
Combinatorial Optimization of Matrix-Vector Multiplication for

Finite Element Assembly∗

Michael M. Wolf† Michael T. Heath†

February 5, 2009

Abstract

It has been shown that combinatorial optimization of matrix-vector multiplication can lead to faster
evaluation of finite element stiffness matrices. Based on a graph model characterizing relationships
between rows, an efficient set of operations can be generated to perform matrix-vector multiplication for
this problem. We improve the graph model by extending the set of binary row relationships and solve
this combinatorial optimization problem optimally for the binary row relationships implemented, yielding
significantly improved results over previous published graph models. We also extend the representation
by using hypergraphs to model more complicated row relationships, expressing a three-row relationship
with a three-vertex hyperedge, for example. Our initial greedy algorithm for this hypergraph model has
yielded significantly better results than the graph model for many matrices.

1 Introduction

1.1 Finite Element Compilers

The motivation behind this work comes from “compilers” for finite element methods in the FEniCS project
[5, 6, 8, 7]. The construction of finite element stiffness matrices for large unstructured problems can be costly
in terms of execution time, especially for higher-order methods. The standard algorithm for constructing local
stiffness matrices through naive integration is suboptimal in operation count and can be greatly improved
by creating a “compiler” for the construction of these matrices. This “compiler” identifies a reduced set of
operations to use in the construction of these matrices for a given equation and set of basis functions [6, 8].
Optimization of local stiffness matrix assembly is important because local stiffness matrices are generated
for each element. Thus, a billion element finite element problem yields a billion local stiffness matrices.
Kirby, et al. modify the local stiffness matrix assembly algorithm and introduce a tensor formulation (see
subsection 1.2) that makes it easier to identify redundant operations [6]. In the software project FErari, they
implement methods based on this formulation to reduce these redundant operations and generate a reduced
set of instructions to assemble the local stiffness matrices [6, 8].

1.2 Local Stiffness Matrix Tensor Formulation

The entries in a local stiffness matrix for a given element (see appendix for derivation of an example) can
be written as the Frobenius product of a tensor and a matrix (Ki,j : Ge)[6]. Let e be a given element in
the domain with coordinates ξ and ê be the reference element with coordinates ξ̂. For the simple example
∗This work was supported by the DOE CSGF, DE-FG02-97ER25308
†Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin, Urbana, IL, 61801

(mmwolf@uiuc.edu, heath@uiuc.edu).

1



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

below, we assume that the map from the reference element is affine. In this tensor formulation of the 2D
Laplace equation, for example, the local stiffness matrix Se is given by

Sei,j =
2∑

m=1

2∑
n=1

Ge
m,nKi,j,m,n = Ki,j : Ge,

where

Ge =


[
det(J)

(
∂ξ̂1
∂ξ1

∂ξ̂1
∂ξ1

+ ∂ξ̂1
∂ξ2

∂ξ̂1
∂ξ2

)]
e

[
det(J)

(
∂ξ̂1
∂ξ1

∂ξ̂2
∂ξ1

+ ∂ξ̂1
∂ξ2

∂ξ̂2
∂ξ2

)]
e[

det(J)
(
∂ξ̂2
∂ξ1

∂ξ̂1
∂ξ1

+ ∂ξ̂2
∂ξ2

∂ξ̂1
∂ξ2

)]
e

[
det(J)

(
∂ξ̂2
∂ξ1

∂ξ̂2
∂ξ1

+ ∂ξ̂2
∂ξ2

∂ξ̂2
∂ξ2

)]
e


is an element-dependent matrix, K is an element-independent tensor with entries

Ki,j =

 (∂φi

∂ξ̂1
,
∂φj

∂ξ̂1

)
ê

(
∂φi

∂ξ̂1
,
∂φj

∂ξ̂2

)
ê(

∂φi

∂ξ̂2
,
∂φj

∂ξ̂1

)
ê

(
∂φi

∂ξ̂2
,
∂φj

∂ξ̂2

)
ê

 ,
and

J =

 ∂ξ1
∂ξ̂1

∂ξ1
∂ξ̂2

∂ξ2
∂ξ̂1

∂ξ2
∂ξ̂2


is the Jacobian of the affine mapping. For this 2D problem, the matrices Ge and Ki,j have s = 2 rows
and columns. For a 3D problem, these matrices would have s = 3 rows and columns. The number of basis
functions needed for the 2D problem when using order p basis functions is q = (p + 1)(p + 2)/2, which
means the tensor K has ((p + 1)(p + 2)/2)2 entries [4]. The number of basis functions needed for the 3D
problem when using order p basis functions is q = (p + 1)(p + 2)(p + 3)/6, which means the tensor K has
((p+ 1)(p+ 2)(p+ 3)/6)2 entries [4].

1.3 Matrix-Vector Multiplication

We can write the above local stiffness matrix Se as a vector y (such that yqi+j = Sei,j). It follows that we can
rewrite the above tensor stiffness matrix formulation as a matrix-vector multiplication operation y = Axe,
where A is an element-independent matrix such that Aqi+j,sk+l = Ki,j,k,l and xe is an element-dependent
vector such that xesk+l = Ge

kl. Throughout this paper, we use the convention that ri is the vector whose
transpose is the ith row of the matrix A, x is the vector to be multiplied, and y is the vector resulting from
matrix-vector multiplication. Thus, each entry in the vector y is the result of the inner product

yqi+j = Sei,j = A(qi+j,∗)xe = rTqi+jx
e.

For the 2D Laplace equation, for example, each entry yqi+j is the inner product of the vectors

AT
(qi+j,∗) =



(
∂φi

∂ξ̂1
,
∂φj

∂ξ̂1

)
ê(

∂φi

∂ξ̂1
,
∂φj

∂ξ̂2

)
ê(

∂φi

∂ξ̂2
,
∂φj

∂ξ̂1

)
ê(

∂φi

∂ξ̂2
,
∂φj

∂ξ̂2

)
ê


, xe = det(J)



∂ξ̂1
∂ξ1

∂ξ̂1
∂ξ1

+ ∂ξ̂1
∂ξ2

∂ξ̂1
∂ξ2

∂ξ̂1
∂ξ1

∂ξ̂2
∂ξ1

+ ∂ξ̂1
∂ξ2

∂ξ̂2
∂ξ2

∂ξ̂2
∂ξ1

∂ξ̂1
∂ξ1

+ ∂ξ̂2
∂ξ2

∂ξ̂1
∂ξ2

∂ξ̂2
∂ξ1

∂ξ̂2
∂ξ1

+ ∂ξ̂2
∂ξ2

∂ξ̂2
∂ξ2



e

.

Thus, optimizing the construction of the finite element local stiffness matrices can be generalized to optimiz-
ing matrix-vector multiplication. For the 2D Laplace equation, we see above that the vector x has 4 entries
(corresponding to the 4 elements in the 2-by-2 matrix Ge) and matrix A has four columns (corresponding

2



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

to the 4 entries in the tensor blocks Ki,j). For order p basis functions, matrix A has ((p+ 1)(p+ 2)/2)2 rows
(corresponding to the number of matrices Ki,j in K). However, for this problem, we can exploit symmetry to
reduce the size of the matrix and vector, resulting in a matrix A with 3 columns and a vector x with 3 entries
[6]. Symmetry can also be used to reduce the number of rows in A to (p4+6l3+15p2+18p+8)/8. For the 3D
Laplace equation, the vector x has 9 entries (corresponding to the 9 elements in the 3-by-3 matrix Ge) and
matrix A has 9 columns (corresponding to the 9 entries in the tensor blocks Ki,j). For order p basis functions,
matrix A has ((p + 1)(p + 2)(p + 3)/6)2 rows (corresponding to the number of matrices Ki,j in K. Again,
we can exploit symmetry to reduce the number of columns in matrix A and entries in vector x to 6. We can
similarly use symmetry to reduce the number of rows in A to (p6+12p5+58p4+150p3+229p2+198p+72)/72.

