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Abstract. The convergence of Multigrid methods can be analyzed based on a Fourier analysis
of the method or by proving certain inequalities that have to be fulfilled by the smoother and by the
coarse grid correction separately. Here, we analyze the Multigrid method for the constant coefficient
Poisson equation with a compact Fourier analysis using the formalism of multilevel Toeplitz matrices
and their generating functions or symbols. The Fourier analysis is applied for determining the
smoothing factor and the overall error of the combined smoothing and coarse grid correction error
reduction of a Twogrid step by representing the Twogrid step explicitly by a symbol. If the effects
of the smoothing correction and the coarse grid correction are orthogonal to each other, then in a
Twogrid step the error is removed in one step and the Twogrid method can be considered as a direct
solver. If the coarse linear system is identical to the original matrix, then the same projection and
smoother again make the Twogrid step a direct solver. Hence, the multigrid cycle has to be applied
only once with one smoothing step on each level and therefore the whole Multigrid method can be
considered as a direct solver. In this paper we want to identify Multigrid as a direct solver in 1D with
coarse system derived by linear and constant interpolation, and in 2D for a modified projection related
to [21, paragraph A.2.3]. By studying not only smoothing and coarse grid correction separately but
the symbol of the full Twogrid step as well, we are furthermore able to derive better convergence
estimates and information on how to find efficient combinations of projection and smoother. As
smoothers we consider also approximate inverse smoothers, colored smoothers that take into account
the different character of grid points, and rank reducing smoothers that coincide with the given matrix
on a large number of entries. Numerical examples show the effectiveness of the new approach.
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1. Introduction. We consider discretizations of the constant coefficient Poisson
equation, e.g. in two dimensions

uxx + uyy = f(x, y)
with Dirichlet boundary conditions that lead to a linear system Ax = b. As solver we
apply the Multigrid method with standard coarsening defined by

1. the prolongation matrix P , which according to the Galerkin approach leads
to the coarse grid matrix Ac = PTAP ,

2. and the smoother given by the matrix M , which defines the smoothing iter-
ation xk+1 = xk +M−1(b−Axk).
In a first stage the last approximation is improved by applying a few steps of the
smoothing iteration. Then the residual is smooth and can be represented on a coarser
grid. The transformation from fine to coarse vectors is given through the restriction
PT . The solution on the coarse grid can be transformed back on the fine grid by
the prolongation P . This describes the Twogrid method; a recursive formulation of
this method - repeating the smoothing and the coarsening also on Ac - leads to the
Multigrid method.

The convergence of the Multigrid method can be analyzed via Fourier analysis
making use of the intimate connection between the Laplacian with periodic boundary
values and the discrete Fourier Transform, resp. trigonometric basis functions ([2, 21,
23, 5]). A second approach uses inequalities for the reduction of the error by coarse
grid correction CGC and by the smoothing iteration to prove the convergence ([17]).
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The matrices that have to be considered are

CGC = I − PA−1
c PTA(1.1)

and the post- and presmoothing Sl and Sr

Sl = I −M−1
l A , Sr = I −M−1

r A .(1.2)

The smoother can be given as an approximation M of the matrix A - like the Gauss-
Seidel triangular factor - or as an approximation N of the inverse A−1 like a sparse
approximate inverse; in this case M−1 has to be replaced by N in Sl and Sr. The full
error reduction of a Twogrid step TGS with pre- and postsmoothing is described by
the matrix

TGS = Sl · CGC · Sr = (I −M−1
l A) · (I − PA−1

c PTA) · (I −M−1
r A) .(1.3)

The standard convergence analysis is based on analyzing CGC, Sl and Sr. In this
paper we are interested in Multigrid as a direct solver ([3] and [21, paragraph A.2.3].
This is equivalent to the property that TGS = 0 and the coarse matrix Ac differs from
A only in the dimension, but has the same coefficients except for a constant factor. So
the task is to identify a pair of projection P and smoother M , resp. N , that leads to
TGS = 0. If this cannot be achieved then at least we can try to adjust the projection
and the smoother in such a way that the TGS-symbol is of small rank and norm.
The tool we are using in the following is a compact Fourier analysis developed for
Multigrid methods for Toeplitz matrices ([7, 8, 4, 1, 20, 13, 14, 9, 10]). In contrast
to the classical Fourier analysis, here we consider the constant coefficient case with
Dirichlet boundary conditions resulting in the 1D case in a Toeplitz matrix

Tn = Tn(f) =



t0 t−1 · · · · · · t1−n

t1 t0 t−1

...
...

. . . . . . . . .
...

...
. . . . . . t−1

tn−1 · · · · · · t1 t0

 .

The analysis is then based on the symbol or generating function of Tn:

f(x) =
∞∑

j=−∞
tje

ijx .

For nonnegative f ∈ L∞, the full matrices and the symbol are connected in the way
that the range of values (and therefore the eigenvalues) of the full matrices is contained
in the range of values of the symbol ([11]). In order to analyze Multigrid methods
we have to consider the given matrices as Block Toeplitz matrices in order to capture
the two different classes of coefficients, the fine and the coarse grid unknowns. Also
for Block Toeplitz matrices the relation between the full matrices and the symbol is
described by the range of values ([19, 12]). Furthermore, also the range of values
of Tn(f) · T−1

n (g) is described by the the range of values f(x)g−1(x) for symmetric
positive definite (spd) matrices ([18]), also in the block case. For higher dimensional
PDEs we have to deal with multilevel Block Toeplitz matrices.

By transferring all Multigrid matrices (the given problem, the projection, the
smoother, the coarse problem) into block symbols we can analyze the smoothing factor
and the Twogrid error operators TGS in terms of small matrix functions. This can
be used for finding combinations of discretization, projection, and smoother that lead
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to practical implementations of Multigrid as a direct solver or - if this is not possible
- we can analyze the related block symbols in order to reduce the rank or the norm
of the TGS symbol to ensure fast convergence. This representation by block symbols
is especially helpful for analyzing colored smoothers, and has been applied already
for deriving Multigrid methods with general constant coefficients like the Helmholtz
equation and anisotropic problems ([9, 10]). Furthermore, in a forthcoming paper this
approach will be used to analyze aggregation-based Multigrid methods ([16]) where
the choice of the smoother is crucial to overcome the disadvantages introduced by
applying the somewhat crude aggregation technique. This analysis can be also helpful
for defining practical projections and smoothers for PDEs with varying coefficients
similar to the Local Fourier Analysis (LFA) [2, 21, 23].

In Section 2 we develop the compact Fourier analysis for the 1D Laplacian case by
considering all involved matrices as Toeplitz, resp. Block Toeplitz matrices and their
underlying symbols. By considering the symbol of the TGS-matrix we are able to
define prolongations and smoothers that lead to a direct solver for different problems
in 1D. Especially we find efficient Multigrid forms for MG with constant interpolation.

In Section 3 we generalize the results to the more interesting 2D case by deter-
mining a combination of projection and postsmoother that leads to a Twogrid direct
solver. We also identify general conditions for smoothers that yield Multigrid as a
direct solver and generalize the results from [21, paragraph A.2.3]. Furthermore, we
analyze different smoothers for the 5- and the 9-point stencil. Considering the com-
bination of smoother and projection in the TGS-symbol shows that the quality of a
smoother can strongly depend on the way the smoother and its transpose are applied.
Furthermore, the advantages of approximate inverse smoothers and rank reducing
smoothers are displayed. In the final conclusions in Section 4 we discuss the results
of the new technique.

2. Compact Fourier analysis in the 1D case. In a first step we have to
represent all matrices by block symbols. The given linear system with three point
stencil is Ax = b with

A =


2 −1

−1 2
. . .

. . . . . . −1
−1 2

 = Tn(f) .

Then A is related to the scalar symbol f(x) = −1 · exp(ix) + 2 − 1 · exp(−ix) =
2(1− cos(x)). We can obtain the block symbol F (x) in two different ways. In a first
attempt we partition A in 2× 2 blocks in the form

A =



2 −1 0 0 0 0 ·

−1 2 −1 0 0 0 ·

0 −1 2 −1 0 0 ·

0 0 −1 2 −1 0 ·

· · · · · · ·


= Tn(F ) .

