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Abstract

In this paper a Hamiltonian analogue of the well-known meandering transition from
rotating waves to modulated rotating and modulated travelling waves in systems with the
FEuclidean symmetry of the plane is presented. In non-Hamiltonian systems, for example in
spiral wave dynamics, this transition is a Hopf bifurcation in a corotating frame, as external
parameters are varied, and modulated traveling waves only occur at certain resonances. In
Hamiltonian systems, for example in systems of point vortices in the plane, the conserved
quantities of the system, angular and linear momentum, are natural bifurcation parameters.
Depending on the symmetry properties of the momentum map, either modulated traveling
waves do not occur, or, in contrast to the dissipative case, modulated traveling waves are the
typical scenario near rotating waves, as momentum is varied. Systems with the symmetry
group of a sphere and with the Euclidean symmetry group of three space are also treated.
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1 Introduction

The meandering transition in spiral wave dynamics is a transition from rigidly rotating to me-
andering and drifting spiral waves. In symmetry terms, it is a bifurcation from rotating waves
to modulated rotating and modulated traveling waves in systems with SE(2)-symmetry. Here
SE(2) is the special Euclidean group of motions of the plane. Rotating waves are solutions
which become stationary in a corotating frame and are examples of relative equilibria. Modu-
lated rotating and modulated traveling waves are solutions which become periodic in a corotat-
ing/comoving frame and are examples of relative periodic orbits (RPOs). In non-Hamiltonian
systems, the meandering bifurcation corresponds, in a rotating frame, to a Hopf bifurcation
induced by changing an external parameter. Typically the bifurcating relative periodic orbits
are modulated rotating waves, and modulated traveling waves only occur at certain resonances.
See for example [3, 8, 10, 27, 30, 31] and the references therein.

In this paper the first ever analysis of the Hamiltonian analogue of this meandering transition
is presented. Examples of Hamiltonian systems where such a transition occurs are rotating
point vortices on the plane [1, 2, 21, 25, 29] or rotating rigid bodies in ideal fluids [15]. In a
Hamiltonian system it is natural to study the persistence and bifurcation of the rotating wave
to nearby momentum levels since the momentum map is a conserved quantity and hence an
internal parameter of the system.

The differential equations near Hamiltonian relative equilibria in symmetry-adapted local
coordinates from [26] are used to study the transition from rotating waves to modulated rotating
and modulated traveling waves on nearby momentum levels in Hamiltonian systems with SE(2)-
symmetry. Thereby a Hamiltonian analogue of the meandering transition of spiral waves is
obtained.

It is shown that, depending on the symmetry properties of the momentum map, either
modulated traveling waves are typical near rotating waves, as momentum is varied (cf. Sections
4.2, 4.3), or that modulated traveling waves do not occur, see Section 4.4 and in particular
Proposition 4.10. As far as I am aware, for the first time, rotating waves and transitions to
relative periodic orbits are continued in the cocycle parameter which determines the symmetry
properties of the momentum map. These results hold under conditions which are generically
satisfied.

The transition from rotating waves to modulated traveling waves occuring in the meandering
transition is an example of resonance drift, as analyzed in [31], see also [4] and [6]. Resonance drift
occurs if there is a discontinuity of the average drift velocities of the bifurcating relative periodic
orbits at the relative equilibrium. In the case of the meandering transition it is a discontinuous
jump between a rotational and a translational velocity. This phenomenon is also discussed in
systems with spherical symmetry SO(3) and in systems with the Euclidean symmetry SE(3) of
motions in three-dimensional space, see Sections 5.1, 5.2.

The meandering transition is a transition from relative equilibria to relative periodic orbits.
In non-Hamiltonian systems it is a Hopf bifurcation of the symmetry reduced dynamics. The
Hamiltonian analogue of a Hopf bifurcation is a Lyapounov centre bifurcation. In this paper
Lyapounov centre bifurcations for the reduced Hamiltonian system on the symplectic slice are
proved to obtain families of RPOs nearby elliptic relative equilibria, see Propositions 4.6, The-
orems 4.11 a), 5.1 b), 5.2 ¢), Propositions 5.3 b) and 5.6.

The technically most complicated parts of the paper are the results on bifurcation from
relative equilibria to RPOs which lie outside the symplectic leaf of the original equilibrium of
the reduced dynamics, see Theorems 4.3, 5.2 b), 5.5. Here Lyapounov centre type theorems
are proved for the symmetry reduced system which is a Poisson system and not a Hamiltonian
system. It is shown that in this case resonance drift occurs.

Related results in the literature are the following: Persistence results for generic Hamiltonian
relative equilibria and relative periodic orbits of noncompact group actions, extending earlier
results for compact symmetry groups, can be found in [32, 33]. See also Ortega and Ratiu [23]
and Montaldi and Tokieda [20] and references therein for results on bifurcations of Hamiltonian
relative equilibria.

Relative Lyapounov centre bifurcations from Hamiltonian relative equilibria with isotropy to



RPOs, which lie on nearby energy-level sets, have been obtained by Ginzburg and Lerman [9] (see
also references therein). Ortega [22] studies persistence of the bifurcating RPOs to nearby energy
level sets and to those nearby momentum values which correspond to the isotropy subgroup of
the relative equilibrium. Instead, in this article, the group is assumed to act freely, and the main
focus is the bifurcation of relative equilibria to RPOs on all nearby momentum level sets.

The paper is organized as follows: In Section 2 the meandering transition for dissipative
systems is reviewed. In Section 3 symmetric Hamiltonian systems are introduced and the equa-
tions near relative equiibria from [26] are reviewed. In Section 4 a Hamiltonian analogue of
the meandering transition is presented using the equations near Hamiltonian relative equilibria
from Section 3. First Euclidean symmetric Hamiltonian systems with an equivariant momentum
map for the standard coadjoint action are studied. Then systems with Euclidean symmetry for
which the momentum map has a cocycle are considered. Finally, in Section 5, the Hamiltonian
analogue of the meandering transition is discussed for systems with spherical symmetry and for
systems with the Euclidean symmetry group of three-dimensional space.

2 Meandering transition for dissipative systems

In this section the notions of relative equilibria and relative periodic orbits of general symmetric
differential equations are defined. Suitable symmetry-adapted coordinates near relative equilib-
ria are introduced, and the differential equations are given in these coordinates. Then the results
are applied to dissipative systems with the Euclidean symmetry of the plane, and the meander-
ing transition for dissipative systems is reviewed. Note that in this paper the terms “dissipative
system”, “non-Hamiltonian systems” and “general systems” are used interchangably. Most of
the material of this section is basically contained in [8, 10, 31]. Only Remark 2.2 ¢) is a new
result.

2.1 Relative equilibria and relative periodic orbits of general systems

Let us consider an ordinary differential equation on a finite-dimensional manifold M

@(t) = f(x(t)) (2.1)

with flow ®¢(xg) = z(t;2z0), ©(0) = . Let a finite dimensional Lie group I' act properly and
smoothly on M. For simplicity it is assumed that the I'-action is free, that is,

I'y={yel, ya=uz}={id}

for all x € M. The vectorfield (2.1) is taken to be I'-equivariant, i.e.,

Vf(@) = f(yz) forall ~yeT.

A solution z(t) with initial condition z(0) = x lies on a relative equilibrium I'ro whenever the
group orbit I'zq is invariant under the flow of (2.1), i.e., if z(¢;x9) € Txg for all ¢. This means
that

f(zo) = &ozo = (% eXP(Sfo)-QJo) .

for some &y € g. Here g = T¢I is the Lie algebra of I'. The element & is called the drift velocity
of the relative equilibrium at xy. Note that the trajectory through zg becomes an equilibium in
a frame moving with velocity &y. If & is an infinitesimal rotation then the relative equilibrium
is called a rotating wave (RW). Note that at the point vz of the relative equilibrium Tz the
drift velocity is determined by the equation

f(yzo) = vf(z0) = Y60 = (Ad,&0)z0

and is therefore given by Ad.&y. Here Ad, : g — g and

- d
Adyn =y, aden = T Adewnli=o = [, veTntes, (2.2)



are the adjoint action of I' and g and the infinitesimal adjoint action of g on g.

An example of such a finite-dimensional manifold M with SE(2)-equivariant vectorfield (2.1)
on it is the centre manifold near a rotating spiral SE(2)x¢ in a reaction-diffusion system, see e.g.
[27]. Here SE(2) = SO(2) x R? is the special Euclidean symmetry of rotations and translations
in the plane with group multiplication defined in (2.5) below.

By the slice theorem of Palais [24] sufficiently small neighbourhoods U of the group orbit
I'zy have the bundle structure Y =T x N. Here N’ C T, M is a local section, also called slice,
transversal to I'zg at xg, see Figure 1.
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Figure 1: Palais coordinates near I'zq

To analyze the dynamics near, and bifurcations from, relative equilibria, it has proved very
useful to model the flow in a I'-invariant neighbourhood U of the relative equilibrium by differ-
ential equations on the space I' x N:

;Y:’Yfl"(v)v 0 :fN(U)7 (23)

where fr : N — g and fiy : N — N. Any x € U takes the form x ~ (y,v) € I' x N, and the
point xo corresponds to xg >~ (id,0). Then far(0) = 0, i.e., the relative equilibrium I'zg of (2.1)
becomes an equilibrium of the 9-equation. Moreover fr(0) = &. Note that the equations (2.3)
have skew-product form: the v¥-equation, which is called the slice equation, does not depend
on the group variable «y. It describes the symmetry-reduced dynamics, whereas the 4-equation
describes the drift dynamics on the group I'. These results are due to Krupa [14] for compact Lie
groups and due to Fiedler et al. [8] for noncompact Lie groups. For later use, the linearization
Lo =Df(zo) — & of the relative equilibrium I'zg at x¢ in the frame moving with the velocity &
in symmetry adapted coordinates is

adg, D, fr(0
Lo= ( 0" va\f((o)) ) 24

The point zg € M lies on a relative periodic orbit (RPO) P of (2.1) if x(t;xo) = Pr(xg) is
periodic in the space of group orbits M/T". This means that there exists Ty > 0 and v € T

(I)t (if())

FQZ‘Q

Figure 2: A relative periodic orbit



such that &7, (z9) = ~oxo, see Figure 2. The infimum of the numbers Ty with this property is
the relative period of the relative periodic orbit. The corresponding group element ~q is called
the drift symmetry of the relative periodic orbit with respect to zg, c.f. [33, 35]. The relative
periodic orbit itself is defined to be the submanifold of M given by

P = {7®i(x) | y€T,t € R}

If 7o is a translation the relative periodic orbit is called a modulated traveling wave (IMTW); if ¢
is a non-vanishing translation it is a proper modulated traveling wave. If 7y is a (non-vanishing)
rotation the RPO is called a (proper) modulated rotating wave (MRW), see Figure 3. Any &y € g
such that vo = exp(Tp&p) is called an average drift velocity of the RPO at xg. Note that the
trajectory through zy becomes Tp-periodic in a frame moving with velocity &o.

MRW
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Yo Rzo
SO (2)330

Figure 3: Drift symmetries of modulated rotating and modulated travelling waves

2.2 The meandering transition for dissipative systems
Let T’ be the Euclidean symmetry of the plane consisting of rotations and translations
I' = SE(2) = SO(2) x R?,
where the semidirect product is defined as
(¢1,a1)(p2,a2) = (¢1 + ¢2,a1 + Ry a2),  ¢i € SO(2), a; € R?, i =1,2. (2.5)

Here Ry is a rotation by ¢ in R2. Let us assume that the relative equilibrium SE(2)zg is a
rotating wave with rotation frequency w{°®. Then the 4-equation in (2.3), which models the
drift dynamics near the rotating wave, takes the following form:

QS = f¢>(v)a a= R¢fa(v)' (26)

Moreover f,(0) = wit is the rotation frequency of the rotating wave and f,(0) = 0. As in the
general case, the rotating wave SE(2)z¢ becomes an equilibrium of the slice equation: far(0) = 0.
These equations have first been formulated by Barkley [3] and have then been derived by Fiedler
et al [8] and Golubitsky et al [10].

Let us now assume that both far(-, 1) and fr(-, u) = (fe(-, 1), fa(-, ) depend on an external
parameter y € R. In a meandering transition the symmetry reduced system undergoes a Hopf

bifurcation. Suppose that this bifurcation occurs for u = 0, let j:iw(l){ °Pf pe the Hopf eigenvalues

of D, far(0,0). Assume that :I:iwé{or)f are simple eigenvalues and that D far(0,0) has no other

eigenvalues in ingOPfZ. Let vgw (1) = 0 be the equilibrium of fa(+, 1), 1 =~ 0, such that vgw (1)

is smooth in p and vgw(0) = 0. Then axrw(u) ~ (id, vgw(u)) lies on a rotating wave of (2.1).
Let A(u) be the eigenvalue of Dy, far(vrw (1), i) such that A(p) is smooth in g and A(0) = iwé{Opf.

