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THE UNSTEADY FLOW OF A WEAKLY COMPRESSIBLE FLUID
IN A THIN POROUS LAYER

I: TWO-DIMENSIONAL THEORY∗

D. J. NEEDHAM† , S. LANGDON‡ , G. S. BUSSWELL§ , AND J. P. GILCHRIST§

Abstract. We consider the problem of determining the pressure and velocity fields for a weakly
compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous
medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical
wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly
in the case that the depth scale of the layer h is small compared to the horizontal length scale
l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under
the assumption that ε = h/l � 1, we show that the pressure field varies only in the horizontal
direction away from the wells (the outer region). We construct two-term asymptotic expansions in
ε in both the inner (near the wells) and outer regions and use the asymptotic matching principle
to derive analytical expressions for all significant process quantities. This approach, via the method
of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, ε, at
precisely the stage where full numerical computations become stiff, and also reveals the detailed
structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.
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1. Introduction. It is standard practice in the oil and gas industry to use reser-
voir simulators based on numerical methods such as the finite difference or finite
element techniques. This kind of approach has been shown to be enormously suc-
cessful over the years in modeling a wide variety of physical processes in the reservoir
e.g., faults, rock layering effects, complex fluid phase behavior, etc. While reservoir
simulators of this type will continue to play a crucial role in the industry, it is well
known that to use them takes considerable expertise and time. Because of the numer-
ical nature of the modeling process, gridding, time-stepping, and convergence issues
require care and attention. Long execution times are often necessary for certain types
of problems, e.g., hydraulically fractured wells.

Analytic techniques, for the reasons outlined, can therefore play a valuable role in
the industry. Such techniques, although they may have some simplifying assumptions,
allow a reservoir or production engineer to perform a quick study of their reservoir in
order to obtain a broad understanding of the dynamical processes and make approxi-
mate costing forecasts. Analytic solutions are extremely fast and provide none of the
timestepping and convergence issues seen with a numerically based simulator. Also,
a necessary step in many reservoir studies involves the history matching of observed
data by optimizing model parameters. The history matched model is then used for
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performance prediction. Given the speed and reliability of analytic results, there is a
clear opportunity to exploit their use in history matching studies.

There has been much work in the literature regarding analytic approaches, par-
ticularly for well testing applications [10, 5, 15, 1, 9] but also from a full field reservoir
standpoint, where multiple wells and reservoir boundaries must be accounted for to
forecast production over the required timescales. Algorithms for full field simula-
tion problems based on analytic approaches have been presented in the literature for
porous media with homogeneous and anisotropic permeability in a variety of sources
[4, 19, 13]. A more complex problem involves the application of analytic approaches to
full field scenarios where the reservoir has inhomogeneous permeability and variable
geometry [12, 14, 8, 18].

In this paper we introduce a new approach to solving full field reservoir problems
with inhomogeneous and anisotropic permeability and variable reservoir geometry
using the method of matched asymptotic expansions. Specifically, our problem in-
volves determining analytical expressions for the pressure and velocity fields for a
weakly compressible fluid flowing in a horizontal reservoir with variable upper and
lower boundaries. Vertical wells injecting or extracting fluid from the reservoir can be
considered as line sources and sinks, respectively. Numerical solution of the full equa-
tions of motion throughout the reservoir can be prohibitively expensive. However,
under the condition that the depth scale of the reservoir h is small compared to the
length scale of the reservoir l, as is often the case in geophysical applications, it can be
shown (allowing further that the porous medium has inhomogeneous and anisotropic
permeability) that the dimension of the problem can be reduced away from the wells,
with solution of the full equations of motion being required only in a small domain
around the wells where the geometry is radically simplified. Moreover, as the ratio
h/l decreases, efficient application of numerical schemes becomes harder, while the
problem becomes more amenable to solution via matched asymptotic theory.

Here, we restrict attention to the case of two-dimensional flow. The full three-
dimensional problem will be dealt with in subsequent work [11]. We introduce the
parameter ε = h/l and consider asymptotic solutions to the equations of motion of
the fluid in increasing powers of ε, with 0 < ε � 1. In the vicinity of a well (the
inner region) the pressure field is two-dimensional, but away from the wells (the
outer region) the pressure field is only one-dimensional. This immediately leads to
a reduction in complexity. Here, however, rather than solving the full equations of
motion numerically in the inner and outer regions, we construct two-term expansions
in both the inner and outer regions. These expansions in the inner and outer regions
can then be matched, via the Van Dyke asymptotic matching principle [20], enabling
us to derive amenable analytical expressions for all significant process quantities.

We begin in section 2 by deriving the equations of motion in the porous medium.
Conservation of mass and momentum lead to a strongly parabolic linear initial bound-
ary value problem for the dynamic fluid pressure (from which the fluid velocity field
can be deduced), with Neumann boundary conditions, under the assumption that the
walls are impenetrable to the fluid in the porous medium. This initial boundary value
problem has a unique solution, but its direct computation would be expensive, pri-
marily due to stiffness when 0 < ε� 1. We thus consider the associated steady state
problem [SSP], a linear strongly elliptic Neumann problem, which also has a unique
solution (up to a constant) under the further constraint that the sum of the total
volume fluxes at the wells (the line sources and sinks) is zero. Solution of the steady
state problem is considered in section 3. Subtracting the solution of the steady state
problem from the solution of the initial value problem leads to a strongly parabolic
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homogeneous problem with no discontinuities across the sources and sinks. The so-
lution of this problem leads to a regular self-adjoint eigenvalue problem [EVP] whose
solution is considered in section 4.

Rather than solving [SSP] and [EVP] directly, the solution to each problem is
considered in the asymptotic limit ε → 0, via the method of matched asymptotic
expansions. For the two-dimensional problem these asymptotic solutions can be con-
structed analytically. To solve [SSP], we proceed first with the situation when the
wells are well spaced and are away from the reservoir boundaries, after which the case
of wells close to a boundary, or close together, is considered in sections 3.1 and 3.2.
The asymptotic solution can be constructed directly in the outer region, up to O(ε2).
In the inner region, determination of the leading order terms reduces to the solution of
a strongly elliptic problem whose solution can be written analytically in terms of the
eigenvalues and corresponding eigenfunctions of a regular Sturm–Liouville eigenvalue
problem. The asymptotic solution of [EVP] in section 4 also reduces to a regular
Sturm–Liouville eigenvalue problem identical in structure to that discussed in sec-
tion 3, and a consideration of this allows us to demonstrate that the solution to the
full initial boundary value problem approaches the solution to the steady state prob-
lem through terms exponentially small with respect to time t as t → ∞. With Dz

being the permeability scale in the vertical direction and Dx being the permeability
scale in the horizontal direction, the further generalization that Dz = o(Dx) rather
than O(Dx) is considered in section 5, where it is shown that the structure of the
solution is identical to that found for the case that Dz = O(Dx), after a suitable
redefinition of the parameter ε. The constraint on the sum of the total volume fluxes
at the wells being zero is removed in section 6, and in section 7 we apply the theory
to a simple model example. Finally in section 8 we draw some conclusions.

2. Equations of motion. We consider the flow of a weakly compressible fluid
in the presence of sources and sinks in a reservoir of porous medium with variable up-
per and lower boundary. The reservoir has permeability which is inhomogeneous and
anisotropic. We restrict attention to the situation when the flow is two-dimensional.
We denote the interior of the porous medium by M ⊂ R2 and its impermeable bound-
ary by ∂M ⊂ R2, with M̄ = M∪∂M . We introduce rectangular Cartesian coordinates
(x, z), with z pointing vertically upwards and x pointing horizontally. The vertical
side walls of the reservoir are taken to be at x = ±l, with l > 0. The upper and lower
surface of the reservoir are described by z = hz+(x/l) and z = hz−(x/l), respectively,
for x ∈ [−l, l], with h (> 0) being the reservoir depth scale and z+, z− : [−1, 1] �→ R

being such that z+, z− ∈ C1([−1, 1]) and z+(x) > z−(x) for all x ∈ [−1, 1]. Normal
fields on the upper and lower surfaces are then given by n+(x) = (−h

l z
′
+(x), 1) and

n−(x) = (h
l z

′−(x),−1), respectively, for x ∈ [−1, 1], with the normals directed out of
M̄ . The situation is illustrated in Figure 2.1.

Embedded within M̄ are N(∈ N) vertical line sources/sinks at locations xi ∈
(−l, l), i = 1, . . . , N . Each line source/sink extends from the upper surface to the
lower surface of M̄ and represents a model of a vertical bore hole in the reservoir
extending from the upper to the lower surface of the reservoir and extracting or in-
jecting fluid along its whole length. This model is standard in the oil industry [3, 10].
The prescribed strength of each line source/sink then represents the details of the
controlled volumetric extraction mechanism in the bore hole along its length. The
two components of permeability, in the x- and z-directions, respectively, are given by

(2.1) D0Dx

(x
l
,
z

h

)
≥ Dm > 0, D0Dz

(x
l
,
z

h

)
≥ Dm > 0, (x, z) ∈ M̄,



UNSTEADY FLUID FLOW IN A THIN POROUS LAYER 1087

x

z

M

x = −l x = xi z = hz−(x/l)

n−(x)

x = l

∂M

n+(x)

z = hz+(x/l)

Fig. 2.1. Porous layer M ⊂ R
2, with impermeable boundary ∂M .

with Dx, Dz : M̄ �→ R+ such that

(2.2) Dx, Dz ∈ C1(M̄).

Here D0 > 0 is a permeability scale for the layer and Dm > 0 is a lower bound on
permeability in the layer. To avoid confusion, we emphasise here that subscripts x
and z attached to the functions Dx and Dz do not indicate partial differentiation but
merely denote the permeability direction.

We represent the fluid velocity field and pressure field at each point within the
layer by q = q(r, t) = (u(r, t), w(r, t)) and p = p(r, t), respectively, for each (r, t) ∈
M̄ × [0,∞). Here t ≥ 0 represents time. The equation of conservation of fluid mass
within the layer is then

(2.3) ρt + (ρu)x + (ρw)z =
N∑

i=1

ρsi

( z
h

) 1
l
δ

(
x− xi

l

)
, (x, z) ∈M, t ∈ (0,∞).