Hence, the block symbol F (x) =
∑∞
j=−∞ Tje

ijx has the form

F (x) =
(

0 −1
0 0

)
exp(ix) +

(
2 −1
−1 2

)
+
(

0 0
−1 0

)
exp(−ix)
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=
(

2 −1− exp(ix)
−1− exp(−ix) 2

)
=
(

2 −α
−ᾱ 2

)
(2.1)

with α = 1 + exp(ix). Then, index 1 in F is representing fine grid points that are
also coarse, while index 2 is related to grid points that appear only in the fine grid.
Similarly, the odd row or column indices in each 2 × 2 block of the matrix A are
related to coarse points and the even to noncoarse points.

A more formal approach derives the coefficients of the block matrix function
F (x) directly from the coefficients of the scalar function f(x). We observe, that every
second coefficient in the blockwise form of A is related to every second entry in the
series expansion of f(x), and therefore the coefficients in the block symbol are given
by (f(x/2) + f(x/2 + π))/2 or exp(±ix/2) · (f(x/2) − f(x/2 + π))/2. So, the block
symbol to a scalar function f(x) has the form

F (x) =

 f(x/2)+f(x/2+π)
2 exp( ix2 ) · f(x/2)−f(x/2+π)

2

exp(−ix2 ) · f(x/2)−f(x/2+π)
2

f(x/2)+f(x/2+π)
2

 .(2.2)

The full weighting restriction from fine to coarse grid is given by

R =


1 2 1

1 2 1
1 2 1
· · ·

 = PT

which can be seen as picking every second row out of the n × n Toeplitz matrix
B = tridiag(1, 2, 1) = BT = BH , or with the trivial injection

E =


1 0

0 1 0
0 1
· ·


we have R = E ·B and the Galerkin coarse system

Ac = PTAP = RART = E(BABT )ET .(2.3)

Hence, the standard projection by linear interpolation is related to the matrix tridiag(1, 2, 1)/2
or the scalar symbol b(x) = 1 + cos(x) with block symbol

B(x) =
(

1 (1 + exp(ix))/2
(1 + exp(−ix))/2 1

)
=
(

1 α/2
ᾱ/2 1

)
.(2.4)

Coarsening is equivalent to picking only the first column/row in the block symbol.
Therefore, the scalar symbol for the coarse problem related to Ac is given by

( 1 0 )B(x) · F (x) ·B(x)
(

1
0

)
= B1FB

H
1 = ( 1 α/2 ) ·

(
2 −α
− ᾱ 2

)
·
(

1
ᾱ/2

)
= 2(1− |α|2/4) = 1− cos(x) = f(x)/2 =: fc(x)

with B1 = B(1, :) the vector of the first row of the symbol B.
This reflects an important property of Multigrid methods, namely that the coarse

problem is similar to the original matrix in the sense that the symbols share at least
the same singularity x0 = 0. For the Laplacian the symbol f(x) of the given matrix
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has a zero of order two (at x0 = 0). Following [7], the prolongation has to be related to
a symbol b(x) with zero at the mirror point (x0 +π) in order to derive an appropriate
coarse grid symbol.

Next we restrict ourselves to the case where the smoother M (or its inverse N)
is also a Block Toeplitz matrix, represented e.g. by

M(x) =
(
M1,1(x) M1,2(x)
M2,1(x) M2,2(x)

)
or N(x) =

(
N1,1(x) N1,2(x)
N2,1(x) N2,2(x)

)
.

For explicit smoothers M we have to keep in mind that in each smoothing iteration we
have to solve a linear system with M . Therefore, M should be a matrix that is easy
to invert, e.g. M or M(x) should be upper or lower triangular, or even diagonal. For
an approximate inverse smoother N we do not need the inverse, N is even allowed
to be singular. We have only to be careful that the entries in N should be given
by polynomials in exp(±ix) in order to obtain sparsity. Because of this different
character of explicit smoother M or approximate inverse smoother N we emphasize
this distinction in the following.

Then, from equations (1.1), (1.2), and (1.3) the full Twogrid step can be described
by the 2× 2-symbol

TGS(x) = (I −M−1
l (x)F (x))

(
I − BH1 (x)B1(x)F (x)

fc(x)
)

(I −M−1
r (x)F (x)) ,(2.5)

or with M−1 replaced by N for the case of approximate inverse smoother.
A direct solver can only be derived if one of the 2 × 2 matrices TGS from (2.5)

with smoothers M or N is zero (see Theorem 2.1 below). Note, that in view of the
Galerkin approach the 2× 2 symbol for CGC is of rank 1, because it holds

CGC(x) ·BH1 = BH1 −BH1 (B1F (x)BH1 )/fc(x) ≡ 0 .

Hence, to obtain TGS(x) ≡ 0 the smoother has only to take care of the remaining
one-dimensional subspace. If the coarse grid system is replaced by a matrix different
from the Galerkin projection then TGS(x) ≡ 0 can only be obtained by M = A,
resp. N = A−1, as smoother. This is due to a variational principle for the Galerkin
operator, see e.g. [21, paragraph A.2.4].

The matrices in TGS are sparse and banded, and can be described by block
symbols. Let us collect some useful properties of such matrices ([22, 18, 19, 12])(in
the following Rj denote matrices of small rank, independent of n):

1. For scalar banded Toeplitz matrices with symbols f and g trigonometric
polynomials it holds

Tn(f)Tn(g) +R1 = Tn(fg) = Tn(gf) = Tn(g)Tn(f) +R2

Tn(g)T−1
n (f) = T−1

n (f)Tn(g) +R3 .

2. These results can be generalized to block matrices F and G with coefficients
Fij and Gij trigonometric polynomials in the form

Tn(F )Tn(G) = Tn(FG) +R4 .

Note, that because of FG 6= GF in general Tn(F )Tn(G) = Tn(G)Tn(F ) + R5 does
not hold. But, if one of the block symbols is a scalar symbol G(x) = g(x) · I, then we
obtain

T−1
n (gI)Tn(F ) = Tn(F )T−1

n (gI) +R6

in the same way as in the scalar case.
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3. Let M(x) and F (x) be again trigonometric block symbols. The inverse of
M(x) can be written as M−1(x) = det(M(x))−1M+(x) = dM (x)−1M+(x) with the
adjoint matrix M+ being again a trigonometric polynomial. Then it holds

Tn(dM ) = Tn(M(x)M−1(x) · dM (x)) = Tn(MM+) = Tn(M)Tn(M+) +R7 .

Therefore,
In = Tn(M)Tn(M+)T−1

n (dM ) +R8 =⇒ T−1
n (M) = Tn(M+)T−1

n (dM ) +R9

=⇒ T−1
n (M)Tn(F ) = Tn(M+F )T−1

n (dM ) +R10

Theorem 2.1. The Twogrid error reduction TGSn for the original n×n problem
and the symbol for TGS(x) are connected in the way that if the symbol TGS(x) ≡ 0
then also TGSn is zero up to a low rank term.

Proof. First we consider the case of approximate inverse smoothers N with

TGSn = (I−Tn(Nl)Tn(F )) ·
(
I−Tn(BH0 )T−1

n (fcI)Tn(B0)Tn(F )
)
· (I−Tn(Nr)Tn(F ))

where B0 has first row B1 = B(1, :) extended by zeros to a 2× 2 symbol. In view of
the previous listed properties of Block Toeplitz matrices it holds

TGSn = T−1
n (fcI) · Tn(I −NlF ) · Tn(fcI −BH0 B0F ) · Tn(I −NrF ) +R1 =

= T−1
n (fcI) · Tn

(
(I −NlF )(fcI −BH0 B0F )(I −NrF )

)
+R2 =

= T−1
n (fcI) · Tn

(
(I −NlF )(I −BH0 B0F/fc)(I −NrF ) · fc) +R3 .

Therefore, if the symbol TGS(x) is zero then also TGSn is zero except for a low rank
term. Next we consider smoothers Ml and Mr:

TGSn = (I−T−1
n (Ml)Tn(F ))

(
I−Tn(BH0 )T−1

n (fcI)Tn(B0)Tn(F ))(I−T−1
n (Mr)Tn(F )).

Like above by using especially the result 3. of the above listed properties, we obtain

TGSn = T−1
n (Ml)T−1

n (fcI)Tn(Ml − F )Tn(fcI −BH0 B0F )Tn(dMI −M+F )T−1
n (dM ) +R4

= T−1
n (Ml)T−1

n (fcI)Tn
(
(Ml − F )(fcI −BH0 B0F )(dMI −M+F )

)
T−1
n (dM ) +R5 =

T−1
n (Ml)T−1

n (fcI)Tn
(
Ml(I −M−1

l F )(I −BH0 B0F/fc)(I −M−1F )dMfc
)
T−1
n (dM ) +R6 .