Assume that the usual transversality condition

0
Re @)\(u) - #0 (2.7)

for Hopf bifurcation is satisfied. Then there is a smooth path v(s), s > 0, of points on periodic

solutions of the i-equation with period T'(s) ~ THP" = 21 /w{ "' and parameter p(s) such that

v(0) = 0, T(0) = T*°P*, 14(0) = 0.



The periodic orbit through v(s) of the slice equation corresponds to a relative periodic orbit
P(s) through x(s) ~ (id, v(s)) of the original ODE (2.1) with drift symmetry v(s) = (¢(s), a(s)).
Here ¢(s) and a(s) are obtained by integrating (2.6) from 0 to T'(s). There are two cases:

a) If ¢(s) # 0 mod 27 then z(s) lies on a modulated rotating wave, and this is the typical
case;

b) If ¢(s) = 0 mod 27 then z(s) lies on a modulated travelling wave.

Note that
WBOt

Hopf
Wo

TO Hopf
P(s) = Wit Ty P = 27

. wrot . . . .
Hence case b) occurs if &+ € Z, i.e., if there is a resonance between the rotation frequency
“o

wi°t and the Hopf frequency wé{Opf of the rotating wave T'zg, see [3, 8, 10, 31]. In the case of

two real parameters p € R? the following proposition holds true, see also Figure 4:

o
o
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Figure 4: Phase diagram for the spiral wave dynamics for a reaction-diffusion system depending
on the parameters a, b. Reprinted Fig. 1 with permission from [3], copyright 1994 by the
American Physical Society!. Shown are regions containing N: no spiral waves, RW: stable
rigidly rotating waves, MRW: modulated rotating waves, MTW: modulated travelling waves
(dashed curve). Spiral tip paths illustrate states at 6 points. Small portions of spiral waves are
shown for the two rotating wave cases.

Proposition 2.1 [31, Ezample 5.6] Let p € R?, let SE(2)zo be a rotating wave at p = 0
rot

at which a resonant Hopf bifurcation occurs: % € Z. Then under some mondegeneracy
0

conditions (detailed in the proof below) a path Purw(s), s > 0, of modulated travelling waves

at parameters pvtw (s) bifurcates from the rotating wave SE(2)xq.

Proof. Denote the rotation frequency of the rotating wave SE(2)xgrw (1) at parameter p by
W' (u). The transversality condition (2.7) for Hopf bifurcation insures that coordinates in

1Readers may view, browse and/or download material for temporary copying purposes only, provided these
uses are for noncommercial personal purposes. Except as provided by law, this material may not be further
reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or
part, without prior written permission from the American Physical Society.



parameter space 4 € R? can be chosen such that p; = 0 is the Hopf line near u = 0, i.e., such
that A(0, p) = iw™Pt(1ug) for some smooth function wPf(1,) with WPt (0) = w(I){Opf. Periodic
orbits bifurcating from this Hopf line are then parametrized by pus and s > 0. Let v(s, u2)
lie on a periodic orbit with parameters s, us such that v(s, u2) is smooth in its parameters
and v(0, p2) = vrw(0, p2). Let T'(s, p2) be the period of the periodic orbit through wv(s, p2).
Modulated travelling waves satisfy F(s, u2) = ¢(T'(s, n2)) = 0. This equation can be solved
near 0 for yi2(s) by the implicit function theorem if £ (0) # 0. This condition holds true if the

" Op
nondegeneracy condition
i wrot (MQ)
Oz \ T ()

is satisfied. Then v(s, p2(s)) lies on modulated travelling wave Pyrw (s). |

£0 (2.8)

p2=0

Remarks 2.2

a) In [31] (see also [6] for compact groups) resonances of the form wr/wy = k € Z\ {0}
between a non-vanishing imaginary eigenvalue +iwr of adg, and an eigenvalue +iwps of
D, far(0) are shown to be necessary for resonance drift to occur. Resonance drift means
that RPOs P(s) bifurcate with average drift velocities £(s) at z(s) € P(s) which cannot
be chosen to converge to the drift velocity &y of the relative equilibrium, i.e., z(s) — xo as
s — 0, but limgs_,0 &(s) # &. From the form of the linearization Ly = Df(xo) — & about
a relative equilibrium T'zg in a corotating frame, see (2.4), it follows that resonance drift
is caused by resonances between drift dynamics and the symmetry-reduced dynamics. In
Proposition 2.1 above, resonance drift occurs with wr = wi°® and wy = wé{Opf. Proposition
2.1 is a special case of [31, Proposition 3.4], which treats resonance drift for general Lie
groups I'.

b) In the case of spherical symmetry I' = SO(3), modeling for example rotating spiral waves
of reaction-diffusion systems on the sphere, resonance drift caused by resonant Hopf bifur-
cation has been studied in [31, 7, 4]. In this case generically there is a path (x(s), u(s)) in
two dimensional parameter space p(s) € R? such that SO(3)z(s) is a modulated rotating
wave at parameter p(s) with an average drift velocity £(s) at z(s) which is orthogonal to
the drift velocity & € so(3) € 7iaSO(3) of the rotating wave SO(3)zo at z¢ = lims_o z(s).
The proof of this result is very similar to the proof of Proposition 2.1: For any R € SO(3)
write

3
R= eXP(Z bi&i)- (2.9)

Here &;, 1 = 1,2, 3, are infinitesimal rotations such that exp(¢;¢;), i = 1,2, 3, is a rotation by
the angle ¢; around the e; axis (often so(3) is identified with R? and &; with e;, i = 1,2, 3).
Assume, as before, that the Hopf line is at 1 = 0. Let R(s, u2) be the drift symmetry of the
modulated rotating wave at (s, pu2). Assume, without loss of generality, that the rotating
wave through zrw (1) has a rotation velocity Erw (1t)]|€3 so that Egw (1) = w™(p)es. Then
the modulated rotating waves to be found satisfy the equation F'(s, p2) = ¢3(s, u2) = 0.
This equation can be solved if (2.8) holds. The bifurcating modulated rotating waves P(s)
have average drift velocities in the (z1,z2)-plane. For a Hamiltonian analogue see Section
5.1.

¢) Resonance drift also occurs for relative equilibria of systems with the Euclidean symmetry
group I' = SE(3) = SO(3) x R? of rotations and translations in three-dimensional space,
c.f. [5]. An example would be a Hopf bifurcation from a rigidly rotating and translating
scroll wave SE(3)z¢ of a reaction-diffusion system on R?, see e.g. [30]. The group multipli-
cation on I' = SE(3) = SO(3) x R? is analogous to (2.5): For (Ry,a1), (Rz,az) € SO(3)xR3
it is given by

(R1,a1)(R2,as) = (R1R2,a1 + Riaz), Ri, Ry € SO(3), ay,az € R®.



Note that (R, a) is a rotation around the rotation axis of R about the point
c=({d-R)TacR?

combined with a translation along the axis of R. Here A™ denotes the Moore-Penrose
pseudo-inverse of A, i.e. x = ATb satisfies || Az — b||2 = min, A € Mat(n), z,b € R". Let
&o = (&, &) be the drift velocity of the relative equilibrium SE(3)xg at 2o and assume that
&5 # 0. Without loss of generality, choose g in its group orbit such that & € so(3) ~ R?
(see part b) for this identification) is parallel to &§ and to es, and write & = w{'es,
where wi°® # 0. Align the family of relative equilibria SE(3)arg (1) with 2rg(0) = zo such
that their drift velocity épg(p) at zrg(p) also satisfies € () = w™(p)es. If the Hopf
frequency wy *P" satisfies Wit /wi " € Z and this resonance is passed transversely as in
(2.8), then, as in part b), there is a curve P(s) of relative periodic orbits through z(s) = x
with drift symmetry v(s) = (R(s),a(s)) at z(s) satisfying ¢3(s) = 0 mod 27. Here R(s)
is determined by ¢;(s), i = 1,2,3, as in (2.9). These RPOs rotate and translate along a
vector in the (x1,x2)-plane. The point around which they rotate approaches infinity as
s — 0.

d) Note that for the groups I' = SE(2), T' = SO(3) and ' = SE(3) considered above, reso-
nance drift can only occur near relative equilibria with non-vanishing rotational velocity.
Otherwise the linear map ade, has no eigenvalues in iR \ {0}, but this is necessary for
resonance drift, c.f. part a) and [31].

3 Dynamics near Hamiltonian relative equilibria

As in the dissipative case, the meandering transition in Hamiltonian systems is studied by analyz-
ing the equations near relative equilibria (2.3). Therefore in this section symmetric Hamiltonian
systems and the structure of the equations (2.3) for Hamiltonian systems are reviewed. Then
these results are applied to Hamiltonian systems with Euclidean symmetry, for later use in the
analysis of the Hamiltonian meandering transition. Most of the material of this section is taken
from [12, 17, 26, 28].

3.1 Symmetric Hamiltonian systems

In this section a brief introduction to symmetric Hamiltonian differential equations is given
(see e.g. [12, 17] for more details). The starting point is a Hamiltonian ordinary differential
equation on a smooth finite-dimensional symplectic manifold M with a symplectic form (i.e., a
nondegenerate, closed 2-form) Q,., © € M. A Hamiltonian vector field

= fulz) (3.1)
is generated by a smooth function (the Hamiltonian) H : M +— R via the relationship

Q. (fu(x),v) = DH(x)v reM, ve T M. (3.2)

Example 3.1 The simplest example is a Hamiltonian system

& = JD,H(x)

0 id
JZ(—id 0)

and H : M — R is a smooth Hamiltonian. Then the symplectic form  is the standard
symplectic form given by Q(u,v) = (J~tu,v), and J is called the symplectic structure matrix.
By the Darboux-theorem, see e.g. [17], locally every Hamiltonian system has this form in suitable
coordinates.

on M = R?", where



Let us assume that a finite dimensional Lie group I' acts symplectically on M, i.e., that
Qyz(yu,yv) = Qg(u,v) forall xe M, veTI', u,ve T M.

If H is invariant under the action of I' then the vector field fy is I'-equivariant.

Let g* denote the dual of the Lie algebra g of I'. By Noether’s Theorem, for each continuous
symmetry £ € g locally there is a conserved quantity J(£)(-) of (3.1). The function J(&) is linear
in &, so that J maps into g* (see e.g. [17]). It is assumed that J exists globally on M.

Example 3.2 The dynamics of N point vortices (z1,...,2n5) = (21,¥1,...,2Nn,yn) € R?Y on
the plane is given by the following Hamiltonian system [1, 2, 21]:

OH OH
kit = 52—, kiyi = — )
v 0y; Y Ox;

where k; 20, k=1,...,N. The Hamiltonian H

i=1,...,N, (3.3)

N
1
H(z,... 2n) = —— ki In |z — 2;
(z1,...,2N) - Z kik;ln |z — z;
,j=0
1<J
of (3.3) is invariant under the action of the special Euclidean group of the plane I' = SE(2) =
SO(2) x R? on R2V | given by

(Rg,a) - (215-..,2n) == (Rpz1+a,...,Rozn + a)
for R, € SO(2) and a € R?. The symplectic form

N
Q(Zl, ey ZN) = Zkzd.ﬁ? A dyz

i=1

is SE(2)-invariant. The Hamiltonian system (3.3) can be obtained from Euler’s equations for
ideal fluids by modelling the point vortices as d-distributions, see e.g. [2]. In this example the
space of momenta is g* = se(2)* = so(2)* @ (R?)*. By Noether’s Theorem, J(z) = (J?(z),J%(x))
is conserved. Here the angular momentum J? and linear momentum J¢ = (J%1,J%2) are given
by

L N N
J(x) = ) S kilal I =D ks, 3= k. (3.4)
i=1 i=1 i=1

In the following transitions from relative equilibria to relative periodic orbits are studied when
the conserved quantities angular and linear momentum are varied. In contrast to dissipative
systems external parameters are not needed for the study of bifurcations. These transitions are
studied by analyzing the symmetry reduced equations (2.3) for Hamiltonian systems. As in the
general case, see Section 2.1, the reduction by the symmetry group is achieved by transforming
the dynamics into a comoving frame. As a consequence, in the symmetry-reduced system the
momentum is moving with the velocity of the comoving frame and might not be conserved any
more. Therefore, to compute the reduced system in the Hamiltonian case, first the action of the
symmetry group on the space of momenta is investigated.