Here δ : R �→ R is the usual Dirac delta function, ρ = ρ(r, t) is the fluid density field
for (r, t) ∈ M̄ × [0,∞), and the line source/sink volumetric strengths are represented
by si :

[
z−
(

xi

l

)
, z+
(

xi

l

)] �→ R, i = 1, . . . , N . From practical considerations of the
employed volumetric extraction mechanisms in bore holes, it is reasonable to take

(2.4) si ∈ C
([
z−
(xi

l

)
, z+

(xi

l

)])
, i = 1, . . . , N.

The total volume flux per unit width from the ith line source/sink is then

(2.5) Qi =
∫ hz+(xi/l)

hz−(xi/l)

si

(
λ

h

)
dλ, i = 1, . . . , N.

Conservation of momentum in the fluid is accounted for through the D’Arcy equation
for flow in a porous media, giving

(2.6) u = −D0Dx

(x
l
,
z

h

)
px, w = −D0Dz

(x
l
,
z

h

)
(pz + ρg)

for all (x, z) ∈M , t ∈ (0,∞), where g is the acceleration due to gravity. The effect of
weak compressibility is accounted for through the equation of state,

(2.7) ρ(p) = ρ0(1 + ct(p− p0)),
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with ct > 0 being a constant isothermal expansion coefficient and ρ0 and p0 being
positive reference density and pressure, respectively. Now, for a weakly compressible
fluid, 0 < ctp0 � 1, and the weakly compressible model is obtained by replacing ρ(p)
by its dominant contribution from (2.7) in both of the equations of motion (2.3) and
(2.6). We obtain as our final model for the flow in the reservoir

ctpt + ux + wz =
N∑

i=1

si

( z
h

) 1
l
δ

(
x− xi

l

)
,(2.8)

u = −D0Dx

(x
l
,
z

h

)
px,(2.9)

w = −D0Dz

(x
l
,
z

h

)
(pz + ρ0g)(2.10)

for all (x, z) ∈ M , t ∈ (0,∞). The equations of motion (2.8)–(2.10) form the basis
for established models for weakly compressible flows in porous reservoirs [2], and we
will take (2.8)–(2.10) as the model for the flow in the porous reservoir throughout the
rest of the paper. We now set

(2.11) Q =
N∑

i=1

|Qi| (> 0).

The natural scales are then x ∼ l and z ∼ h, from the geometry of the porous layer,
while si ∼ Q/h, via (2.5). The continuity equation (2.8) then requires u ∼ Q/h and
w ∼ Q/l, while the momentum equation (2.9) requires p ∼ (lQ)/(hD0). We therefore
introduce the dimensionless variables,

(2.12) x = lx′, z = hz′, si =
Q

h
s′i, u =

Q

h
u′, w =

Q

l
w′, p =

(
lQ

hD0

)
p′, t =

ctl
2

D0
t′.

On substitution from (2.12) into (2.8)–(2.10) (and dropping primes for convenience)
we obtain the dimensionless equations of motion as

p̄t + ux + wz =
N∑

i=1

si(z)δ(x− xi),(2.13)

u = −Dx(x, z)p̄x,(2.14)

ε2w = −Dz(x, z)p̄z(2.15)

for all (x, z) ∈ M ′, t ∈ (0,∞). Here, p(x, z, t) = −σ̂z + p̄(x, z, t), with p̄ being the
dynamic fluid pressure, and the dimensionless parameters ε and σ̂ are given by ε = h/l
and σ̂ = h2ρ0gD0/(lQ). The values of the model parameters will vary depending
upon the details of the reservoir under consideration. However, for a typical field
scenario the values h ∼ 200 m, l ∼ 20,000 m, Q ∼ 2 m3/s, ct ∼ 1.45 × 10−9 m2/N,
p0 ∼ 2.76 × 107 N/m2, and D0 ∼ 10−10 m4/Ns may be considered as representative.
This gives a value for ctp0 ∼ 0.04, which is entirely consistent with the adoption of the
weakly compressible model proposed earlier. More significantly, the aspect ratio of a
typical reservoir gives ε ∼ 0.01 (and this may be as small as 10−3 for large reservoirs).
The dimensionless domain is now

M ′ = {(x, z) ∈ R
2 : x ∈ (−1, 1), z ∈ (z−(x), z+(x))},
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with closure M̄ ′ and boundary ∂M ′. The line source/sink locations are at xi ∈ (−1, 1),
i = 1, . . . , N . The volume flux condition (2.5) becomes

αi =
∫ z+(xi)

z−(xi)

si(μ) dμ, i = 1, . . . , N,

with αi = Qi/Q, and hence |αi| = |Qi|/Q ≤ 1, i = 1, . . . , N , and
∑N

i=1 |αi| =∑N
i=1 |Qi|/Q = 1, via (2.11). We next consider the boundary conditions. On the

boundary ∂M ′ the walls are impenetrable to the fluid in the porous layer. Thus

u(−1, z, t) = 0 for all z ∈ [z−(−1), z+(−1)], t ∈ (0,∞),(2.16)
u(1, z, t) = 0 for all z ∈ [z−(1), z+(1)], t ∈ (0,∞),(2.17)

w(x, z+(x), t) − z′+(x)u(x, z+(x), t) = 0 for all x ∈ (−1, 1), t ∈ (0,∞),(2.18)
w(x, z−(x), t) − z′−(x)u(x, z−(x), t) = 0 for all x ∈ (−1, 1), t ∈ (0,∞).(2.19)

Finally we have the initial condition

(2.20) p̄(x, z, 0) = p̄0(x, z) for all (x, z) ∈ M̄ ′,

with p̄0 ∈ C(M̄ ′) ∩ PC1(M̄ ′), where PC1(M̄ ′) represents the class of piecewise con-
tinuously differentiable functions on M̄ ′. The full problem for consideration is given
by (2.13)–(2.15), (2.16)–(2.20), which we will refer to as [IBVP]. To proceed it is
convenient to introduce di = {(x, z) ∈ M̄ ′ : x = xi, z ∈ (z−(xi), z+(xi))} ⊂ M̄ ′, for
each i = 1, . . . , N , and d =

⋃N
i=1 di. We require that a solution to [IBVP] has the

following regularity, which is classical in the framework of the Dirac delta function
formalism:

(i) p̄ ∈ C(M̄ ′ × [0,∞)) ∩C1((M̄ ′\d̄) × (0,∞)) ∩C2((M ′\d) × (0,∞)),
u ∈ C((M̄ ′\d̄) × (0,∞)) ∩ C1((M ′\d) × (0,∞)),
w ∈ C(M̄ ′ × (0,∞)) ∩ C1((M ′\d) × (0,∞));

(ii) limx→x±
i
p̄x and limx→x±

i
p̄z both exist uniformly for z ∈ [z−(xi), z+(xi)] at

each t ∈ (0,∞), i = 1, . . . , N ;

(iii) [p̄z]
x+

i

x−
i

= 0, [p̄x]x
+
i

x−
i

= −si(z)/Dx(xi, z) for all z ∈ [z−(xi), z+(xi)] at each

t ∈ (0,∞), i = 1, . . . , N .
We observe that (ii) requires, via (2.14), (2.15), that limx→x±

i
u and limx→x±

i
w both

exist uniformly for z ∈ [z−(xi), z+(xi)], and (iii) requires that

[u]x
+
i

x−
i

= si(z), [w]x
+
i

x−
i

= 0

for all z ∈ [z−(xi), z+(xi)] at each t ∈ (0,∞), i = 1, . . . , N . We now have the following
preliminary result concerning [IBVP].

Theorem 2.1. For each ε > 0, [IBVP] has a unique solution u,w, p̄ : M̄ ′ ×
[0,∞) �→ R. Moreover,

(2.21)
(∫∫

M̄ ′
p̄(x, z, t) dxdz

)
t

=
N∑

i=1

αi

for all t ∈ (0,∞).
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Proof. Existence and uniqueness follow via regularity (2.2) and (2.4), with (2.1),
on noting from (2.13)–(2.15) that [IBVP] is equivalent to the scalar initial boundary
value problem

p̄t −
{
(Dx(x, z)p̄x)x +

(
ε−2Dz(x, z)p̄z

)
z

}
=

N∑
i=1

si(z)δ(x− xi),(2.22)

(x, z) ∈M ′, t ∈ (0,∞),
p̄x(−1, z, t) = 0 for all z ∈ [z−(−1), z+(−1)], t ∈ (0,∞),
p̄x(1, z, t) = 0 for all z ∈ [z−(1), z+(1)], t ∈ (0,∞),

Dz(x, z+(x))p̄z(x, z+(x), t) − ε2z′+(x)Dx(x, z+(x))p̄x(x, z+(x), t) = 0
for all x ∈ (−1, 1), t ∈ (0,∞),

Dz(x, z−(x))p̄z(x, z−(x), t) − ε2z′−(x)Dx(x, z−(x))p̄x(x, z−(x), t) = 0
for all x ∈ (−1, 1), t ∈ (0,∞),

p̄(x, z, 0) = p̄0(x, z) for all (x, z) ∈ M̄ ′.

The partial differential equation (2.22) is linear and strongly parabolic, with boundary
conditions of nondegenerate (via (2.1)) weighted Neumann type, after which existence
and uniqueness follow from the classical theory in [7, Chapter 3]. Equation (2.21)
follows from an application of Green’s theorem on the plane to (2.22) in M̄ ′ on using
the associated boundary conditions and regularity in (i)–(iii).