Therefore, again for the symbol satisfying TGS(x) ≡ 0, also the n× n matrix TGSn
will be zero up to a low rank term.

Note, that a similar proof can be given for the 2D case, but then in view of the
block structure of the n2 × n2 matrices, the low rank can be in the size of n.

Remark 1: For analyzing the smoothing behavior based on the block symbol
we have to develop a new technique similar to the red-black local Fourier analysis
([21, 23, 5]). For the scalar symbols f(x) of A and m(x) of the smoother, one considers
1 − m(x)−1f(x) for x ∈ [π/2, π] representing the high frequency subspace. In the
block case we have to analyze the matrix function I − M−1(x)F (x) for the high
frequency components. In this case, the high frequency components are not described
by the values of the block symbol for x ∈ [π/2, π]. Instead, we have to identify the
eigenvectors relative to nonsingular eigenvalues of F (x) and consider I−M−1(x)F (x)
restricted to the subspace relative to these eigenvectors. In the standard 1D case the
eigenvectors of F are described by the diagonalization

F (x) =
(

2 −α
−ᾱ 2

)
=
(

1 1
ᾱ/|α| −ᾱ/|α|

)(
2− |α| 0

0 2 + |α|

)(
1 α/|α|
1 −α/|α|

)
.
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To see this, in a first step we transform F (x) by a unitary diagonal equivalence
transformation diag(1, α/|α|) into a real circulant matrix ([6]). The eigenvectors of
the circulant matrix are then given by the 2×2 Fourier matrix F2 related to the discrete
Fourier transform. The eigenvalues of F (x) can also be described in terms of the scalar
symbol by λ0(x) = f(x/2) = 2(1 − |α|/2) and λ1(x) = f(x/2 + π) = 2(1 + |α|/2).
So we see that one of the eigenvalues is related to the high frequency part and the
other to the low frequency part. Therefore, the subspace important to smoothing is
given by the eigenvector corresponding to eigenvalue 2 + |α| = f(x/2 + π). Reducing
a block symbol to the eigenspace corresponding to λ1 is equivalent to reducing the
related scalar symbol to the interval [π/2, π]. In order to analyze the damped Jacobi
smoother in the block symbol we have to reduce the block symbol to the appropriate
eigenvector subspace via

1
2

( 1 −ᾱ/|α| )

(
I − ω

2

(
2 −α
−ᾱ 2

))(
1

−α/|α|

)
= 1− ω(1 + |α|/2) ,

which leads for the extreme cases |α| = 0 and 2 to the optimal solution ω = 2/3 as in
the scalar standard smoothing analysis.

Next, we want to describe the symbols for the standard smoothers. Vice versa
we can derive smoothers in terms of their block symbol and describe their full matrix
representation. The Gauss-Seidel smoother tril(A) is a lower triangular matrix given
by the non-triangular block symbol

LGS(x) =
(

2 −eix
−1 2

)
.

Note, that the entries in the lower triangular part of A are related to real entries in
the lower triangular part of the symbol, or to entries in the block symbol that are real
factors of terms exp(ijx).

On the other side, the lower triangular part of the symbol F is given by

LG̃S(x) =
(

2 0
−ᾱ 2

)
−→ LRB =

(
2I 0
−T (ᾱ) 2I

)
with LRB the related full matrix after odd-even permutation. The full modified
Gauss-Seidel smoother in original ordering has the form

LG̃S =



2 0

−1 2 −1

0 2 0

−1 2 −1

0 2 0
. . .


, LT

G̃S
=



2 −1

0 2 0

−1 2 −1

0 2 0

−1 2 0
. . .


.

These two different matrices LRB and LG̃S are related to the two different interpre-
tations of the block symbol. If the symbol LG̃S(x) is considered as representation of
a Block Toeplitz matrix with small 2× 2 blocks, the resulting full matrix is given by
LG̃S and can be derived by deleting certain entries in the original matrix A. If LG̃S(x)
is considered as representation of a 2× 2 Block Toeplitz matrix with large blocks, the
resulting full matrix is LRB . The transformation between these two interpretations
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of the matrices represented by the symbol is given by the the red-black (odd-even)
reordering.

Because of the triangular form of the symbol LG̃S(x), in the full matrix A every
second column is replaced by the diagonal entry only. The lower triangular form LG̃S
starts with replacing the second column, the upper triangular form LT

G̃S
starts with

replacing the first column by the diagonal entry only. Hence, both smoothers treat
the grid points in a different way according to their color. Obviously, linear equations
in LG̃S and in LRB can be solved easily, also in parallel.

2.1. Multigrid as a direct solver for linear interpolation. The standard
linear interpolation in 1D is given by the block symbol (2.4) and therefore the block
symbol for CGC in (1.1) is

CGC(x) = I2 −BH1 B1F (x)/fc(x) =
(

0 0
−ᾱ/2 1

)
.

For a direct solver we have to find post/pre-smoothers with I2−M(x)F (x) of rank 1
and

(I2 −M−1
l (x)F (x)) ·

(
0 0
−ᾱ/2 1

)
· (I2 −M−1

r (x) · F (x)) ≡ 0

or the similar formula with M−1 replaced by N for approximate inverse smoothers.
For the left postsmoother Nl this yields the equations(

0 0
−ᾱ/2 1

)
= Nl ·

(
2 −α
−ᾱ 2

)(
0 0
−ᾱ/2 1

)
=
(
N1,1 N1,2

N2,1 N2,2

)(
|α|2/2 −α
−ᾱ 2

)
.

These equations lead to the conditions N1,2(x) = αN1,1(x)/2 and N2,2(x) =

0.5 + αN2,1(x)/2 with the special solution Nl =
(

0 0
0 0.5

)
.

For the smoother Ml we get(
0 0
−ᾱ/2 1

)
= M−1

l ·
(

2 −α
−ᾱ 2

)(
0 0
−ᾱ/2 1

)
and therefore Ml has to satisfy the condition

Ml ·
(

0 0
−ᾱ/2 1

)
= 2

(
|α|2/4 −α/2
−ᾱ/2 1

)
.

The general solution is given by Ml(x) =
(
M1,1 −α
M2,1 2

)
for any M1,1 and M2,1. In

order to obtain a matrix that is easy to invert we can set Ml =
(

2 −α
0 2

)
, the upper

triangular red-black Gauss-Seidel smoother.
In the same way we get for the presmoother on the right hand side the solutions

N2,1 = ᾱN1,1/2 and N2,2 = 0.5 − ᾱN1,2/2 , especially Nr =
(

0 0
0 0.5

)
. Similarly,

for Mr we derive Mr =
(
∗ ∗
−ᾱ 2

)
with the special solution Mr =

(
2 0
−ᾱ 2

)
.

Testing these smoothers for the full n × n-matrix yields also TGSn = 0. Hence,
not only the red-black Gauss-Seidel smoother gives MG as a direct solver, but also
the approximate inverse smoother Nl = Nr leads to a cheaper and more efficient
solver. Especially, the smoother N needs no solving of any e.g. triangular system,
and changes only the values of the non-coarse entries with even indices.
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For the linear interpolation the CGC-symbol is of the special form with zeros
in the first row. This case has been already described in [21, paragraph A.2.3] as
impractical direct solver. In Section 3.2 we will analyze the matrix formulation of
A.2.3 in terms of the block symbol to derive a more practical formulation.

2.2. Multigrid as direct solver for the constant interpolation. Next we
consider the case, where we replace the standard projection with stencil (1, 2, 1) by
the constant projection (1, 1), related to the symbol b(x) = 1 + exp(ix). Then, the
projection is given by B1(x) = (1, 1), the first row of the block symbol B(x), and the
Galerkin coarse grid system has the symbol

( 1 1 )
(

2 −α
−ᾱ 2

)(
1
1

)
= 2− exp(ix)− exp(−ix) = 2(1− cos(x)) .

