z), xz€Q°.

Now

s2—1

2
— .

1 1
Hiz,sp) = 5 lpll> = 5 llall> = s*H(w,p) +

Since H(z, Dv(z)) =0,

s2—-1

H(z,sDv(x)) = ll||2.

Thus we would need 322’1 |z]|? < —ns(x) to be uniformly negative in a neighborhood

of (0,0). This is clearly not possible. The same argument applies to w if we keep x
off the diagonal. For the supersolution case, we would need 322—’1ch||2 > ns(x) to be
uniformly positive in a neighborhood of (0, 0), which is likewise impossible.

In Figure 2 we have plotted both solutions v and w. It is apparent that v < w. This
can be deduced from Theorem 4 by considering the enlarged target set
7' ={(0,0), (0,1), (1,0)}. Now Lemma 6 does apply; both v and w are p-monotone

for this 7'. If we take ¢(0,0) = 0 = v(0,0), then v is the complete solution of the

X1
0 1
1.5
1
0.5
O X2 0

F1G. 2. v(z) < w(z).
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problem, but since w(0,0) = 1 > ¢(0,0), w is only a supersolution. Thus v < w
follows from the comparison theorem. If instead we take ¢g(0,0) = 1, then w is the
complete solution. We obtain a supersolution by adding a constant to v as follows:
(z) = 1 4+ v(z). In that case, © > g on 7, so that the comparison theorem implies
v+12>w.

g(0,

Also consider the target set 7”7 = {(0,0)} consisting of the origin alone, with

0) = 0. As above, Lemma 6 applies, so that v is the complete solution. According

to Theorem 4, there can be no other viscosity solutions. Adding a constant, w — 1
conforms to g at the origin. But investigation of the corners (0, 1) and (1, 0) shows that
the supersolution condition fails there (details omitted). It is, however, a subsolution,
which implies w — 1 < v, as we already deduced above.
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