The steady state problem associated with [IBVP] is

ûx + ŵz =
N∑

i=1

si(z)δ(x− xi), (x, z) ∈M ′,(2.23)

û = −Dx(x, z)p̂x, (x, z) ∈M ′,(2.24)

ε2ŵ = −Dz(x, z)p̂z, (x, z) ∈M ′,(2.25)
û(−1, z) = 0 for all z ∈ [z−(−1), z+(−1)],(2.26)
û(1, z) = 0 for all z ∈ [z−(1), z+(1)],(2.27)

ŵ(x, z+(x)) − z′+(x)û(x, z+(x)) = 0 for all x ∈ (−1, 1),(2.28)
ŵ(x, z−(x)) − z′−(x)û(x, z−(x)) = 0 for all x ∈ (−1, 1),(2.29)

which we will refer to as [SSP]. Corresponding to (i)–(iii), a solution to [SSP] has the
following regularity:

(si) p̂ ∈ C(M̄ ′) ∩ C1(M̄ ′\d̄) ∩ C2(M ′\d), û ∈ C(M̄ ′\d̄) ∩C1(M ′\d),
ŵ ∈ C(M̄ ′) ∩ C1(M ′\d);

(sii) limx→x±
i
p̂x and limx→x±

i
p̂z both exist uniformly for z ∈ [z−(xi), z+(xi)] for

each i = 1, . . . , N ;

(siii) [p̂z]
x+

i

x−
i

= 0, [p̂x]x
+
i

x−
i

= −si(z)/Dx(xi, z) for all z ∈ [z−(xi), z+(xi)] and each
i = 1, . . . , N .

As before, limx→x±
i
û and limx→x±

i
ŵ exist uniformly for z ∈ [z−(xi), z+(xi)], and

(2.30) [û]x
+
i

x−
i

= si(z), [ŵ]x
+
i

x−
i

= 0

for all z ∈ [z−(xi), z+(xi)] and for each i = 1, . . . , N . Again, following standard theory
for linear strongly elliptic weighted Neumann problems (see, for example, [7] or [17,
Chapters 8, 9]), we have the following result.
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Theorem 2.2. For each ε > 0, [SSP] has a unique (up to addition of a constant
in p̂) solution û, ŵ, p̂ : M̄ ′ �→ R if and only if

(2.31)
N∑

i=1

αi = 0.

In what follows we will assume that the specified flux constants αi, i = 1, . . . , N ,
satisfy condition (2.31). Now let ũ, w̃, p̃ : M̄ ′ × [0,∞) �→ R be defined by ũ = u − û,
w̃ = w − ŵ, p̃ = p̄− p̂. It then follows that ũ, w̃, and p̃ are solutions to the problem

p̃t −
{
(Dx(x, z)p̃x)x +

(
ε−2Dz(x, z)p̃z

)
z

}
= 0, (x, z) ∈M ′, t ∈ (0,∞),(2.32)

p̃x(−1, z, t) = 0 for all z ∈ [z−(−1), z+(−1)], t ∈ (0,∞),(2.33)
p̃x(1, z, t) = 0 for all z ∈ [z−(1), z+(1)], t ∈ (0,∞),(2.34)

Dz(x, z+(x))p̃z(x, z+(x), t) − ε2z′+(x)Dx(x, z+(x))p̃x(x, z+(x), t) = 0
for all x ∈ (−1, 1), t ∈ (0,∞),(2.35)

Dz(x, z−(x))p̃z(x, z−(x), t) − ε2z′−(x)Dx(x, z−(x))p̃x(x, z−(x), t) = 0
for all x ∈ (−1, 1), t ∈ (0,∞),(2.36)

p̃(x, z, 0) = p̄0(x, z) − p̂(x, z) = p̃0(x, z) for all (x, z) ∈ M̄ ′,(2.37)

with regularity

(2.38) p̃ ∈ C(M̄ ′ × [0,∞)) ∩ C1(M̄ ′ × (0,∞)) ∩C2(M ′ × (0,∞)),

after which

(2.39) ũ = −Dx(x, z)p̃x, w̃ = −ε−2Dz(x, z)p̃z , (x, z) ∈ M̄ ′ × (0,∞).

To fix the indeterminate constant in Theorem 2.2, we will take p̂ : M̄ ′ �→ R to be that
steady state which satisfies

(2.40)
∫∫

M̄ ′
p̂(x, z) dxdz =

∫∫
M̄ ′

p̄0(x, z) dxdz =: I0,

so that, via (2.37),

(2.41)
∫∫

M̄ ′
p̃0(x, z) dxdz = 0.

Now it follows from Theorem 2.1 that the strongly parabolic problem (2.32)–(2.39)
has a unique solution in M̄ ′ × [0,∞). We will now construct this solution. To this
end we first consider the following self-adjoint eigenvalue problem in M̄ ′:

(Dx(x, z)φx)x +
(
ε−2Dz(x, z)φz

)
z

+ λφ = 0, (x, z) ∈M ′,

φx(−1, z) = 0 for all z ∈ [z−(−1), z+(−1)],
φx(1, z) = 0 for all z ∈ [z−(1), z+(1)],

Dz(x, z+(x))φz(x, z+(x)) − ε2z′+(x)Dx(x, z+(x))φx(x, z+(x)) = 0 for all x ∈ (−1, 1),

Dz(x, z−(x))φz(x, z−(x)) − ε2z′−(x)Dx(x, z−(x))φx(x, z−(x)) = 0 for all x ∈ (−1, 1).

We will denote this eigenvalue problem by [EVP], with λ ∈ C being the eigenvalue
parameter. It follows from (2.1) that this is a regular, self-adjoint eigenvalue problem.
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It then follows from standard theory that the eigenvalues of [EVP] are all real and
given by λ = λj(ε), j = 0, 1, 2, . . . , with

(2.42) 0 = λ0(ε) < λ1(ε) < λ2(ε) < · · ·
and λj(ε) → +∞ as j → ∞. Each corresponding eigenspace is spanned by a single
eigenfunction φj : M̄ ′ �→ R, j = 0, 1, 2, . . . , with

(2.43) φ0(x, z, ε) = (meas(M̄ ′))−1/2 for all (x, z) ∈ M̄ ′,

and meas(M̄ ′) being the measure (area) of M̄ ′ ⊂ R2. Moreover,

〈φi, φj〉 =
∫∫

M̄ ′
φi(x, z, ε)φj(x, z, ε) dxdz = δij ,

for i, j = 0, 1, 2, . . . , and δij being the Kronecker delta symbol. Moreover, any function
ψ : M̄ ′ �→ R such that ψ ∈ C(M̄ ′) ∩ PC1(M̄ ′) and satisfies the same boundary
conditions on ∂M ′ as the set of eigenfunctions has the representation

(2.44) ψ(x, z) =
∞∑

r=0

ψr(ε)φr(x, z, ε), (x, z) ∈ M̄ ′,

with the convergence of the sum being uniform and absolute for (x, z) ∈ M̄ ′, where

(2.45) ψj(ε) = 〈ψ, φj〉 =
∫∫

M̄ ′
ψ(x, z)φj(x, z, ε) dxdz,

for j = 0, 1, 2, . . . (see, for example, [17, Chapters 8, 9]). It is now straightforward to
establish that the (unique) solution to (2.32)–(2.37) is given by

(2.46) p̃(x, z, t) =
∞∑

n=1

an(ε)e−λn(ε)tφn(x, z, ε), (x, z) ∈ M̄ ′, t ∈ [0,∞),

with a0(ε) = 0, via (2.37), (2.41), (2.43), (2.44), and (2.45), and

(2.47) an(ε) =
∫∫

M̄ ′
p̃0(u, v)φn(u, v, ε) du dv

for n = 1, 2, . . . . We observe immediately from (2.46), with (2.42), that p̃(x, z, t) → 0
as t → ∞, uniformly for all (x, z) ∈ M̄ ′, and also that p̃x(x, z, t), p̃z(x, z, t) → 0 as
t→ ∞, uniformly for all (x, z) ∈ M̄ ′. Thus, we have established the following result.

Theorem 2.3. Let αi, i = 1, . . . , N , be such that
∑N

i=1 αi = 0. Then for each
ε > 0, [IBVP] has a unique solution u,w, p̄ : M̄ ′ × [0,∞) �→ R given by

p̄(x, z, t) = p̂(x, z) + p̃(x, z, t),
u(x, z, t) = û(x, z) −Dx(x, z)p̃x(x, z, t),

w(x, z, t) = ŵ(x, z) − ε−2Dz(x, z)p̃z(x, z, t),

for all (x, z) ∈ M̄ ′ and t ∈ [0,∞). Here p̃ : M̄ ′× [0,∞) �→ R is given by (2.46), (2.47)
and û, ŵ, p̂ : M̄ ′ �→ R is that solution to [SSP] which satisfies (2.40). Moreover,

p̄(x, z, t) → p̂(x, z), u(x, z, t) → û(x, z), w(x, z, t) → ŵ(x, z) as t→ ∞
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uniformly for (x, z) ∈ M̄ ′.
We remark that since p̂ ∈ C(M̄ ′) ∩ PC1(M̄ ′) and the initial data for [IBVP]

p̄0 ∈ C(M̄ ′) ∩ PC1(M̄ ′), then Theorem 2.3 implies global asymptotic stability (up to
the addition of a constant to p̂) for [SSP] with respect to perturbations in C(M̄ ′) ∩
PC1(M̄ ′).

To complete the solution to the problem we are required to determine λn(ε) (> 0)
and its corresponding eigenfunction φn : M̄ ′ �→ R for each n = 1, 2, 3, . . . , together
with the steady state p̂, û, ŵ : M̄ ′ �→ R which satisfies the constraint (2.40). In the
next sections we focus attention on the study of [SSP] and [EVP] in turn.

In particular for a thin porous layer the parameter ε, which measures the aspect
ratio of the layer, is small, so that 0 < ε� 1. In the next two sections we will consider
the structure of the solutions to [SSP] and [EVP] in the asymptotic limit ε → 0, via
the method of matched asymptotic expansions.