1.4 Optimization Problem

We wish to minimize the number of operations needed to compute the vector resulting from matrix-vector
multiplication. We use the number of multiply-add pairs (MAPs) as our metric for counting the number
of operations required for the matrix-vector product. Since there is usually one more multiplication than
addition operation needed to determine each entry of the resulting vector, we determine the number of MAPs
by counting multiplications . For example, we would count y1 = 2.5y2 + 2x2 as 2 MAPs. However, in order
to be consistent with the FErari MAP counting, we assume a fused multiply-add operation that can perform
multiply-add operations where only one multiply is required in one operation. Thus, we count y1 = y2 + 2x2

or y1 = −y2 + 2x2 as 1 MAP. Whether this is a good assumption for this type of operation is architecture
and compiler dependent, and experimentally we find that it is more accurate to count this operation as
2 MAPs on some systems. For instance, we calculated this operation to cost 1.4 MAPs (Mac Intel Core
2 Duo, gcc), 1.5 MAPs (Dual-core AMD Opteron, gcc), and 1.6 MAPs (Apple Xserve G5 processor, gcc)
on the three systems with which we experimented. For more flexibility and accuracy, we should assign a
system-dependent fractional value between 1 MAP and 2 MAPs for this type of operation.

In order to minimize the number of MAPs needed to compute the matrix-vector product, we utilize
relationships between rows in the matrix. These relationships allow us to replace full inner-product opera-
tions, which yield each resulting vector entry of the matrix-vector product, with less costly operations. We
implement methods to generate operations based on the binary row relationships utilized in FErari and on
additional binary row relationships not exploited in FErari. In addition, we also extend our methods to
generate operations based on row relationships that relate more than two rows.

2 Graph Model

In our first attempt at minimizing the number of MAPs needed to calculate the vector resulting from a
matrix-vector product, we used a weighted graph representation to model the problem, similar to that used
in FErari [6, 8]. In this model, the resulting vector entries are represented by vertices in the graph, with some
vector entries excluded. We exclude resulting vector entries corresponding to rows that contain only zeros in
the graph, since the corresponding inner product for these rows is zero, and thus no operations are needed
to compute this vector entry. This optimization saves 1 MAP for each column in the matrix over the naive
matrix-vector multiplication algorithm for each zero row but saves nothing over an unoptimized matrix-
vector multiplication algorithm that ignores the zero entries when calculating the matrix-vector product.
Similarly, when identical rows occur in the matrix, we represent only one of the vector entries corresponding
to the identical rows with a vertex in the graph since only one of the corresponding inner products needs to
be calculated (see subsection 2.3).

We represent operations resulting from relationships between two rows by edges connecting the vertices
corresponding to the two resulting vector entries involved. We store the operations for each edge needed
to obtain each resulting vector entry given the other resulting vector entry, assigning weights to the edges
equal to the number of MAPs needed for the corresponding operations. This is demonstrated in Figure 1
in which the resulting vector entries corresponding to rows 1 and 2 are represented by vertices 1 and 2,
respectively. The operations relating y1 and y2 (y1 = −y2/2 and y2 = −2y1) are represented by the edge

3



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

connecting vertices 1 and 2. The direction of the edge determines which operation is used. However, in
our graph model, we solve an undirected graph problem before assigning the edge directions since it reduces
the number of edges built without affecting the optimality of the solution. Subsequently, we assign the
undirected edges of the solution a direction based on a traversal of the solution graph.

-4

R1

R2

42

-40

2

-8

0
21 1

Figure 1: Two rows and subgraph that represents resulting vector entries and their relationship. Edge
represents possible operations y1 = −y2/2 or y2 = −2y1, depending on direction.

The optimizations we implement (and represent as edges in our graph model) based on binary row
relationships fall into one of three categories described in subsections 2.2-2.4. The implemented optimizations
described in subsections 2.2 and 2.3 are similar to those in FErari, but the optimizations described in
subsections 2.1 and 2.4 have no equivalents in FErari.

2.1 Inner-Product Operations

We include in our graph model a special inner-product vertex that does not correspond to any resulting
vector entry. This inner-product vertex is connected to all vector entry vertices in the graph by edges that
represent operations needed to calculate the inner product for the corresponding vector entry. The inner-
product operations ignore zero entries in the row, using only nonzero entries when forming the inner product.
Thus, the weight of an inner-product edge is equivalent to the number of nonzeros in the row corresponding
to the vector-entry vertex of the edge (the vertex that is not the inner-product vertex).

FErari does not have an equivalent to the inner-product vertex and edges. This represents a difference
in scope for the two respective optimization problems. The FErari optimization problem includes binary
relationships between rows, and once the optimal set of operations is found from this problem, inner-product
operations are added where necessary or when they are cheaper than the binary relationship operations.
We include in our optimization problem inner-product relationships as well as binary relationships, so our
solution includes the necessary inner products once the optimization problem is solved. We also view the
inner-product vertex as a natural starting point for solution traversal, which FErari lacks. At least one
inner-product operation must be calculated before any other optimizations based on components of the
resulting vector can be utilized. This corresponds to traversing an inner-product edge. Any graph traversal
starting from the inner-product vertex that spans the graph vertices will result in operations that compute
the matrix-vector product correctly. Such a traversal is guaranteed to exist, since it can be formed by
inner-product edges alone.

2.2 Colinear Row Relationship

One simple binary row relationship is when two rows are scalar multiples of each other, so the vectors formed
from these rows are colinear (e.g., ri = αrj). This relationship yields an optimization for calculating the
corresponding resulting vector entries in which the resulting vector entry for one of the rows can be determined
by scaling the vector entry corresponding to the colinear row at a cost of 1 MAP (e.g., ri = αrj ⇒ yi = αyj).
For instance, in Figure 2, we see that r2 = 1.5r1, and thus it follows that the resulting vector entry y2 = 1.5y1.
This colinear relationship is always optimal, and in theory all but one of the resulting vector entry vertices
resulting from a colinear set of rows can be removed from the graph. This may not be the case in practice,
however, since one vertex may yield a less costly solution when partial colinear row edges (see subsection 2.4)
are considered, based on whether the partial colinear operations contain coefficients of unit magnitude. Since
we cannot determine a priori which vector entry should not be calculated using the colinear optimization

4



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

(corresponding to which vertex should remain in the graph), we cannot remove any of these vertices from
the graph.

2666664
y1
y2
y3
y4

3777775=

2666664
2 2 2 0
3 3 3 0
2 2 2 0
5 5 5 8

3777775

2666664
x1

x2

x3

x4

3777775
Optimization Resulting Operations Cost

identical rows y3 = y1 0 MAPs
colinear rows y2 = 1.5y1 1 MAP

partial colinear rows y4 = 2.5y1 + 8x4 2 MAPs

Figure 2: Optimizations based on colinear matrix row relationships.

