
Playing Games with Approximation Algorithms

Sham M. Kakade
Toyota Technological Institute

sham@tti-c.org

Adam Tauman Kalai
∗

Georgia Tech
atk@cc.gatech.edu

Katrina Ligett
†

Carnegie Mellon
katrina@cs.cmu.edu

ABSTRACT
In an online linear optimization problem, on each period t,
an online algorithm chooses st ∈ S from a fixed (possibly
infinite) set S of feasible decisions. Nature (who may be
adversarial) chooses a weight vector wt ∈ R

n, and the algo-
rithm incurs cost c(st, wt), where c is a fixed cost function
that is linear in the weight vector. In the full-information
setting, the vector wt is then revealed to the algorithm, and
in the bandit setting, only the cost experienced, c(st, wt),
is revealed. The goal of the online algorithm is to per-
form nearly as well as the best fixed s ∈ S in hindsight.
Many repeated decision-making problems with weights fit
naturally into this framework, such as online shortest-path,
online TSP, online clustering, and online weighted set cover.

Previously, it was shown how to convert any efficient exact
offline optimization algorithm for such a problem into an
efficient online bandit algorithm in both the full-information
and the bandit settings, with average cost nearly as good
as that of the best fixed s ∈ S in hindsight. However, in
the case where the offline algorithm is an approximation
algorithm with ratio α > 1, the previous approach only
worked for special types of approximation algorithms.

We show how to convert any offline approximation algo-
rithm for a linear optimization problem into a corresponding
online approximation algorithm, with a polynomial blowup
in runtime. If the offline algorithm has an α-approximation
guarantee, then the expected cost of the online algorithm on
any sequence is not much larger than α times that of the best
s ∈ S , where the best is chosen with the benefit of hindsight.
Our main innovation is combining Zinkevich’s algorithm for
convex optimization with a geometric transformation that
can be applied to any approximation algorithm. Standard
techniques generalize the above result to the bandit setting,
except that a “Barycentric Spanner” for the problem is also
(provably) necessary as input.

Our algorithm can also be viewed as a method for playing

∗Supported in part by NSF award SES-527656.
†Supported in part by an AT&T Labs Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

large repeated games, where one can only compute approx-
imate best-responses, rather than best-responses.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Theory

Keywords
Approximation algorithms, regret minimization, online lin-
ear optimization

1. INTRODUCTION
In the 1950’s, Hannan gave an algorithm for playing re-

peated two-player games against an arbitrary opponent [7].
His was one of the earliest algorithms with the no-regret
property: against any opponent, his algorithm achieved ex-
pected performance asymptotically near that of the best
single action, where the best is chosen with the benefit of
hindsight. Put another way, after sufficiently many rounds,
someone using his algorithm would not benefit (significantly)
by being able to change his actions to any single action,
even if this action could be chosen after observing the op-
ponent’s play. Kalai and Vempala showed that Hannan’s
approach can be used to efficiently solve online linear op-
timization problems as well [8]. Hannan’s algorithm relied
on the ability to find best responses to an opponent’s play
history. Informally speaking, Kalai and Vempala replaced
this best-reply computation with an efficient black-box op-
timization algorithm (the number of calls to that algorithm

on a sequence of length T was O(
√

T) [8]). However, the
above approach breaks down when one can only approxi-
mately solve the offline optimization problem efficiently or
one can only compute approximate best responses. That is
the focus of the present paper.

In an offline optimization problem, one must select a sin-
gle decision s from a known set of decisions S , in order to
minimize a known cost function. In an offline linear opti-
mization problem, a weight vector w ∈ R

n is given as in-
put, and the cost function c(s, w) is assumed to be linear in
w. Many combinatorial optimization problems fit into this
framework, including traveling salesman problems (where S
consists of a subset of paths in a graph), clustering (S is
partitions of a graph), weighted set cover (S is the set of

546

covers), and knapsack (S is the set of feasible sets of items
and weights correspond to item valuations).

Each of these problems has an online sequential version,
in which on every period the player must select her decision
without knowing that period’s cost function. That is, there
is an unknown sequence of weight vectors w1, w2, . . . ∈ R

n

and for each t = 1, 2, . . ., the player must select st ∈ S and
pay c(st, wt). In the full-information version, the player is
then informed of wt, while in the bandit version she is only
informed of the value c(st, wt). (The name bandit refers
to the similarity to the classic multi-armed bandit problem
[10]).

The player’s goal is to achieve low average cost. In par-
ticular, we compare her cost with that of the best fixed
decision: she would like her average cost to approach that
of the best single point in S , where the best is chosen with
the benefit of hindsight. This difference, 1

T

PT
t=1 c(st, wt)−

mins∈S 1
T

PT
t=1 c(s, wt), is termed regret.

Prior work showed how to convert an exact algorithm for
the offline problem into an online algorithm with low regret,
both in the full-information setting and in the bandit set-
ting. In particular, Kalai and Vempala showed [8] that using

Hannan’s approach [7], one can guarantee O(T−1/2) regret
for any linear optimization problem, in the full-information
version, as the number of periods T increases. It was later
shown [1, 9, 5] how to convert exact algorithms to achieve

O(T−1/3) regret in the more difficult bandit setting.
This prior work was actually a reduction showing that one

can solve the online problem nearly as efficiently as one can
solve the offline problem. (They used the offline optimizer
as a black box.) However, in many cases of interest, such
as online combinatorial auction problems [2], even the of-
fline problem is NP-hard. Hannan’s “follow-the-perturbed-
leader” approach can also be applied to some special types
of approximation algorithms, but fails to work directly in
general. Finding a reduction that maintains good asymp-
totic performance using general approximation algorithms
was posed as an open problem [8]; we resolve this problem.

In this paper, we show how to convert any approximation
algorithm for a linear optimization problem into an algo-
rithm for the online sequential version of the problem, both
in the full-information setting and in the bandit setting. Our
reduction maintains the asymptotic approximation guaran-
tee of the original algorithm, relative to the average per-
formance of the best static decision in hindsight. Our new
approach is inspired by Zinkevich’s algorithm for the prob-
lem of minimizing convex functions over a convex feasible
set S ⊆ R

n [11]. However, the application is not direct and
requires a geometric transformation that can be applied to
any approximation algorithm.

Example 1 (Online metric TSP). Every day, a delivery
company serves the same n customers. The company must
schedule its daily route without foreknowledge of the traffic
on each street. The time on any street may vary unpre-
dictably from day to day due to traffic, construction, ac-
cidents, or even competing delivery companies. In online
metric TSP, we are given a undirected graph G, and on ev-
ery period t, we must output a tour that starts at a specified
vertex, visits all the vertices at least once, then returns to
the initial vertex. After we announce our tour, the traffic
patterns are revealed (in the full-information setting, the

costs on all the edges; in the bandit setting, just the cost of
the tour) and we pay the cost of the tour.