3. Asymptotic solution to the steady state problem [SSP] as ε → 0. In
this section we develop the uniform asymptotic structure of the solution to the steady
state problem [SSP] (given by (2.23)–(2.29)) in the limit ε → 0, via the method
of matched asymptotic expansions. We recall that existence and uniqueness, for
each ε > 0, follows from Theorem 2.2, and following Theorem 2.3, we require the
solution of [SSP] that satisfies the constraint (2.40). Due to the initial scalings in the
nondimensionalization (2.12), we anticipate that û, ŵ, p̂ : M̄ ′ �→ R are such that

(3.1) û, ŵ, p̂ = O(1)

as ε→ 0, uniformly for (x, z) ∈ M̄ ′\⋃N
i=1 δ

ε
i = N̄ ′

ε, where δε
i is an O(ε) neighborhood

of d̄i, for each i = 1, . . . , N . Therefore, following (3.1), we introduce the outer region
(this being N̄ ′

ε) asymptotic expansions

(3.2)

û(x, z; ε) = û0(x, z) + εû1(x, z) +O(ε2),

ŵ(x, z; ε) = ŵ0(x, z) + εŵ1(x, z) +O(ε2),

p̂(x, z; ε) = p̂0(x, z) + εp̂1(x, z) +O(ε2),

as ε→ 0, uniformly for (x, z) ∈ N̄ ′
ε. We substitute from (3.2) into [SSP] and condition

(2.40). At leading order we obtain the following problem for û0, ŵ0, p̂0 : M̄ ′ �→ R:

û0x + ŵ0z =
N∑

i=1

si(z)δ(x− xi), (x, z) ∈M ′,(3.3)

û0 = −Dx(x, z)p̂0x, (x, z) ∈M ′,(3.4)
0 = −Dz(x, z)p̂0z, (x, z) ∈M ′,(3.5)

û0(−1, z) = 0, z ∈ [z−(−1), z+(−1)],(3.6)
û0(1, z) = 0, z ∈ [z−(1), z+(1)],(3.7)

ŵ0(x, z+(x)) − z′+(x)û0(x, z+(x)) = 0, x ∈ (−1, 1),(3.8)
ŵ0(x, z−(x)) − z′−(x)û0(x, z−(x)) = 0, x ∈ (−1, 1),(3.9) ∫∫

M̄ ′
p̂0(x, z) dxdz = I0.(3.10)

We now construct the solution of (3.3)–(3.10). As a consequence of (2.1), equation
(3.5) requires

(3.11) p̂0(x, z) = A(x), (x, z) ∈ M̄ ′,



1094 NEEDHAM, LANGDON, BUSSWELL, AND GILCHRIST

with A : [−1, 1] �→ R to be determined. Equation (3.4) then gives

(3.12) û0(x, z) = −Dx(x, z)A′(x), (x, z) ∈ M̄ ′,

and the boundary conditions (3.6) and (3.7) then require A′(−1) = A′(1) = 0. We
next substitute from (3.12) into (3.3), which becomes

(3.13) ŵ0z =
N∑

i=1

si(z)δ(x− xi) + [Dx(x, z)A′(x)]x, (x, z) ∈M ′.

A direct integration of (3.13), together with an application of (3.9), leads to

ŵ0(x, z) =
N∑

i=1

Fi(z)δ(x− xi)(3.14)

+
∫ z

z−(x)

[Dx(x, λ)A′(x)]x dλ− z′−(x)Dx(x, z−(x))A′(x), (x, z) ∈ M̄ ′,

where

(3.15) Fi(z) =
∫ z

z−(xi)

si(λ) dλ, z ∈ [z−(xi), z+(xi)],

for each i = 1, . . . , N . (Note that Fi : [z−(xi), z+(xi)] �→ R is such that Fi ∈
C1([z−(xi), z+(xi)]), for each i = 1, . . . , N .) It remains to apply the boundary condi-
tion (3.8). The application of (3.8) using (3.12) and (3.15) finally requires that∫ z+(x)

z−(x)

[Dx(x, λ)A′(x)]x dλ+ {z′+(x)Dx(x, z+(x)) − z′−(x)Dx(x, z−(x))}A′(x)

+
N∑

i=1

αiδ(x− xi) = 0, x ∈ (−1, 1).(3.16)

We now rewrite the first term on the left-hand side of (3.16) as∫ z+(x)

z−(x)

[Dx(x, λ)A′(x)]x dλ

=

(∫ z+(x)

z−(x)

Dx(x, λ)A′(x) dλ

)′
− {z′+(x)Dx(x, z+(x)) − z′−(x)Dx(x, z−(x))

}
A′(x)

= (D̄x(x)A′(x))′ − {z′+(x)Dx(x, z+(x)) − z′−(x)Dx(x, z−(x))
}
A′(x), x ∈ (−1, 1).

(3.17)

On substitution from (3.17) into (3.16) we obtain

(D̄x(x)A′(x))′ = −
N∑

i=1

αiδ(x− xi), x ∈ (−1, 1),

with

(3.18) D̄x(x) =
∫ z+(x)

z−(x)

Dx(x, λ) dλ, x ∈ [−1, 1],
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which represents the depth integrated permeability of the layer in the x-direction at
each location x ∈ [−1, 1]. We observe that D̄x : [−1, 1] �→ R is such that D̄x ∈
C1([−1, 1]) and D̄x(x) ≥ D̄0 > 0 for all x ∈ [−1, 1], via (2.1) and (2.2), for some
positive constant D̄0. Thus A : [−1, 1] �→ R is determined as the solution to the
linear, inhomogeneous, boundary value problem (hereafter referred to as [BVP]),

[D̄x(x)A′(x)]′ = −
N∑

i=1

αiδ(x − xi), x ∈ (−1, 1),

A′(−1) = A′(1) = 0,∫ 1

−1

(z+(x) − z−(x))A(x) dx = I0,

with the final constraint arising via (3.10) on using (3.11). We observe the following.
Remark 3.1. [BVP] has a unique solution if and only if

∑N
i=1 αi = 0.

This is in accord with condition (2.31) of Theorem 2.2. We now construct the
solution to [BVP] (under condition (2.31)). It is straightforward to establish that the
solution to [BVP] (with the usual Dirac delta function formalism) is given by

(3.19) A(x) =
∫ x

−1

S(λ)
D̄x(λ)

dλ+A0, x ∈ [−1, 1],

where here the function S : [−1, 1] �→ R is the step function, given by

(3.20) S(λ) = −
k∑

i=0

αi for all λ ∈ [xk, xk+1),

and for each k = 0, . . . , N , where we have defined α0 = 0, x0 = −1, xN+1 = 1. The
constant A0 ∈ R is given by

(3.21) A0 =
I0

meas(M̄ ′)
− 1

meas(M̄ ′)

∫ 1

−1

S(λ)meas(M̄ ′(λ))
D̄x(λ)

dλ,

where

meas(M̄ ′(λ)) =
∫ 1

λ

(z+(μ) − z−(μ)) dμ for all λ ∈ [−1, 1],

so that meas(M̄ ′(−1)) = meas(M̄ ′). We observe that A ∈ C([−1, 1]) ∩ PC2([−1, 1]),
and that A′(x+

j ) − A′(x−j ) = −αj/D̄x(xj) for each j = 1, . . . , N . We can now recon-
struct the solution to the leading order problem as

p̂0(x, z) = A(x), (x, z) ∈ M̄ ′,(3.22)

û0(x, z) =
−Dx(x, z)
D̄x(x)

S(x), (x, z) ∈ M̄ ′,(3.23)

ŵ0(x, z) = S(x)
∫ z

z−(x)

{
Dx(x, λ)
D̄x(x)

}
x

dλ− z′−(x)Dx(x, z−(x))S(x)
D̄x(x)

, (x, z) ∈ N̄ ′
ε,

(3.24)
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from (3.11), (3.12), (3.14), and (3.19). It follows from (3.22)–(3.24) that p̂0 ∈ C(M̄ ′)∩
C1(M̄ ′\d̄) ∩ C2(M ′\d), û0 ∈ C(M̄ ′\d̄) ∩C1(M ′\d), ŵ0 ∈ C(M̄ ′\d̄) ∩ C1(M ′\d), and

[p̂0z]
x+

i

x−
i

= 0,(3.25)

[p̂0x]x
+
i

x−
i

=
−αi

D̄x(xi)
,(3.26)

[û0]
x+

i

x−
i

=
Dx(xi, z)αi

D̄x(xi)
,(3.27)

[ŵ0]
x+

i

x−
i

=

{
z′−(xi)Dx(xi, z−(xi))

D̄x(xi)
−
∫ z

z−(xi)

[{
Dx(x, λ)
D̄x(x)

}
x

]
x=xi

dλ

}
αi(3.28)

for z ∈ [z−(xi), z+(xi)] and for each i = 1, . . . , N . We now proceed to O(ε). The
problem for û1, ŵ1, p̂1 : M̄ ′ �→ R is similar to the leading order problem and is not
repeated here. We obtain

p̂1(x, z) = B(x), (x, z) ∈ M̄ ′,(3.29)
û1(x, z) = −Dx(x, z)B′(x), (x, z) ∈ M̄ ′,

ŵ1(x, z) =
∫ z

z−(x)

[Dx(x, λ)B′(x)]x dλ− z′−(x)Dx(x, z−(x))B′(x), (x, z) ∈ M̄ ′,

where B : [−1, 1] �→ R is the solution to the boundary value problem

[D̄x(x)B′(x)]′ = 0, x ∈ (−1, 1),
B′(−1) = B′(1) = 0,∫ 1

−1

(z+(x) − z−(x))B(x) dx = 0.

The unique solution B ∈ C1([−1, 1]) ∩ C2((−1, 1)) is given by B(x) = 0 for all
x ∈ [−1, 1], and so p̂1(x, z) = û1(x, z) = ŵ1(x, z) = 0 for (x, z) ∈ M̄ ′, via (3.29). The
outer region asymptotic expansions are thus

û(x, z; ε) =
−Dx(x, z)
D̄x(x)

S(x) +O(ε2),(3.30)

ŵ(x, z; ε) = S(x)
∫ z

z−(x)

{
Dx(x, λ)
D̄x(x)

}
x

dλ− z′−(x)Dx(x, z−(x))S(x)
D̄x(x)

+O(ε2),(3.31)

p̂(x, z; ε) = A(x) +O(ε2),(3.32)

as ε→ 0, uniformly for (x, z) ∈ N̄ ′
ε, with A,S : [−1, 1] �→ R given by (3.19)–(3.21).