2.2.1 Searching for Colinear Row Relationships

An important issue is how to find these colinear row relationships efficiently. For this and future analyses
of the search algorithms, we assume we have a matrix with n rows and d columns. The brute force search
algorithm compares all O(n2) row vector pairs to detect whether they are colinear. We can determine whether
a pair of vectors is colinear in O(d) time. Thus, the brute force algorithm has complexity O(dn2). Faster
methods can be utilized, however. We have implemented an O(dn log(n)) search method that inserts slightly
modified row vectors into a binary search tree that produces a lexicographically sorted set of vectors. This is
similar to a method mentioned in [8]. Before inserting the row vectors into the tree, they are normalized and
scaled by −1 (if necessary) so that −v and v are lexicographically equivalent. These modified row vectors
are inserted into the binary tree so that they are sorted lexicographically in O(dn log(n)) time. A traversal
of this sorted tree allows us to find the lexicographically equivalent (within some tolerance) modified vectors
that correspond to originally colinear row vectors and are now consecutively arranged in the sorted tree. We
also found that presorting the vectors by their angle relative to some reference vector (a necessary but not
sufficient condition for colinearity) further reduced the runtime of this search algorithm. Kirby, et al. used
hash tables to determine the set of colinear vectors [8]. By looping through each row once and inserting the
row into the hash table, they determine in constant time whether the row is collinear to a previously inserted
row, for a total cost of O(dn). This would be a more effective method for sufficiently large d or n.

2.3 Identical Row Relationship

The identical row relationship is a special case of the colinear row relationship in which the scaling factor
α = 1. This relationship yields an optimization in which the resulting vector entries corresponding to the two
identical rows will be equivalent. Thus, with this optimization we need to compute only the resulting vector
entry for one of a set of identical rows, and the remaining resulting vector entries need only assignment, as
demonstrated in Figure 2 (r3 = r1 ⇒ y3 = y1). Since only assignment is needed to compute all but one of
the resulting vector entries for a set of identical rows, we assign a cost of 0 MAPs for the remaining vector
entries, a savings of 1 MAP per column over naive matrix-vector multiplication algorithms and 1 MAP for
every nonzero in the row for an unoptimized algorithm that is clever enough to ignore the matrix zeros in the
computation. This assignment of 0 MAPs is consistent with [6, 8, 9]. As with colinear rows, the identical row
relationship operation is always optimal. Unlike colinear row optimization, however, the choice of the vector
entry to be represented in the graph is unimportant, since all rows are calculating the same inner product.
Thus, in order to simplify the graph problem, we remove all but one of the vertices corresponding to a set of
identical vector entries. In reality, the relative cost of this assignment operation should be between 0 and 1
MAPs. However, since this operation should always be in the optimal solution (and thus the corresponding
vertex is removed from the graph), the exact cost of this operation does not affect the solution.

2.4 Partial Colinear Row Relationship

The final binary row relationship we utilize in our graph model is the partial colinear row relationship. The
partial colinear row relationship is similar to the colinear row relationship except that only a proper subset

5



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

of the entries in a row are scalar multiples of the corresponding entries in the other row (the vectors formed
from the subset of entries of these two rows are colinear). For each pair of rows, there may be many different
subsets of entries that form colinear vectors, but we represent only one relationship having the largest subset
of entries (ignoring trivial subsets of one entry) that are colinear. We also only consider partial colinear
row relationships that yield potentially beneficial operations, ignoring partial colinear row relationships that
yield operations more expensive than corresponding inner-product operations, for instance. It is important
to note that there is no equivalent binary row relationship implemented in FErari. FErari implements a
Hamming distance optimization in which two rows have a subset of entries that are identical or negative of
each other, a special case of the partial colinear row relationship [8].

We can naturally write the expression of this partial colinear relationship between two rows i and j as

ri = α
∑

k∈Ccol

rjkek +
∑

k/∈Ccol

βkek,

where Ccol is the subset of column indices for the entries in the two rows that are part of the colinear subset,
α is the factor relating the colinear subsets, ek is the kth column of the identity matrix, and βk is a correction
factor for the non-colinear entry k. This yields the possible optimization

rTi x = α
∑

k∈Ccol

rjkeTk x +
∑

k/∈Ccol

βkeTk x⇒ yi = α
∑

k∈Ccol

rjkxk +
∑

k/∈Ccol

βkxk.

The first term in this resulting operation is part of the inner-product operation for yj . We could represent
this partial inner product as an optional vertex in our graph model, which may or may not be included in
the graph solution. However, in our implementation, we did not implement partial colinear operations in
this manner. In order to simplify the graph model by removing the need for these optional vertices in our
graph solution, we introduce a different expression for the row relationship that yields a slightly less optimal
resulting optimization based on the same partial colinear relationship.

Unlike the original expression for the partial colinear row relationship, we write row i in terms of the
entire row j,

ri = αrj +
∑

k∈Ccol

γkek,

where Ccol is the set of column indices for the entries in the two rows that are not a part of the colinear
subset, and γk is a correction factor for the entry k that is not part of the colinear subset. This yields
a possibly less optimal optimization in which the resulting vector entry yi can be written in terms of the
resulting vector entry yj ,

rTi x = αrTj x +
∑

k∈Ccol

γkeTk x⇒ yi = αyj +
∑

k∈Ccol

γkxk.

This new optimization relates two resulting vector entries and thus can be represented in the graph model
with normal (not optional) vertices. However, this operation is not optimal for all partial colinear rows,
in particular when βk = 0 for some k in the first expression. For instance, if riT = [4, 4, 4, 0, 4] and
rjT = [1, 1, 0, 1, 1], the first partial colinear approach for calculating yi would use the operation yi = 4tj+4x3,
where tj = x1 + x2 + x5 is a partial inner product of yj previously stored during the calculation of the full
inner product, at a cost of 2 MAPs. The second partial colinear approach for calculating yi, however, would
use the operation yi = 4yj + 4x3 − 4x4 at a cost of 3 MAPs. In practice, we believe the partial colinear
row relationships that lead to this lack of optimality in the second approach to be relatively uncommon, and
thus we are willing to sacrifice some optimality for the simpler graph model.

This partial colinear optimization is more expensive than the fully colinear optimization but still poten-
tially useful, costing 1 +

∣∣Ccol∣∣ MAPS (
∣∣Ccol∣∣ MAPS if α = ±1). For example, we see in Figure 2, that rows

1 and 4 form vectors that are partially colinear. The vector formed from the first three columns of row 4 is a
scalar multiple of the vector formed from the first three columns of row 1, with α = 2.5 as the scaling factor.
Thus, the resulting vector entry corresponding to row 4 can be computed as y4 = 2.5y1 + 8x4 at a cost of 2
MAPs, a savings of 2 MAPs when compared to the 4 MAPs required to do the complete inner product.

6



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

2.4.1 Searching for Partial Colinear Row Relationships

As with the colinear row relationships, an important issue is how to find the partial colinear row relationships
in an efficient manner. We use a partial brute force method in which we loop over all O(n2) pairs of row
vectors. For each row vector pair, we find the largest proper subset of entries that are colinear. We can
do this by looping through the d entries in the two vectors, calculating the ratio between the two vector
entries, and inserting these d ratios into a sorted binary search tree (in O(d log(d))) time. We can traverse
the tree to find the largest set of ratios that are the same (within some tolerance). The corresponding entries
indicate the largest proper subset of entries that are colinear. In this manner, we find the partial colinear
row relationships in O(dn2 log(d)) time. It is possible that there is a method for reducing the O(n2) part of
the complexity (as seen in subsubsection 2.2.1) but we leave this for future work.