Example 2 (Online weighted set cover). Every financial
quarter, our company hires vendors from a fixed pool of sub-
contractors to cover a fixed set of tasks. Each subcontractor
can handle a known, fixed subset of the tasks, but their price
is only announced at the end of the quarter and varies from
quarter to quarter. In online weighted set cover, the vendors
are fixed sets P1, . . . , Pn ⊆ [m]. Each period, we choose a
legal cover st ⊆ [n], that is,

S
i∈st

Pi = [m]. There is an

unknown sequence of cost vectors w1, w2, . . . ∈ [0, 1]n, indi-
cating the quarterly vendor costs. Each quarter, our total
cost c(st, wt) is the sum of the costs of the vendors we chose
for that quarter. In the full-information setting, at the end
of the quarter we find out the price charged by each of the
subcontractors; in the bandit setting, we receive a combined
bill showing only our total cost.

1.1 Hannan’s approach
In this section, we briefly describe the previous approach

[8] for the case of exact optimization algorithms based on
Hannan’s idea of adding perturbations. We begin with the
obvious “follow-the-leader” algorithm which, each period,
picks the decision that is best against the total (equiva-
lently, average) of the previous weight vectors. This means,
on period t, choosing st = A

`Pt−1
τ=1 wτ

´
, where A is an algo-

rithm that, given a cost vector w, produces the best s ∈ S .1

Hannan’s perturbation idea, in our context, suggests us-
ing st = A

`
pt +

Pt−1
τ=1 wτ

´
for uniformly random pertur-

bation pt ∈ [0,
√

t]n. One can bound the expected regret of

following-the-perturbed-leader to be O(T−1/2), disregarding
other parameters of the problem.

Kalai and Vempala [8] note that Hannan’s approach main-
tains an asymptotic α-approximation guarantee when used
with α-approximation algorithms with a special property
they call α-point-wise approximation, meaning that on any
input, the solution they find differs from the optimal solu-
tion by a factor of at most α in every coordinate. They
observe that a number of algorithms, such as the Goemans-
Williamson max-cut algorithm [6], have this property. Bal-
can and Blum [2] observe that the previous approach applies
to another type of approximation algorithm: one that uses
an optimal decision for another linear optimization problem,
for example, using MST for TSP. It is also not difficult to see
that a FPTAS can be used to get a (1+ε)-competitive online
algorithm. We further note that the Hannan-Kalai-Vempala
approach extends to approximation algorithms that perform
a simple type of randomized rounding where the randomness
does not depend on the input.

In Appendix A, we use an explicit example based on the
greedy set-cover approximation algorithm to illustrate how
Hannan’s approach fails on more general approximation al-
gorithms.

1.2 Informal statement of results
The main result of this paper is a general conversion from

any approximate linear optimization algorithm to an ap-
proximate online version in the full-information setting (Sec-

1This approach fails even on a two-decision problem, where
the costs of the two decisions are (0.5,0) during the first
period and then alternate (1, 0), (0, 1), (1, 0), . . . , thereafter.

547

tion 3). The extension to the bandit setting (Section 4)
uses well-understood techniques, modulo one new issue that
arises in the case of approximation algorithms. We summa-
rize the problem, our approach, and our results here.

We assume there is a known compact convex set W ⊆ R
n

of legal weight vectors (in many cases W = [0, 1]n), and a
cost function c : S ×W → [0, 1] that is linear in its second
argument, that is, c(s, av + bw) = ac(s, v) + bc(s, v) for all
s ∈ S , a, b ∈ R, and v, w, av+bw ∈ W. The generalization to
[0, M]-bounded cost functions for M > 0 is straightforward.2

We assume that we have a black-box α-approximation algo-
rithm, which we abstract as an oracle A such that, for all
w ∈ W, c(A(w), w) ≤ α mins∈S c(s, w). That is, we do not
assume that our approximation oracle can optimize in ev-
ery direction. In the full-information setting, we assume our
only access to S is via the approximation algorithm; in the
bandit setting, we need an additional assumption, which we
describe below.

For simplicity, in this paper, we focus on the non-adaptive
setting, in which the adversary’s choices of wt can be ar-
bitrary but must be chosen in advance. In the adaptive
setting, on period t, the adversary may choose wt based
on s1, w1, . . . , st−1, wt−1. There is no clear reason why the
results presented here cannot be extended to the adaptive
setting.

For α-approximation algorithms, it is natural to consider
the following notion of α-regret, in both the full-information
and the bandit-settings. It is the difference between the
algorithm’s average cost and α times the cost of the best
s ∈ S , that is, 1

T

PT
t=1 c(st, wt)− α mins∈S T

PT
t=1 c(s, wt).

1.2.1 Full-information results
Our approach to the full-information problem is inspired

by Zinkevich’s algorithm (for a somewhat different prob-
lem)[11], which uses an exact projection oracle to create an
online algorithm with low regret. An exact projection oracle
ΠJ is an algorithm which can produce argminx∈J ||x − y||
for all y ∈ R

n, where J is the “feasible region” (in Zinke-
vich’s setting, a compact convex subset of R

n). The main
algorithm presented in Zinkevich’s paper, Greedy Projec-

tion, determines its decision xt at time t as xt = ΠJ (xt−1−
ηwt−1), where η is a parameter called the learning rate and
wt−1 is the cost vector at time (t − 1). One can view the
approach in this paper as providing a method to simulate a
type of “approximate” projection oracle using an approxi-
mation algorithm. In Section 3 we show the following:

Result 1.1. Given any α-approximation oracle to an
offline linear-optimization problem and any T, T0 ≥ 1,
w1, w2, . . . ∈ W, our (full-information) algorithm outputs
s1, s2, . . . ∈ S achieving

E

"
1

T

T0+TX
t=T0+1

c(st, wt)

#
− α min

s∈S
1

T

T0+TX
t=T0+1

c(s, wt) =
O(αn)√

T
.

The algorithm makes poly(n, T) calls to the approximation
oracle.

Note that the above bound on expected α-regret holds si-
multaneously for every window of T consecutive periods (T
must be known by the algorithm). We easily inherit this use-
ful adaptation property of Zinkevich’s algorithm. It is not

2In [8], the set W = {w ∈ R
n | |w|1 ≤ 1} was assumed.

clear to us whether one could elegantly achieve this property
using the previous approach.

1.2.2 Bandit results
Previous work in the bandit setting constructs an “ex-

ploration basis” to allow the algorithm to discover better
decisions [1, 9, 5]. In particular, Awerbuch and Kleinberg
[1] introduce a so-called Barycentric Spanner (BS) as their
exploration basis and show how to construct one from an op-
timization oracle A : R

n → S . However, in the case where
the oracle (exact or approximate) only accepts inputs in,
say, the positive orthant, it may be impossible to extract
an exploration basis. Hence, we assume that we are given a
β-BS (β ≥ 1 is an approximation factor for the BS) for the
problem at hand as part of the input. Note that the β-BS
only needs to be computed once for a particular problem
and then can be reused for all future instances of that prob-
lem. Given a β-BS, the standard reduction from the bandit
setting to the full-information setting gives:

Result 1.2. For any β-BS and any α-approximation or-
acle to an offline linear-optimization problem and any
T, T0 ≥ 1, w1, w2, . . . ∈ W, the (bandit) algorithm in Figure
4 outputs s1, s2, . . . ∈ S achieving

E

"
1

T

T0+TX
t=T0+1

c(st, wt)

#
− α min

s∈S
1

T

T0+TX
t=T0+1

c(s, wt)

=
O(n(αβ)2/3)

3
√

T
.