Therefore, the coarse grid correction symbol CGC is of the form

CGC(x) = I2 −
(

1
1

)
( 1 1 )

(
2 −α
−ᾱ 2

)
/(2− exp(ix)− exp(−ix))

=
1

2− exp(ix)− exp(−ix)

(
1− exp(ix)
−1 + exp(−ix)

)
( 1 −1 ) ,

again a rank-1 matrix. But in this case the remaining rank-1 CGC symbol still has
the singularity induced by f(x). If we are able to find smoothers that give smoothing
corrections orthogonal to CGC(x), then also the singularity vanishes at least in the
symbol. For presmoothing from the right we have to satisfy

( 1 −1 ) ·
(
I2 −M−1

r

(
2 −α
−ᾱ 2

))
≡ 0

or
( 1 −1 )M−1

r = ( 1 −1 )
(

2 α
ᾱ 2

)
/(2− exp(ix)− exp(−ix)) =

= ( 1− exp(−ix) −1 + exp(ix) ) /(2− exp(ix)− exp(−ix)) .
Three special solutions for Mr can be described by

Mr =
(

1− eix 0
0 1− e−ix

)
, Mr =

(
1 0
−1 1− e−ix

)
, or Mr =

(
1− eix −1

0 1

)
.

The solutions for smoother Nr we get by inverting Mr.
For postsmoother Ml the condition (I −M−1

l F ) · CGC(x) ≡ 0 yields

M−1
l

(
2 −α
−ᾱ 2

)(
1− exp(ix)
−1 + exp(−ix)

)
=
(

1− exp(ix)
−1 + exp(−ix)

)
with the special solutions

Ml =
(

1 −1
0 1− eix

)
, Ml =

(
1− e−ix 0
−1 1

)
, or Ml =

(
1− e−ix 0

0 1− eix
)
.

With these pre-and postsmoothers the symbol TGS(x) will be zero. For the full
matrices it turns out that the n×n matrix TGSn is not zero but of rank 1 in view of
the boundary conditions. But we can determine the rank 1 representation of TGSn
and thereby determine an additional ’smoother’ to eliminate this rank 1 perturbation
in order to obtain TGSn = 0 also for the full n× n matrix. The combination of

Mr =
(

1− exp(ix) −1
0 1

)
=
(
−1 0
0 0

)
exp(ix) +

(
1 −1
0 1

)
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together with left ’smoother’ Nl = 0.5 · diag(1, 0, 1, 0, ..., 1, 0) yields TGSn = 0 for
n = 2k ± 1. Note, that in this case, the rank-1 representation of CGC · (I −M−1

r A)
is given by

CGC · Sr := CGC · (I −M−1
r A) = − ( 1 0 1 0 · · · )T · ( 1 0 0 · · · ) .

Without additional left ’smoother’, TGSn is of rank 1 with slowly growing norm
(growing like O(n)).

By applying only Mr without additional smoother Nl a Krylov-Multigrid method
with a preconditioned conjugate gradient cycle ([15]) would give convergence in 2 steps
and could therefore also be considered as a direct solver. Hence, we have shown that
with the proper choice of smoother at least in the 1D-case the weak linear prolongation
can lead to nearly the same efficiency as the standard prolongation with red-black
smoother.

A similar analysis shows that the trivial injection E as prolongation leads to a
well-conditioned coarse grid system Ac with symbol CGC again of rank 1. But in
this case the smoother has also to remove error components relative to the singular
eigenvalue. Therefore, the original Multigrid idea of applying two different methods to
reduce the error in two subspaces would be lost if we worked with the trivial injection
only.

3. Compact Fourier analysis in the 2D case. Now we turn to the more
interesting 2D case. We will consider the matrix A5 given by the 5-point stencil and
A9 given by the 9-point stencil

A5 =

 −1
−1 4 −1

−1

 , A9 =

−1 −1 −1
−1 8 −1
−1 −1 −1

 .

First we need the scalar symbols in x and y for a given 2-level Toeplitz matrix A (also
called Block Toeplitz Toeplitz Block matrix):

t0,0 t0,−1 t−1,0 t−1,−1 ·

t0,1

. . . . . . t−1,1

. . . . . . ·
. . . . . . t0,−1

. . . . . . t−1,−1 ·

t0,1 t0,0 t−1,1 t−1,0 ·

t1,0 t1,−1 t0,0 t0,−1 t−1,0 t−1,−1 ·

t1,1

. . . . . . t0,1

. . . . . . t−1,1

. . . . . . ·
. . . . . . t1,−1

. . . . . . t0,−1

. . . . . . t−1,−1 ·

t1,1 t1,0 t0,1 t0,0 t−1,1 t−1,0 ·

· · · · · · · · · · · · ·


of the form f(x, y) =

∑∞
j,k=−∞ tj,ke

ijx+iky. For A5 we get
f5(x, y) = 4− exp(ix)− exp(−ix)− exp(iy)− exp(−iy) = 2(2− cos(x)− cos(y))

and for A9

f9(x, y) = 8− exp(ix)− exp(−ix)− exp(iy)− exp(−iy)−
− exp(i(x− y))− exp(i(y − x))− exp(i(x+ y)− exp(−i(x+ y)) =

= 8− 2 cos(x)− 2 cos(y)− 2 cos(x+ y)− 2 cos(x− y)
= 8− 2 cos(x)− 2 cos(y)− 4 cos(x) cos(y) .
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The bilinear interpolation is related to the Kronecker product of the 1D projection
B = tridiag(1, 2, 1)⊗ tridiag(1, 2, 1) with scalar symbol

b(x, y) = b(x)b(y) = (1 + cos(x))(1 + cos(y)) .(3.1)

To obtain the block symbols for these functions we have to apply the 1D technique
developed in (2.1) and (2.2) in two steps, first relative to x, and then relative to y:

h(x, y)→ Hx(x, y)→ Hxy(x, y) = H(x, y) .

Here Hx(x, y) is a 2× 2 matrix function derived by the 1D step in x, and H(x, y) is
a 4× 4 matrix function by the 1D step in y applied on Hx.

For the 5-point stencil with symbol f5(x, y) = 4 − 2 cos(x) − 2 cos(y) the block
symbol relative to x is

Fx(x, y) =
(

4− 2 cos(y) −2eix/2 cos(x/2)
−2e−ix/2 cos(x/2) 4− 2 cos(y)

)
,

and the second transformation relative to y gives

F (x, y) =
( 1

2 (Fx(x, y2 ) + Fx(x, y2 + π)) 1
2e
iy/2(Fx(x, y2 )− Fx(x, y2 + π))

1
2e
−iy/2(Fx(x, y2 )− Fx(x, y2 + π)) 1

2 (Fx(x, y2 ) + Fx(x, y2 + π))

)
=

=


4 −1− eix −1− eiy 0

−1− e−ix 4 0 −1− eiy
−1− e−iy 0 4 −1− eix

0 −1− e−iy −1− e−ix 4

 =


4 −α −β 0
−ᾱ 4 0 −β
−β̄ 0 4 −α
0 −β̄ −ᾱ 4


with α = 1 + exp(ix) and β = 1 + exp(iy). Again the index 1 in the symbol is related
to the points that are fine and coarse in both dimensions while the index 4 is related
to the points that are only fine and noncoarse in both dimensions.

To derive a 2D block symbol H(x, y) directly, in a first step we replace the scalar
n× n Toeplitz block matrices in the n2× n2 matrix A by symbols in x, resulting in a
2n×2n matrix. In a following step we replace these n×n Toeplitz blocks by symbols
in y. For the 5-point stencil with matrix A5 =

4 −1 −1 ·

−1
. . . . . . . . . ·
. . . . . . −1

. . . ·

−1 4 −1 ·

−1 4 −1 −1 ·
. . . −1

. . . . . . . . . ·
. . . . . . . . . −1

. . . ·

−1 −1 4 −1 ·

· · · · · · · · · · · · ·



(3.2)
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the first step replacing the blocks by their symbols in x leads to

Ax =



4 −1− eix −1 ·

−1− e−ix 4 −1 ·

−1 4 −1− eix −1 ·

−1 −1− e−ix 4 −1 ·

· · · · · · ·


,(3.3)

and the second step with respect to y gives

F5(x, y) =


4 −1− eix −1− eiy 0

−1− e−ix 4 0 −1− eiy

−1− e−iy 0 4 −1− eix

0 −1− e−iy −1− e−ix 4


.(3.4)

Note, that we can recover the original matrix A from the block symbol by going
backwards from (3.4) via (3.3) to (3.2). For A5 the two-level odd-even permutation
in the 2D case can be derived directly by the block symbol and is given by the block
matrix 

4 · I ⊗ I −T (α)⊗ I −I ⊗ T (β) 0
−T (ᾱ)⊗ I 4 · I ⊗ I 0 −I ⊗ T (β)
−I ⊗ T (β̄) 0 4 · I ⊗ I −T (α)⊗ I

0 −I ⊗ T (β̄) −T (ᾱ)⊗ I 4 · I ⊗ I

 .(3.5)

In the same way the block symbol for the 9-point stencil results as

F9(x, y) =


8 −α −β −αβ
−ᾱ 8 −ᾱβ −β
−β̄ −αβ̄ 8 −α
−ᾱβ̄ −β̄ −ᾱ 8


and the standard prolongation (3.1) as

B(x, y) =


4 2α 2β αβ

2ᾱ 4 ᾱβ 2β
2β̄ αβ̄ 4 2α
ᾱβ̄ 2β̄ 2ᾱ 4

 .