3.2 Symmetries of momentum maps

Let us assume that J commutes with v € T,

J(yz) =vI(x), ~ve€eT, (3.5)



and, unless otherwise stated, that the action on momentum space g* is the coadjoint action, so
that the momentum map is Ad*-equivariant:

I(z) = (Ad}) ' J(z), ~eT. (3.6)

The coadjoint action of T' on g* is given by yu := (Ad}) "'y, where Ad, : g — g from (2.2) is
the adjoint action. The infinitesimal coadjoint action of g on g* is defined by

Ep = —adgp, (3.7)
with ade as in (2.2). The isotropy subgroup of u € g* is denoted by
Iy={yeT,Adjpu=p}

and its Lie algebra by g,,.

Example 3.3 As example the adjoint and coadjoint action for the Euclidean group are com-
puted. They are needed later on for the computation of the drift dynamics near Hamiltonian
rotating waves.

Let v = (¢,a), 4 = (¢, a). Then

Wt = (6,0)(6,0)(¢,0) 7 = (6 + 0, Ryi+ a)(d,0)
= (¢+0,Ryi+a)(—¢, —R-4a) = ($,—Rza+ Rya +a)
= (¢, Ryt + (id — Ry)a).
Letting qAS = &%, a4 = &% and differentiating with respect to € at ¢ = 0 one gets, with ¢ =
(€%,€%) = (£2,€1,€5) € R,
Ady& =76y = (6,a)(€%,6)(d,a) " = (€2, (Ro€™)1 + E%az, (RyE™)2 — E%an).

Using adg = %Adexp(tg)h:o, the adjoint actions of SE(2) on se(2) and the infinitesimal adjoint
action of se(2) on se(2) are obtained:

1 0 0 0 0 0
Ad, = ay cos¢p —sing |, ade= & 0 =& |. (3.8)
—ay sin¢  cos¢ —£¢ €20

The coadjoint action of SE(2) and se(2) and the infinitesimal coadjoint action of se(2) on se(2)*
are obtained by transposing and inverting Ad, and by transposition and multiplication by —1
of adg:

1 —(R-ga)2 (R_gah 0 =& &
(Ad}))"'=1{ 0  cos¢ —sing |, —adf=|0 0 —=¢ |. (3.9
0 sin ¢ cos ¢ 0 ¢ 0

From these equations it can be seen that the isotropy subgroup I', = {y € T, (Ad;)’1 uw=pu}
of p €se(2)*is '), =T = SE(2) if and only if u* =0 and that I, ~ R for p® # 0.

Remark 3.4 In the case of zero total circulation IC := Zi\il k; = 0 the momentum map J for
the planar vortex dynamics from (3.4) is Ad*-equivariant, see [2]; but, if K # 0, then, instead
of (3.6), the equivariance condition (3.5) now holds for the action

Y ow = AL g4 K (y) (3.10)
of I on g*. Here
k(b a) = K(—%|a|2,a2, —ap) € se(2)* (3.11)
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is called a cocycle, see [17]. In other words, (3.5) now becomes
J(yz) =~ J(x), forall yeT. (3.12)

The infinitesimal cocycle K : g x g — R corresponding to the cocycle k is defined as

d
K(©) = (e € 8"

and in this case it is given by
K(&n) =K (Y 0") na) = K(=£805 + &ni). (3.13)

The infinitesimal action of the Lie algebra g of I' on g* is defined as

d
€ i i = 33 eXD(EE) wx plimo = —adip + K (€). (3.14)

The isotropy subgroup of 1 € g* with respect to the cocycle action (3.10) is denoted by . Its
Lie algebra is denoted by g/}f = Til'};. For later use, note that v = (¢,a) € I';; for pu € se(2)" if
and only if

ai

(Ry — id)p® = K<_a2>. (3.15)
Hence for non-vanishing cocycle the isotropy subgroup of every p € g* is conjugate to SO(2).

Let x¢ lie on a relative equilibrium I'zy with drift velocity & € g at xg, so that ®;(xg) =
exp(t&o)xo. Since momentum is conserved,

o = J(z0) = J(@i(20)) = J(exp(t&o)ro) = exp(t&o)po,

and therefore g is fixed by &p:
Sopo = 0. (3.16)

Such pairs (§, ) € g ® g* are called wvelocity-momentum pairs. Note that the action of £, on
o in (3.16) is the infinitesimal coadjoint action (3.7), or the infinitesimal action with cocycle
(3.14), depending on the symmetry property of the momentum map.

Similarly, if zo = v, '®7, (0) lies on a relative periodic orbit with drift symmetry ~o and
momentum po = J(zo) then pg is fixed by ~o:

Yoo = Ho- (3.17)

Such pairs (v, u) € T' x g* are called drift-momentum pairs.

3.3 Dynamics near Hamiltonian relative equilibria

For a symplectic manifold M with Ad*-equivariant momentum map the normal space N to the
group orbit I'zg at g € M from Section 2.1 can be decomposed as:

M/FZN = NoEBNl = g,*m@J\/'l.

Here
8uo = Tial'y, = {€ € g+ adipo = 0}

is the isotropy subalgebra of the momentum pg = J(zg) of zg. The space A is isomorphic
to a section transverse to the momentum group orbit I'mo at pg. To see that Ny ~ 8o
let n,, be a complement to g,, in g and let ann(n,,) denote the annihilator of n,, in g*.
Then 7,,T'no = guo = ann(gy,), and so ann(n,,) = g is a section transverse to I'uo at
po- The symplectic normal space or symplectic slice N1 at xq is a slice to the 'y, orbit of
7o in the momentum level set J=!(ug), c.f. Figure 5. Moreover, there is a choice of slice N
such that the coordinate transformation x — (y,v,w) € T x Ny @ N1, where z lies in some
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z = (7,v)

/o) o/
N \ 3ao)

J/
ing* in Jil(p,o)
F,uo Fuol‘o
/)
No =g M

Figure 5: Symplectic Slice Theorem

in M:

Fﬂ,’o

I-invariant neighbourhood U of T'zg, is symplectic with symplectic form Qrxa on I' x N given
by Qrxn = ergﬁo + Qu, - Here Qy, is the symplectic form on A7 and ergﬁo the symplectic
form on I x g7, , obtained by restriction of the symplectic form on 7°I' ~ I' x g*. In these
coordinates the momentum map becomes

J(v,v,w) = y(po +v), (3.18)

see [11, 16] and also [26]. Let Ja;, be the structure matrix of the symplectic form on Nj.

One more technical assumption is needed: In this paper, unless otherwise stated, it is assumed
that ug is split, i.e., there is a Fjjio—invariant complement to g, in g. Here F;Jdo is the identity
component of I',,;. This condition is always satisfied for compact groups and also for the special
Euclidean group of the plane, see [26]. For the general case see [26].

Theorem 3.5 [26, Theorem 3.1] Let, as above, (v,v), v = (v,w) € N, v € T, parametrize a
T-invariant neighbourhood U of the relative equilibrium Txg with momentum pg = J(xo). Let
h(v,w) be the restriction of the Hamiltonian H to the slice N = g, ® N1 and let po be split.
Assume that the momentum map is Ad"-equivariant. Then v(t) € T, v(t) € g, , w(t) € N1,
where x(t) ~ (y(t),v(t), w(t)) € U solves (3.1), satisfy the differential equations

¥ =~ D,h(v,w), v= ad]guh(l,ﬂu)l/, w = Ja,Dwh(v,w). (3.19)

As in the non-Hamiltonian case, the relative equilibrium Iz corresponds to the equilibrium
v = (0,0) € NV of the slice equation on /. The first equation describes the motion of the body
frame. Here D, h is the velocity of the body frame, and D,k(0,0) = & is the drift velocity of
the relative equilibrium I'zg at x¢. The second equation describes the motion of the momenta
in body coordinates and the last equation models the shape dynamics.

From a comparison of (3.19) with the equations near relative equilibria in the general case
(2.3), it becomes apparent that in the Hamiltonian case v = (v, w) and

o) Do), o) = (" )

So the slice equation © = far(v) now consists of the two differential equations for v and w.
Moreover

ad? |« 0
— €018,
Din(0) (JMDiwh“(m In, D2 (0) ) (3.20)

The energy h(v,w) is a conserved quantity of the slice equation which is a Poisson-system, see
[17]. Any function C(v,w) which is a conserved quantity of the slice equation for all choices
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of Hamiltonians h(v,w) is called a Casimir of the slice equation. Note that the flow-invariant
symplectic leaves of the slice equation are given by Fif‘oyo x N1 where vg € Nj.

Note for later reference that (3.20) is true for non-split p as well if the infinitesimal coadjoint
action adg restricted to ann(n,,) ~ gy, in adg, £, is replaced by the corresponding action on

8, For split ug, both these actions coincide, see [26].

Remark 3.6 With the notation from (3.7), the r-equation can be rewritten as
v=-D,h(v,w)v.

As shown in [28], Theorem 3.5 remains true in the case of a momentum map which is symmetric
with respect to a cocycle action, if the infinitesimal coadjoint action in the ©-equation is replaced
by the corresponding action (3.14) with a cocycle. Then the r-equation becomes

v=-Dyh(v,w) kv (3.21)
provided that po is split for the action of I'* on g, i.e., if there is a (T'; ,)-invariant complement
nffo to gffo in g, where (on)id is the identity component of I'}; . Moreover, as before, Ny ~
ann(nffo) o~ (gffo)*

Remark 3.7 For later use, let us consider parameter dependent Hamiltonian systems
&= f(z,K), (3.22)
where f is defined by
Qz, K)(f(z,K),v) = D H(z,K)v reM, ve T, M.

Assume that the symplectic form Q(KC), the Hamiltonian H (-, K) and the momentum map J(-, )
depend smoothly on a parameter K. Then Theorem 3.5 still applies, and the sections Ny (K),
N1(K), as well as the Hamiltonian h(v, w, K), depend smoothly on K, as long as the dimensions
of Np(K) and N7 (K) are constant. See the proofs in [11, 16] and [26].

Example 3.8 For later use, let us derive the differential equations (3.19) near rotating waves of
Hamiltonian systems (3.1) with symmetry group I' = SE(2), in the case of an Ad*-equivariant

momentum map. Let zo lie on a rotating wave so that ®;(xg) = exp(t&o)zo, & € so(2),
o = J(20). From (3.16) it follows that 0 = —adg o, with adg, from (3.9). Therefore ug = 0,
so that the rotating wave through zo has vanishing linear momentum. Then I',, = SE(2),

see Example 3.3. Hence N =~ g, = se(2)*, and so the equations (3.19) for SE(2)-equivariant
Hamiltonian systems are

¢ = Dysh, a=RyD,ah, & 4 =AD,h(v,w)

v = viDyah(v,w) — v§Dyah(v, w)

vy = v§D,sh(v,w) & v=adp v (3.23)
vy = =D, sh(r,w)

w = Jn,Duph(v,w)

Example 3.9 Also for later use, let us consider the equations (3.21) for Hamiltonian systems
(3.22) which have a momentum map J(-, K) with cocycle (3.11), K # 0. From (3.10) and (3.11)
it follows that the momentum po can always be translated such that p§ = 0. For pu§ = 0 one
has £ = (£%,¢%) € gffo if and only if £* = 0, and so

I = S0(2) x {0} C SE(2).

For £ = 0 the infinitesimal cocycle (3.13) vanishes. Hence {(0,£) € se(2),£* € R?} is a 'Y -
invariant complement to gffo = s0(2) in se(2), and po is split. Consequently, Ny =~ (gffo)* S
so(2)*, and v =0 in (3.21).
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4 The meandering transition in Hamiltonian systems

In this section a Hamiltonian analogue of the meandering transition for dissipative systems,
which was described in Section 2.2 above, is presented, using the equations near Hamiltonian
relative equilibria (3.19) from Section 3. First Euclidean symmetric Hamiltonian systems with an
Ad*-equivariant momentum map are studied (Sections 4.1 - 4.3). Then systems with Euclidean
symmetry for which the momentum map has a cocycle are considered (Section 4.4).

4.1 Persistence of rotating waves

In this section and in the following sections 4.2 - 4.3 it is assumed that (3.1) has the symmetry
group I' = SE(2) and an Ad*-equivariant momentum map.

As a prerequisite for the analysis of the transition from rotating waves to modulated rotat-
ing and modulated traveling waves, the persistence of nondegenerate rotating waves to nearby
momentum values is studied.