The algorithm makes poly(n, T) calls to the approximation
oracle.

We also show, in Section 4.1, that the assumption of a BS
is necessary.

Result 1.3. There is no polynomial-time black-box re-
duction from an α-approximation algorithm for a general
linear optimization problem (without additional input) to a
bandit algorithm guaranteeing low α-regret.

2. FORMAL DEFINITIONS
We formalize the natural notion of an n-dimensional linear

optimization problem.

Definition 1. An n-dimensional linear optimization prob-
lem consists of a convex compact set of feasible weight vec-
tors W ⊂ R

n, a set of feasible decisions S , and a cost func-
tion c : S ×W → [0, 1] that is linear in its second argument.

Due to the linearity of c, there must exist a mapping Φ :
S → R

n such that c(s, w) = Φ(s) · w for all s ∈ S , w ∈ W.
In the case where the standard basis is contained in W, we
have

Φ(s) =
`
c(s, (1, 0, . . . , 0)), . . . , c(s, (0, . . . , 0, 1))

´
.

More generally, the mapping Φ can be computed directly
from c by evaluating c at any set of vectors whose span
includes W. We will assume that we have access to Φ and
c interchangeably. Note that previous work represented the
problem directly as a geometric problem in R

n, but in our
case we hope that making the mapping Φ explicit clarifies
the algorithm.

548

An α-approximation algorithm A (α ≥ 1) for such a prob-
lem takes as input any vector w ∈ W and outputs A(w) ∈ S
such that c(A(w), w) ≤ α mins∈S c(s, w). To ensure that the
min is well-defined, we also assume Φ(S) = {Φ(s) | s ∈ S}
is compact.

Define a projection oracle ΠJ : R
n → J , where ΠJ(x) =

argminz∈J ‖x−z‖ is the unique projection of x to the closest
point z in the set J .

Define W+ = {aw|a ≥ 0, w ∈ W} ⊆ R
n. Note that W+ is

convex, which follows from the convexity of W. We assume
that we have an exact projection oracle ΠW+ . This is gener-
ally straightforward to compute. In many cases, W = [0, 1]n,
in which case W+ is the positive orthant and ΠW+(w)[i] is
simply max(w[i], 0), where w[i] denotes the ith component
of vector w. More generally, given a membership oracle to
W (and a point w0 ∈ W and appropriate bounds on the
radii of contained and containing balls), one can approxi-
mate the projection to within any desired accuracy ε > 0 in
time poly(n, log(1/ε)).

We also assume, for convenience, that A : W+ → S be-
cause we know that A(w) can be chosen to be equal to A(aw)
for any a > 0, and finding a such that aw ∈ W is a one-
dimensional problem. (Again, given a membership oracle to
W one can find v ∈ W which is within ε of being a scaled
version of w using time poly(n, 1/ε)). However, the restric-
tion on the approximation algorithm’s domain is important
because many natural approximation algorithms only apply
to restricted domains such as non-negative weight vectors.

In an online linear optimization problem, there is a se-
quence w1, w2, . . . ,∈ W of weight vectors. Due to the lin-
earity of the problem, an offline optimum can be computed
using an exact optimizer, that is, mins∈S 1

T

PT
t=1 Φ(s) ·wt =

mins∈S Φ(s)·
“

1
T

PT
t=1 wt

”
gives the average cost of the best

single decision if one had to use a single decision during all
time periods t = 1, 2, . . . , T . Similarly, an α-approximation
algorithm, when applied to 1

T

PT
t=1 wt, gives a decision whose

average cost is not more than a factor α larger than that of
the offline optimum.

Definition 2. In a full-information online linear optimiza-
tion problem, there is an unknown sequence of weight vectors
w1, w2, . . . ∈ W (possibly chosen by an adversary). On each
period, the decision-maker chooses a decision st ∈ S based
on s1, w1, s2, w2, . . . , st−1, wt−1. Then wt is revealed and the
decision-maker incurs cost c(st, wt).

Finally, we define the bandit version of the problem, in
which the algorithm finds out only the cost of its decision,
c(st, wt), but not wt itself.

Definition 3. In a bandit online linear optimization prob-
lem, there is an unknown sequence of weight vectors
w1, w2, . . . ∈ W (possibly chosen by an adversary). On each
period, the decision-maker chooses a decision st ∈ S based
only upon s1, c(w1, s1), . . . , st−1, c(wt−1, st−1). Then only
the cost c(st, wt) is revealed.

The performance of an online algorithm is measured by
comparing its cost on a sequence of weight vectors with the
cost of the best static decision for that sequence.

Definition 4. The α-regret of an algorithm that selects

decisions s1, . . . sT ∈ S is defined to be

α-regret(s1, w1 . . . , sT , wT) =

1

T

TX
t=1

c(st, wt) − α min
s∈S

1

T

TX
t=1

c(s, wt).

The term regret by itself refers to 1-regret.

For x, y ∈ R
n and W ⊆ R

n, we say x dominates y if
x · w ≤ y · w for all w ∈ W (equivalently, for all w ∈ W+).3

Define K ⊆ R
n to be the convex hull of Φ(S),

K =
nXn+1

i=1
λiΦ(si)

˛̨̨
si ∈ S , λi ≥ 0,

X
i
λi = 1

o
.

Note that minx∈K x · w = mins∈S c(s, w) for all w ∈ W.
The cost of any point in K can be achieved by choosing
a randomized combination of decisions s ∈ S . However,
we must find such a combination of decisions and compute
projections in our setting, where our only access to S is via
an approximation oracle.

3. FULL-INFORMATION ALGORITHM
We now present our algorithm for the full-information set-

ting. Define zt = xt−ηwt. Intuitively, one might like to play
zt on period t + 1 because zt has less cost than xt against
wt. Unfortunately, zt may not be feasible. In the Greedy

Projection algorithm of Zinkevich, the decision played on
period t + 1 is the projection of zt into the feasible set. Our
basic approach is to implement an approximate projection
algorithm and play the approximate projection of zt on step
(t + 1).

There are a number of technical challenges to this ap-
proach. First, we only have access to an α-approximation
oracle with which to implement this. Due to the multiplica-
tive nature of this approximation, we proceed by attempt-
ing to project into the set αK, where αK = {αx|x ∈ K}.
Second, even if we could do this perfectly (which is not pos-
sible), this would still not result in a feasible decision. We
then must find a way to play a feasible decision.

We can intuitively view our algorithm as follows. The
algorithm keeps track of a parameter xt, which we can think
of as the attempt to project zt−1 into αK (though this is
not done exactly, as xt is not even in αK). We show that if
the algorithm actually were allowed to play xt then it would
have low α-regret. Our algorithm uses this xt to find a
randomized feasible decision st. We show that the expected
cost of this random feasible decision st is no larger than that
of the infeasible xt.