We now observe from (3.30)–(3.32), via (3.25)–(3.28), that all of the regularity
requirements in (si), together with the limit conditions (sii), (siii), and (2.30), are
not satisfied at x = xi for each z ∈ [z−(xi), z+(xi)], with i = 1, . . . , N (although the
integrated forms are satisfied). We conclude (as was anticipated earlier) that the outer
region asymptotic expansions (3.30)–(3.32) become nonuniform when (x, z) ∈ δε

i as
ε → 0, i = 1, . . . , N . To obtain a uniform asymptotic representation to the solution
to [SSP] when (x, z) ∈ δε

i as ε → 0, we must therefore introduce an inner region at
each line source/sink location x = xi, i = 1, . . . , N . We now consider the inner region
in the neighborhood of x = xi in detail. In the inner region, x = xi +O(ε), z = O(1),
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as ε → 0, with, from (3.30)–(3.32), û = O(1), ŵ = O(ε−1), p̂ = Ai + O(ε), as ε → 0,
with Ai = A(xi), i = 1, . . . , N . Thus, in the inner region we write

(3.33) x = xi + εX,

with X ∈ (−∞,∞) such that X = O(1) as ε→ 0, together with

(3.34) û = U, ŵ = ε−1W, p̂ = Ai + εP,

where U,W,P : (−∞,∞) × [z−(xi), z+(xi)] �→ R are such that U,W,P = O(1) as
ε → 0. We now substitute from (3.33), (3.34) into the full problem [SSP] ((2.23),
(2.24), (2.25), (2.28), (2.29), excluding conditions (2.26), (2.27) which lie outside the
inner region in the limit ε→ 0). The full problem in the inner region then becomes

UX +Wz = si(z)δ(X), (X, z) ∈ D(ε),(3.35)
U = −Dx(xi + εX, z)PX , (X, z) ∈ D(ε),(3.36)
W = −Dz(xi + εX, z)Pz, (X, z) ∈ D(ε),(3.37)

W − εz′+(xi + εX)U = 0, X ∈ (−∞,∞), z = z+(xi + εX),(3.38)
W − εz′−(xi + εX)U = 0, X ∈ (−∞,∞), z = z−(xi + εX),(3.39)

together with matching conditions to the outer region as |X | → ∞. Here

(3.40) D(ε) = {(X, z) ∈ R
2 : X ∈ (−∞,∞) and z ∈ (z−(xi + εX), z+(xi + εX))}.

We now introduce the inner region asymptotic expansions as

(3.41)
U(X, z; ε) = U0(X, z) +O(ε),
W (X, z; ε) = W0(X, z) +O(ε),
P (X, z; ε) = P0(X, z) +O(ε),

as ε→ 0, with (X, z) ∈ D̄(ε). On substitution from (3.41) into (3.35)–(3.40) we obtain
the leading order problem as

U0X +W0z = si(z)δ(X), (X, z) ∈ D(0),(3.42)

U0 = −D̃x(z)P0X , (X, z) ∈ D(0),(3.43)

W0 = −D̃z(z)P0z, (X, z) ∈ D(0),(3.44)

W0(X, zi
+) = 0, X ∈ (−∞,∞),(3.45)

W0(X, zi
−) = 0, X ∈ (−∞,∞).(3.46)

Here,

(3.47) D̃x(z) = Dx(xi, z), D̃z(z) = Dz(xi, z),

for all z ∈ [zi
−, z

i
+], with zi

− = z−(xi) and zi
+ = z+(xi). Also, D̄(0), via (3.40), is

now the unbounded region in the (X, z) plane contained between the coordinate lines
z = zi

− and z = zi
+; that is,

(3.48) D̄(0) = (−∞,∞) × [zi
−, z

i
+].

The leading order problem (3.42)–(3.46) is completed by applying the asymptotic
matching principle of Van Dyke [20]. It is straightforward to establish that matching
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of p̂ is sufficient, after which matching of û and ŵ follows automatically. We must
apply Van Dyke’s matching principle to the outer region asymptotic expansion for p̂
taken to O(ε), (3.32), with the inner region asymptotic expansion for p̂ taken to O(ε),
(3.34) and (3.41). The appropriate matching condition is readily determined as

(3.49) P0(X, z) = A±
i

′
X + o(1) as X → ±∞, uniformly for z ∈ [zi

−, z
i
+],

with

(3.50) A+
i

′
= A′(x+

i ) = −
∑i

j=0 αj

D̄x(xi)
, A−

i

′
= A′(x−i ) = −

∑i−1
j=0 αj

D̄x(xi)
, for i = 1, . . . , N,

via (3.19) and (3.20). Finally the regularity conditions (si)–(siii) with (2.30) require
the following:

(Ii) P0 ∈ C(D̄(0)) ∩ C1(D̄(0)\Ī) ∩ C2(D(0)\I), U0 ∈ C(D̄(0)\Ī) ∩ C1(D(0)\I),
W0 ∈ C(D̄(0)) ∩C1(D(0)\I), where I = {0} × (zi−, zi

+);
(Iii) limX→0± P0X and limX→0± P0z both exist uniformly for z ∈ [zi

−, z
i
+];

(Iiii) [P0z]0
+

0− = 0, [P0X ]0
+

0− = −si(z)/D̃x(z), [U0]0
+

0− = si(z), and [W0]0
+

0− = 0 for all
z ∈ [zi

−, z
i
+].

We can now eliminate U0 and W0, via (3.43) and (3.44), and obtain the following
strongly elliptic problem for P0, namely,

(D̃x(z)P0X)X + (D̃z(z)P0z)z = −si(z)δ(X), (X, z) ∈ D(0),(3.51)

P0z(X, z
i
+) = 0, X ∈ (−∞,∞),(3.52)

P0z(X, z
i
−) = 0, X ∈ (−∞,∞),(3.53)

P0(X, z) = A±
i

′
X + o(1), X → ±∞, uniformly for z ∈ [zi

−, z
i
+],(3.54)

together with (Ii)–(Iiii). The first step in obtaining the solution to (3.51)–(3.54) is to
consider the regular Sturm–Liouville eigenvalue problem,

(D̃z(z)ψz)z + λ̄D̃x(z)ψ = 0, z ∈ (zi
−, z

i
+),

ψz(zi
−) = ψz(zi

+) = 0,

which we refer to as [SL]. Here λ̄ ∈ C is the eigenvalue parameter. Classical Sturm–
Liouville theory (see, for example, [6, Chapters 7, 8]) determines that the set of
eigenvalues of [SL] is given by λ̄ = λ̄r ∈ R, r = 0, 1, 2, . . . , with 0 = λ̄0 < λ̄1 < λ̄2 <
λ̄3 < · · · , where λ̄r → +∞ as r → ∞. The corresponding normalized eigenfunctions
ψr : [zi−, zi

+] �→ R form an orthonormal set, so that

(3.55) 〈ψr, ψs〉 =
∫ zi

+

zi
−

D̃x(z)ψr(z)ψs(z) dz = δrs for r, s = 0, 1, 2, . . . .

The set of eigenfunctions of [SL] are complete on the interval [zi−, zi
+]. Completeness

allows us to write the solution to (3.51) with conditions (3.52), (3.53) as

(3.56) P0(X, z) =
{ ∑∞

n=0 χ
+
n (X)ψn(z), X > 0,∑∞

n=0 χ
−
n (X)ψn(z), X < 0,

with z ∈ [zi
−, z

i
+]. Substitution of (3.56) into (3.51) establishes that

(3.57)
χ+

n (X) = Aneλ̄1/2
n X +Bne−λ̄1/2

n X , X > 0,
χ−

n (X) = Dneλ̄1/2
n X + Cne−λ̄1/2

n X , X < 0,
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with An, Bn, Cn, Dn ∈ R constants, for n = 1, 2, . . . . With n = 0, we have

(3.58)
χ+

0 (X) = A0 +B0X, X > 0,
χ−

0 (X) = C0 +D0X, X < 0,

with A0, B0, C0, D0 ∈ R constants. At this stage we observe that

(3.59) ψ0(z) =

{∫ zi
+

zi
−

D̃x(s) ds

}−1/2

= Ψ0, z ∈ [zi
−, z

i
+],

with Ψ0 > 0. It then follows, via (3.56)–(3.59), that the boundary conditions (3.49)
are satisfied if and only if

(3.60)
An = 0, n = 0, 1, 2, . . . , B0 = A+

i

′
Ψ−1

0 ,

Cn = 0, n = 0, 1, 2, . . . , D0 = A−
i

′
Ψ−1

0 .

Next, across X = 0, continuity of P0, together with the condition [P0z]0
+

0− = 0 of (Iiii),
is satisfied if and only if, via (3.56)–(3.60),

(3.61) Bn = Dn, n = 1, 2, . . . .

Finally, it remains to satisfy the condition [P0X ]0
+

0− = −si(z)/D̃x(z) of (Iiii), which
requires, via (3.56)–(3.61), that

(3.62) (A+
i

′ −A−
i

′
) −

∞∑
n=1

2λ̄1/2
n Bnψn(z) =

−si(z)
D̃x(z)

, z ∈ [zi
−, z

i
+].

The completeness of the eigenfunctions ψn(z) (n = 0, 1, 2, . . .) on the interval [zi
−, z

i
+]

allows (3.62) to be satisfied uniquely, with, using (3.55),

A+
i

′ −A−
i

′
= −

∫ zi
+

zi
−
si(s) ds∫ zi

+

zi
−
D̃x(s) ds

= − αi

D̄x(xi)

via (3.47) and (3.18), and which is automatically satisfied using (3.50), and

(3.63) Bk =
1

2λ̄1/2
k

∫ zi
+

zi
−

si(s)ψk(s) ds, k = 1, 2, . . . .