The description of the Twogrid step is similar to the 1D case, only the projection
is given by picking out every second entry in x and y, resp. every second column/row
and block column/block row in A. As in the 1D case, the error reduction TGS is
obtained by combining the pre- and postsmoothing and the coarse grid correction
(1.3) and (2.5) in the form

TGS = (I −M−1
l A)(I − (BETA−1

c EB)A)(I −M−1
r A) = Sl · CGC · Sr .

Remark 2: If we are interested in analyzing the smoother S = I −M−1A alone,
we can again use the symbols for M and A in the form I −M−1(x, y)F (x, y). In
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order to get information about the smoothing behavior relative to the high frequency
subspace we can analyze the symbol restricted on the eigenspaces relative to the
three eigenvalues that are nonsingular. We can transform F by the diagonal matrix
D = diag(1, α/|α|, β/|β|, αβ/|αβ|) to a real symmetric block circulant 4× 4 matrix

4 −|α| −|β| 0
−|α| 4 0 −|β|
−|β| 0 4 −|α|

0 −|β| −|α| 4


with eigenvectors given by F2 ⊗ F2, F2 the Fourier matrix. Therefore, we have the
eigenvector (1, 1, 1, 1)T corresponding to the eigenvalue 4 − |α| − |β| = f(x/2, y/2)
which has a singularity at x = 0. Hence, the high frequency subspace is spanned
by the remaining three eigenvectors to eigenvalues f(x/2 + π, y/2), f(x/2, y/2 + π)
and f(x/2 + π, y/2 + π). The smoothing behavior of S can be determined by the
subspace relative to these 3 eigenvalues. The minimum eigenvalue has values in [0, 4],
the remaining three nonzero eigenvalues in [2, 8]. Therefore, the reduction to the
subspace of the three nonzero eigenvalues is related to the subspace to all eigenvalues
in the range [4, 8].

For the 9-point stencil the same transformation with D gives again a block circu-
lant matrix with first row

( 8 −|α| −|β| −|αβ| ) .

The minimum eigenvalue has values in [0, 8], while the three nonzero eigenvalues
range in [6, 12]. The eigenspace relative to the three eigenvectors is the same as in
the 5-point stencil.

Again let us display the symbols for the standard smoothers. The lower triangular
Gauss-Seidel smoother is related to the symbols

LGS5 =


4 −eix −eiy 0
−1 4 0 −eiy
−1 0 4 −eix
0 −1 −1 4

 , LGS9 =


8 −eix −eiy −eiyα
−1 8 −ᾱeiy −eiy
−1 −α 8 −eix
−ᾱ −1 −1 8

 .

Standard block Gauss-Seidel for A5 and A9 are related to the symbols

LBGS5 =


4 −α −eiy 0
−ᾱ 4 0 −eiy
−1 0 4 −α
0 −1 −ᾱ 4

 , LBGS9 =


8 −α −eiy −eiyα
−ᾱ 8 −ᾱeiy −eiy
−1 −α 8 −α
−ᾱ −1 −ᾱ 8

 .

Furthermore, we can represent smoothers that order the grid points after their charac-
ter in coarse in both dimension, mixed or non-coarse in both dimensions. Based on the
symbol F we derive the four-color Gauss-Seidel smoother related to tril(F (x, y)) :=
LG̃S . In LG̃S we use the original ordering of the four colors in coarse-coarse, coarse-
noncoarse, noncoarse-coarse, noncoarse-noncoarse. Changing the ordering in F (x, y)
such that indices coarse and non-coarse in both dimensions come first (by permuting
index 2 with 4) leads for A5 to the red-black Gauss-Seidel smoother:

LRB =


4 0 −β −α
0 4 −ᾱ −β̄
0 0 4 0
0 0 0 4

 .
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On the other hand, the block triangular part of the symbol gives a four-color block
Gauss-Seidel smoother

L ˜BGS5
:=


4 −α 0 0
−ᾱ 4 0 0
−β̄ 0 4 −α
0 −β̄ −ᾱ 4

 , L ˜BGS9
:=


8 −α 0 0
−ᾱ 8 0 0
β̄ −αβ̄ 8 −α
−ᾱβ̄ −β̄ −ᾱ 8

 .

3.1. Error reduction for the bilinear interpolation. First we have to de-
termine the symbol of the coarse problem derived by the Galerkin projection

(f5)c(x, y) = B1F5B
H
1 = ( 4 2α 2β αβ )


4 −α −β 0
−ᾱ 4 0 −β
−β̄ 0 4 −α
0 −β̄ −ᾱ 4




4
2ᾱ
2β̄
ᾱβ̄

 =

= 64− 4|α|2|β|2 = 16(3− cos(x) cos(y)− cos(x) cos(y)) =
= 8 (6− 2 cos(x)− 2 cos(y)− cos(x− y)− cos(x+ y))

and

(f9)c(x, y) = B1F9B
H
1 = ( 4 2α 2β αβ )


8 −α −β −αβ
−ᾱ 8 −ᾱβ −β
−β̄ −αβ̄ 8 −α
−ᾱβ̄ −β̄ −ᾱ 8




4
2ᾱ
2β̄
ᾱβ̄

 =

= 16(8− 2 cos(x)− 2 cos(y)− 4 cos(x) cos(y)) = 16 f9(x, y) = 16(8 + |α|2 + |β|2 − |αβ|2).

Note, that the coarse Galerkin projection for f5 has the same zero as f5 but is essen-
tially different in the sense that the quotient is not a constant factor. Therefore, with
this combination of discretization and prolongation, a direct solver could be derived
only for a Twogrid method but not for a recursively defined Multigrid algorithm.

Next, we can determine the symbols for CGC5(x, y) = I4 −BH1 (f5)−1
c B1F5 =

= I4 −


4

2ᾱ
2β̄
ᾱβ̄

 ( 4 2α 2β αβ )


4 −α −β 0
−ᾱ 4 0 −β
−β̄ 0 4 −α
0 −β̄ −ᾱ 4

 /(f5)c =

=
1

(f5)c


8|α|2 + 8|β|2 − 4|αβ|2 4α(−4 + |β|2) 4β(−4 + |α|2) 0
4ᾱ(−8 + |α|2 + |β|2) 64− 8|α|2 − 2|αβ|2 2ᾱβ(−4 + |α|2) 0
4β̄(−8 + |α|2 + |β|2) 2αβ̄(−4 + |β|2) 64− 8|β|2 − 2|αβ|2 0

2ᾱβ̄(−8 + |α|2 + |β|2) β̄|α|2(−4 + |β|2) ᾱ|β|2(−4 + |α|2) 64− 4|αβ|2


and CGC9(x, y) = I4 −BH1 (f9)−1

c B1F9 =

=
1

(f9)c

(
−12|αβ|2 0 0 0
2ᾱ|αβ|2 128− 10|αβ|2 0 0
2β̄|αβ|2 0 128− 10|αβ|2 0
ᾱβ̄|αβ|2 0 0 128− 16|αβ|2

+


24(|α|2 + |β|2) 12α(−4 + |β|2) 12β(−4 + |α|2) 0

4ᾱ(−16 + |α|2 + |β|2) −8|α|2 + 16|β|2 6ᾱβ(−4 + |α|2) 0
4β̄(−16 + |α|2 + |β|2) 6αβ̄(−4 + |β|2) 16|α|2 − 8|β|2 0

2ᾱβ̄(−16 + |α|2 + |β|2) 3β̄|α|2(−4 + |β|2) 3ᾱ|β|2(−4 + |α|2) 16(|α|2 + |β|2)

).
For these CGC symbols we want to analyze the smoothing behavior and the total
Twogrid error reduction factor. For the total error reduction factor we consider for
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TGS(x, y) = Sl · CGC · Sr with different pre- and postsmoother the 2-norm and the
spectral radius. For a smoothing analysis we reduce S = I −M−1A to the subspace
relative to the three nonzero eigenvalues of F and compute again the norm and the
spectral radius.