Our algorithm for the full-information setting is based on
the approximate projection routine defined in Figure 3.

Algorithm 3.1. On period 1, we choose an arbitrary s1

(which could be selected by running the approximation oracle
on any input) and let x1 = Φ(s1). On period t, we play st

and let

(xt+1, st+1) = Approx-Proj(xt − ηwt, st, xt).

It may be helpful to the reader to note that the sequence
xt is deterministically determined (if the approximation ora-
cle is deterministic) by the sequence of weights w1, . . . , wt−1,
while st is necessarily randomized.
3Note that this definition differs from the standard definition
in R

n where x dominates y if x[i] ≥ y[i] for all i but resembles
the game-theoretic notion of dominant strategies.

549

In Section 3.1, we show that if we had a particular kind of
approximate projection algorithm, then the xt values pro-
duced by that algorithm would have (hypothetical) low α-
regret. In Section 3.2, we show how to extend the domain of
any approximation algorithm, which allows us to construct
such an approximate projection algorithm: the Approx-

Proj algorithm used in Algorithm 3.1. We also show that
the cost of the (infeasible) decision xt it produces can only
be larger than the expected cost incurred by the feasible de-
cision st it also generates. This will allow us to prove our
main theorem in the full-information setting:

Theorem 3.2. Consider an n-dimensional online linear
optimization problem with feasible set S and mapping Φ :
S → R

n. Let A be an α-approximation algorithm and take
R, W ≥ 0 such that ‖Φ(A(w))‖ ≤ R and ‖w‖ ≤ W for all
w ∈ W.

For any fixed w1, w2, . . . wT ∈ W and any T ≥ 1, with

η = (α+1)R

W
√

T
, δ = (α+1)R2

T
, and λ = (α+1)

4(α+2)2T
, Algorithm 3.1

achieves expected α-regret at most

E

"
1

T

TX
t=1

c(st, wt)

#
− α min

s∈S
1

T

TX
t=1

c(s, wt) ≤ (α + 2)RW√
T

.

Each period, the algorithm makes at most 4(α + 2)2T calls
to A and Φ.

We present the proof of Theorem 3.2 in Section 3.3. To get
Result 1.1 in the introduction, we note that it is possible
to get a priori bounds on W and R by a simple change of
basis so that RW = O(n). It is possible to do this from the
set W alone. In particular, one can compute a 2-barycentric
spanner (BS) e1, . . . , en for W [1] and perform a change of
basis so that Φ(e1), . . . , Φ(en) is the standard basis (as we
describe in greater detail in Section 4). By the definition of
a 2-BS, this implies that W ⊆ [−2, 2]n and hence W = 2

√
n

is a satisfactory upper bound. Since we have assumed that
all costs are in [0, 1] and the standard basis is in W, this im-
plies that Φ(S) ⊆ [0, 1]n and hence R =

√
n is also a valid

upper bound. The guarantees with respect to every window
of T consecutive periods hold because our algorithm’s guar-
antees hold starting at arbitrary (st, xt) such that E[Φ(st)]
dominates xt.

3.1 Approximate Projection
We first define the notion of approximate projection. It

is approximate in two senses: first, even if we had an exact
optimization oracle (α = 1), we could not find the absolute
closest point x ∈ K to any point z ∈ R

n.4 The second and
more important sense in which it is approximate is that,
because we only have an α-approximate oracle, we cannot
find the closest point in K or even in αK = {αx|x ∈ K}.

Note that for a closed convex set J ⊆ R
n, if ΠJ (z) = x,

then

(x − z) · x ≤ min
y∈J

(x − z) · y.

This is essentially the separating hyperplane theorem (where
x − z is the normal vector to the separating hyperplane).
Also note that ΠJ(x) = x if x ∈ J .

4We are not assuming that K is defined by a finite number
of hyper-planes—it can be quite round.

Figure 1: An approximate projection oracle, for con-
vex set J ⊆ R

n and δ = 0, returns a point Π0
J(z) ∈ R

n

that is closer to any point y ∈ J than z is, that is,
∀y ∈ J ‖Π0

J (z) − y‖ ≤ ‖z − y‖.

Our approximate projection property, illustrated in Fig-
ure 1, relaxes the above condition. Define the set of δ-
approximate projections to be, for δ ≥ 0 and any z ∈ R

n,

Πδ
J (z) = {x ∈ R

n | (x − z) · x ≤ min
y∈J

(x − z) · y + δ}.

It is important to note that we have not required an approx-
imate projection to be in J . However, note that in the case
where the projection is in J , and δ = 0, it is exactly the
projection, that is, Πδ

J(x)∩ J = {ΠJ (x)}. While we refer to
it as an approximate projection, it is also clearly related to
a separation oracle. From a hyperplane separating x from
J , one can take the closest point on that hyperplane to x
as an approximate projection. The difficulty is in finding a
feasible such x.

We now bound the α-regret of the hypothetical algorithm
which projects with Πδ

αK . The proof is essentially a straight-
forward extension of Zinkevich’s proof [11]. This lemma
shows that indeed this hypothetical algorithm has a grace-
ful degradation in quality.

Lemma 3.3. Let K ⊆ R
n be a convex set such that ∀x ∈

K ‖x‖ ≤ R. Let w1, . . . , wT ∈ R
n be an arbitrary se-

quence. Then, for any initial point x1 ∈ K and any sequence
x1, x2, . . . , xT such that xt+1 ∈ Πδ

αK(xt − ηwt),

1

T

TX
t=1

xt·wt−α min
x∈K

1

T

TX
t=1

x·wt ≤ (α + 1)2R2

2ηT
+

η

2T

TX
t=1

w2
t +

δ

η
.

Proof. Let x∗ = α argminx∈K

PT
t=1 x · wt, so x∗ ∈ αK.

We will bound our performance with respect to x∗. Define
the sequence x′

t by x′
1 = x1 and x′

t+1 = xt−ηwt, so that xt ∈
Πδ

αK(x′
t). We first claim that ‖xt − x∗‖2 ≤ ‖x′

t − x∗‖2 + 2δ,
that is, our attempt at setting xt to be an approximate
projection of xt onto αK does not increase the distance to
x∗ significantly:

(x′
t − x∗)2 =

`
(x′

t − xt) + (xt − x∗)
´2

= (x′
t − xt)

2 + (xt − x∗)2 + 2(x′
t − xt) · (xt − x∗)

≥ 0 + (xt − x∗)2 − 2δ

550

The last line follows from the definition of approximate pro-
jection and the fact that x∗ ∈ αK.

Hence, for any t ≥ 1, because x′
t = xt − ηwt we have

(xt+1 − x∗)2 ≤ (xt − ηwt − x∗)2 + 2δ

= (xt − x∗)2 + η2w2
t − 2ηwt · (xt − x∗) + 2δ

and thus

wt · (xt − x∗) ≤ (xt − x∗)2 − (xt+1 − x∗)2 + η2w2
t + 2δ

2η
.