Thus, the solution to (3.51)–(3.54), with regularity (Ii)–(Iiii), is given by

(3.64) P0(X, z) =

{
A+

i

′
X +

∑∞
n=1Bne−λ̄1/2

n Xψn(z), X > 0,
A−

i

′
X +

∑∞
n=1Bneλ̄1/2

n Xψn(z), X < 0,

with z ∈ [zi
−, z

i
+], and the coefficients Bn, n = 1, 2, . . . , given by (3.63). U0(X, z) and

W0(X, z) are now obtained directly from (3.43) and (3.44) as

U0(X, z) =

⎧⎨
⎩

−D̃x(z)
{
A+

i

′ −∑∞
n=1 λ̄

1/2
n Bne−λ̄1/2

n Xψn(z)
}
, X > 0,

−D̃x(z)
{
A−

i

′
+
∑∞

n=1 λ̄
1/2
n Bneλ̄1/2

n Xψn(z)
}
, X < 0,

(3.65)

W0(X, z) =

{
−D̃z(z)

∑∞
n=1Bne−λ̄1/2

n Xψ′
n(z), X > 0,

−D̃z(z)
∑∞

n=1Bneλ̄1/2
n Xψ′

n(z), X < 0,
(3.66)
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with z ∈ [zi
−, z

i
+]. The only remaining question is how to actually compute the

eigenvalues and corresponding eigenfunctions of [SL]. If D̃x, D̃z, are constant with
respect to z, then analytical solution of [SL] is trivial. More generally, since [SL] is
a regular Sturm–Liouville problem, numerical methods are straightforward and very
efficient and will not be discussed further here. The solution of the leading order
problem is now complete.

It is of interest to obtain the expression for the pressure at the location of the ith
line source/sink. From (3.34) and (3.41), this is given by p̂(xi, z) = Ai + εP0(0, z) +
O(ε2), for z ∈ [zi

−, z
i
+]. On using (3.64), this becomes

(3.67) p̂(xi, z) = Ai + ε

( ∞∑
n=1

Bnψn(z)

)
+O(ε2) for z ∈ [zi

−, z
i
+].

The pressure difference between the ith and jth line source/sinks is then

Δp̂ij(z) = p̂(xi, z) − p̂(xj , z)(3.68)

= (Ai −Aj) + ε

( ∞∑
n=1

[Bi
nψ

i
n(z) −Bj

nψ
j
n(z)]

)
+O(ε2)

for z ∈ [zi
−, z

i
+], with superscripts i and j distinguishing evaluation at the ith and jth

line source/sink, respectively. In (3.68), we recall that, via (3.19),

Ai −Aj = A(xi) −A(xj) =
∫ xi

xj

S(λ)
D̄x(λ)

dλ.

The asymptotic structure to the solution of [SSP] as ε → 0 is now complete.
Two minor extensions are worthy of consideration at this stage and are given in the
subsections that follow.

3.1. A line source/sink close to the boundary. In the above, the locations
of the line source/sinks xi ∈ (−1, 1), i = 1, . . . , N , are such that (x1 + 1), (1 − xN ),
and xi+1 − xi (i = 1, . . . , N − 1) remain positive and finite (O(1)) as ε → 0. In
this extension we consider the situation when x1 + 1 = O(ε) as ε → 0, so that the
line source/sink at x = x1 lies within O(ε) of the layer boundary at x = −1. The
structure of the outer region to [SSP] is unchanged. However, the inner region to
[SSP] at x = x1 now encompasses the boundary at x = −1, and so the leading order
problem in this inner region, when i = 1, is modified. To formalize this we write

(3.69) x1 = −1 + εσ̄,

with the constant σ̄ > 0. In terms of the inner coordinate X ,

(3.70) x = x1 + εX,

via (3.33). Thus, via (3.69) and (3.70), in the inner region, the line source/sink is
located at X = 0, while the layer boundary is located at X = −σ̄. Without repeating
details, the leading order problem in the inner region is now

U0X +W0z = s1(z)δ(X), (X, z) ∈ D(0),(3.71)

U0 = −D̃x(z)P0X , (X, z) ∈ D(0),(3.72)

W0 = −D̃z(z)P0z, (X, z) ∈ D(0),(3.73)

W0(X, z1
+) = 0, X ∈ (−σ̄,∞),(3.74)

W0(X, z1
−) = 0, X ∈ (−σ̄,∞),(3.75)
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where now D̄(0) is the unbounded region in the (X, z) plane contained inside the
coordinate lines z = z1

+, z = z1−, and X = −σ̄, so that

(3.76) D̄(0) = [−σ̄,∞) × [z1
−, z

1
+].

The leading order problem (3.71)–(3.75) is completed with the condition

U0(−σ̄, z) = 0, z ∈ [z1
−, z

1
+],(3.77)

P0(X, z) = A+
1

′
X + o(1), as X → +∞, uniformly for z ∈ [z1

−, z
1
+],(3.78)

with the latter being the matching condition to the outer region. The solution to
(3.71)–(3.78) can be constructed as before, to obtain

P0(X, z) =

⎧⎨
⎩
A+

1

′
X +

∑∞
n=1 B̄ne−λ̄1/2

n Xψn(z), X > 0,∑∞
n=1

B̄n

cosh[λ̄
1/2
n (X+σ̄)]

cosh λ̄1/2
n (X + σ̄)ψn(z), −σ̄ ≤ X < 0,

for z ∈ [z1−, z1
+], and with

(3.79) B̄n =
1

λ̄
1/2
n (1 + tanh(λ̄1/2

n σ̄))

∫ z1
+

z1
−

s1(s)ψn(s) ds, n = 1, 2, . . . .

Equations (3.72)–(3.73) then give the corresponding expressions for U0(X, z) and
W0(X, z). The pressure at the location of this first line source/sink is then given by

(3.80) p̂(x1, z) = A1 + ε

( ∞∑
n=1

B̄nψn(z)

)
+O(ε2)

for z ∈ [z1
−, z

1
+], with B̄n, n = 1, 2, . . . , as given in (3.79). The difference in the

expression for pressure at the wall close line source/sink (3.80), and at the interior
line source/sink (3.67), occurs in the expressions for the sequence of constants Bn,
(3.63), and B̄n, (3.79), n = 1, 2, . . . .

3.2. Two closely located line source/sinks. In this extension, we consider
the situation when the kth and (k+1)th line source/sinks are within O(ε) separation
of each other. With xk, xk+1 ∈ (−1, 1), we write xk+1 = xk + σ̃ε, with the constant
σ̃ > 0. In terms of the inner coordinate X , x = xk + εX , via (3.33). Thus both line
source/sinks at x = xk and x = xk+1 are located in the inner region at x = xk, with
their respective locations in this inner region being at X = 0 and X = σ̃. Without
repeating details, the leading order problem in the inner region is now

U0X +W0z = sk(z)δ(X) + sk+1(z)δ(X − σ̃), (X, z) ∈ D(0),(3.81)

U0 = −D̃x(z)P0X , (X, z) ∈ D(0),(3.82)

W0 = −D̃z(z)P0z, (X, z) ∈ D(0),(3.83)

W0(X, zk
+) = 0, X ∈ (−∞,∞),(3.84)

W0(X, zk
−) = 0, X ∈ (−∞,∞),(3.85)

P0(X, z) =

{
A+

k+1

′
(X − σ̃) + σ̃A−

k+1

′
+ o(1), X → +∞,

A−
k

′
X + o(1), X → −∞,

(3.86)

uniformly for z ∈ [zk
−, z

k
+],
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with D̄(0) as in (3.48) when i = k, and condition (3.86) being the appropriate match-
ing condition to the outer region. The solution to (3.81)–(3.86) can be constructed
as before, to obtain

P0(X, z) =

⎧⎪⎨
⎪⎩
A−

k

′
X +

∑∞
n=1 B̂neλ̄1/2

n Xψn(z), X < 0,
A−

k+1

′
X +

∑∞
n=1(B̂n cosh(λ̄1/2

n X) + D̂n sinh(λ̄1/2
n X))ψn(z), 0 < X < σ̃,

{σ̃A−
k+1

′
+A+

k+1

′
(X − σ̃)} +

∑∞
n=1 Ĉne−λ̄1/2

n (X−σ̃)ψn(z), X > σ̃,

(3.87)

with z ∈ [zk
−, z

k
+], and the coefficients

B̂n =
1

2λ̄1/2
n

{
1

[cosh(λ̄1/2
n σ̃) + sinh(λ̄1/2

n σ̃)]

∫ zk
+

zk
−

sk+1(s)ψn(s) ds+
∫ zk

+

zk
−

sk(s)ψn(s) ds

}
,

(3.88)

D̂n =
1

2λ̄1/2
n

{
1

[cosh(λ̄1/2
n σ̃) + sinh(λ̄1/2

n σ̃)]

∫ zk
+

zk
−

sk+1(s)ψn(s) ds−
∫ zk

+

zk
−

sk(s)ψn(s) ds

}
,

Ĉn =
1

2λ̄1/2
n

{∫ zk
+

zk
−

sk+1(s)ψn(s) ds+ [cosh(λ̄1/2
n σ̃) − sinh(λ̄1/2

n σ̃)]
∫ zk

+

zk
−

sk(s)ψn(s) ds

}
.

(3.89)

Equations (3.82)–(3.83) then give the corresponding expressions for W0(X, z) and
U0(X, z). (Note that D̃x(z) and D̃z(z) in (3.82), (3.83) are evaluated at x = xk.) The
pressures at the line source/sinks at x = xk and x = xk+1 are given by, via (3.87),

p̂(xk, z) = Ak + ε

( ∞∑
n=1

B̂nψn(z)

)
+O(ε2),

p̂(xk+1, z) = Ak + ε

(
σ̃A−

k+1

′
+

∞∑
n=1

Ĉnψn(z)

)
+O(ε2),

with B̂n and Ĉn, n = 1, 2, . . . , as given in (3.88) and (3.89). (Note in the above that
Ak + εσ̃A−

k+1

′ = Ak + εσ̃A+
k

′ +O(ε2) = Ak+1 +O(ε2).)
The asymptotic solution to [SSP] as ε → 0, uniformly for (x, z) ∈ M̄ ′, is now

complete. We now turn our attention to the eigenvalue problem [EVP].

4. Asymptotic solution to the eigenvalue problem [EVP] as ε → 0. In
this section we develop the asymptotic solution to the eigenvalue problem [EVP] as
ε → 0. We first employ the theory developed by Ramm [16] to establish that the set
of eigenvalues to [EVP], (2.42), with ε > 0, splits into two disjoint subsets as ε→ 0+,
denoted by S− =

{
λ−0 (ε), λ−1 (ε), λ−2 (ε), . . .