Definition 4.1 A relative equilibrium Tzo of (3.1) is called nondegenerate if D2 h(0) is in-
vertible. Here h(v,w) is the Hamiltonian in the symmetry adapted coordinates near xo from
(3.19).

Note that a relative equilibrium is typically nondegenerate. The next proposition shows that
nondegenerate rotating waves persist to nearby angular momentum.

Proposition 4.2 Let SE(2)xz be a nondegenerate rotating wave of an SE(2)-equivariant Hamil-
tonian system (3.1) with Ad”-equivariant momentum map J(-), and let uo = J(xo). Then
there is a one-parameter family SE(2)xrw (v?) of rotating waves nearby parametrized by an-
gular momentum u® = ug’ + v® with vanishing linear momentum such that xrw(v?) =~
(id, (v?,0,0)T, wrw (v?)) is smooth in v* and z(0) = g, wrw(0) = 0.

Proof. Rotating waves are equilibria of the slice equation, i.e., of the (v, w)-system of (3.23).
Using the nondegeneracy assumption, the equation 0 = w = Ju, Dyh(v, w) can be solved by
the implicit function theorem for wrw(v) such that wrw(0) = 0. For rotating waves the linear
momentum has to vanish, see Example 3.8. Hence v® = 0 in any rotating wave. From the
v-equation of (3.23) then v? = 0, #* = 0 follows. Hence xrw (v?) ~ (id, (v?,0,0)T, wrw (v?))
lies on a rotating wave of (3.1) for all ¢ ~ 0. By (3.18), J(zrw (v?)) = po + v = (4 + ?,0).

|

A persistence theory for teneric nondegenerate relative equilibria of Hamiltonian systems with
general noncompact symmetry group has been developed in [32], see also [20] for an example of
non-persistence of rotating waves to non-vanishing linear momentum in point vortex dynamics.
The above proposition could also be proved by applying the results of [32] to the example
I' = SE(2). However, the direct proof given above is more elementary.

4.2 Bifurcation of modulated travelling waves

The following theorem states that typically rotating waves of Euclidean equivariant Hamiltonian
systems with Ad*-equivariant momentum map persist to modulated traveling waves at nearby
linear momenta p® # 0. Consequently resonance drift occurs generically.

Theorem 4.3 Let SE(2)xzy be a nondegenerate rotating wave of an SE(2)-equivariant Hamil-
tonian system (3.1) with Ad"-equivariant momentum map. Denote its rotation frequency by
wpet = fg’ and assume that Wit # 0. If all eigenvalues iwo of Ja, D2 h(0) satisfy

wo/wp ¢ Z (4.1)
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then the rotating wave SE(2)xo persists as a modulated traveling wave Pyrw (v?,7%) to all
nearby momentum values p = (,ug) +v? v%), r* = |[v*||. Moreover there is a smooth func-
tion ryrw (2, 1Y) € Purw (v, 1) such that zyrw (v?,0) = zrw (v?). Here SE(2)zrw (v?)
is the family of rotating waves from Proposition 4.2. The relative period Tytw (v, %) of the

modulated traveling wave Pyrw (v?, 1) is close to Tyrw(0) = %, and the translation drift

wrw (12, 1) = (0, amtw (1?2, 7%)) of the modulated traveling wave at xyrw (v, %) satisfies
aMTw(V¢, 0) =0.

Proof. The rotating wave SE(2)xg is treated as a periodic orbit of period Ty = % Introduce
polar coordinates v* = (r® cos ¢, r®sin ¢*). Then (3.23) implies that r® = ||[v?||2 is a conserved
quantity (Casimir) of the slice equation. Since the slice equation also conserves energy, the set

Niye = {(w) €N, h(v,w) = B, [v"]2 ="}

is flow-invariant. From ¢® = D,sh(v,w) =~ W # 0 for (v,w) ~ 0 it can be deduced that for
E ~ Ey = H(xg), r* >0, r* = 0, the section

SE,’I‘O‘ = {(V7 U}) S NE,T”’? ¢a =0, (Va w) ~ 0}

is tranversal to the flow in NEﬂ,a. Let II(E,7%,-) : Sgya — Sgre be the Poincaré-map to
the Poincaré-section Sg ya. Since Dy, ,)h(0) = (£0,0) with 535 = wi’® # 0, the sections Sg
FE ~ Fy, r* =~ 0, can be parametrized as

SE,T“ = {(V¢aw)ay¢ = V¢(E77na7w)7w ENl}'

Hence II(E, %, ) can be considered as a map from N to itself. By assumption kiw{°, k € Z, is
not an eigenvalue of Jx;, D% h(0). Therefore

2
D I1(Eo, 0,0) — id = exp (ﬁJMDi}h(O)) —id
0

is invertible, and so there is a fixed point w(FE,r?®) of II(E.r%,-) for each E =~ Ey, r* =~ 0. As
D, sh(0) = wiet # 0, this family of fixed points can be parametrized by v and 7% instead of E
and r®.

The periodic orbits of the slice equation through v(v?,7%) = (v(v?,r?), w(v?,r?)), where
v(v?,r%) = (v?,r%,0), correspond to relative periodic orbits Pyrw (v?,7¢) of (3.1) through
rvrw (1?2, 79) =~ (id, v(v?, r*)) with momentum

J(xMTW(V¢7Ta)) = Mo + V(V¢77ﬁa) = (:u?)) + V¢77ﬁaa 0)7

see (3.18). For vanishing linear momentum r® = 0 they reduce to the rotating waves
SE(2)zrw (v?) from Proposition 4.2.

By (3.17), any RPO with drift v = (¢,a) and momentum p satisfies (Ad%) ™'y = p, with
(Ad})~" as in (3.9). Because of (3.9), the condition p® # 0 implies ¢ = 0 so that the relative
periodic orbits Pyrw (v?, %) are modulated traveling waves for 7% # 0. |

4.3 Bifurcation of modulated rotating waves

In this section the existence of modulated rotating waves near elliptic rotating waves is proved
by the Lyapounov centre theorem.

Definition 4.4 A relative equilibrium T'zg, xo ~ (id, (v,w) = (0,0)), of a I'-equivariant Hamil-
tonian system (3.1) is called elliptic if all eigenvalues of the linearization Ja,D2h(0) of the
w-dynamics of (3.19) lie in iR \ {0}, and nonresonant if all its eigenvalues are simple and no
eigenvalue iw; is an integer multiple of another eigenvalue iwy, for wj # wy.
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Note that any stable relative equilibrium is elliptic and that relative equilibria are elliptic for
an open range of parameters (until a Hamiltonian Hopf bifurcation of the w-equation of (3.19)
occurs).

Definition 4.5 Let Txg, xo =~ (id, (v,w) = (0,0)), be an elliptic relative equilibrium of (3.1),
and denote the eigenvalues of Jn, D2 h(0) by +iw;, j =1,...,d, d := 3 dimN;. The signs of the
normal frequencies w; are chosen such that

d
w;
=" L fwy, wy) + O, (42)
j=1
Here w = (wn,...,wq), wj € R2, are suitable coordinates on Ny. The sign of wj 18 called the

Krein-signature of w;. There is an m : n-resonance between the normal frequencies w; and wy
if mw; = nwy, m,n € Z.

Proposition 4.6 Let SE(2)xg be a non-resonant elliptic rotating wave of an SE(2)-equivariant
Hamiltonian system (3.1) with Ad*-equivariant momentum map. Let wi® be its rotation fre-
quency, let H(xo) = Eo be its energy and let uo = J(xo) be its momentum at xg. Denote the
eigenvalues of Jn,D2h(0) by +iw;, j = 1,...,3dimM — 3. Then there are (1 dim M — 3)-
many two-dimensional families P;(v?,s) of RPOs, j = 1,... ,%dim/\/l — 3, of (3.1), where
s >0, v® ~ 0, with angular momentum ug + v®, with vanishing linear momentum, with en-
ergy E = H(zrw (v?)) £ s? (depending on the Krein signature of wj), and with relative periods
T;(v?,s) such that T;(0,0) = 2m/|wj|. Moreover there are smooth functions xz;(v?,s) with
z;(v?,s) € P;(v?,s), xj(v?,0) = zrw (v?). If wi®t/w; & Z for all normal frequencies w; then
all these RPOs are proper modulated rotating waves for (v?,s) ~ 0. Proper modulated rotating
waves do not persist to non-zero linear momenta.

Proof. First note that proper modulated rotating waves have a drift symmetry v = (¢, a)
with ¢ # 0 mod 27. This implies, because of (3.17) and (3.9), that the linear momentum »*
of a proper modulated rotating wave vanishes. Equation (3.23) implies that ¢ = 0, * = 0 at
v® = 0. So proper modulated rotating waves near x( correspond to nonlinear normal modes of
the v?-dependent w-equation of (3.23) at v* = 0. Note that A has dimension

dimN; = dim M — 2dim SE(2) = dim M — 6.
By the Lyapounov Centre Theorem (see e.g.[18]) there are d = % families of pe-
riodic orbits w;(¥?,s), j = 1,...,d, of the w-equation of (3.23) such that w;¥?,0) =
wrw (1?), with wrw(v?) from Proposition 4.2. Let iw;(¥?) be the eigenvalue of
IniDZR((1?,0,0), wrw (¥?)) such that w;(0) = wj;. Since dsw;(¥?,0) lies in the real
eigenspace of Jn, D2 h((v?,0,0), wrw (v?)) to the eigenvalue iw;(v?) (see e.g. [18]), and since
Dy h((¥?,0,0), wrw (v?)) = 0, the energy of the periodic orbits is

h((v?,0,0), wj(u¢, s)) = H(zrw (v?)) + wj(y¢)82 +0(s%).

Therefore s can be rescaled to achieve that the periodic orbit w;(v?, s) has energy H(xrw (1)) £

s? depending on the sign of wj, see (4.2). Then z;(1?,s) = (id (V 0,0),w;(v?,s)) lies on an
RPO P;(v?,s) of (3.1). Its momentum is J(z;(v?,s)) = (,uo +1v%,0,0), by (3. 18) The drift
symmetry v; (v?, s) = (¢; (%, s),a;(v?,s)) of the RPO at x;(v?, s) satlsﬁes $,(0,0) = 27w Jw;,
and so ¢;(0,0) # 0 mod 27 if wi**/w; ¢ Z. In this case ¢;(v?,s) # 0 mod 2 for (v?,s) =~ 0,
and the RPOs P;(v?, s) are indeed proper modulated rotating waves for (1%, s) ~ 0. |

Example 4.7 Let us now study a Hamiltonian analogue of the meandering transition for point
vortices with vanishing total circulation /I = 0. In this case the momentum map of the point
vortex system (3.3) is Ad*-equivariant, cf. Remark 3.4. Let us start with a configuration of
rigidly rotating point vortices. Such a configuration is a rotating wave of (3.3). Synge [29]
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Figure 6: Bifurcation diagram for the Hamiltonian meandering transition of point vortex dy-
namics in the case of vanishing circulation. RW: rotating waves, MRW: modulated rotating
waves, MTW: modulated travelling waves.

and later Aref [1] showed the existence of rotating waves of 3 vortices with vanishing total
circulation. Patrick [25] constructed rotating wave solutions with vanishing total circulation
for N > 3 vortices. Let us assume that the rotating wave is nondegenerate and that the non-
resonance condition (4.1) is satisfied (this assumption is trivially satisfied for 3 vortices, since
then A7 = {0}). Then it persists as translating and precessing configuration, i.e. as modulated
travelling wave, to non-zero linear momentum. Moreover if the rotating wave is elliptic and
non-resonant then there are (3 dim M — 3) = (N — 3) different 2-parameter families of rotating
and precessing configurations of vortices nearby, which are modulated rotating waves (Patrick
[25] shows stability of the rotating waves of 4 vortices with vanishing total circulation, which he
constructed. This implies that these rotating waves are elliptic, and, since N is 2-dimensional,
they are also nonresonant).

Figure 6 shows the bifurcation diagram of the Hamiltonian meandering transition for point
vortex dynamics in the case of an Ad*-equivariant momentum map (for momentum maps with
cocycle see Section 4.4). This diagram should be compared with the corresponding bifurcation
diagram of the dissipative meandering transition, Figure 4.

Note that, in contrast to the meandering/drifting transition in dissipative systems, here
modulated travelling waves are the typical scenario as momentum is varied. Modulated rotating
waves only occur for zero-linear momentum and so are a codimension two phenomenon in the
three parameters angular and linear momentum.