Using a telescoping sum of the above and the fact that

(x1 − x∗)2 ≤ (‖x1‖ + ‖x∗‖)2 ≤ (α + 1)2R2,

we get

TX
t=1

xt ·wt −α min
x∈K

TX
t=1

x ·wt ≤ (α + 1)2R2

2η
+

η

2

TX
t=1

w2
t + T

δ

η

as desired.

Note that if we set η = 1/
√

T , the sum of the first two

terms of this bound would be O(1/
√

T). However, the last

term, δ
η
, would be O(δ

√
T). Hence, we need to achieve an

approximation quality of δ = O(1/T) in order for the α-

regret of our (infeasible) xt values to be O(1/
√

T).

3.2 Constructing the Algorithm
One simple method to (approximately) find a the projec-

tion of z into a convex set J , given an exact optimization
oracle for J , is as follows. Start with a point in x ∈ J . Then
choose the search direction v = x − z, and find a minimal
point x′ ∈ J in the direction of v, that is, x′ ∈ J such that
x′ ·v ≤ miny∈J y ·v. It can be seen that if x is not minimal in
the direction of v, then there must be a point on the segment
joining x′ and z that is closer to z than x was. Then repeat
this procedure starting at x′. In the case where z ∈ J , this
will be still be useful in representing z nearly as a combina-
tion of points output by the minimization algorithm.5

Note that in our case if v ∈ W+, then our approximation
oracle is able to find a feasible s ∈ S such that

Φ(s) · v ≤ α min
s′∈S

Φ(s′) · v = min
x∈αK

x · v.

Loosely speaking, our oracle is able to perform minimiza-
tion with respect to the set J = αK (or better). This is
essentially how our algorithm will use the approximation
oracle. However, as mentioned before, many approximation
algorithms can only handle non-negative weight vectors or
weight vectors from some other limited domain. Hence, we
must extend the domain of the oracle when v /∈ W+.

Extending the domain. We would like to find a feasible s ∈
S that satisfies the search condition Φ(s)·v ≤ α mins′∈S Φ(s′)·
v for a general v ∈ R

n, but this is not possible only given
an α-approximation oracle that runs on only a subset of R

n.
Instead, we attempt to find a (potentially infeasible) x ∈ R

n

5Note that representing a given feasible point as a con-
vex combination of feasible points is similar to randomized
metarounding [3]. It would be interesting to extend their
approach, based on the ellipsoid algorithm, to our problem
and potentially achieve a more efficient algorithm. Related
but simpler issues arise in [4].

Figure 2: An approximation algorithm run on vec-
tor w ∈ W always returns a point s ∈ S such that
the set αK is contained in the halfspace tangent to
Φ(s) whose normal direction is w. An extended ap-
proximation algorithm, as illustrated here, takes any
w ∈ R

n as input and returns a point x ∈ R
n such that

αK is contained in the halfspace tangent to x with
normal vector w. In addition, it returns an s ∈ S
such that Φ(s) dominates x.

which does satisfy this search condition, and we also attempt
to find an s ∈ S which dominates x, meaning that for all
w ∈ W, c(s, w) ≤ x · w. More precisely, we will construct
the following oracle:

Definition 5. An extended approximation oracle B : R
n →

S×R
n is a function such that, for all v ∈ R

n, if B(v) = (s, x),
then x · v ≤ α mins′∈S Φ(s′) · v and Φ(s) dominates x.

Figure 2 depicts an extended approximation oracle. The
following lemma demonstrates that one can construct an ex-
tended approximation oracle from an approximation oracle.

Lemma 3.4. Let A : W+ → S be an α-approximation
oracle and suppose ‖Φ(s′)‖ ≤ R for all s′ ∈ S. Then the
following is an extended approximation oracle: If v ∈ W+,
then B(v) = (A(v),Φ(A(v))), else B(v) is

„
A(ΠW+(v)), Φ(A(ΠW+(v))) + R(α + 1)

ΠW+(v) − v

||ΠW+ (v) − v||
«

.

Proof. For the case where v ∈ W+, by definition, B(v) =
(A(v),Φ(A(v))) suffices. Hence, assume v /∈ W+. Let w =
ΠW+(v), s = A(w), and x = Φ(s) + (α + 1)R w−v

||w−v|| . Then

we must show (a) x · v ≤ α mins′∈S Φ(s′) · v and (b) Φ(s)
dominates x.

We have assumed that A is an α-approximation oracle
with domain W+, and therefore it can accept input w. By
the definition of α-approximation, we have w · Φ(s) ≤ αw ·
Φ(s′) for all s′ ∈ S . By the bound R, we also have that
−α‖v −w‖R ≤ α(v −w) ·Φ(s′) for all s′ ∈ S . Adding these

551

Input: x, z ∈ R
n, s ∈ S , and an α-approximation algorithm

A (and parameters δ > 0, λ ∈ [0, 1]).
Output: (x′, s′) ∈ Πδ

αK × S
Define B to be the extended approximation oracle obtained
from A using Lemma 3.4.

Approx-Proj(z, s, x)

1 Let (t, y) := B(x − z)
2 if x · (x − z) ≤ δ + y · (x − z)
3 then return (x, s)

4 else q =

(
s with probability 1 − λ

t with probability λ

5 return Approx-Proj(z, q, λy + (1 − λ)x)

Figure 3: An iterative algorithm for computing ap-
proximate projections.

two gives, for all s′ ∈ S ,

αv · Φ(s′) ≥ w · Φ(s) − α‖v − w‖R
= v · x + (w − v) · Φ(s)

− (α + 1)R
(w − v)

‖w − v‖ · v − α‖v − w‖R

≥ v · x − ‖w − v‖R

− (α + 1)R
(w − v)

‖w − v‖ · (v − w) − α‖v − w‖R

= v · x.

This is what we need for part (a) of the lemma. The second-
to-last line follows from the fact that (v−w) ·w = 0. To see
this, note that since w is the projection of v onto W+, we
have (v−w) · (w′ −w) ≤ 0 for any w′ ∈ W+. Since 0 ∈ W+,
this implies that (v − w) · (−w) ≤ 0. Since 2w ∈ W+, this
implies that (v − w) · w ≤ 0, and hence (v − w) · w = 0.

This also means that (v −w) · (w′ −w) = (v −w) ·w′ ≤ 0
for all w′ ∈ W+, which directly implies (b), that is, (x −
Φ(s)) · w′ ≥ 0 for all w′ ∈ W.

Note that the magnitude of the output x is at most ‖Φ(s)‖+
(α+1)R ≤ (α+2)R; this bound will be useful for bounding
the runtime of our algorithm.

The approximate projection algorithm. Using this ex-
tended approximation oracle, we can define our Approx-

Proj algorithm, which we present in Figure 3. The following
lemma shows that the algorithm returns both a valid approx-
imate projection (which could be infeasible) and a random
feasible decision that dominates the approximate projection
(assuming that Φ of the algorithm’s input s dominated the
algorithm’s input x).

Lemma 3.5. Suppose Approx-Proj(z, s, x) returns (x′, s′).
Then x′ ∈ Πδ

αK(z). If s is a random variable such that
E[Φ(s)] dominates x, then E[Φ(s′)] will dominate x′.