For deriving an efficient smoother, we first note that with presmmoother only the
Twogrid error can be written as

Sl · CGC = (I −M−1F ) · CGC = M−1(M − F ) · CGC .

Therefore, a rank reducing smoother can be defined by choosing for M a regular
submatrix of F , e.g. M equals F except for the first (or last) row (or column). In
the ideal case the one-dimensional left sided kernel of CGC would coincide with the
one-dimensional range of M − F giving TGS(x, y) = 0. Unfortunately, this can be
derived only in very special cases. Nevertheless, the rank reducing smoother leads to
a rank-1 matrix Sl · CGC of small norm. If the CGC-symbol is of special form, e.g.
with first row zero, then the rank reducing smoother changing only the first column
of M would give Sl · CGC = 0. For the presmoother applied on the right hand side
the same idea leads to the condition

CGC · (I −NF ) = CGC · (F−1 −N)F or CGC · (F−1 −M−1)F ,

which is not so easy to satisfy. The advantage of rank reducing smoothers that
coincide with large subparts of F is that the total residual is reduced to a subspace
of a quarter of the full space. The resulting smoother is well-conditioned but cannot
be solved directly because it preserves mainly the sparsity structure of A. So an
additional iterative method like preconditioned conjugate gradient method (pcg) is
necessary in order to solve the linear system related to the smoothing iteration.

Next we consider the Jacobi smoother J(ω) = I − ωF/4 or two combined steps
of the form J(ω1, ω2) = J(ω1)J(ω2). Furthermore, we analyze standard Gauss-Seidel
and Block Gauss-Seidel, the four-color Gauss Seidel LG̃S = tril(F ) and Block Gauss-
Seidel L ˜BGS related to the symbol, and the red-black smoother LRB related to the
permutation j = [1 4 3 2] and the blocking of F (j, j) in two-by-two blocks. Often
Gauss-Seidel smoothers are applied symmetrically in the form (I−L−1F )(I−L−TF ).
In the sequel, we will also consider modifications where we allow more general com-
binations of different smoothers. As new rank reducing smoother we introduce

Fc1 :=


4 −α −β 0
0 4 0 −β
0 0 4 −α
0 −β̄ −ᾱ 4

 , Fc12 :=


4 −α −β 0
0 4 0 −β
0 0 4 −α
0 0 −ᾱ 4

 .

Deleting in the symbol all entries in the first column except for the diagonal entry is
related to deleting in the full matrix in every second column of every second column
block all entries except for the diagonal entry, starting with the first column in the
first column block. Note that the first column in the symbol is related to grid points
that belong to the fine and coarse grid in both dimensions, while the fourth column is
related to grid points only fine in both dimensions. Similarly, we can define e.g. Fc4,
Fr1, Fr4, related to the last column, first and last row of F respectively, and Fc43,
Fr12, and Fr43 with an additional zero in the nondiagonal neighboring block.

Fc12 leads only to a rank-2 matrix Sl ·CGC, but Fc12 is a block triangular subma-
trix of (3.5), so linear systems with Fc12 can be solved much easier than with Fc1. The
same is true for all other modifications Fcij and Frij . The costs for computing one
smoothing step with e.g. Fc12 are nearly the same as the costs for one step with stan-
dard Gauss-Seidel or colored Gauss-Seidel LG̃S ; we can use the splitting F = Fc12 +U
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Fig. 3.1. Sparsity pattern of Fc12 as submatrix of A of size 62 × 62 in original ordering and
in four color ordering. Obviously, for solving a matrix with such a pattern the only involved part is
solving tridiagonal submatrices.

Table 3.1
Smoothing factor computed based on the block symbol for different smoothers (first row: norm,

second row: spectral radius) for 5-point stencil. The Gauss-Seidel smoothers are applied symmetri-
cally (I − L−1F )(I − L−TF ) and the last column is related to (I − F−1

c43F )(I − F−1
r12F ).

J(.8) J(.8, .8) J(ω1, ω2) GS BGS G̃S ˜BGS RB Fc1 Fc12 Fc43, Fr12

0.60 0.36 0.2195 0.17 0.17 0.20 0.27 0.27 0.35 0.55 0.14
0.60 0.36 0.2195 0.13 0.12 0.13 0.12 0.24 0.07 0.24 0.058

resulting in the smoothing step Fc12x
k+1 = b− Uxk where the upper triangular part

U contains less entries than in the Gauss-Seidel splitting but on the other side the
solution of the linear system in Fc12 is slightly more expensive than the solution of
the triangular Gauss-Seidel matrix. So in total the costs are nearly the same (upto
10% more). On the other side the smoothing factor and the Twogrid error reduction
are more than a factor 2 better compared to e.g. Gauss-Seidel type smoothers. For
a description of the pattern of the full matrix related to Fc12 see Fig. 3.1. Like the
red-black smoother, linear systems in Fc12 can be implemented efficiently in parallel.

Note, that the matrix Fc1 is well-conditioned, but solving linear equations with
Fc1 cannot be done directly, but only iteratively. For this aim, we have to consider
the subblock A24 := F (2 : 4, 2 : 4) and solve A−1

24 x e.g. by pcg with preconditioner
LAL

T
A and LA := tril(A24). Then the condition number of the preconditioned A24 is

less than 2, so we can expect very fast convergence.
For the rank reducing smoother derived from the symbol we have some nice

properties. The inverse can be often derived explicitly, so we can also use the inverse
as approximate inverse smoother, that is much more efficient in parallel. For example,
for the 5-point stencil it holds

L−1

G̃S
=

1
16


4
ᾱ 4
β̄ 0 4

ᾱβ̄/8 β̄ ᾱ 4

 , and L−1
RB =

1
16


4 0
0 4
β̄ α 4 0
ᾱ β 0 4

 .

Applying a rank reducing smoother Fc1...,Fr4, Fc12,...,Fr43, G̃S or ˜BGS from the left
always leads to a sparsity pattern in Ml − F that can be adjusted to the sparsity
pattern of CGC(x, y) resulting in a small norm of TGS(x, y). For presmoother in
view of CGC · (I −M−1

r F ) = CGC ·M−1
r (Mr − F ) this is only true for the column

oriented rank reducing smoothers Fc1, Fc4, Fc12, Fc43, G̃S, and ˜BGS.
In the tables 3.1 and 3.2 we display the smoothing factor and the error reduction

in a Twogrid step for various smoothers. Note, that - if not stated otherwise - all the
numerical values are related to block symbols, e.g. TGS(x, y), maximizing over all x.
For two-step Jacobi smoothing the optimal choice for (ω1, ω2) is 8/(10 ± 3

√
2) with

smoothing factor 9/41 ≈ 0.21951. The four-color Gauss-Seidel LG̃S with the ordering
coarse-coarse first and noncoarse-noncoarse last is slightly better than the red-black
Gauss-Seidel. In tables 3.3 – 3.4 we will compare the norm of the symbol TGS(x, y)
and of the full matrix TGSn2 for different smoothers. Furthermore, for chosen L we
consider different orderings of L and LT in the post- and presmoother. The results
show that the symbol reflects the behavior of the full matrix, and that the ordering
may change the behavior dramatically for colored Gauss-Seidel smoother.
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Table 3.2
Maximum norm and spectral radius of TGS(x, y) = Sl ·CGC ·Sr with different smoothers (first

row: norm, second row: spectral radius) for 5-point stencil. Here, ∗ in Sl, Sr denotes that the same
smoother is applied as pre- and postsmoother.

SJ(.8),∗ SJ(.8,.8),∗ SJ(ω1,ω2),∗ SGS,∗ SBGS,∗ SRB,∗ SFc4 , SFr1 S2
Fc43

, S2
Fr12

S2
Fc12,∗

0.36 0.13 0.13 0.056 0.10 0.15 0.068 0.048 0.025
0.36 0.13 0.083 0.054 0.045 0.12 0.067 0.027 0.016

Table 3.3
Norm of TGS(x, y) and of the n2×n2 matrix TGSn2 = Sl ·CGC ·Sr, n = 40, for smoother G̃S

(first row: symbol, second row: full matrix) for 5-point stencil applying the smoothers in different
ordering in Sl and Sr.