Example 4.8 Another example where a Hamiltonian meandering transition occurs is the Kirch-
hoff model of an underwater vehicle, see [13, 15]. In this case the configuration space is the Eu-
clidean group SE(3) = SO(3) x R? of three-dimensional space modeling the angle and position
of the underwater vehicle, and the phase space M = T*SE(3) is 12-dimensional. In the case of
non-coincident centres of gravity and buoyancy the symmetry group is

I' = S03(2) x R* = SE(2) x R.

Here SO3(2) denotes the group of rotations around the axis of gravity, which is chosen as the
third coordinate axis (i.e., as the eg-axis), and R is the group of translations along the es-axis.
Near a vertically falling and spinning relative equilibrium the dynamics is given by the slice
equations near a rotating wave of a Euclidean equivariant system (3.23), but now there is an
additional equation

v =0
in the slice and a corresponding equation

az = Dygh(v, w)
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for the group dynamics, where v = (v?,v%), v* = (v§,v8,1v8). Assume that this relative
equilibrium is nondegenerate and satisfies the non-resonance condition (4.1). Then it persists as
translating RPO with non-vertical linear drift to horizontal linear momentum. Let the relative
equilibrium be elliptic and non-resonant (from [15, Section 4.4.2] it follows that these conditions
are satisfied at least for an open range of parameters). Then there are two 3-parameter families
of RPOs, parametrized by (v?,v4, s), which fall, rotate and precess.

4.4 Hamiltonian meandering transition for momentum maps with co-
cycle

In this section the analogue of the meandering transition of dissipative systems is considered for
Hamiltonian systems where the momentum map has a non-vanishing cocycle of the form that
occurs in point vortex dynamics. The limiting behaviour for a vanishing cocycle is studied, and
in this way the meandering transition for momentum maps with cocycle is related to the results
of Sections 4.1-4.3 on the meandering transition for Hamiltonian systems with Ad*-equivariant
momentum map.

Let us consider a parameter dependent SE(2)-symmetric Hamiltonian system (3.22). Assume
that the symplectic form Q(K), the Hamiltonian H (-, K) and the momentum map J(-, ) : M —
se(2)* depend smoothly on a parameter K. Moreover assume that the momentum map is Ad*-
equivariant for K = 0 and has the cocycle (3.11) for I # 0, see (3.10), (3.12). An example of
such a momentum map is the momentum map (3.4) for the point vortex dynamics (3.3).

As in the analysis of the Hamiltonian meandering transition for Ad*-equivariant momentum
maps, see Section 4.1, first the persistence of rotating waves to nearby momentum values is
studied. Moreover the behaviour of the rotating waves in the limit of vanishing cocycle is
analyzed in the following theorem:

Theorem 4.9 Consider a Hamiltonian system with SE(2)-symmetry for which the momentum
map J(-,K) has a non-vanishing cocycle satisfying (3.11), (3.12). Then:

a) For KK # 0 all relative equilibria are rotating waves. Any nondegenerate rotating wave
SE(2)xq persists to all nearby momentum values as a one-parameter family SE(2)zrw (),
Ve (gljfo)*’ {ERw(O) = Xo.

b) The centre of rotation ¢(K) of any smooth family of rotating waves SE(2)xrw (KC), K #£ 0,
K ~ 0, with fived linear momentum p® # 0 and rotation frequency w™*(K), such that
limyc o w™(K) = w°* # 0, tends to infinity, as K — 0, according to

ey = 121

¢) Assume that there is a nondegenerate rotating wave SE(2)xo at K = 0 with momentum
to = (,ug, 0) and rotation frequency w{® # 0. Then this rotating wave can be continued to
a rotating wave SE(2)xrw (v?, K) for small K # 0, v® # 0, such that J(zrw (v?,K), K) =

,ug) +v? and J*(zrw (v?,K),K) = 0.

Part b) of this proposition implies that for £ = 0 rotating waves only exist for vanishing
linear momentum, see Proposition 4.2.

Proof of Theorem 4.9.

a) If the momentum map for a Hamiltonian system with SE(2)-symmetry has a non-vanishing
cocycle then T ~ SO(2) for all 11 € se(2)*, as shown in Remark 3.4. Hence g ~ so(2)
for all p € se(2)*, and by (3.16) all relative equilibria are rotating waves. Moreover in
Example 3.9 it was shown that 7 = 0 in (3.21), v € (g[)*. For a nondegenerate ro-
tating wave SE(2)x¢ the matrix D2 h(0) is invertible. Therefore there is a path wgrw (V)
of equilibria of the w-equation near wrw(0) = 0. These equilibria correspond to ro-
tating waves SE(2)zrw (v), arw(v) =~ (id, v, wrw(v)), of (3.1) for all nearby momenta
SE(2)J(zrw (v), K) = SE(2)(po + v), where pig = J(z0,K).
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b) Let SE(2)zrw (K) be a rotating wave with momentum g and drift velocity £ = £(K) =
(€%,£%)(K). Differentiating (3.15) and identifying R? with C and so(2) with R one obtains
that

(€%.¢") egl & K& =& (4.3)
Let (¢,a)r = €%z +a, v € R? ~ C. Then x(t) = exp(t(£%,£))xo satisfies the differential
equation Z(t) = i£®x(t) + £, Solving this and setting ¢ = 1 one gets

a 134 1 134 a
exp(£?, €M ag = e zg + — (7 — 1)¢%.

g
Therefore exp(£?,£9) is a rotation with centre
S N
C:1€—¢_1E_E( pg, )" (4.4)

This proves b).
¢) Let us only reduce by the SO(2) x {0}-symmetry. Then the system
5=0, =1JgDgh(,,K)

is obtained on the slice A transverse to the SO(2)-orbit SO(2)z at zo, with 7 = v®. By
(3.8), (3.9) the matrix adg, = —adg, has simple eigenvalues 0 and +iwg**. By (2.4) and
(3.20), at KC = 0 the linearization of the slice equation D f¢-(0,0) has one simple eigenvalue
0 corresponding to the equation © = 0. Therefore D?DE(O,QO) is invertible and so the
rotating wave SO(2)z, is nondegenerate. By Remark 3.7 the w-equation is smooth in K.
So there is a smooth two-parameter family wrw (7, K) of equilibria of the w-equation. This
gives a family SE(2)zrw (v?,K), 2rw (1%, K) ~ (id, v?, wrw (1%, K)), of rotating waves of
(3.1). By (3.18) their angular momentum is J?(zrw (v?,K),K) = pd + v®. Since only
a reduction by the SO(2)-symmetry has been carried out, the rotating waves through
zrw (1%, K) have drift velocities Erw (12, K) with €&y (12, K) = 0. Moreover §1¢{W (v, K) ~
wEet # 0 for K ~ 0. Therefore (4.3) implies that J¢(zrw (v%, K),K) = 0.

|
The next proposition shows that in the case of a momentum map with cocycle (3.11) all
relative periodic orbits are modulated rotating waves:

Proposition 4.10 Consider a Hamiltonian system with SE(2)-symmetry for which the momen-
tum map J(-,KC) has a non-vanishing cocycle satisfying (3.11), (3.12). Then:

a) For K # 0 all relative periodic orbits are modulated rotating waves.

b) Any smooth family P(K) of proper modulated rotating waves of (3.1), i.e., of RPOs with
drift symmetry v(K) = (¢(K), a(K)), where ¢(K) # 0 mod 27 for all K # 0, K =~ 0, with
fized linear momentum pu® # 0 has a centre of rotation c(KC) diverging to oo for K — 0

according to ||c(K)| = ”lltca”'

Proof.

a) Similarly as in the proof of Theorem 4.9 a), this follows from the fact that I';; ~ SO(2) for
all 4 € se(2)*, as shown in Remark 3.4. This, together with (3.17), implies that all relative
periodic orbits are modulated rotating waves.

b) This statement is proved similarly as Theorem 4.9 b). By (3.15), the centre of rotation
c(K) = Rycyc(K) + a(K) of the drift symmetry v(K) = (¢(K), a(K)), ¢(K) # 0 mod 2,
of the RPO is given by (4.4), and so ¢(K) — oo as K — 0 for pu® # 0.
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In the next theorem the transition from rotating waves to modulated rotating waves and
modulated travelling waves is studied, in the limit L — O:

Theorem 4.11 Let SE(2)xrw (K) be a nondegenerate rotating wave of a Hamiltonian system

(3.1)

which has a momentum map J(-, IC) with cocycle satisfying (3.10), (3.11). Fiz the momen-

tum po = J(xrw (K), K) of zrw (K) independent of K. Then the following holds true.

a)

b)

Fix IC # 0. Assume that the rotating wave SE(2)xrw (K) is elliptic and nonresonant in the
sense of Definition 4.4, with normal frequencies wj, j =1,..., % dim M — 2. Then there
are (3 dim M — 2) many two-dimensional families P;(v, s, K) of modulated rotating waves
such that there are functions x;(v,s,K) € P;(v,s,K) which are smooth in s > 0, K and
v e (gh)*r ~so(2)" with x;(v,0,K) = zrw(v,K). Here zrw(v,K) lies on a rotating wave
with momentum po+v. The modulated rotating wave through (v, s, KC) has relative period
T;(v, s, ) with T;(0,0,K) = 27/ |w;|, its momentum is J(z;(v,s,K),K) = po + v, and its
energy is H(z;(v,s,K),K) = H(xrw (v, K),K) £ s? (depending on the Krein signature of
wj), j=1,...,2dimM — 2.

Assume that there is a rotating wave SE(2)xg at K = 0 with rotation frequency wf°®

which is elliptic and nonresonant in the sense of Definition 4.4, and that w*/w; ¢ Z
for all eigenvalues iw; of In,D2R(0,0,0). Then the (4 dim M — 3) families P;(v?,s) of

modulated rotating waves near SE(2)xg from Proposition 4.6 at KK =0 can be continued to
small KK # 0 and correspond to families P;(v,s,K) from part a) with v = v®.

Assume that the rotating wave SE(2)zg at K = 0 is elliptic and nonresonant and
that wj/wi®t & 7 for all eigenvalues iw; of Jn,D2h(0,0,0). Then for K # 0,
K =~ 0, one of the families P(v,s,K) from a) corresponds to an eigenvalue iw(KC) of
I, 00 D2h(0, wrw (0, K), K) which depends smoothly on K such that w(0) = w{®*. Here
Wit is the rotation frequency of the rotating wave SE(2)zo at K = 0, N1(K) is the
symplectic normal space at the rotating wave through xrw(0,K) ~ (id,0, wrw(0,K)) €
L' x No(K) @ N1(K), No(K) ~ (gh)*, and h(v,w,K) is the Hamiltonian in symmetry
adapted coordinates at xrw(0,K) for the cocycle parameter K. As K — 0, this family
converges to the family of modulated travelling waves from Theorem 4.3.

Proof.

2)

Fix K # 0. Then, as shown in Example 3.9, Ny = Ny(K) is one-dimensional, and so
N1 = N1 (K) has dimension dim M — 4. By the Lyapounov Centre Theorem (see e.g. [18])
applied to the v-dependent 1w-equation on N7 = N7 (K), there are %dim./\/l = (dim M —
4)/2 many families of nonlinear normal modes through w;(v, s, K). These give families of
relative periodic orbits P;(v, s,K) of (3.22) through z;(v, s, K) ~ (id, v, w;(v, s,K)) with
momentum J(z;(v,s,K)) = uo + v, see (3.18). The statement about the energy of the
RPOs is proved as in Proposition 4.6. It was shown in Remark 3.4 that I'}} ~ SO(2) for all
i € se(2)*. Hence (3.17) implies that all these RPOs are modulated rotating waves. This
proves part a).