2.5 Graph Model Minimization Problem

Finding the set of operations with a minimum number of MAPs (for the binary row relationships utilized) is
equivalent to finding a set of edges in the graph of minimal weight with certain properties. The resulting edges
must form a subgraph spanning all vertices, since each entry in the resulting vector must be calculated by
either an inner product or by an operation resulting from a binary row relationship with a row corresponding
to a previously calculated vector entry. This spanning subgraph must also be connected, so that there is
at least one path from the inner-product vertex to every other vertex, and each resulting vector entry can
be calculated by following such a path to its corresponding vertex. An optimal solution subgraph must also
be acyclic, since for any solution subgraph with a cycle an edge could be removed, leaving a less expensive
but valid solution. Thus, a resulting optimal solution must be a minimum spanning tree (MST) for the
graph. We can find an optimal solution to this optimization problem easily, since greedy algorithms such as
Prim’s algorithm find the MST of a graph optimally in polynomial time. The cost of a minimal MAP set
of operations for matrix-vector multiplication (for the relationships utilized) is equivalent to the sum of the
edge weights in the resulting MST. In Figure 3, we see a simple graph and solution resulting from a two-row
matrix to demonstrate how the MST yields a solution to the optimization problem. The matrix on the
left yields the middle graph with two resulting vector entry vertices and the inner-product vertex. The two
edges from the inner-product vertex correspond to computing the inner product (ignoring zero entries) for
each row. The edge connecting the two row vertices corresponds to an operation that arises from a partial
colinear relationship between the two rows (y1 = −y2 +8x1 or y2 = −y1 +8x1). We see an MST of the graph
on the right with the edges of the MST corresponding to a set of operations for computing the matrix-vector
multiplication with a minimal number of MAPs (4) for the relationships utilized,

y2 = −4x2 − 4x3 − 8x4,

y1 = −y2 + 8x1.

-4

R1

R2

84

-40

4

-8

8
2

1

IP
3

1
4

2

1

IP

Figure 3: Simple two row matrix, corresponding graph problem, and resulting MST (4 MAPs) solution to
graph problem.

It is important to note that if we had included the optional vertices described in subsection 2.4 for the
partial colinear row relationships, the MST problem would be the wrong combinatorial optimization problem.

7



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

We believe the problem could instead be formulated as a weighted Steiner tree problem, another well known
combinatorial optimization problem. The Steiner tree problem in graphs is to find the minimal cost tree
that spans all the vertices in a given vertex set (required vertices) and may or may not span the remaining
vertices (optional vertices)[11].

2.6 Graph Example

Figure 4 shows an example formulation and solution of a graph problem to generate less costly code for
a matrix-vector product. We see in Figure 4(a) a simplified version of the matrix for building the finite
element local stiffness matrices for the 2D Laplace equation (triangles and 2nd order Lagrange polynomial
basis) with the zero rows, identical rows, and several additional rows removed in order to display the graphs
more easily. Figure 4(b) shows the graph vertices corresponding to the resulting vector entries of the matrix-
vector product as well as the inner-product vertex and inner-product edges. The colinear edges are added
in Figure 4(c) corresponding to optimizations resulting from rows {4,7} being colinear and rows {5,6,8} also
being colinear. In Figure 4(d) the edges for the partial colinear operations are added. Finally, Figure 4(e)
shows an MST solution for this graph problem with the edges of the MST highlighted. A traversal of this
MST generates the following operations to compute the matrix-vector product

y3 = 0.5x1,

y2 = 0.5x3,

y1 = (4/3)x2,

y8 = −y1 − (4/3)x3,

y7 = −y1 − (4/3)x1,

y9 = −y8 + (4/3)x1,

y6 = 0.5y8,
y5 = (−1/8)y8,
y4 = (−1/8)y7

at a cost of 9 MAPs.

2.7 Graph Model Results

We implemented the graph model with the inner-product vertices/edges and the binary row relationship
edges described above (subsections 2.1-2.4) and used Prim’s algorithm to find the MST for this graph. Then
we traversed the MST starting from the inner-product vertex to obtain an optimal solution (for the row
relationships used) and computed the cost of the solution (in MAPs) from the weights of the MST edges.
The implementation was written in C++.

We used matrices from the local stiffness matrix formulation (described in subsections 1.2 and 1.3)
obtained from FErari so that our results could be compared directly with previously reported results. These
FErari matrices were obtained for the 2D and 3D Laplace equation (using triangles and tetrahedrons) and
Lagrange polynomial basis functions of orders 1 to 6. Information about these matrices is shown in Table 1.

Table 2 gives a summary of the edges produced in the resulting graph for each matrix. Only the inner-
product (IP), colinear (CL), and partial colinear (PCL) are applicable to the graph model. The coplanar
hyperedges (CP) are given for the hypergraph model in the next section. As previously mentioned, we have
not included the edges that cannot be in the optimal solution. We see that the partial colinear edges are
the most plentiful. However, even with these edges, the edge count is fairly modest and does not pose a
problem for finding the MST. In fact, building the graph is usually significantly more expensive than finding
the MST for the graph.

Tables 3 and 4 show the results of the FErari graph algorithm and our improved graph algorithm that
includes partial colinear row relationships. Each row in these tables reports results for a matrix resulting

8



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

-4/3

0 0

0

00

0

0

0

0

0

0

4/3

-4/3

-4/3-4/3

1/2

4/34/3

4/3

-2/3

1/2

1/61/6

1/61/6

-2/3

R4

R1

R2

R3

R5

R6

R7

R8

R9
(a)

74
5

1

2

6 IP
3

8

9

74
5

1

2

6 IP
3

8

9

74
5

1

2

6 IP
3

8

9

74
5

1

2

6 IP
3

8

9

(b) (c)

(d) (e)

Figure 4: Graph example with (a) matrix, (b) row vertices and inner-product vertex/edges, (c) colinear
edges, (d) partial colinear edges, and (e) MST solution. Edges weights are suppressed in figure for graphical
clarity.

from a different order polynomial basis. The first column of these tables gives the order of the Lagrange
polynomials. The number of MAPs required to compute the full matrix-vector product with and without
unnecessary multiplications by zero matrix entries is shown in columns two and three, respectively. The cost
of the FErari algorithm (best FErari graph method results in MAPs reported from [6, 8, 9]) for each matrix
is given in the fourth column. We report the cost of our improved algorithm in the final column.

From these results (Tables 3 and 4), we see that both FErari’s graph implementation and our improved
graph implementation result in a substantial reduction in MAPs for the matrix-vector multiplication over
the unoptimized algorithms. Our implementation reduces the number of MAPs by up to 60% for the 2D
matrices (order 3) and up to 59% for the 3D matrices (order 4) over the unoptimized matrix-vector product
without the multiplications by the zero matrix entries (column 3). We also see a significant improvement in
the results from our graph implementation over the FErari results, especially for the higher order problems.
For example, our implementation showed a 17% and 21% reduction in the number of MAPs over FErari for

Table 1: FErari 2D and 3D Laplace matrices. For each matrix, the number of rows (n), number of columns
(d), number of elements (nd), and the number of nonzeros (nnz) are given.