It is straightforward to see that the x returned by Approx-

Proj satisfies the approximate projection condition. The
subtlety is in obtaining a feasible solution with the desired
properties. It turns out that t returned by B in line 1 does
not suffice, as this t only dominates y, but not necessarily
x. However, our randomized scheme does suffice.

Proof of Lemma 3.5. The return condition of Approx-

Proj states that x′ · (x′ − z) ≤ δ + y · (x′ − z). Using the
definition of an extended approximation oracle, we then get

x′ · (x′ − z) ≤ δ + α min
s′∈S

Φ(s′) · (x′ − z)

≤ δ + min
y′∈αK

y′ · (x′ − z)

as desired.
The proof of the second property proceeds by induction

on the number of recursive calls made by Approx-Proj.
The base case holds trivially. Now suppose the inductive
hypothesis holds (E[Φ(s)] dominates x). We will show that if
(t, y) = B(x−z), the resulting E[Φ(λt+(1−λ)s)] dominates
λy + (1 − λ)x.

We observe:

x′ · w = (λy + (1 − λ)x) · w
= λy · w(1 − λ)x · w
≥ λΦ(t) · w + (1 − λ)x · w
≥ λΦ(t) · w + (1 − λ)E[Φ(s)] · w
= E[λΦ(t) + (1 − λ)Φ(s)] · w
= E[Φ(s′)] · w.

Thus, if Approx-Proj terminates, the desired conditions
will hold.

3.3 Analysis
Our next lemma allows us to bound the number of calls

Algorithm 3.1 makes to A and Φ on each period.

Lemma 3.6. Suppose that λ, δ > 0 and the magnitudes
of all vectors output by the extended approximation oracle

are ≤ 1
2

q
δ
λ

and ‖x‖ ≤ 1
2

q
δ
λ
. Then Approx-Proj(z, s, x)

terminates after at most ‖x−z‖2

δλ
iterations.

Proof. Let H = 1
2

q
δ
λ
. To bound the number of recur-

sive calls to Approx-Proj, it suffices to show that the non-
negative quantity ‖x− z‖2 decreases by at least an additive
λδ on each call and that ‖x‖ remains below H on successive
calls. The latter condition holds because ‖x‖, ‖y‖ ≤ H so
‖λy + (1 − λ)x‖ ≤ λH + (1 − λ)H = H .

Notice that if the procedure does not terminate on a par-
ticular call, then

(x − y) · (x − zt) > δ.

This means that the decrease in (x−z)2 in a single recursive
call is

(x − z)2 − (λy + (1 − λ)x − z)2

= (x − z)2 − (λ(y − x) + (x − z))2

= 2λ(x − y) · (x − z) − λ2(y − x)2

> 2λδ − λ2(y − x)2.

Also, ‖y − x‖ ≤ 2H . Combining this with the previous
observation gives

(x − z)2 − (λy + (1 − λ) x − z)2 > 2λδ − λ24H2 = λδ.

Hence the total number of iterations of Approx-Proj on
each period is at most ‖x − z‖2/(λδ).

552

This lemma gives us a means of choosing λ. We are now
ready to prove our main theorem about full-information on-
line optimization.

Proof of Theorem 3.2. Take η = (α+1)R

W
√

T
and δ =

(α+1)R2

T
. Since x1 = Φ(s1), by induction and Lemma 3.5, we

have that E[Φ(st)] dominates xt for all t. Hence, it suffices

to upper-bound
PT

t=1 xt · wt. By Lemma 3.5, we have that

xt ∈ Πδ
αK(zt−1) on each period, so by Lemma 3.3 we get

E[α-regret] ≤ 1

T

„
(α + 1)2R2

2η
+ T

δ

η
+

η

2
TW 2

«
.

Applying our chosen values of η and δ, this gives an α-regret

bound of 1
T

((α+1)RW
√

T +RW
√

T) = (α+2)RW√
T

as desired.

Now, as mentioned, the extended approximation oracle
from Lemma 3.4 has the property that it returns vectors of

magnitude at most H = 1
2

q
δ
λ

= (α + 2)R. Furthermore, it

is easy to see that all vectors xt have ‖xt‖ ≤ H , by induction
on t. Then by Lemma 3.6, the total number of iterations
of Approx-Proj period t is at most (2H‖x − z‖/δ)2 ≤
(2(α + 2)RηW/δ)2 = 4(α + 2)2T .

4. BANDIT ALGORITHM
We now describe how to extend Algorithm 3.1 to the

partial-information model, where the only feedback we re-
ceive is the cost we incur at each period. The algorithm we
describe here requires access to an exploration basis
e1, . . . , en ∈ S , which is simply a set of n decisions such
that Φ(e1), . . . , Φ(en) span R

n. (If no such decisions exist,
one can reduce the problem to a lower-dimensional prob-
lem.) Following previous approaches, we will (probabilisti-
cally) try each of these decisions from time to time. As in
the work of Dani and Hayes [5], we will assume that Φ(ei) is
the standard ith basis vector, that is, ei[i] = 1 and ei[j] = 0
for j = i. This assumption makes the algorithm cleaner to
present, and is without loss of generality because we can
always use Φ(ei) as our basis for representing R

n.

Definition 6. A set {x1, x2, . . . xm} ⊆ S is a β-barycentric
spanner (BS) for S ⊂ R

n if, for every x ∈ S, x can be written
as x = β1x1 + . . . + βmxm for some β1, . . . , βm ∈ [−β, β].

Note that we only need to construct a BS once for any prob-
lem, and then can re-use it for all future instances of the
problem.

Awerbuch and Kleinberg [1] prove that every compact S
has a 1-BS of size n, and, moreover, give an algorithm for
finding a size-n (1 + ε)-BS using poly(n, log(1/ε)) calls to
an exact minimization oracle M : R

n → S , where M(v) ∈
argmins∈S Φ(s) · v. Unfortunately, as we show in Section
4.1, one cannot find such a BS using a minimizer (exact or
approximate) whose domain is not all of R

n. Moreover, we
show that one cannot guarantee low regret for the bandit
problem using just a black-box optimization algorithm A :
W+ → S .

Hence, we assume that we are given a β-BS for the prob-
lem at hand as part of the input. We feel that this is a
reasonable assumption. For example, note that it is easy to
find such a basis for TSP and set cover with β =poly(n): In
the case of set cover, one can take the n covers consisting of
all sets but one.6 In the case of TSP, we can start with any

6If any of these is not a cover, that set must be mandatory

Given δ, η, γ > 0 and an initial point ŝ1 as input, set x̂1 =
Φ(ŝ1). Perform a change of basis so that Φ(e1), . . . , Φ(en) is
the standard basis.

for t = 1, 2, . . .:

With probability γ, � exploration step
Choose i ∈ {1, . . . , n} uniformly at random.
st := ei.
Play(st).
Observe 	t = c(st, wt).
ŵt := (n	t/γ)Φ(ei).
(x̂t+1, ŝt+1) := Approx-Proj(x̂t − ηŵt, ŝt, x̂t).

else, with probability 1 − γ, � exploitation step
st := ŝt.
Play(st).
Observe 	t = c(st, wt).
(x̂t+1, ŝt+1) := (xt, st).