Let us reduce by SO(2)-symmetry only. The dynamics on the slice N(K) is then v = 0,
7 =v? €s0(2)*, and & = I3, 00y Pah(#,w, K). Since adg, = —adg, has simple eigenvalues
0, +iwf°®, c.f. (3.8), (3.9), (2.4) and (3.20) imply that the equilibrium @w = 0 of the
w-equation at 7 = 0, K = 0, is elliptic and that its linearization has, in addition to the
eigenvalues +iw;, j =1,..., % dim AV, double eigenvalues +iwf*t. Applying the Lyapounov
Centre Theorem to the w-equation, relative normal modes 1, (7, s, K) are obtained for all
nonresonant normal frequencies, i.e., for all imaginary eigenvalues +iw; with eigenvectors in
the original symplectic normal space N for the full SE(2)-group action. Since by Remark
3.7 the 1-equation is smooth in K, this gives 2 dim N = (dim M — 6)/2 smooth families
P;(v?,s,K) of RPOs through z;(v?, s, K) ~ (id, 7, w;(v?, s,K)), j = 1,... % dim N7, with
momentum J(z;(v?, s,K)) = (,ug) +v?,0), see (3.18). These RPOs are modulated rotating
waves, since the system was only reduced by SO(2)-symmetry.
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¢) Let £ = 0. Then (3.20) and (3.9) imply that the linearization of the #-equation has

eigenvalues +iwf°" and 0, where the real eigenspace of +iwf°" is given by {v = (0,v%),v* €

R?} C se(2)*. Compared to the slice equation (3.23) near rotating waves of momentum
maps without cocycle, for K # 0 the Ny(K) component of the slice N(K) is only 1-
dimensional instead of 3-dimensional. Since pl = J%(x¢,0) = 0 and po = J(zrw(K), K)
is fixed, Remark 3.9 implies that v = v? for K # 0 and that then 7 = 0. For K # 0 the
eigenvalue £iwg® of D far(0) perturbs into eigenvalues +iw(K) of D far(xc) (vrw (K)). Here
vrw (KC) is the equilibrium of the slice equation at momentum pg and cocycle parameter
corresponding to the relative equilibrium zrw (v?, K) at v® = 0 from Theorem 4.9 c). Since
D far(xc) (vrRw (K)) vanishes when restricted to No(K), it follows that +iw(KC) are eigenvalues
of Dfar(x)(vrw(K)). By the Lyapounov Centre Theorem and due to the nonresonance
condition w; /w{® ¢ Z, this gives one more family of nonlinear relative normal modes for
K #0, K~ 0. It will now be shown that this additional family of RPOs converges to the
family P(v?,7%) of modulated traveling waves from Theorem 4.3 as K — 0.

The proof of Theorem 4.3 can be extended to the case K = 0, K # 0. It is convenient to
work in the slice coordinates (v,w) € N'= Ny ® N7 at K = 0, even when perturbations
to cocycle parameters K # 0 are considered. For any K =~ 0 the dynamics on the slice N/
does not depend on « and the energy h(v,w, K) is still a conserved quantity. But note that
the Poisson structure on N changes, and in particular |v?|? is not a conserved quantity
any more. By (3.9), for £ = 0 the momentum group orbits SE(2)u are cylinders around
the pu®-axis. For K # 0, due to (3.10) and (3.11), they are paraboloids, centered along the
p?-axis. A Casimir, i.e., a function satisfying C(v -, p) = C(u), where 7 -, p is defined in
(3.10), is given by C(u?, u®) = ||u®||? +2Ku?. Let J*(v, w, K) and J? (v, w, K) be the linear
and angular momentum on the slice N'. Since the momentum map depends smoothly on
IC, these maps are smooth in all variables. Then

Cv,w,K) = 3w, w, K)|* + 2KI% (v, w, K) (4.5)

is a conserved quantity for the slice equation. For K = 0 one has J%(v,w, K = 0) = v%,
J?(v,w, K = 0) = v?. Therefore for K ~ 0 the Casimir C(v,w, K) is a small perturbation
of C(v,w,K)|x=0 = ||v?||?>. The rotating waves through xgrw (v?,K) from Theorem 4.9
¢) have energy Erw(v?,K) = H(zrw(v?,K)) with agﬁw (0,0) = wi® # 0. So they
can be parametrized by (E,K) instead of (v?,K) for E ~ Ey = H(x) and K ~ 0.
Let zrw(E,K) = (id, vaw (E, K), wrw (E, K)) be the family of rotating waves near xo =~
(id,0,0) € T x N. Then vy (E,0) = 0, vy o(F,0) = 0 by Proposition 4.2. Since
the slice equation conserves energy, the energy level sets Ng x of the slice N at cocycle
parameter K are flow-invariant. Moreover, as D,sh(0) = wf°', wf°" # 0, they can be
parametrized by

Nex ={(v,w) €N, hv,w,K)=E}={(v,w)eN, v?=v?E,v*w K)},
where F ~ Ey = H(xg), v* =0, K~ 0, w~ 0. As in the proof of Theorem 4.3,
Spx ={(r,w) eN, v§=1viyo(E K), vi>viw(E,K), v® =v?(E,v*,w,K),
weMN, w0, v*=0}

is a Poincaré section in N x for E ~ Ep, K = 0. Denote s = v{ — vy 1 (F,K). Let us
now look for fixed points of the Poincaré map II(E, s, w, ) which maps Sg x to itself.
Decompose II(E, s,w,K) = (Ip(E, s,w, K), 11 (E, s,w, K)), where I1; (E, s, w, K) is the w-
component (w € N7) and IIy(E, s, w, K) the s-component of II. Due to the nonresonance
condition, IT; (E, s,w, K) = w can be solved for K ~ 0, s = 0, E ~ Ey = H(xp), by the
implicit function theorem to obtain w(FE,s,C). Inserting this into IIy, one obtains one
scalar fixed point equation s = fI(E, s, K). This equation is satisfied due to the existence
of the Casimir (4.5): Let § = [I(E, s,K). Inserting w = w(E, s, K) into (4.5), a function
C(E,s,K) = 52 + O(K) is obtained. Any equilibrium (v, w) of the slice equation on N
satisfies
D C(v,w) || D h(v,w)
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or
D(C|n=Eg) =0,

where E = h(v,w). The equilibria corresponding to rotating waves of (3.1) are at s =0
and therefore D;C(E,0,K) = 0. Moreover D2C(FEy,0,0) = 2, where Ey = H(z). So
s — C(F,s,K) is monotonically increasing for s > 0, E ~ Ej, K ~ 0, and one can solve
for s(E,C,K). Hence § = s, and a family (v,w)(E,C,K) of periodic orbits of the slice
equation is obtained. This gives a family P(FE,C,K) of RPOs of (3.22). Changing the
parametrization of the RPOs P(E, C,K) from (E,C) back to (v?,s), the notation of the
theorem is recovered. Let (¢,a)(v?,s,K) by the drift symmetry of the RPO P(v?, s, K)
at z(v?,5,K) ~ (id, (v,w)(¥?,s,K)). Note that for £ = 0, (3.18) gives s = r® and
J(x(?,r,0) = (u& + v?,7%,0). By (3.17) and (3.9) for r* # 0 and K = 0 all RPOs are
modulated traveling waves. Therefore ¢(v?, s,K) — 0 as K — 0 and the RPOs P(v?, s, K)
become modulated traveling waves in the limit of vanishing cocycle.

5 Extensions to systems with other symmetry groups

In this section the Hamiltonian analogue of the meandering transition is discussed for sys-
tems with spherical symmetry and for systems with the Euclidean symmetry group of three-
dimensional space. See Remarks 2.2 b) and c) for the corresponding dissipative case.

5.1 Hamiltonian meandering transition with spherical symmetry

In this section it is assumed that the Hamiltonian system (3.1) has spherical symmetry I' =
SO(3). Then persistence of rotating waves to modulated rotating waves at nearby momentum
values is studied. Thereby the analogue of Remark 2.2 b) is studied in the Hamiltonian context.
The results can be applied to rotating point vortices on the sphere, see e.g. [19].

For pg = 0 the momentum isotropy subalgebra is g,, = so(3) and for po # 0 (the typical
case) it is g, = so(2). Let us first consider the generic case of a rotating wave with momentum

po # 0.

Theorem 5.1 Let SO(3)xg be a nondegenerate rotating wave with non-vanishing momentum o
and drift velocity &. Align xo such that po = (0,0, po3), &0 = (0,0,wit)T. Then the following
holds true:

a) The rotating wave SO(3)xq persists to every nearby momentum. Moreover there is a one-
dimensional family of rotating waves SO(3)xrw (v), v = 0, such that zrw(v) is smooth
and xrw(0) = zo. The rotating wave through xrw(v) has drift velocity Erw (v)||es, with
&rw (0) = &, and momentum J(zrw (v)) = (0,0, o 3 + v).

b) Let the rotating wave SO(3)zq be elliptic and nonresonant in the sense of Definition 4.4 and
denote its normal frequencies by w;. Then there are (% dim M —2) two-dimensional families
Pi(v,s), j=1,... % dimM — 2, v = 0, s > 0, of modulated rotating waves nearby such
that there are smooth functions x;(v,s) € P;(v,s) with z;(v,0) = xrw (V) (where xrw (V)
is from a)). These modulated rotating waves have energy H(z;(v,s)) = H(zrw(v)) £ 52
(depending on the Krein signature of w; ), momentum J(x;(v, s)) = (0,0, po,3+v), relative
period T (v, s), such that T;(0,0) = 2=, and average drift velocity &;(v, s)||es at z;(v, ),

lw;[”?
with £;(0,0) = &.

So resonance drift can not occur near rotating waves of SO(3)-symmetric Hamiltonian
systems with non-vanishing angular momentum.

Proof of Theorem 5.1 If 11 # 0 then Ny ~ g7, =~ 503(2)" is one-dimensional. Here so3(2) cor-
responds to infinitesimal rotations around the es-axis. So the v-equation of (3.19) just becomes
v=0.
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a)

A nondegenerate rotating wave SO(3)x persists as equilibrium wgw () of the w-equation
for v = 0. This gives a rotating wave of (3.1) through zrw(v) ~ (id, v, wrw(v)) with
nonvanishing momentum J(zrw(v)) = (0,0, o3 + v), v = 0, c.f. (3.18). Due to SO(3)-
equivariance the rotating wave persists to all nearby momenta.

By the Lyapounov Centre Theorem there are % dim(N7) families w; (v, s) of periodic orbits
of the w-equation, parametrized by v and s. Here dim N7 = dim M — 4. These give points
zj(v,s) = (id,v,w;(v, s)) on modulated rotating waves P;(v, s) with z;(v,0) = zrw(v)
and with momentum J(z;(v,s)) = po +v = (0,0, po,3 + v3), see (3.18). Let SO3(2)
be the group of rotations around ez with Lie algebra soz(2). Since J(z;(v,s)) # 0 and
J(z;(v, s))||es, by (3.17) the drift symmetry R;(v, s) of the RPO at x;(v, s) lies in SO2(3),
and so the average drift velocity §;(v, s) at z;(v, s) is in so3(2).

Next let us consider the case that the rotating wave SO(3)xo has zero angular momentum
1o = 0. In this case resonance drift typically occurs as the following theorem shows:

Theorem 5.2 Consider a nondegenerate rotating wave SO(3)xo with momentum po = J(xo) =

0 and non-vanishing drift velocity &9 # 0. Choose xy such that & = (0,0, wf

rot

FoT where wiet is

the rotation frequency of the rotating wave at xo. Then the following holds true:

a)

b)

There is a one-parameter family SO(3)zrw (v3) of rotating waves nearby, vs ~ 0, with
momentum J(zrw(v3)) = (0,0,v3) and drift velocity Erw (v3)||es at xrw(vs), such that
Erw(0) = &. Moreover, the rotating wave SO(3)xzg persists to all nearby momentum
values.

Assume that Ja, D2 h(0) has no eigenvalues in iwi**Z. Then there is a two-parameter

family Pyrw (va,vs), va > 0, v3 = 0, of modulated rotating waves of (3.1) such that
aMrw (V2,v3) € Pumrw (V2,v3) is smooth in (va,v3) and zyrw (0,v3) = xzrw(vs). The
modulated rotating wave at xymrw (V2,v3) has drift symmetry yvrw (ve, v3), relative pe-
riod T(vq,v3) and momentum J(xmrw (v2,v3)) = (0,v9,v3), and tvrw(0,0) = g,
T(0,0) = 27/|wi’t|, ymrw (0) = id. This family contains a one-parameter family P(va,0)
of modulated rotating waves which have an average drift velocity £(v2,0) at zyrw (v2,0)
parallel to the es-axis.

Assume that the rotating wave SO(3)xg is elliptic and nonresonant in the sense of Defi-
nition 4.4 and that Ja, D2 h(0) has no eigenvalues iw; with wi®* /w; € Z. Then there are
(% dim M — 3) more two-parameter families Pj(vs,s), j=1,... % dim M — 3, of modulated
rotating waves near the rotating wave and there are smooth functions x;(vs, s) € Pj(vs, s)
with ©;(v3,0) = arw(vs) (where xrw(vs) is from part a)). The modulated rotating
wave Pj(vs,s) has momentum J(x;(vs,s)) = (0,0,v3) at xj(vs,s), energy H(z;(vs,s)) =
H(zrw(v3)) £ s (depending on the Krein signature of wj), relative period T;(vs, s) such
that T;(0,0) = 27/|w;|, and average drift velocity &;(vs, s)|les, s > 0, with £;(0,0) = &o,
j=1,...LdimM 3.