2D Laplace 3D Laplace
Order n d nd nnz n d nd nnz

1 6 3 18 10 10 6 60 21
2 21 3 63 34 55 6 330 177
3 55 3 165 108 210 6 1260 789
4 120 3 360 292 630 6 3780 2586
5 231 3 693 589 1596 6 9576 7125
6 406 3 1218 1070 3570 6 21420 16749

9



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

Table 2: Number of hyperedges in resulting hypergraph for FErari matrices. Hyperedges are divided into
four categories: inner-product edges (IP), colinear edges (CL), partial colinear edges (PCL), and coplanar
hyperedges (CP).

2D Laplace 3D Laplace
Order IP CL PCL CP IP CL PCL CP

1 6 0 9 3 10 0 18 0
2 13 9 41 24 49 0 507 84
3 35 22 269 420 168 22 4802 732
4 97 12 1001 2184 480 75 31995 5380
5 213 48 3120 9213 1291 127 114494 23276
6 379 87 7112 25948 2949 283 419303 75985

Table 3: Graph algorithm: 2D Laplace FErari matrices, matrix-vector multiplication costs (in MAPs) for
several different order Lagrange polynomials and algorithms. GPCR is our improved graph algorithm with
partial colinear row relationship optimizations.

Unoptimized Unoptimized Nonzero FErari GPCR
Order MAPs MAPs MAPs MAPs

1 18 10 7 7
2 63 34 15 14
3 165 108 45 43
4 360 292 176 152
5 693 589 443 366
6 1218 1070 867 686

the 2D order 5 and order 6 matrices, respectively.

3 Hypergraph Extension

A major limitation of the graph model described above is that more complex relationships relating more than
two rows (and thus more than two resulting vector entries) cannot be expressed, since an edge contains only
two vertices. A natural extension to the graph model that addresses this limitation is a hypergraph model
with hyperedges. In this hypergraph model, each hyperedge can contain two or more vertices and represents
operations relating two or more resulting vector entries [2]. In our hypergraph model implementation, we
build edges (2-vertex hyperedges) for the same inner-product operations and operations resulting from binary
row relationships described in section 2 and augment these edges with additional hyperedges of cardinality
greater than two. For the present implementation, we limit our hypergraph model to additional hyperedges
with cardinality three.

3.1 Coplanar Row Relationships

One row relationship that results in optimizations that we can express with the higher cardinality hyperedges
is a generalization of the colinear row relationship in which three or more rows are linearly dependent. Lim-
iting the model to three-vertex hyperedges, this relationship describes three rows in which the corresponding
vectors are linearly dependent or coplanar, so that α1r1 + α2r2 + α3r3 = 0 for some nonzero scalars α1, α2,
and α3. Thus, the resulting vector entry for a given row (e.g., y1) can be written in terms of the resulting

10



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

Table 4: Graph algorithm: 3D Laplace FErari matrices, matrix-vector multiplication costs (in MAPs) for
several different order Lagrange polynomials and algorithms. GPCR is our improved graph algorithm with
partial colinear row relationship optimizations.

Unoptimized Unoptimized Nonzero FErari GPCR
Order MAPs MAPs MAPs MAPs

1 60 21 – 17
2 330 177 101 79
3 1260 789 370 342
4 3780 2586 1118 1049
5 9576 7125 – 3592
6 21420 16749 – 8835

vectors for the other two rows in the following optimization

y1 = r1x = β1r2x+ β2r3x = β1y2 + β2y3,

where β1 = −α2/α1 and β2 = −α3/α1. The cost of this relationship is 2 MAPs (1 MAP if β1 = ±1
or β2 = ±1). While this optimization requires more MAPs than the colinear optimization, it can yield a
reduction in MAPs over the partial colinear optimizations or the full inner-product computation for a vector
entry. Figure 5 shows a three-row example and the hyperedge representation of operations resulting from
the three-row linear dependence for these rows in which the operations relate the resulting vector entries by
y1 = 3y2 + 3y3, y2 = y1

3 − y3, and y3 = y1
3 − y2.

2 3

2

1
3 333R1

11 0 0R2

1 10 0R3

Figure 5: Hyperedge representation of operations resulting from three-row linear dependence. Connected
triangle represents the hyperedge, with weight (2) placed inside triangle.

3.2 Searching for Coplanar Row Relationships

An important issue is how to find these coplanar row relationships in an efficient manner. The brute force
method of looping over all row triples has complexity O(αn3), where α is the cost of determining whether a
vector triple is coplanar (e.g., α is O(d3) if SVD is used). We can do better by applying a necessary condition
for coplanarity to all pairs of row vectors [9]. In particular, we project each row vector from Rd to R3 and
calculate the normal to the plane formed by each pair of projected vectors. If two pair of vectors are coplanar,
then the corresponding normal vectors must be colinear (for d = 3, this is also a sufficient condition). We
can apply the colinear searching method described in subsubsection 2.2.1 to the vectors normal to the planes
formed by the n2 projected row vector pairs. In this manner, we can find sets of potentially coplanar row
vectors in O(dn2 log(n)). For d > 3, we then use brute force to determine which of the potentially coplanar
row vectors are in fact coplanar. This is effective since the number of potentially coplanar row vector triples
is much smaller than the total number of row vector triples.

11



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

3.3 Hypergraph Model Minimization Problem

Defining a valid hypergraph solution that corresponds to a set of operations with a minimum number of
MAPs is more complicated than for the graph formulation. The optimization problem is still equivalent
to finding a set of hyperedges of minimum weight with certain properties. The resulting hyperedges also
still form a connected subhypergraph spanning all vertices, since each entry in the resulting vector must be
calculated either by an inner product or from a row relationship utilizing one or more previously calculated
vector entries. With only these restrictions on the solution, finding a hypergraph MST (follows naturally
from the generalization of a cycle [1]) would yield a solution with the minimum number of MAPs, as with
the graph formulation. However, the MST would allow infeasible solutions with three-row linear dependence
optimizations in which two of the resulting vector entries are calculated from one previously calculated
resulting vector entry. Thus, we must impose the restriction that all but one of the resulting vector entries
corresponding to the rows in the relationship are determined before the final vector entry is calculated
using this linear dependency operation. This translates to the restriction on the hypergraph model that a
hyperedge may be in the hypergraph solution only if there exist valid traversals in the solution subhypergraph
(without this hyperedge) from the inner-product vertex to all but one of the vertices in the hyperedge. A
valid traversal is a traversal of a series of hyperedges in which each hyperedge cannot be traversed until all
but one of its vertices have been visited in the traversal. It is important to note that this constraint applies
to the MST solution of the graph model as well, since each edge in the solution has two vertices and there
must be a traversal (path not containing this edge) from the inner-product vertex to one of the two vertices.
With this important restriction, it is clear that any feasible solution that contains a hyperedge of cardinality
three or greater contains a cycle and thus is not a tree. We see an example of a hypergraph solution in
Figure 6 that is not a tree (thus not an MST). The solution graph contains two different paths from the
inner-product vertex to vertex 5 ({IP,1,3,5} and {IP,2,4,5}) and thus contains a cycle and is not a tree.
The solution in which we are interested is a minimum spanning connected subhypergraph of the original
hypergraph with the hyperedge restriction. As with the graph problem, the cost of the matrix-vector product
resulting from the hypergraph solution is equivalent to the sum of the hyperedge weights in the resulting
solution subhypergraph.

5

4

31

2

IP

Figure 6: Example of hypergraph solution that is not a tree.