Figure 4: Algorithm for the bandit setting.

tour σ that visits all the edges at least once and consider σe

for each edge e which is the same as σ but traverses e an
additional two times.

We present the algorithm for the bandit setting in Figure
4. We remark that our approach is essentially the same as
previous approaches and can be used as a generic conver-
sion from a black-box full-information online algorithm to a
bandit algorithm. Previous approaches also worked in this
manner, but the analysis depended on the specific bounds
of the black-box algorithm in a way that, unfortunately, we
cannot simply reference.

Theorem 4.1. For α, β ≥ 1, integer T ≥ 0 and any
w1, . . . , wT , given an α-approximation oracle and a β-BS,
the algorithm in Figure 4 in the bandit setting achieves an
expected α-regret bound of

E[α-regret] ≤ 7n(αβ)2/3T−1/3.

The conversion from full-information to bandit is similar
to other conversions [1, 9, 5]. We first prove a lemma:

Lemma 4.2. Let J ⊆ R
n be a convex set such that ∀x ∈

J, ‖x‖ ≤ R. Let w1, . . . , wT ∈ R
n be an arbitrary se-

quence and ŵ1, . . . , ŵT be a sequence of random variables
such that E[ŵt|x1, ŵ1, . . . , xt−1, ŵt−1, xt] = wt and E[ŵ2

t] ≤
D2. Then, for any initial point x1 ∈ J and any any sequence
x1, x2, . . . such that xt+1 ∈ Πδ

αJ (xt − ηwt),

E

"
TX

t=1

xt · wt

#
− α min

x∈J

TX
t=1

x · wt

≤ (α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T + 2αRD

√
T .

Proof. By Lemma 3.3, we have that

TX
t=1

xt · ŵt −α min
x∈J

TX
t=1

x · ŵt ≤ (α + 1)2R2

2η
+T

δ

η
+

η

2

TX
t=1

ŵ2
t .

in any cover and we can simplify the problem. If this set of
covers is not linearly independent, then we can reduce the
dimensionality of the problem and use the fact that if T is
a (possibly linearly dependent) β-BS for S and R is a γ-BS
for T then R is a (γβ|T |)-BS for S.

553

Taking expectations of both sides gives

TX
t=1

xt·wt−αE

"
min
x∈J

TX
t=1

x · ŵt

#
≤ (α + 1)2R2

2η
+T

δ

η
+

η

2
D2T.

It thus suffices to show that

E

"
min
x∈J

TX
t=1

x · ŵt

#
≥ min

x∈J

TX
t=1

x · wt − 2RD
√

T . (1)

Now, for any x ∈ J ,˛̨̨
˛̨ TX
t=1

x · (ŵt − wt)

˛̨̨
˛̨ ≤ |x|

˛̨̨
˛̨ TX
t=1

ŵt − wt

˛̨̨
˛̨

≤ R

˛̨̨
˛̨ TX
t=1

ŵt − wt

˛̨̨
˛̨ . (2)

This gives us a means of upper-bounding the difference be-
tween the minima. Namely,

E

" ˛̨̨
˛̨ TX
t=1

ŵt − wt

˛̨̨
˛̨
#2

≤ E

2
4 TX

t=1

ŵt − wt

!2
3
5

=

TX
t=1

E
ˆ
(ŵt − wt)

2
˜
. (3)

The last equality follows from the fact that

E[(ŵt1 − wt1)(ŵt2 − wt2)] = 0

for t1 < t2, which follows from the martingale-like assump-
tion that E[ŵt2 − wt2 |ŵt1 , wt1] = 0. Finally,

E[(ŵt − wt)
2] ≤ E[ŵ2

t + 2‖ŵt‖‖wt‖ + w2
t]

≤ D2 + 2D2 + D2

= 4D2.

In the above we have used the facts that E[|ŵt|]2 ≤ E[ŵ2
t] ≤

D2 and ‖wt‖2 = E[ŵt]
2 ≤ E[ŵ2

t] ≤ D2. Hence, we have
that the quantity in (3) is upper bounded by 4TD2, which,
together with (2), establishes (1).

Proof of Theorem 4.1. We remark that the parame-
ter γ in the statement of the theorem may be larger than
1, but in this case the regret bound is greater than 1 and
hence holds for any algorithm.

Note that in the conversion algorithm the expected value
of ŵt is wt, and this is true conditioned on all previous
information as well as x̂t. Since Lemma 3.5 implies x̂t+1 ∈
Πδ

αJ (xt−ηwt), we can apply Lemma 4.2 to the sequence x̂t.
This gives

TX
t=1

E[x̂t · wt] − α min
x∈J

TX
t=1

x · wt

≤ (α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T + 2αRD

√
T .

To apply the lemma, we use the bound D = nγ−1/2. This
holds because 	t ∈ [0, 1], so E[ŵ2

t] ≤ γ(n	t/γ)2 + (1 − γ)0 ≤
n2/γ. Also, we use the bound of R = β

√
n. Hence we

choose η = (α+1)R

D
√

T
and δ = ηnT−1/3, which simplifies the

above equation to

TX
t=1

E[x̂t · wt] − α min
x∈J

TX
t=1

x · wt

≤ (α + 1)RD
√

T + nT 2/3 + 2αRD
√

T

≤ 4αRD
√

T + nT 2/3.

Substituting the values of D and R gives an upper bound of
4αβn3/2γ−1/2

√
T + T δ

η
.

Next, as in the analysis of the full-information algorithm,
E[Φ(ŝt)] dominates E[x̂t] by Lemma 3.5. Thus,

TX
t=1

E[c(ŝt, ·wt)] − α min
x∈J

TX
t=1

x · wt

≤ 4αβn3/2γ−1/2
√

T + nT 2/3.

Finally, we have that E[c(st, wt)] ≤ E[c(ŝt, wt)] + γ because
with probability 1−γ, ŝt = st and in the remaining case the
cost is in [0, 1]. Putting these together implies

TX
t=1

E[c(st, ·wt)] − α min
x∈J

TX
t=1

x · wt

≤ 4αβn3/2γ−1/2
√

T + nT 2/3 + γT.

Choosing γ = (4αβ)2/3nT−1/3 (note that if this quantity is
larger than 1, then the regret bound in the theorem is trivial)

gives a bound of 2n(4αβT)2/3 + nT 2/3 ≤ 7n(αβT)2/3 as in
the theorem.

4.1 Difficulty of the black-box reduction
We now point out that it is impossible to solve the bandit

problem with general algorithms (approximation or exact)
without an exploration basis (that is, if our only access to S
is through a black-box optimization oracle). The counterex-
ample is randomized. We will take

W = {w ∈ R
n | w[1] ∈ [0, 1] and ‖w‖2 ≤ 2(w[1])2}.