}
and S+ =

{
λ+

1 (ε), λ+
2 (ε), λ+

3 (ε), . . .
}
, with

0 = λ−0 (ε) < λ−1 (ε) < · · · and 0 < λ+
1 (ε) < λ+

2 (ε) < · · · . In particular,

(4.1) λ−n (ε) = O(n2), λ+
n (ε) = O(n2ε−2)

as ε→ 0+, uniformly for n = 1, 2, . . . . We will focus attention on the eigenvalues and
corresponding eigenfunctions in the set S−, so that in [EVP] we have λ(ε) = O(1) as
ε→ 0+, via (4.1). Thus we expand φ : M̄ ′ �→ R in the form

(4.2) φ(x, z; ε) = φ̃(x, z) + ε2φ̂(x, z) + o(ε2) as ε→ 0+,
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uniformly for (x, z) ∈ M̄ ′, while we expand

(4.3) λ(ε) = λ̃+ ε2λ̂+ o(ε2) as ε→ 0+.

On substitution from (4.2) and (4.3) into [EVP], we obtain the leading order problem(
Dz(x, z)φ̃z

)
z

= 0, (x, z) ∈M ′,(4.4)

φ̃x(−1, z) = 0, z ∈ [z−(−1), z+(−1)],(4.5)

φ̃x(1, z) = 0, z ∈ [z−(1), z+(1)],(4.6)

φ̃z(x, z+(x)) = 0, x ∈ (−1, 1),(4.7)

φ̃z(x, z−(x)) = 0, x ∈ (−1, 1).(4.8)

A direct integration of (4.4) gives

(4.9) φ̃z(x, z) =
B̃(x)

Dz(x, z)
, (x, z) ∈ M̄ ′,

while (4.7) and (4.8) require B̃(x) = 0 for all x ∈ [−1, 1]. Hence, from (4.9),

(4.10) φ̃(x, z) = Ã(x), (x, z) ∈ M̄ ′,

with Ã : [−1, 1] �→ R such that Ã ∈ C1([−1, 1]) ∩ C2((−1, 1)). Conditions (4.5) and
(4.6) then require Ã′(−1) = Ã′(1) = 0. At O(ε2) we obtain the problem(

Dz(x, z)φ̂z

)
z

= −λ̃Ã(x) −
(
Dx(x, z)Ã′(x)

)
x
, (x, z) ∈M ′,(4.11)

φ̂x(−1, z) = 0, z ∈ [z−(−1), z+(−1)],(4.12)

φ̂x(1, z) = 0, z ∈ [z−(1), z+(1)],(4.13)

Dz(x, z+(x))φ̂z(x, z+(x)) = z′+(x)Dx(x, z+(x))Ã′(x), x ∈ (−1, 1),(4.14)

Dz(x, z−(x))φ̂z(x, z−(x)) = z′−(x)Dx(x, z−(x))Ã′(x), x ∈ (−1, 1).(4.15)

The solvability requirement on the inhomogeneous boundary value problem (4.11)–
(4.15) will provide the ordinary differential equation which must be satisfied by Ã(x),
x ∈ (−1, 1). On integrating (4.11) with respect to z (with x ∈ (−1, 1) fixed) between
z = z−(x) and z = z+(x), we obtain

Dz(x, z+(x))φ̂z(x, z+(x)) −Dz(x, z−(x))φ̂z(x, z−(x)) = −λ̃Ã(x)(z+(x) − z−(x))

− (D̄x(x)Ã′(x))′ + [z′+(x)Dx(x, z+(x)) − z′−(x)Dx(x, z−(x))]Ã′(x)(4.16)

for all x ∈ (−1, 1). We next substitute into the left-hand side of (4.16) from (4.14)
and (4.15), which, after cancellation, results in the ordinary differential equation

(4.17) (D̄x(x)Ã′(x))′ + λ̃(z+(x) − z−(x))Ã(x) = 0, x ∈ (−1, 1).

Thus Ã : [−1, 1] �→ R and λ̃ ∈ R satisfy the regular Sturm–Liouville eigenvalue
problem (which we denote hereafter by [SLP]),

(D̄x(x)Ã′(x))′ + λ̃h(x)Ã(x) = 0, x ∈ (−1, 1),

Ã′(−1) = Ã′(1) = 0,
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with D̄x(x) as defined in (3.18) and h(x) = z+(x) − z−(x), x ∈ [−1, 1]. Now, the
classical Sturm–Liouville theory (see, for example, [6, Chapters 7, 8]) determines that
the set of eigenvalues of [SLP] is given by λ̃ = λ̃r, r = 0, 1, 2, . . . , with

(4.18) 0 = λ̃0 < λ̃1 < λ̃2 < · · · and λ̃r = O(r2) as r → ∞.

We remark also that [SLP] is identical in structure to the eigenvalue problem [SL]
considered in section 3. Corresponding to each eigenvalue λ̃r (r = 0, 1, 2, . . .), there
is a unique normalized eigenfunction Ãr : [−1, 1] �→ R such that

(4.19)
∫ 1

−1

h(x)Ãi(x)Ãj(x) dx = δij for i, j = 0, 1, 2, . . . .

We note that Ã0(x) = {∫ 1

−1 h(s) ds}−1/2 = (meas(M̄ ′))−1/2 for all x ∈ [−1, 1]. Thus,
we have established for [EVP], via (4.2), (4.3), (4.10), that λ−r (ε) = λ̃r + O(ε2)
as ε → 0, uniformly for r = 1, 2, . . . , with corresponding normalized eigenfunction
φ−r (x, z; ε) = Ãr(x) + O(ε2) as ε→ 0, uniformly for (x, z) ∈ M̄ ′.

We can now use the above theory to obtain the following expression for p̃ :
M̄ ′ × [0,∞) �→ R, via (2.46) and (2.47):

(4.20) p̃(x, z, t) =
∞∑

r=1

cre−λ̃rtÃr(x) + O(ε2e−λ̃1t, e−t/ε2) as ε→ 0,

uniformly for (x, z, t) ∈ M̄ ′ × [δ,∞), for any δ > 0. Here cr, r = 1, 2, . . . , are given by

(4.21) cr =
∫∫

M̄ ′
p̃0(u, v)Ãr(u) du dv, r = 1, 2, . . . .

We observe from (4.20) that

(4.22) p̃(x, z, t) ∼ (c1Ã1(x) +O(ε2))e−λ̃1t

as t → ∞, uniformly for (x, z) ∈ M̄ ′. Thus, the solution to [IBVP] approaches
the solution to [SSP] as t → ∞ through terms exponentially small in t as t → ∞.
The timescale for relaxation to the steady state is then ts ∼ (λ̃1)−1 in dimensionless
variables, giving the dimensional relaxation timescale as tds ∼ ctl

2/(D0λ̃1), via (2.12).

5. The case of disparate permeabilities. In the previous sections, the theory
has been developed for the situation when the permeability scale is comparable in both
the x-direction and the z-direction. In some applications, this is not always the case,
when the permeability in the z-direction is much weaker than that in the x-direction.
In this case (2.1) should be replaced by

Dx
0Dx

(x
l
,
z

h

)
≥ Dm > 0, Dz

0Dz

(x
l
,
z

h

)
≥ Dm > 0,

for (x, z) ∈ M̄ , with Dx
0 > 0 being the permeability scale in the x-direction and

Dz
0 > 0 being the permeability scale in the z-direction, and now

(5.1) 0 < δ =
Dz

0

Dx
0

� 1.

For such reservoirs δ is typically of O(10−1). We now follow the same nondimension-
alization as before, via (2.12), with Dx

0 replacing D0. The resulting full dimensionless
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problem is identical to [IBVP], except with ε replaced by ε̃, where ε̃ = εδ−1/2. Thus
all of the previous theory carries over to this situation, on simply replacing ε by ε̃. In
particular, the asymptotic theory as ε→ 0 is now replaced by ε̃→ 0, and so requires

(5.2) 0 < ε̃� 1,

which, with (5.1), is equivalent to 0 < ε� δ1/2 � 1, and with typically ε2 ∼ O(10−4)
and δ ∼ O(10−1), then this ordering is satisfied. It is worth noting here that for
porous layers in which ε = O(1) and δ � 1, then ε̃ = εδ−1/2 � 1, so (5.2) is again
satisfied, and the asymptotic theory developed before is again applicable.

6. The pseudosteady state. In this section we consider the situation when
the specified flux constants αi, i = 1, . . . , N , do not satisfy the condition (2.31); that
is, when

∑N
i=1 αi = αT �= 0. In this case we introduce an associated pseudosteady

state problem to [IBVP]. This corresponds to the steady state problem [SSP] ((2.23)–
(2.30)), except that now (2.23) is modified to

ûx + ŵz =
N∑

i=1

si(z)δ(x− xi) − α̃T , (x, z) ∈M ′,

with the constant α̃T given by α̃T = αT /meas(M̄ ′). The result corresponding to
Theorem 2.2 is now, with the pseudosteady state problem referred to as [PSSP], the
following.

Theorem 6.1. For each ε > 0, [PSSP] has a unique (up to addition of a constant
in p̂) solution û, ŵ, p̂ : M̄ ′ �→ R.

Again, we fix the indeterminate constant in [PSSP] to be that pseudosteady state
which satisfies the condition (2.40). The result corresponding to Theorem 2.3 is now
as follows.