Although the solution to the hypergraph minimization problem is not an MST (if it has a hyperedge of
cardinality greater than two), much research has been done on the complexity analysis of the hypergraph
MST problem (MST-H) and the related hypergraph Steiner tree problem [12]. We summarize a couple of the
MST-H complexity results since we believe our hypergraph problem to be of similar hardness. In particular,
finding the MST of a weighted r-bounded (all hyperedges have cardinality of at most r) hypergraph for
r ≥ 4 is NP-hard [11]. The complexity for r = 3 is still an open problem. The best known polynomial time
approximation algorithm for r = 3 yields a solutions within a factor of 3/2 of the optimal solution [11, 10].

3.4 Modified Prim’s Algorithm

The hypergraph model minimization problem is significantly more difficult than the graph optimization
problem. We suspect that finding an optimal solution is NP-hard, and thus we consider heuristic methods.
Our first attempt at solving this optimization problem was to implement a version of Prim’s algorithm

12



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

modified for hypergraphs. We enforce the previously described hyperedge restriction in the algorithm by
allowing hyperedges to be added to the solution only if all but one of the vertices for that hyperedge are
covered by previously added hyperedges. Figure 7 shows an example of the modified Prim’s algorithm on a
small hypergraph with the MAP count shown inside the box at each stage of the algorithm. The three-vertex
hyperedge {1, 2, 5} is not available to be added to the solution until two of the three vertices (1 and 2) are
both present in the solution after stage (d). Again we see that the solution shown in Figure 7(f) is not a
tree.

Unfortunately, this greedy algorithm does not necessarily yield an optimal solution for the row relation-
ships utilized. Figure 8 shows a simple example where the modified Prim’s algorithm yields a suboptimal
result. For the hypergraph on the left, the optimal solution costs 8 MAPs but the modified Prim’s algo-
rithm solution costs 9 MAPs. However, the modified Prim’s algorithm solution of the hypergraph problem
is guaranteed to require no more (and often fewer) MAPs than the solution of the graph formulation of
section 2 and can be found in polynomial time. Thus, this greedy solution of the hypergraph problem can
still potentially yield useful results.

IP
3

2

2

1

2

4

2

5

4

3
1

4

4

0

IP
3

2

1

2

4

2

5

4

3
1

4

4

2

3

2

1

2

4

5

3
1

4

4

4
4

IP

2

4

5

3
1

4

4

7
4

2

(a)

(d)

(b) (c)

IP

2

4

5

3
1

4

9
4

(e)

IP

1

2

5

3

10
4

(f)

11

IP

Figure 7: Example of hypergraph extension of Prim’s algorithm. Non-solution inner-product edges sup-
pressed for graphical clarity.

3

1

2

IP

4
2

3

3

1

IP

4
2

Prim's

Optimal

2

2

2

3

1

2

IP

4
2

3

4

Figure 8: Suboptimal solution obtained by modified Prim’s algorithm for hypergraphs. Optimal solution
requires 8 MAPs and modified Prim’s algorithm solution requires 9 MAPs.

13



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

3.5 Related Work

Kirby, et al. addressed these more complex relationships that relate more than two rows in a different
manner [9], focusing on the geometric relationships between three or more row vectors. After removing the
colinear and identical rows, they have a two-step approach for addressing coplanar row relationships. First,
they find all row triples that form coplanar vectors and connect the triples that have two rows in common.
The idea is that computing the resulting inner-products for two of the rows in this connected set of row
triples allows replacement of the inner-product for each remaining row using a 2 MAP operation. This step
is similar to our construction of the hypergraph. The second step is to find the cheapest set of rows to
calculate full inner-products (referred to as a minimal generator) such that two rows for each connected set
of row triples are in this set. This step is akin to our solution of the hypergraph problem. Kirby, et al. give
a greedy algorithm for finding a minimal generator [9]. This process for coplanar relationships is generalized
for relationships of higher numbers of rows. With this generalization, an iterative process can be used to find
a series of minimal generators such that the minimal generator for i-row linear relationships is used as the
input set of rows to be enumerated when searching for the (i+ 1)-row linear dependency relationships in the
next iteration. This gives a very efficient algorithm for calculating the minimal cost matrix-vector product,
using only dot product and linear dependency (including colinear) relationships. We report the results from
this approach in the next subsection.

The drawback to this approach is that it is less natural to incorporate the non-linear dependency opera-
tions such as the Hamming distance optimization [6, 8] or our optimizations resulting from partial colinear
row relationships. We saw in section 2 that these partial colinear row relationships are very important in min-
imizing the MAPs. Kirby, et al. outline a combinatorial structure that would incorporate the inner-product,
Hamming distance, and linear-dependency operations and a heuristic modification to Prim’s algorithm to
solve this problem [9]. However, they they conclude that their implementation of this is impractical for all
but the simplest problems and do not report results from this approach.

3.6 Hypergraph Model Results

We implemented the hypergraph model of the optimization problem with the inner-product vertices/edges,
the binary row relationship edges (subsections 2.2-2.4), and the three-vertex linear dependence hyperedges
(subsection 3.1) and used the modified hypergraph version of Prim’s algorithm to find the minimum span-
ning connected subhypergraph solution. Our code traverses the subhypergraph solution starting from the
inner-product vertex to determine a reduced set of operations to calculate the matrix-vector product and
determines the cost of the solution (in MAPs) from the weights of the solution hyperedges. As with the
graph implementation, the hypergraph implementation was written in C++. We used the GNU Scientific
Library (GSL) singular value decomposition routine (gsl linalg SV decomp) to verify that three row vectors
were coplanar [3].

We use the same matrices for the hypergraph results as for the previous graph results, shown in Table 1.
Table 2 gives a summary of the edges produced in the resulting hypergraph. The inner-product (IP),
colinear (CL), and partial colinear (PCL) are the same as in the graph model. The coplanar hyperedges
(CP) are also shown for the resulting hypergraphs. Again, the hyperedge count is fairly modest and building
the hypergraph is significantly more expensive than finding the solution to the hypergraph minimization
problem.

Table 5 shows a comparison between our graph model implementation and our hypergraph model for
the 2D Laplace equation matrices. For these 2D matrices, the hypergraph model results show modest
improvement over the graph model results (at most 14%, which was obtained for the fourth order polynomial
basis). However, it is important to note that these 2D matrices have only three columns. Thus, we gain
little by using the additional three-vertex linear dependency hyperedges in the hypergraph since it will save
at most 1 MAP over a full inner product (2 MAPs if one of the coefficients in the operation happens to
be ±1). Another possible explanation for the modest improvement is that the modified Prim’s hypergraph
implementation may yield significantly suboptimal results, and if the problem were solved optimally, the
hypergraph implementation would provide a further reduction in MAPs. We believe the former is the more

14



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

likely explanation, however, and that the graph model solution is nearly optimal for these 2D matrices, with
little further reduction possible.

Table 5: Hypergraph algorithm: 2D Laplace FErari matrices, matrix-vector multiplication costs (in MAPs)
for several different order Lagrange polynomials and algorithms. GPCR is our improved graph model with
partial colinear row relationships. HGraph is our hypergraph extension to the improved graph model.