The set S will consist of two points: s = (1/2, 0, . . . , 0) as
well as a second point s′ = (1, 0, . . . , 0) − u where ‖u‖ = 1
and u[1] = 0. The mapping Φ is the identity mapping.
The cost sequence will be constant wt = (1, 0, . . . , 0) + u.
Hence c(s, wt) = 1/2 while c(s′, wt) = 0. Now, suppose we
as algorithm designers know that this is the setup but u
is chosen uniformly at random from the set of unit vectors
with u[1] = 0.

Observation 4.3. For any bandit algorithm that makes
k calls to black-box optimization oracle A, any α ≥ 0, with
probability 1−ke−0.1n over u, the algorithm has α-regret 1/2
on a sequence of arbitrary length.

Proof. No information is conveyed by the costs returned
in the bandit setup of our example—they are always 1/2
if s′ has not been discovered, while the minimal cost is
0. Thus the algorithm must find some w ∈ W such that
c(s, w) > c(s′, w) (whence an exact optimization algorithm
must return s′). Without loss of generality, we can scale
w so that w[1] = 1 and ‖w‖ ≤ 2. Hence, we can write
w = (1, 0, 0 . . . , 0) + v where v[1] = 0 and ‖v‖ ≤ 1. In this
case, w ·s = 1/2, while w ·s′ = 1−u ·v. For u a random unit
vector and any fixed ‖v‖ ≤ 1, it is known that Pr[u·v ≥ 1/2]

554

is exponentially small in n. A very loose bound can be seen
directly, since for a ball of dimension n, this probability isR 1

1/2
(
p

(1 − x2))n−2dxR 1

−1
(
p

(1 − x2))n−2dx
≤

R 1

1/2
(3/4)

n−2
2 dxR 1/

√
n

−1/
√

n
(1 − n−1)

n−2
2 dx

≤
√

ne

2

„
3

4

«n
2 −1

,

which is O(e−0.1n).

5. CONCLUSIONS AND OPEN PROBLEMS
We present a reduction converting approximate offline lin-

ear optimization problems into approximate online sequen-
tial linear optimization problems that holds for any approx-
imation algorithm, in both in the full-information setting
and the bandit setting.

Our algorithm can be viewed as an analog to Hannan’s
algorithm for playing repeated games against an unknown
opponent. In our case, however, we cannot compute best
responses but only approximately best responses.

The problem of obtaining similar results for interesting
classes of non-linear optimization problems remains open.

6. REFERENCES
[1] B. Awerbuch and R. Kleinberg. Adaptive routing with

end-to-end feedback: Distributed learning and
geometric approaches. In Proceedings of the 36th ACM
Symposium on Theory of Computing (STOC), 2004.

[2] M.-F. Balcan and A. Blum. Approximation algorithms
and online mechanisms for item pricing. In
Proceedings of the 7th ACM Conference on Electronic
Commerce (EC), 2006.

[3] R. Carr and S. Vempala. Randomized metarounding.
Random Struct. Algorithms, 20(3):343–352, 2002.

[4] D. Chakrabarty, A. Mehta, and V. Vazirani. Design is
as easy as optimization. In 33rd International
Colloquium on Automata, Languages and
Programming (ICALP), 2006.

[5] V. Dani and T. P. Hayes. Robbing the bandit: Less
regret in online geometric optimization against an
adaptive adversary. In Proceedings of the 17th
ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2006.

[6] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite
programming. J. ACM, 42(6):1115–1145, 1995.

[7] J. Hannan. Approximation to Bayes risk in repeated
play. In M. Dresher, A. Tucker, and P. Wolfe, editors,
Contributions to the Theory of Games, volume III,
pages 97–139. Princeton University Press, 1957.

[8] A. Kalai and S. Vempala. Efficient algorithms for
online decision problems. J. Comput. Syst. Sci.,
71(3):291–307, 2005.

[9] H. McMahan and A. Blum. Online geometric
optimization in the bandit setting against an adaptive
adversary. In Proceedings of the 17th Annual
Conference on Learning Theory (COLT), 2004.

[10] H. Robbins. Some aspects of the sequential design of
experiments. In Bulletin of the American
Mathematical Society, volume 55, 1952.

[11] M. Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on
Machine Learning (ICML), 2003.

APPENDIX

A. EXAMPLE WHERE “FOLLOW-THE-
LEADER” FAILS

First consider the set S = {1, 2, . . . , n} and the cost se-
quence (1, 1, . . . , 1) (repeated T/n times), (1, 0, . . . , 0) (re-
peated T/n times), (0, 1, 0, . . . , 0) (repeated T/n times),. . . ,
(0, . . . , 0, 1) (repeated T/n times). Notice that a selection
of decision, each period, which costs 1 is always a valid
(α = 2)-approximation to the leader on the previous ex-
amples. Moreover, its cost is T while the cost of the best
(in fact every) s ∈ S is 2T/n, hence giving large α-regret.

Unfortunately, adding perturbations of O(
√

T) as in follow-
the-leader will not significantly improve matters. When
T/n � √

T , a choice of decision which costs 1 each period
is still an α)-approximation for, say, α = 3.

Of course, one may be suspicious that no common approx-
imation algorithms would have such peculiar behavior. We
now give a similar example based on the standard greedy
set cover approximation algorithm A (α = log m) applied to
the online set cover problem described earlier. The example
has n/2 covers of size 2: Si = S \Sn+1−i, for i = 1, 2, . . . , n.
Furthermore, suppose the sets are of increasing size |Si| =`
0.4 + 0.2 i−1

n−1

´
m and |Si ∪ Sj | ≤ 0.9m for all 1 ≤ i, j ≤ n

where i = n + 1 − j.7 The sequence of costs (weight) vec-
tors is divided into n/2 phases j = 0, 1, . . . , n/2 − 1, each
consisting of 2T/n identical cost vectors. In phase j = 0, all
sets have cost 1. For phase j = 1, . . . , n/2 − 1: the cost of
the 2j−1 sets S1, . . . , Sj and Sn−j+1, . . . , Sn are all 1, while
the costs of the remaining sets are all 0.

In this example, following the leader with greedy set cover
will have an average per-period cost of at least 0.1. In partic-
ular, during the first 10% of any phase j ≥ 1, either greedy’s
first choice will be Sn−j , in which case it’s second choice will
be Sj (because any other set covers at most 90% of the re-
maining items, and Sj ’s cost so far is at most 10% more than
that of any other set), or greedy’s first choice will be one of
Sn−j+1, . . . , Sn; in either case it pays at least 1 during that
period. Hence, following the leader pays at least 0.1 + 19

5
n

in expectation on average, while the cover Sn/2 ∪ Sn/2+1

has an average cost of only 4/n, which is far from matching
greedy’s α = log m approximation ratio (for n = θ(m)).

Also note that perturbations on the order of O(
√

T) will
not solve this problem. It would be very interesting to adapt
Hannan’s approach to work for approximation algorithms,
especially because it is more efficient than our approach.
However, we have not found a solution that works across
problems.

7To design such a collection of sets (for even n and m =
5(n − 1)), take Si to be a uniformly random set of the de-
sired size m for i = 1, . . . , n/2, and Sn+1−i to be its com-
plement. It is not hard to argue that, with high probability,
the randomized construction obeys the stated properties.

555

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