Proof. If the rotating wave SO(3)x( has momentum g = 0 then g,, = so(3). In this case
v € 50(3)* ~ R? and the r-equation from (3.19) becomes

2)

v=vxD,h(v,w). (5.1)
Since the v equation has nontrivial dynamics, let us reduce only by the symmetry group
[={y€80(3), Ad,& =&} =50s(2)

which is the group of rotations around the ez-axis. The corresponding slice is denoted
by N'= Ny @ Ni. Then 7 € Ny is given by 7 = v3 and v = 0. Note that dimN; =
dimN; + 4. Let h(7,w) be the Hamiltonian in the bundle coordinates (%,7,w) € T’ x

Ny ® N7. The matrix audgO has eigenvalues +iwf°® with real eigenspace {v = (v1,1,0) €
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so(3)*} and a simple eigenvalue 0. Because of (2.4) and (3.20), the eigenvalues of the
linearization J ﬁlbeiL(O) of the equilibrium 0 € ./\71 corresponding to the rotating wave
SO(3)zo are given by the eigenvalues of Ja, D2 h(0) and by the eigenvalues F-iwi°t of
multiplicity two. Hence the rotating wave is nondegenerate when considered as a rotating
wave of a Hamiltonian system with SO3(2)-symmetry. Therefore w = 0 for @(¥) can
be solved using the nondegeneracy condition. This gives rotating waves SO(3)xgrw (),
xrw (7) ~ (id, 7, w(D)), for the original SO(3)-equivariant Hamiltonian system (3.1). Since
only a reduction by SO3(2)-symmetry was carried out, these rotating waves have drift
velocities &rw(v3)||es where £(0) = & # 0. Then (3.16) implies that also J(z(v3))||es.
This proves part a).

The rotating waves through zrw(v3) =~ (yrw (¥3), vRw (V3), wrw (13)) from part a) have,
by (3.18), momentum

J(xzrw (v3)) = (0,0,v3) = yrw (v3)VRW (V3)

rot

and energy Erw(v3) = h(vrw (v3), wrw (v3)) where Efyw (0) = Dy h(0)vhy (0) = wit # 0.
Therefore they can be parametrized by energy FE instead of 3. Denote the corresponding
path of rotating waves again by zrw(E) ~ (vrw(E), vrw(E), wrw(E)). Let w™'(E)
be the rotation frequency of the rotating wave SO(3)xrw (FE). Since the slice equation
conserves the energy h(v,w) the energy level sets Nz of N are flow-invariant. Because of
D, h(0) = (0,0, w"), wi’® # 0, and D,,h(0) = 0, they can be parametrized, similarly as in
the proof of Theorem 4.3, by

Ng ={(v,w) €N, h(v,w)=FE}={(v,w) €N, v3 =v3(v1,v2,w, E)}, E= Ey=h(0).

Then vs(vrw 1(E), vrw 2(E), wrw (E), E) = vrw,3(E). Let us now consider the equilib-
rium vpw(E) := (vrw(F), wrw (F)) of the slice equation as periodic orbit with period
TYE) = % The matrix adz0 has a pair iwf°® of non-vanishing imaginary eigen-
values with real eigenspace spanned by the vectors {(v1,v2,0),v1,v2 € R} C so(3)*. By
(3.20), the linearization of the slice equation D, far(vrw (FE)) at E = Ey also has this pair
of eigenvalues which perturbs to the eigenvalues +iw™(E) of D, far(vrw (E)) for E ~ Ej.

Consequently,

Se={(v,w) e Ng, v1 =vrw1(E), v2 > vrw2(E), v2 = vrw 2(E),

V3 = V3(VRW,1(E)3 VQ,'[U,E), w = 'lURW(E)}

is a section transverse to the flow of the slice equation at vrw (F) inside the energy level
set Ng to the energy E ~ Ey. Let s := v — vgw2(E). The corresponding Poincaré
map is denoted by II(-, E) : Sg — Sg. Decompose II(-, E) = (Ily(-, E),II; (-, E)) where
IIp maps into the ray s > 0 and II; into N;. By assumption there is no % : 1-resonance
between wi®® and any normal frequency on Nj. Therefore the equation II; (s, w, E) = w
can be solved for w(s, E), such that w(0, E) = wrw (F) for E ~ Ey. Plugging this into Il
a map II(-, E) from the ray s > 0 into itself is obtained. The p-equation (5.1) conserves
the Casimir C®(v,w) = ||[v||3. Define v3(s, E) := v3(vrw 1(E), s + vrw 2(E), w(s, E), E).
Then § = I(s, E) satisfies C(5, E) = C(s, E) where

C(s, E) = (vrw1(E))” + (vrw 2(E) + 8)* + (v3(s, E)).
The path of relative equilibria SO(3)zrw (F) corresponds to (s, E) = (0, E). Note that
D h(vrw (E)) || D O (vrw (E))

and that DC’R|h(U):E =0 at v = vgw(E). As a result of this, D;C(0, E) = 0. Moreover,
from D, h(0) = willes and D, h(0) = 0, it follows that Dv3(0, Ep) = 0, and therefore
D2C(0, Eg) = 2. Hence s — C(s, E) is injective for s > 0, s &~ 0, for any fixed E ~ Ej.
Consequently § = s, and so v(s, E) := (v(s, E),w(s, E)), with v(s, E) = (vgw,1(E),s +
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vrw 2(E), v3(s, E))T, lies on a periodic orbit of the slice equation with period T'(s, E)
T(0,E) =

Q

2

Joret (B)[*

Changing the parametrization back from F to vz, a two-parameter family v(s,v3) =
(v(s,v3),w(s,v3)) of periodic orbits of the slice equation with periods T'(s,v3) is ob-
tained, satisfying T'(0,v3) = T*°%(0,v3). These give points #(s,v3) ~ (yrw(v3),v(s,v3))
on modulated rotating waves of the full Hamiltonian system (3.1) with momentum
f(s,v3) = yrw(vs)v(s,vs), see (3.18). At the rotating waves [i(0,v3) = v3 and hence
D,,[i(0,v3) = e3. Moreover ygw (0) = id implies that Dg/i(0,0) = e3. So smooth functions
$2(s,3), $s(s,v3) can be found such that 4(s,vs) = exp(a(s, vs)Ea + d3(s, v3)¢s) (with
the notation from (2.9)) satisfies (5(s,v3)/i(s,3))1 = 0 and ¢2(0,v3) = 0, ¢3(0,v3) = 0.
Let ~v(s,v3) = A(s,v3)varw(v3). Then z(s,v3) ~ (v(s,v3),v(s,v3)) lies on an RPO with
momentum g(s, v3) such that p;(s,v3) = 0. Then s can be replaced by v and (v2, v3) can
be tranformed such that z(ve,v3) has momentum p(vo,v3) = J(x(va,v3)) = (0,v9,v3),
Vo Z 0.

The condition (3.17) implies that the drift symmetry v(v2, v3) at the RPO through (v, v3)
satisfies (v, vs)p(ve, vs) = u(ve,vs), where v(0) = id. Therefore y(v2,v3) is a rotation
around the vector p(ve,vs) in the (z2,zs)-plane. Moreover for v3 = 0 the modulated

rotating wave P(v2,0) rotates around the es axis with momentum u(rve) = (0,v2,0) at
x(v2,0).

2 h(0)

¢) By assumption there is no k : 1-resonance between any of the eigenvalues of Ja, Dz,
and between the eigenvalues of Jy, D2 h(0) and iwi°t. Hence for all normal frequencies on

N1, part ¢) follows from the Lyapounov Centre Theorem applied on the space N3, after
symmetry reduction by SO3(2) as in part a).

5.2 Hamiltonian meandering transition with the Euclidean symmetry
of three-dimensional space

In this section the Hamiltonian analogue of the resonance drift of Remark 2.2 ¢) is studied. The
symmetry group is again I' = SE(3) = SO(3) x R3. Similarly as in (3.8), (3.9), the adjoint and
coadjoint actions for I' = SE(3) are

Ad(r,a)€ = (R¢ , RE"—RE xa)

) (5.2)

Ad(R,a)*lp’ = ( RN’T +a X R;u’a ) Rﬂ’a )7
where (R,a) € SO(3) x R3, see e.g. [15, 26]. So typically, when p® # 0, then T'), ~ SO(2) x R.
In this case resonance drift is not possible:

Proposition 5.3 Let SE(3)xz be a nondegenerate relative equilibrium with generic momentum
value po satisfying pl # 0 and with drift velocity &. Align xo such that £3|les, & ||les. Then the
following holds true:

a) There is a two-parameter family SE(3)zrr(Vi,vs) of relative equilibria of (3.1) with
2re(0,0) = z9. The relative equilibrium at axre(Vi,vy) has angular momentum
J"(zre(vs,v8)) = (0,0,u5 3 + v5), linear momentum J"(zre(vy,vs)) = (0,0, uf 5 + v§)
and drift velocity &gy (V5, v§), which satisfies Efp (v, v5)|les, Ekp(VE,vS)|les.

b) Let the relative equilibrium SE(3)xo be elliptic and nonresonant in the sense of Def-
inition 4.4 and denote its normal frequencies by w;, j = 1,...,%dim./\/l — 4. Then
there are (3 dim M — 4) families of RPOs P;(v5,v§,s), s > 0, and smooth functions
x;(V5,v8,s) € Pj(vi,vs,s) such that x;(v3,v§,0) = ere(vi,v§). The RPO at x;(vi,v§,s)
has momentum

I (aj(vs, v, 8)) = (0,0, o5 +v5), Iz (v3,05,5)) = (0,0, g 5 + v5),
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energy H(z;(v5,v4,s)) = Hre(vi,v3)) £ s? (depending on the Krein signature of w;),
relative period Tj(vy,vg,s), such that T;(0,0,0) = 27/|w,|, and average drift velocity
§i(vy,v8,s) at xj(vy,vs, s), which satisfies £7(vy,v§, s)|les, & (v§, v, s)lles, §;(0,0) = &o.

Proof.

a) Note that, by (5.2), §||es, &5lles implies pg||es, pp|les. The Lie-group I',, &~ SO3(2) x R3
is abelian, therefore 7 = 0 holds in the equations (3.19) near a relative equilibrium SE(3)xg
with generic momentum value. By the nondegeneracy condition, w = 0 can be solved for
wrge(r) to obtain relative equilibria through zgrg(r) ~ (id, v, wrr(r)). The statement
about the momentum of zrg(v) follows from (3.18), the statement about the velocity
&re(v) from (3.16) and (5.2).

b) The Lyapounov Centre Theorem can be applied on the v-dependent w-equation. The
statements about the momentum of the families of RPOs follows from (3.18). The fact
that their drift symmetry lies in SO3(2) x R3, and hence their average drift velocity in
s03(2) x Rg, follow from (3.17) and the fact that I',,, ~ SO3(2) x R, see part a).

The situation is different if the relative equilibrium SE(3)z¢ has a nongeneric momentum
value pg = J(xo). In what follows, it is shown that in this case resonance drift occurs generically.

If 4@ = 0 then (5.2) implies that ', ~ SO(2) x R3. Let us assume, without loss of generality,
that pg|les. Then the drift velocity & = (&7, £5) of the relative equilibrium at xo satisfies £f||es.
Choose ¢ in its SE(3) orbit such that also £§|/es. The momentum value g is non-split, and
the v-equation of (3.19) for v = (v", %) € s0(2)* @ (R3)* is non-trivial, see [26]. It can be easily
checked that the functions

Co(n) = el and  C” () = (u*, ") (5.3)
are invariant under the coadjoint action (5.2). These restrict to the functions C%(v) = ||v¢|?
and C"(v) = v§(us + v") on the slice Ny ~ so(2)* @ (R®)* and are Casimirs, i.e., conserved
quantities of the r-equation.

In the following proposition persistence of a relative equilibrium with vanishing linear mo-
mentum is studied, as a prerequisite for the analysis of the Hamiltonian meandering transition.

Proposition 5.4 Let SE(3)xg be a nondegenerate relative equilibrium with momentum value
o = (15,0), iflles, and with drift velocity & = (5, €8), where € # 0, &les, &lles. Then
there exists a 2-dimensional family of relative equilibria SE(3)xre(v",v$) of (3.1) such that
are(V",v§) is smooth in its parameters and rre(0) = xo, &rE(0,0) = &. The relative equilib-
rium through xre(V",v§) has angular momentum J" (xre(V",v§)) = pui + v'es, linear momen-
tum J*(zre(v",v§)) = vies and drift velocity Ere (V" ,v§), where {hg (V" v§) = W™ (V7,15 )es,
(0", 8 les.