Unoptimized Unoptimized GPCR HGraph
Order MAPs Nonzero MAPs MAPs MAPs

1 18 10 7 6
2 63 34 14 14
3 165 108 43 38
4 360 292 152 131
5 693 589 366 352
6 1218 1070 686 677

Table 6 shows a comparison between our graph model implementation and our hypergraph model im-
plementation for the 3D Laplace equation matrices (columns 5 and 6). The table also shows the FErari
geometric results (for polynomial basis orders 2-4), the approach outlined in the previous subsubsection [9].
For order 3 and 4 polynomial bases, the FErari geometric results are an improvement over the FErari graph
results, so we have included the geometric rather than the graph FErari results. For these 3D matrices,
the code generated by our hypergraph model showed a significant reduction in MAPs in comparison with
the code generated by our graph model, especially for the fourth order polynomial basis in which we saw
an additional reduction in MAPs by 31% for a total reduction of 72% over the unoptimized matrix-vector
product code. We speculate that solving this problem optimally for the higher order polynomial bases would
further reduce the MAPs, although the reduction might be modest. Similarly, our hypergraph implemen-
tation yielded less costly results than the FErari geometric implementation (e.g., 31% for the fourth order
polynomial basis). Much of this may be attributed to our improved graph model implementation and that
we take advantage of the partial colinear relationships that the FErari geometric implementation neglects.

3.6.1 Runtimes for Implementation

In this subsubsection, we present the runtimes for our implementation for the 3D Laplace matrices. In
particular, Table 7 shows the runtimes for building the graph/hypergraph and solving the resulting min-
imization problem for both our graph and hypergraph implementations. For the most part, we see that
the time required to build the graph/hypergraph is more significant than the time to solve the resulting
optimization problem. For the larger problems, the runtime for building the graph is dominated by the
O(dn2 log(d)) complexity for detecting the partial colinear row relationships. The coplanar row detection
dominates the time needed to build the hypergraphs. Admittedly, the runtimes for the largest problems
were sizable. Clearly one would not want to use the optimizations we implemented for one matrix-vector
multiplication, but in the context of a “finite-element compiler optimization” where the optimized code could
be used billions of times, we feel the runtimes are reasonable and justifiable. These runtimes were obtained
on a Mac with a 2.16 GHz Intel Core 2 Duo processor, using the gcc compiler.

4 Accuracy

We have shown that our implementations generate operations for computing matrix-vector products with a
significant reduction in MAPs in comparison to the unoptimized matrix-vector multiplication algorithms for
the Laplace finite element FErari matrices. However, the relationships between resulting vector entries are
determined numerically (based on a tolerance) and are not exact. Thus, we are naturally concerned with

15



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

Table 6: Hypergraph algorithm: 3D Laplace FErari matrices, matrix-vector multiplication costs (in MAPs)
for several different order Lagrange polynomials and algorithms. FErari Geom are results from the new
method in FErari geometric optimization paper [9] that utilizes row relationships of more than two rows.
GPCR is our improved graph model with partial colinear row relationships. HGraph is our hypergraph
extension to the improved graph model.

Unoptimized Unoptimized FErari Geom GPCR HGraph
Order MAPs Nonzero MAPs MAPs MAPs MAPs

1 60 21 – 17 17
2 330 177 105 79 65
3 1260 789 327 342 262
4 3780 2586 1045 1049 726
5 9576 7125 – 3592 3098
6 21420 16749 – 8835 8199

Table 7: Time (in seconds) for building the graph/hypergraph and solving the resulting optimization problem.
Runtimes for 3D Laplace FErari matrices of several different polynomial orders.

Graph Hypergraph
Order Build Solve Build Solve

1 6.97e-4 3.36e-4 5.14e-3 3.22e-4
2 4.71e-3 1.29e-3 1.52e-2 1.57e-3
3 3.78e-2 9.62e-3 1.26e-1 1.11e-2
4 2.79e-1 1.08e-1 1.39e+0 1.29e-1
5 1.71e+0 1.19e+0 1.76e+1 1.58e+0
6 9.08e+0 1.17e+1 1.51e+2 1.47e+1

16



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

Table 8: 2D and 3D Laplace FErari matrices, matrix-vector multiplication accuracy for several different
polynomial order basis functions. GPCR is our improved graph model with partial colinear row relationships.
HGraph is our hypergraph extension to the improved graph model.

2D Laplace 3D Laplace
Order GPCR HGraph GPCR HGraph

1 0 0 0 0
2 3.1123e-16 3.1294e-16 1.2125e-16 1.4664e-16
3 4.1471e-16 2.8602e-16 7.5860e-16 1.7935e-15
4 1.9063e-15 1.0295e-15 2.6234e-16 7.1006e-16
5 4.0136e-16 6.3698e-16 1.6623e-15 1.4481e-15
6 2.2813e-16 2.4842e-15 6.8123e-15 3.4148e-15

what price is paid in terms of accuracy for the reduction in MAPs. Table 8 shows the accuracy for the matrix-
vector multiplication code for the 2D and 3D Laplace FErari matrices, using the operations generated by
our graph and hypergraph implementations. We measured the relative error for each matrix-vector product
by dividing the norm of the difference between the resulting vectors for the full matrix-vector multiplication
algorithm and our generated optimized matrix-vector multiplication operations (for both the graph and
hypergraph models) by the norm of the resulting vector for the full matrix-vector multiplication algorithm,
‖ŷ −Ax‖2/‖Ax‖2 (where ŷ is the result vector calculated by our optimized code). The relative accuracy
of the resulting vector is generally satisfactory for the optimized instructions generated from both the graph
and hypergraph algorithms. This accuracy is about best we can expect for double precision arithmetic.

5 Conclusions

We have shown that our graph implementation greatly reduces the number of MAPs for the matrices obtained
by FErari for the 2D and 3D Laplace equation finite element discretizations with several orders of basis func-
tions. Our implementation produced significantly improved results over the FErari graph implementation,
demonstrating the importance of utilizing partial colinear row relationships in generating optimal code to
perform the matrix-vector multiplication. Although we limited our model to three-vertex linear dependence
hyperedges and solved the resulting hypergraph problem in a greedy fashion, the hypergraph extension to
the graph model showed additional improvement in the reduction of MAPs, in particular for the 3D matrices,
which had more columns than the 2D matrices. Most likely, we would see a further reduction in MAPs for the
3D matrices with the implementation of higher cardinality hyperedges (e.g., those representing 4 row linear
dependence operations) and additional hyperedge relationships (e.g., partial coplanar row relationships).

Although we presented results only for the FErari matrices used in the construction of the finite element
local stiffness matrices, our implementation is general and can attempt to generate a reduced operation
matrix-vector multiplication set of instructions for any matrix. Realistically, however, the effectiveness of
the optimization will depend on the particular application and properties of the matrices involved. In order
to make this optimization useful, the matrices must have row relationships that can be efficiently exploited.

It is important to note that the setup and solution of the optimization problem requires much more
time than the actual matrix-vector multiplication algorithm. Thus, the optimization of matrix-vector mul-
tiplication is useful only when a matrix is multiplied many times by different vectors. For the matrices
presented that are used in the evaluation of local stiffness matrices, the matrix is multiplied by a vector
for every element in the finite element discretization (assuming all elements use the same order basis func-
tions), and thus the generated code can be reused for every finite element. Furthermore, the generated
matrix-vector multiplication code for a particular equation and particular order of basis functions can be
stored and reused for all problems using the same equation and basis functions. Thus, paying the relatively

17



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

high cost of optimization is reasonable for these matrices used in finite element matrix evaluation, since
the optimized matrix-vector product operations are reused repeatedly. This is analogous to spending time
optimizing numerical kernels in libraries that are to be used many times by library users. For example,
autotuning projects such as ATLAS [14] and OSKI [13] optimize simple numerical kernels to run efficiently
on particular systems. This optimization procedure will be more costly than the numerical kernels but the
numerical kernels will be reused repeatedly.