L′L′, L′L′ LL,LL L′L,L′L LL′, LL′ LL′, L′L L′L,LL′

maxx,y ‖TGS(x, y)‖2 0.029 0.032 0.20 0.13 0.064 0.31
‖TGSn2‖2 0.027 0.030 0.20 0.13 0.062 0.30

For the standard Gauss-Seidel smoother the ordering of L and LT does not affect
the norm of the Twogrid step. In this case the error reduction is given by ‖TGSn2‖2 =
0.055 for the full matrix and maxx,y ‖TGS(x, y)‖2 = 0.056 for the symbol. The rank
reducing smoother Fc12, applied twice as post- and presmoother, gives the best result
maxx,y ‖TGS(x, y)‖2 = 0.025.

For the 9-point stencil we get tables 3.5 and 3.6. Note, that for Jacobi smoother
the optimal parameter for J(ω) is 8/9 with smoothing factor 1/3 and for J(ω1, ω2)
the optimal pair is 16/(18 ± 3

√
2) with smoothing factor 1/17 ≈ 0.05882. Optimal

results are derived by using the same smoother twice and especially the rank reducing
smoother with a rank-2 reduction, e.g. Fr12, are optimal with respect to the smoothing
factor and the overall error reduction. For the 5-point stencil the optimal overall error
reduction TGS for the rank reducing Gauss-Seidel smoother LG̃S , L ˜BGS , resp. LRB ,
takes the values 0.029, 0.032, resp. 0.032, obtained for the ordering L′L′, L′L′.

3.2. Twogrid as direct solver for a modified Projection. Here, we consider
the standard 5-point stencil, but combined with a nonstandard interpolation. Like the
standard projection b(x, y) = (1+cos(x))(1+cos(y)) an interpolation has to have the
zeros (0, π), (π, 0) and (π, π) ([7, 8, 1]). A simple function with these properties can
be derived by considering b̃(x, y) := f(x, y+ π)f(x+ π, y)f(x+ π, y+ π) ([13, 9, 10]).
To obtain the block symbol for b̃ we use the block symbol for the three factors that
are only slight modifications of the given function f5:


4 α −β 0
ᾱ 4 0 −β
−β̄ 0 4 α
0 −β̄ ᾱ 4




4 −α β 0
−ᾱ 4 0 β
β̄ 0 4 −α
0 β̄ −ᾱ 4




4 α β 0
ᾱ 4 0 β
β̄ 0 4 α
0 β̄ ᾱ 4

 = B̃(x, y) =(3.6)


64− 4|α|2 − 4|β|2 α(16− |α|2 + |β|2) β(16 + |α|2 − |β|2) 8αβ
ᾱ(16− |α|2 + |β|2) 64− 4|α|2 − 4|β|2 8ᾱβ β(16 + |α|2 − |β|2)
β̄(16 + |α|2 − |β|2) 8αβ̄ 64− 4|α|2 − 4|β|2 α(16− |α|2 + |β|2)

8ᾱβ̄ β̄(16 + |α|2 − |β|2) ᾱ(16− |α|2 + |β|2) 64− 4|α|2 − 4|β|2

 .

With this prolongation we get the Galerkin coarse grid system
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Table 3.4
Norm of TGS = Sl ·CGC ·Sr for the symbol and the full n2×n2 matrix, n = 40, for red-black

smoother and the 5-point stencil applying the red-black smoother in different ordering in Sl, Sr.

L′L′, L′L′ LL,LL L′L,L′L LL′, LL′ LL′, L′L L′L,LL′

maxx,y ‖TGS(x, y)‖2 0.032 0.032 0.15 0.15 0.045 0.045
‖TGSn2‖2 0.030 0.030 0.15 0.15 0.043 0.043

Table 3.5
Smoothing factor for different smoothers (first row: norm, second row: spectral radius, com-

puted for S̃(x, y), the projection of S(x, y) on the subspace corresponding to the larger eigenvalues)
for 9-point stencil (all Gauss-Seidel smoother applied symmetrically).

J(8/9) J(8/9, 8/9) J(ω1, ω2) GS BGS G̃S ˜BGS Fc4 Fc43, Fr12

‖S̃(x, y)‖2 0.33 0.11 0.0588 0.14 0.17 0.08 0.075 0.17 0.033

ρ(S̃(x, y)) 0.33 0.11 0.0588 0.10 0.11 0.07 0.045 0.10 0.031

f̃c =


64− 4|α|2 − 4|β|2
α(16− |α|2 + |β|2)
β(16 + |α|2 − |β|2)

8αβ


H 

4 −α −β 0
−ᾱ 4 0 −β
−β̄ 0 4 −α
0 −β̄ −ᾱ 4




64− 4|α|2 − 4|β|2
ᾱ(16− |α|2 + |β|2)
β̄(16 + |α|2 − |β|2)

8ᾱβ̄

 =

= 16384− 3072|α|2 − 3072|β|2 + 192|α|4 + 192|β|4 + 128|αβ|2 − 4|α|6 − 4|β|6 + 4|α|4|β|2 + 4|α|2|β|4

and the symbol for the coarse grid correction

CGC(x, y) = I −BH1 B1F/f̃c =


0 0 0 0
gα f̃c 0 0
gβ 0 f̃c 0
gαβ 0 0 f̃c

 /f̃c

with
gα = ᾱ(−4096 + 768|α|2 + 256|β|2 − 48|α|4 + 32|αβ|2 + 16|β|4 + |α|6 − |β|6 − 3|α|4|β|2 + 3|α|2|β|4),
gβ = β̄(−4096 + 768|β|2 + 256|α|2 − 48|β|4 + 32|αβ|2 + 16|α|4 + |β|6 − |α|6 − 3|β|4|α|2 + 3|β|2|α|4),
gαβ = ᾱβ̄(−2048 + 256|α|2 + 256|β|2 − 8|α|4 + 16|αβ|2 − 8|β|4 .

In view of the structure of CGC with first row equal to zero, the left rank reducing
smoother

Ml = Fr1 =


4 −α −β 0
0 4 0 −β
0 0 4 −α
0 −β̄ −ᾱ 4


leads to Sl = I4 −M−1

l F = M−1
l (Ml − F ) with nonzeros only in the first column of

Ml − F and therefore symbol TGS(x, y) = 0. So the Twogrid method requires only
one iteration step.

If we switch to the full n2×n2 matrices we use as prolongation the matrix relative
to the product of the Block Toeplitz matrices

B := Tn2(2− cos(x) + cos(y)) · Tn2(2 + cos(x)− cos(y)) · Tn2(2 + cos(x) + cos(y)) ,

and as left smoother the matrix related to the above symbol Ml. Then for the full
matrix with coarsening B̃ related to the index set 2 : 2 : n in both dimensions

Ml · TGS = (Ml −A)(I − B̃TET (EB̃AB̃TET )−1EB̃ ·A)
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Table 3.6
TGS(x, y) = Sl ·CGC ·Sr for different smoothers (first row: norm, second row: spectral radius)

for 9-point stencil. Again, ∗ denotes the application of the same smoother as pre- and postsmoother.

SJ(8/9),∗ SGS,∗ SBGS,∗ SG̃S,∗ S ˜BGS,∗ SFc1 , SFr4 S2
Fr12

, S2
Fc43

maxx,y ‖TGS(x, y)‖2 0.32 0.048 0.10 0.048 0.026 0.019 0.022
maxx,y ρ(TGS(x, y)) 0.11 0.041 0.045 0.040 0.016 0.015 0.014

we get norm zero, and therefore this Twogrid method needs only one smoothing
iteration and therefore can be considered as a direct solver. To obtain the overall
solution for the linear system with given matrix A it remains to solve one linear
system with the smoother, e.g. by pcg, and the coarse grid problem of size n2/4.

Remark 3: Note, that the derived thick projection is interesting also for other
problems. So in [9, 10] this projection is used efficiently for solving Helmholtz prob-
lems. Furthermore, in the following section we will derive also a more practical
smoother for this thick projection applied on our 2D model problem. Hence, the
proposed method is not as impractical as observed in [21, paragraph A.2.3].

3.3. Deriving Twogrid as a direct solver. In this section we will build the
connection to the well known approach of Multigrid as a direct solver described in
[21, paragraph A.2.3] by formulating these conditions in terms of the block symbol.
We start by partitioning the given k × k block symbol F and the vector B1 = B(1, :)
describing the projection, in the form(

F (1, 1) F (1, 2 : k)
F (2 : k, 1) F (2 : k, 2 : k)

)
=
(
γ g
gH G

)
, B1 = (B(1, 1) B(1, 2 : k) ) = ( δ d ) .