Theorem 6.2. For each ε > 0, [IBVP] has a unique solution u,w, p̄ : M̄ ′ ×
[0,∞) �→ R given by

p̄(x, z, t) = α̃T t+ p̂(x, z) + p̃(x, z, t),
u(x, z, t) = û(x, z) −Dx(x, z)p̃x(x, z, t),

w(x, z, t) = ŵ(x, z) − ε−2Dz(x, z)p̃z(x, z, t),

for all (x, z) ∈ M̄ ′ and t ∈ [0,∞). Here p̃ : M̄ ′× [0,∞) �→ R is given by (2.46), (2.47),
and û, ŵ, p̂ : M̄ ′ �→ R is that solution to [PSSP] which satisfies (2.40). Moreover,

p̄(x, z, t) = α̃T t+ p̂(x, z) +O(e−λ1(ε)t),

u(x, z, t) = û(x, z) +O(e−λ1(ε)t),

w(x, z, t) = ŵ(x, z) +O(e−λ1(ε)t),

as t→ ∞, uniformly for (x, z) ∈ M̄ ′.
We remark that since p̂ ∈ C(M̄ ′) ∩ PC1(M̄ ′) and the initial data for [IBVP]

p̄0 ∈ C(M̄ ′) ∩ PC1(M̄ ′), then Theorem 6.2 implies global asymptotic stability (up to
the addition of a constant to p̂) for the pseudosteady state to [IBVP] with respect to
perturbations in C(M̄ ′) ∩ PC1(M̄ ′).

We now explore the structure of the solution to [PSSP] as ε → 0. This involves
only minor adjustments to the structure developed in section 3 for the solution to
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[SSP]. Again the outer region asymptotic expansions are given by

û(x, z; ε) =
−Dx(x, z)
D̄x(x)

{S(x) + α̃TH(x)} +O(ε2),

ŵ(x, z; ε) = S(x)
∫ z

z−(x)

{
Dx(x, λ)
D̄x(x)

}
x

dλ

− z′−(x)Dx(x, z−(x))S(x)
D̄x(x)

− α̃T (z − z−(x)) +O(ε2),

p̂(x, z; ε) = A(x) +O(ε2),(6.1)

as ε → 0, uniformly for (x, z) ∈ N̄ ′
ε. Here, as before, S : [−1, 1] �→ R is as given by

(3.20), but now A : [−1, 1] �→ R is the unique solution to the linear inhomogeneous
boundary value problem,

[D̄x(x)A′(x)]′ = −
N∑

i=1

αiδ(x− xi) + α̃T (z+(x) − z−(x)), x ∈ (−1, 1),(6.2)

A′(−1) = A′(1) = 0,(6.3) ∫ 1

−1

(z+(x) − z−(x))A(x) dx = I0,(6.4)

with H : [−1, 1] �→ R defined by

(6.5) H(x) =
∫ x

−1

(z+(λ) − z−(λ)) dλ, x ∈ [−1, 1].

The solution to (6.2)–(6.4) is readily obtained as

(6.6) A(x) =
∫ x

−1

[S(λ) + α̃TH(λ)]
D̄x(λ)

dλ+A0, x ∈ [−1, 1],

with the constant A0 given by

(6.7) A0 =
I0

meas(M̄ ′)
− 1

meas(M̄ ′)

∫ 1

−1

[S(λ) + α̃TH(λ)]
D̄x(λ)

meas(M̄ ′(λ)) dλ.

Thus we now have

Ai = A(xi) =
∫ xi

−1

[S(λ) + α̃TH(λ)]
D̄x(λ)

dλ+A0,(6.8)

A+
i

′
= A′(x+

i ) = −
∑i

j=0 αj

D̄x(xi)
+
α̃TH(xi)
D̄x(xi)

,(6.9)

A−
i

′
= A′(x−i ) = −

∑i−1
j=0 αj

D̄x(xi)
+
α̃TH(xi)
D̄x(xi)

,(6.10)

each for i = 1, . . . , N . The details of the inner regions are precisely as before in
section 3, but now Ai and A±

i

′
are given by (6.8)–(6.10). The modifications are now

complete.
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7. An example. We finally apply the theory developed in the previous sections
to a simple situation. We consider a rectangular porous layer, with z±(x) = ±1/2,
x ∈ [−1, 1], with the permeability of the layer in the x-direction independent of x, so
that Dx(x, z) = Dx(z), (x, z) ∈ M̄ ′. Thus,

D̄x(x) =
∫ 1/2

−1/2

Dx(z) dz = D̄x (> 0), x ∈ [−1, 1],

with D̄x a constant. We include a single source/sink at x = x1 = xs ∈ (−1, 1), with
normalized flux constant α = α1 = αs = ±1, with −1 for extraction and +1 for
injection. We take the initial pressure field to be uniform, so that

(7.1) p̄0(x, z) = p̄0, (x, z) ∈ M̄ ′,

with p̄0 a constant. The pressure field in the porous layer is then given by

(7.2) p̄(x, z, t; ε) =
1
2
αst+A(x) + c1Ã1(x)e−λ̃1t +O(ε, e−λ̃2t, ε2e−λ̃1t, e−t/ε2),

as ε → 0, uniformly for (x, z, t) ∈ M̄ ′ × [δ,∞) (for any δ > 0), via Theorem 6.2,
together with (6.1), (3.34), (3.41), and (4.20)–(4.22). From (4.17)–(4.19),

(7.3) λ̃1 =
1
4
D̄xπ

2, λ̃2 = D̄xπ
2, Ã1(x) = cos

1
2
π(x + 1), x ∈ [−1, 1],

with, via (4.21), (7.1), and (6.1),

(7.4) c1 = −
∫ 1

−1

A(λ) cos
1
2
π(λ + 1) dλ.

It also follows from (6.2)–(6.7) that

(7.5) A(x) =
{ αs

4D̄x
(x+ 1)2 +A0, x ∈ [−1, xs),

αs

4D̄x
(x+ 1)2 − αs

D̄x
(x− xs) +A0, x ∈ [xs, 1],

with A0 = p̄0 − αs

12D̄x
(1 + 6xs − 3x2

s). The pressure at the line source/sink is thus

p̄(xs, z, t; ε) =
1
2
αst+A(xs) + c1Ã1(xs)e−λ̃1t +O(ε, e−λ̃2t, ε2e−λ̃1t, e−t/ε2),

from which it follows, via (7.3)–(7.5), that

p̄(xs, z, t; ε) =
1
2
αst+ p̄0 +

αs

6D̄x
(1 + 3x2

s) + c1e−
D̄xπ2

4 t cos
1
2
π(xs + 1)(7.6)

+O

(
ε, e−D̄xπ2t, ε2e−

D̄xπ2

4 t, e−t/ε2
)

as ε→ 0, uniformly for (z, t) ∈ [−1/2, 1/2]× [δ,∞). To obtain the correction at O(ε)
to (7.2), we note that a composite expansion must first be obtained using the inner
and outer expansions for p̄, but this is not necessary at leading order. As t → ∞,
(7.6) gives

(7.7) p̄(xs, z, t; ε) ∼ p̄0 +
1
2
αs

[
t+

1
3D̄x

(1 + 3x2
s)
]
.
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Finally, denoting the dimensionless atmospheric pressure by p̄a, then with the initial
layer pressure p̄0 � p̄a, we may use (7.7) to obtain the time span during which the
single well is self-producing at the specified extraction rate. With an extraction well,
αs = −1 in (7.7), and the time limit of self-production is t = tc, where

(7.8) p̄(xs, z, tc; ε) = p̄a.

On using (7.7) in (7.8), we obtain

(7.9) tc = 2(p̄0 − p̄a) − 1
3D̄x

(1 + 3x2
s).

It follows from (7.9) that tc is optimized by locating the extraction well at x = xs = 0,
that is, at the center of the porous layer as should be expected due to the symmetry
in this simple example. The point is that, in less symmetrical examples, optimization
can be achieved with little more effort through the corresponding version of (7.9),
which is still readily available. In dimensional terms, (7.9) becomes, via (2.12),

tdc =
act
Q

(pd
0 − pa) − hct

3D̄d
x

(l2 + 3xd
s

2
),

with tdc the dimensional self-extraction time, a = 2hl the cross-sectional area of the
porous layer, Q the volumetric extraction rate per unit width, pd

0 the dimensional
initial layer pressure, pa the dimensional atmospheric pressure, D̄d

x the dimensional
depth integrated permeability in the x-direction, and xd

s the dimensional location of
the extraction well.

8. Conclusions. In this paper we have considered the unsteady flow of a weakly
compressible fluid in a horizontal layer of an inhomogeneous and anisotropic porous
medium with variable upper and lower boundaries, in the presence of line sources and
sinks. We have derived a strongly parabolic linear initial boundary value problem
for the dynamic fluid pressure and shown that this problem has a unique solution.
We have then constructed the solution to this problem when the layer aspect ratio
0 < ε� 1, via the method of matched asymptotic expansions. First, we have derived
a matched asymptotic solution to the steady state problem, under the constraint that
the sum of the total volume fluxes at the wells is zero. (This constraint is removed in
section 6, leading to a pseudosteady state problem whose solution is almost identical
in structure.) In the outer region this has been constructed directly, with the solution
given by (3.30)–(3.32). In the inner region the solution is given by (3.63)–(3.66),
together with (3.34) and (3.41). This solution is written in terms of the eigenvalues
and eigenvectors of a regular Sturm–Liouville eigenvalue problem [SL], which can
be solved analytically in the case that the permeability at each line source/sink is
constant in the vertical direction, but whose numerical solution is straightforward in
the more general case. The pressure at any line source or sink is then given by (3.67).

By subtracting the solution of the steady state problem from the solution of the
initial value problem, we have then constructed a strongly parabolic homogeneous
problem with no discontinuities across the line sources and sinks, whose solution can
be written in terms of the eigenvalues and eigenfunctions of a regular self-adjoint
eigenvalue problem. Asymptotic solution of this reduces to solution of a regular
Sturm–Liouville eigenvalue problem identical in structure to [SL]. It has further been
shown, via (4.20)–(4.22), that the solution of the initial value problem approaches the
solution of the steady state problem through terms exponentially small with respect
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to time t as t → ∞. Generalizations to cases where a line source or sink is near
a boundary wall, where line sources and sinks are not well spaced, and to the case
of disparate permeabilities have also been considered, in sections 3.1, 3.2, and 5,
respectively. An example demonstrating an application of the theory to a simple
situation is provided in section 7.

We finally remark that since the initial boundary value problem is solved for
a general C1 initial condition, the effect of time dependent transient effects due to
temporal changes in the well discharge rates can easily be accounted for.
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