As for the types of matrices for which this combinatorial optimization problem will be useful in general,
this approach is most useful for matrices with many row relationships between a small set of rows and with
a moderate total number of rows. If a matrix has only very complex row relationships relating several rows,
the time to generate the high cardinality hyperedges will become too expensive and the potential savings
will be moderate at best. Similarly, if a matrix has too many rows, the cost to find these relationships may
also become prohibitive.

6 Future Work

We believe that our current hypergraph model generates nearly optimal instructions for the 2D Laplace
matrices used in this paper. However, we believe that significant further improvement can be made for the
3D Laplace matrices and other matrices in general. In this paper, we focused on hyperedges with cardinality
of two or three. More recently, we have begun implementing higher cardinality hyperedges with 4, 5, and 6
vertices for the linear dependence row relationships. There are many challenges for generating these higher
cardinality linear dependency hyperedges, including efficiently detecting the linear dependencies of the rows,
generating the resulting hypereges, and pruning the suboptimal hyperedges. So far we have found these
higher cardinality hyperedges too computationally intensive to utilize in our hypergraph implementation for
the larger test problems. More efficient detection algorithms and more aggressive pruning techniques are
clearly needed. Similar to the partial colinear binary row relationships, we plan to implement more complex
hyperedge relationships that may prove useful in finding an optimal solution. It may also become important
to solve the hypergraph problem optimally. Most likely this problem is NP-hard, but we still hope to solve
the problem in a near optimal and efficient manner.

Appendix

In this appendix, we derive the local stiffness matrix for the 2D Laplace equation. We first start with the
bilinear form (∇u,∇v)e = det(J)(∇u,∇v)ê. It follows that

(∇u,∇v)e = det(J)(∇u,∇v)ê

= det(J)

 2∑
l,m,n=1

(
∂u

∂ξ̂m

∂ξ̂m
∂ξl

,
∂v

∂ξ̂n

∂ξ̂n
∂ξl

)
ê


= det(J)

 2∑
l,m,n=1

∂ξ̂m
∂ξl

(
∂u

∂ξ̂m
,
∂v

∂ξ̂n

)
ê

∂ξ̂n
∂ξl


= det(J)

 2∑
l,m,n=1

∂ξ̂m
∂ξl

(
uTDmnv

) ∂ξ̂n
∂ξl

 ,

where Dmn(i, j) =
(
∂φi

∂ξ̂m
,
∂φj

∂ξ̂n

)
ê
. Factoring the vectors u and v out, we get

(∇u,∇v)e = uTSev, where the local stiffness matrix is

18



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

Se = det(J)

 2∑
l,m,n=1

∂ξ̂m
∂ξl

Dmn
∂ξ̂n
∂ξl

 .

However, in this form of the stiffness matrix, the terms dependent on the individual elements are mixed
with the terms only dependent on the reference elements. Rearranging the terms, we can achieve more
separation

Se =
2∑

m,n=1

Dmn

[
det(J)

(
∂ξ̂m
∂ξ1

∂ξ̂n
∂ξ1

+
∂ξ̂m
∂ξ2

∂ξ̂n
∂ξ2

)]
.

Terms inside the bracket are dependent on the individual elements, while the matrices outside the bracket
only depend only on the reference element. The entries in this stiffness matrix can be written as the Frobenius
product of a tensor and a matrix

Sei,j =
2∑
m

2∑
n

Ge
m,nKi,j,m,n = Ki,j : Ge,

where

Ge =

 det(J)
(
∂ξ̂1
∂ξ1

∂ξ̂1
∂ξ1

+ ∂ξ̂1
∂ξ2

∂ξ̂1
∂ξ2

)
det(J)

(
∂ξ̂1
∂ξ1

∂ξ̂2
∂ξ1

+ ∂ξ̂1
∂ξ2

∂ξ̂2
∂ξ2

)
det(J)

(
∂ξ̂2
∂ξ1

∂ξ̂1
∂ξ1

+ ∂ξ̂2
∂ξ2

∂ξ̂1
∂ξ2

)
det(J)

(
∂ξ̂2
∂ξ1

∂ξ̂2
∂ξ1

+ ∂ξ̂2
∂ξ2

∂ξ̂2
∂ξ2

)


is a matrix dependent on the individual element and K is a tensor only dependent on the reference element
such that

Ki,j =
[

D11(i, j) D12(i, j)
D21(i, j) D22(i, j)

]
=


(
∂φi

∂ξ̂1
,
∂φj

∂ξ̂1

)
ê

(
∂φi

∂ξ̂1
,
∂φj

∂ξ̂2

)
ê(

∂φi

∂ξ̂2
,
∂φj

∂ξ̂1

)
ê

(
∂φi

∂ξ̂2
,
∂φj

∂ξ̂2

)
ê

 .
Acknowledgements

We thank Robert C. Kirby for assistance with FErari and for discussions about the problem in general. We
also thank Erik G. Boman and Bruce A. Hendrickson for bringing the problem to our attention, suggesting
we look at a hypergraph model, and for many related discussions. This research was made possible by DOE
CSGF fellowship support, DE-FG02-97ER25308.

References

[1] C. Berge. Graphs and Hypergraphs, volume 6 of North-Holland Mathematical Library. Elsevier Science
Publishing Company, 1973.

[2] C. Berge. Hypergraphs: Combinatorics of Finite Sets, volume 45 of North-Holland Mathematical Library.
Elsevier Science Publishing Company, 1989.

[3] M. Galassi, et al. GNU Scientific Library Reference Manual. 2nd edition, 2007.

[4] G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics
(Numerical Mathematics and Scientific Computation). Oxford University Press, USA, August 2005.

19



M. M. Wolf and M. T. Heath Optimization of Matrix-Vector Multiplication

[5] R. C. Kirby. Algorithm 839: FIAT, a new paradigm for computing finite element basis functions. ACM
Transactions on Mathematical Software, 30(4):502–516, December 2004.

[6] R. C. Kirby, M. G. Knepley, and L. R. Scott. Optimizing the evaluation of finite element matrices.
SIAM Journal on Scientific Computing, 27(3):741–758, 2005.

[7] R. C. Kirby and A. Logg. A compiler for variational forms. ACM Trans. Math. Softw., 32(3):417–444,
2006.

[8] R. C. Kirby, A. Logg, L. R. Scott, and A. R. Terrel. Topological optimization of the evaluation of finite
element matrices. SIAM Journal on Scientific Computing, 28(1):224–240, 2006.

[9] R. C. Kirby and L. R. Scott. Geometric optimization of the evaluation of finite element matrices. SIAM
Journal on Scientific Computing, 29(2):827–841, 2007.

[10] H. J. Prömel and A. Steger. A new approximation algorithm for the steiner tree problem with perfor-
mance ratio 5/3. Journal of Algorithms, 36:89–101, 2000.

[11] H. J. Prömel and A. Steger. The Steiner Tree Problem: A Tour Through Graphs, Algorithms, and
Complexity. Vieweg+Teubner Verlag, 2002.

[12] V. V. Vazirani. Recent results on approximating the steiner tree problem and its generalizations.
Theoretical Computer Science, 235:205–216, 2000.

[13] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automatically tuned sparse matrix
kernels. Journal of Physics: Conference Series, 16:521–530, 2005.

[14] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimization of software and the
ATLAS project. Parallel Computing, 27(1–2):3–25, 2001.

20