The Galerkin coarse problem is then given by B1FB
H
1 . The goal in this approach

is to obtain in the first row of the CGC symbol (1.1) a zero row. This leads to the
condition

( δ d )
(
γ g
gH G

)(
δ
dH

)
· Ik −

(
δ
dH

)
( δ d )

(
γ g
gH G

)
has first row identical to zero. Considering the entries in columns 2 : k yields

δ2g + δdG = 0 =⇒ d = −δgG−1 .

With this choice it turns out that also the first entry in the first row will be zero.
In order to derive a sparse projection B we can write G−1 = G+ det(G) and set
δ = det(G). Then B is fully defined by its first row B1 which is given by

B1 = ( det(G) −g ·G+ ) ,

and this defines a sparse projection B which can be described in terms of G and
the adjoint G+ by trigonometric polynomials. For the example from section 3.2 the
resulting projection for the 5-point stencil is exactly the thick projection B̃ in (3.6).

By obtaining a zero column in the first row of the CGC block symbol it is obvious
how we have to choose the smoother M to derive TGS ≡ 0:

0 = (I −M−1F ) · CGC = M−1 · (M − F ) ·
(

0
∗

)
,
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if M coincides with F up to the first column. Furthermore, M has to be invertible.
So we set

M =
(
F (1, 1) F (1, 2 : k)

0 F (2 : k, 2 : k)

)
=
(
γ g
0 G

)
.

Disadvantages of this approach are that the projection and therefore also the coarse
grid matrix might get thicker, and for the smoother we need to solve a linear system
in G = F (2 : k, 2 : k).

For CGC symbol with first row zero we can also look for an approximate inverse
smoother N that yields TGS ≡ 0. It holds

0 = (I −NF ) · CGC = (I −NF ) ·
(

0
∗

)
=⇒ I −NF = ( ∗ 0 ) ,

and therefore N = F−1 − c · eT1 F−1 with some vector c.
Going back to the problem in section 3.2 the thick projection and the projection

derived here by the approach from [21, paragraph A.2.3] formulated in block symbols
are identical. But with the block symbol method we find as further approximate
inverse solution N with TGS ≡ 0 the block symbol

N(x) =


0 0 0 0
− 1

2α
1
8 − β

8α 0
− 1

2β − α
8β

1
8 0

− 2
αβ − 1

2β − 1
2α 0

 .

In each smoothing step with N(x) we have to multiply a vector with the related full
matrix N ; in view of the relation between block symbol and full matrix in colored
ordering this product involves products with matrices e.g. related to the function
α/β. As in (3.5) the resulting block matrix can be written in the form T (α) ⊗
T (1/β) = (T (α) ⊗ I) · (I ⊗ T (β)−1). Hence, the multiplication with matrix N can
be done by simple products or solves with bidiagonal matrices related to T (α) and
T (β). This shows again the advantages of using approximate inverse smoothers.
The condition TGS ≡ 0 can be satisfied by M or N , but N gives a more practical
smoother based on bidiagonal solves while M leads to a smoother that can be solved
only iteratively. The disadvantage of the thicker coarse problem can be overcome e.g.
by rediscretization in order to reduce the sparsity pattern of Ac. Then the algorithm
will be no direct solver anymore, but is an overall practical modification of standard
Multigrid methods. However, such a truncation of the Galerkin operator might lead
to a diverging algorithm and can only be applied with great care. Following [21,
paragraph A.2.4], in order to reduce the complexity of the coarse grid problem the
truncation of the prolongation can be done without loss of convergence.

Until now we were studying the case that the projection was chosen in such a way
that the rank deficient CGC symbol has first row equal zero. Much more interesting
is the case that for given stencil of the original problem we have chosen our favorite
projection and now we want to analyze the task whether it is possible to determine
a practical smoother that leads to TGS ≡ 0. In the following we only consider the
combination of left (post-smoother) and coarse grid correction in Sl · CGC ≡ 0. To
find a solution to this problem we need a factorization of the k × k symbol of rank
k − 1 of the form

fc · CGC = ( d1 · · · dk−1 )

 c1
...

ck−1

 = D · C ,
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e.g. by choosing k − 1 linearly independent rows or columns of CGC. Here, we have
introduced the scalar factor fc representing the symbol of the Galerkin coarse matrix,
in order to simplify the block symbol. By H we denote the block symbol FD.

This leads to the conditions 0 = (I − NF )D = D − NH or 0 = (M − F )D =
MD − H. Hence, we are looking for smoothers N or M satisfying the equations
D = NH, resp. MD = H. We can partition the matrices H, N , M , and D in the
form

H =
(
h̃
H̃

)
, N = ( ñ Ñ ) , M = ( m̃ M̃ ) , D =

(
d̃
D̃

)

with square submatrices H̃, Ñ , M̃ , and D̃, and vectors h̃, ñ m̃, and d̃. This leads to
the solutions

N = ( 0 DH̃−1 ) + ñ · ( 1 −h̃H̃−1 ) , M = ( 0 HD̃−1 ) + m̃ · ( 1 −d̃D̃−1 ) .

So in this form N and M are given in terms of the block symbol CGC and for each
choice of vector ñ or m̃ in Rk−1 we get a smoother satisfying TGS ≡ 0. The remaining
task is to identify vectors ñ, resp. m̃, that give practical smoothers N and M , e.g.
smoothers that can be described by trigonometric polynomials (to enforce sparsity)
and - in the case of M - lead to a linear system that is easy to solve. To this aim we
have to look for a k − 1 × k − 1 submatrix of D or H that is invertible with simple
determinant. We have to postpone this project to future work.

4. Conclusions. By transforming all appearing matrices in terms of generating
block symbols we derive a compact Fourier analysis for Multigrid methods where
the block symbols capture the behavior of the Multigrid solver sufficiently. This
approach can also be applied to general constant coefficient PDEs, e.g. for anisotropic
equations or the Helmholtz problem ([9, 10]). Furthermore, the derived projections
and smoothers can also be applied for the general case of varying coefficients. The new
approach leads to a generalization of the results in [21, paragraph A.2.3] on Multigrid
as a direct solver, and allows to derive and analyze approximate inverse smoothers,
rank reducing smoothers, and generalized projections. The compact Fourier analysis
is helpful for analyzing the smoothing behavior and the total Twogrid error reduction.

In the future this approach will be applied on the aggregation Multigrid method
and on more general PDEs. A Three-grid and Four-grid analysis shall be derived.
Furthermore, the block symbol can be used to develop a software tool for symbolic
and numerical computations to derive and analyze Multigrid methods.



22 T. K. HUCKLE

REFERENCES

[1] A. Arico, M. Donatelli, and S. Serra, V-cycle optimal convergence of certain (multilevel)
structured linear systems, SIAM J. Matrix Anal. Appl. Vol. 26 (1) (2004), p. 186–214.

[2] A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comput. 31
(1977), p. 333–390.

[3] W.L. Briggs, V.E. Henson, and S.F. McCormick, A Multigrid tutorial, SIAM, Philadelphia,
2000.

[4] R. Chan, Q. Chang, and H. Sun, Multigrid methods for ill-conditioned symmetric Toeplitz
Systems, SIAM J. Sci. Comput. 19 (1998), p. 516–529.

[5] T. Chan and H. Elman, Fourier Analysis of iterative methods for elliptic problems, SIAM
Review 31 (1) (1989), p. 20–49.

[6] P.J. Davis, Circulant matrices, Wiley, New York, 1979.
[7] G. Fiorentino, and S. Serra, Multigrid methods for Toeplitz matrices, Calcolo Vol. 28 3–4

(1991), p. 283–305.
[8] G. Fiorentino and S. Serra, Multigrid methods for symmetric positive definite Block Toeplitz

matrices with nonnegative generating functions, SIAM J. Sci. Comp. 17 (5) (1996), p. 1068–
1081.

[9] R. Fischer, Multigrid methods for anisotropic and indefinite structured linear systems of equa-
tions, Ph.D. Thesis, TU München, 2006.

[10] R. Fischer and T. Huckle, Multigrid Methods for anisotropic BTTB Systems, Lin. Alg. Appl.
Vol. 17 (2) (2006), p. 314-334.
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