Proof. This proposition is an application of a persistence result for general noncompact sym-
metry groups, see [32, Example 5.3a)]. But it can also be proved in an elementary way: Because
of (2.4), (3.20), the linearization Lo at xo has, by our nondegeneracy condition and the form of
ade, from (5.2), a 4-dimensional kernel corresponding to two zero eigenvalues of adg,. Therefore
let us reduce only by the abelian symmetry group I' = SO3(2) x Rs of rotations around and
translations along the es-axis. This gives the reduced system

7 =0, w=1JgDgh(y, @) (5.4)

on the slice N' = No@ N, where 7 = (v, vg) € No ~ s03(2)*@Rj. Since JMD%B(O) is invertible,
the equation 0 = J iz Dgh(77, 1) can be solved for w(77) by the implicit function theorem. This
gives relative equilibria SE(3)zgre(v",v§) of (3.1), where zgrp(v",v§) ~ (id, 7, w(P)). The drift
velocity Erp(v",v4) of the relative equilibrium at zrg(v", v$) lies in the Lie algebra of T’ and
therefore satisfies {hp(V",v4) = WLV, v§)es and &g (v, v5)|les. The statement about the
momentum of zgrg(v", v§) follows from (3.18). |
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In this case resonance drift occurs as the following theorem shows:

Theorem 5.5 Let, as before, SE(3)xo be a nondegenerate relative equilibrium with momentum
po = (14,0), phlles, ph # 0, and with non-vanishing rotational velocity vector £ # 0 such that
& = wittes, £&les. Assume that Ja, D2 h(0) has no eigenvalue in iwi*Z. Then:

a) there is a 3-dimensional manifold P(v",v§,v$) of RPOs closeby such that x(v",vg,v§) €
P, vs,vg) is a smooth function of its parameters, v§ > 0, v" =~ 0, v§ =~ 0, and
z(v",0,v§) = zre(v",v§). The RPO through x(v",v$,v$) has angular momentum
I (x(v",v5,v8)) = uh + v'es, linear momentum J*(x(v",vs,v§)) = (0,v5,v5), and rel-
ative period T (v",v§,v§) with T(v",0,v) = 2r/|w™t(v",v§)|. Here w™ ' (v",v§) is the
rotation frequency of the relative equilibrium SE(3)xre(v",v§) from Proposition 5.4.

b) This family contains a 2-dimensional submanifold x(v",v§,0) at v§ = 0 which has an
average rotational drift velocity £"(v",v§,0) with £5(v",v5,0) = 0.

Note that the RPO through z(v", 1§, 0) rotates around and translates along a vector parallel
to ey whereas the original relative equiilbrium through z¢ rotates around and translates along
the e3 direction.

Proof of Theorem 5.5. Let v” & 0, v§ ~ 0. Near the relative equilibria through xgg (v", v§) ~
(e, v§),vre(v", v§), wre (V", v§)) from Proposition 5.4, let us change coordinates on the
slice N' = Ny @ N1, Ny =~ s0(2)* @ (R3)*, from v = (v", 1§, v8,v4,w) to (E,C", 1§, V8, w) as
follows: first let o

r,ery = —<
V't Hos
Here C"(u +v) = (v, uf + v"es) is the Casimir from (5.3) restricted to elements of the form
po + v, where v € Ny ~ s03(2)* @ (R3)*. Then, by the implicit function theorem, using that
D, h(0) = wi’t # 0, Dyh(0) = 0, Dyeh(0)||ez and D,-v4(0,0) = 0, one obtains

T T roa .,a
v :V(E,C,VI,VQ,U))

for E ~ Ey = H(xo), C" = 0, where E = h((v",v{,v5,v51",C")),w). Solving E =
h(vre(v",v§(v",C")), wre(v",v§(v",C"))) by the implicit function theorem for v, the family
of relative equilibria SE(3)zre(E,C"), xre(F,C") ~ (yre(E,C"),vre(E,C")), vre(E,C") =
(vre(E,C"),wre(E,C")), is obtained, parametrized by the conserved quantities (E, C"). Then,
since wi’® # 0 and &) = wites, by (3.20) and (5.2), for C" =~ 0, E &~ Ej, the section

SE,C"' = {(Va w) € Na Vél = V:?(Vracr); vt = VT(Ea Crvlj(llvyg’w)a Vil = VﬁEJ(E,CT%

vy > VI%E,Z(EvCT)a vy = VI%E,Z(EvCT)a w = wRE(Ea Cr)}
is transversal to the flow of (3.1) in the flow-invariant manifold

Ng.cr i={(v,w) e N, h(v,w)=E, C"(v)=C"}.

Consider the Poincaré map (s,w) — II(E,C",s,w) from Sgcr to itself where s = v§ —
vre2(E,CT). At (E,C",s,w) = (Ey,0,0,0) the Poincaré return time is 7(0) = % Due
0

to the nonresonance assumption the equation IT; (E,C", s, w) = w can be solved for w(FE,C", s)
such that w(E,C",0) = wrg(E,C"). Here II; is the N7 component of II. What follows, is a
proof that Z(E,C",s) = (yre(E,C"),v(E,C",s),w(E,C",s)) lies on an RPO. Here

v(E,C"s) = (W(EC",s),v*(E,C",s)),

v'(E,C",s) VI(E,C" i1 (B,C7), s + Vgp o (B, CT),w(E,C", 5)), (5.5)
v§(E,C"s) = v§(w"(E,C",s),C"),

vi(E,C",s) = (Vg1 (B,C"), s+ v o(E,C7),v5(E,C,s)).
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By construction, Z(E,C",0) = zrg(E, C"). Define
C*(B,C",s) = |[v*(E,C", )|,

The equilibria vre(E, C") of the slice equation are at s = 0. The fact that D(, ,)h is a linear
combination of D, ,,)C* and D(,,,,)C" at any equilibrium of the slice equation then implies that

D,C%(E,C",0) = 0.
Moreover D;v4(0,0,0) = 0 since v§(v",C" = 0) = 0. This together with (5.5) gives
D2C%(Ey,0,0) = 2.

So for small positive s and fixed E ~ Ey, C" ~ 0, the function s — C%(E,C",s) is injective.

This proves that there is a coordinate transformation from (F,CT",s) to the conserved quanti-

ties (E,C",C®). Therefore Z(E,C",s) lies on a relative periodic orbit P(E,C",s) of (3.1), as

claimed. Let us now change coordinates back from (E,C", s) to (v", s,v§) and denote the corre-

sponding function again by &(v", s,v§) ~ (yre(v",v§),v(v", s, V), w(v", s,v§)) € P(V", s,%).
It is now shown that a smooth function 4(v", s, v§) can be found such that

a(Wys,v5) = (VW 8,05), 00" 5, 15)),
where y(v", s,v§) =47, s, v§)yre(V", v§) and v(V", 5, v§) = (v (v, s, v$), w(v", s, 15)), satisfies
Iz, s,v8)) =0, J{(z(v",s,v5)) =0, Jy(z(v",s,v5)) =0, (5.6)
and 4(v",0,v§) = id. First note that this holds true at s = 0 by Proposition 5.4. For s # 0, let
A", s,08) = (R, 5,05),a(0", 5,04),

) = J(&(v",s,vg)). Then J“(mRE(VT v§)) = vges implies D,e1%(0,0,0) = e3.
) = id one further gets Dyi*(0,0,0) = e3. Therefore smooth functions
3(V", s,v§) can be found such that qu(u 0,v§) =0, j=2,3, and

(R, s, v8)0" (V" 5,08))1 = 0

where, as in (2.9),
R, 5,08) = exp(da (v, 5,08)2 + d3(1", 5,5)s).
In this way the first equation of (5.6) is satisfied. Then v§ and v§ = s can be rescaled such that
I (@ vy, v5)) = (0,5, v5).

Let
ﬂ(yra ng Vg) = AdzR(Vr’l,gWg)’o)—lﬂ(Vrv Vga Vg)'

Note that (v, vg,v8) = (0,v¢,v$)T has been achieved by choosing R(v",v¢,v§). Moreover
(5.2) gives
Ad(o,&)—lﬂr = ﬂr + (l/gdg - Vga,g, —Vg'&l, ngl)T.

Let a2 = 0. When v§ # 0, then a3 = as(v", v§,v§) can be chosen such that

(Ad(O a(vr,vg,wg))~ 1M (V V27V3))1 =0,

thus satisfying the second equation of (5.6). If v§ = 0, i.e. at the relative equilibria,
A" (v",0,v8) = v'e3 anyway and when v§ — 0 then a3 — Dygfif(v",0,v4). Moreover the
equation

(Adzco,fz(w',ug,vg'))*l[IJT(VT’ Vg? Vg))Q =0,
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and hence the last equation of (5.6), can be satisfied by choosing a1 (v", v, v§) appropriately
whenever v§ # 0. When v§ = 0 then C" = 0 and vrge(v",0) = (¢¥",0). In particular
Vip1(¥",0) = 0, and so also v{(v",s,0) = 0 (see (5.5)). Therefore R(v",s,0) = id and
fs(v",vs,0) = 0. Consequently, when v§ — 0 then o — Dygfis(v",v4,0). Hence a smooth
function a(v",vs,v§) has been found such that u”(v",v5,v5) = Ad(g a1 fi" (V7 v5,v5) || es.
For v§ = 0 the equality p"(v",0,v§) = uf + v"esg holds. So coordinates can be changed such
that p"(v", v§,v§) = pi + v'es for all v§ > 0, v§ ~ 0. This proves part a) of the proposition.

For part b), let v(v",v§,v$) = (R(v",v5,v5),a(v",v5,v5)) be the drift symmetry of the
RPO P(v",vg,vs) at x(v",vs,v$) and write, as in (2.9), R(v",v§,v5) = exp(zzf’:1 ¢:&;) where
¢i = (V" v, v§). Then ¢3(v",v5,v5) = 0 at v§ = 0 needs to be satisfied. Equations (3.17)
and (5.2) imply that R(v",v§,v$)I(x(v",v§,vg)) = I (x(v", Vg, v§)) where J*(x(v",vs,v])) =
(0,v4,v5). Hence Zle 0i&i = (;AS(O, vg,v$)T for some ® € R, where & is identified with e; € R3
and so(3) and (R3®)* with R3. Because of this, ¢3 = 0 for v$ = 0. |

In addition to the family of RPOs from the above theorem, there may be additional families
of RPOs which rotate and translate about the same axis (without loss of generality the es-axis)
as the relative equilibrium:

Proposition 5.6 Let, as before, SE(3)xo be a relative equilibrium of an SE(3)-equivariant
Hamiltonian system (3.1), with momentum po = (uf,0), py # 0, and with non-vanishing rota-
tional velocity vector £ # 0. Choose xqg such that uf|les, & = wites, £4|les. Assume that the
relative equilibium is nonresonant and elliptic in the sense of Definition 4.4, and that wi* Jw; ¢ Z
for all eigenvalues iw; of Ja,DZh(0). Then there are 3-dimensional manifolds P;(v", s, v§)
of RPOs, j = 1,...3dimM — 5, and smooth functions x;(v",s,v§) € P;(v",s,v5) such that
z;(V",0,v8) = zre(V", v§) (with xre(v",v§) from Proposition 5.4). Moreover, the RPO through
z; (V" s,v8) has momentum (uh+v"es, vies), energy H(xj(v", s,v%)) = H(zre(v",v§))+s? (de-
pending on the Krein signature of w;), relative period T;(v",s,vg), where T;(0,0,0) = 27/|w;],
and average drift velocity §;(v", s,v8) = (§5 3(V", 5,08 )es, 5V, 8,18 )es), §;(0,0,0) = &o.

Proof. Let us, as in the proof of Proposition 5.4, only reduce by the symmetry group I =
SO3(2) x R3. The statement then follows by applying the Lyapounov Centre Theorem on the
w-equation of (5.4). |

Conclusion and future directions

In this paper a Hamiltonian analogue of the well-known meandering transition from rotating
waves to modulated rotating and modulated travelling waves in systems with Euclidean sym-
metries has been studied. This transition occurs for example in a finite-dimensional system of
point vortices. Similar effects have been analyzed in systems with spherical symmetry and with
the Euclidean symmetry of three-dimensional space. It remains a challenging open problem to
extend these results to infinite-dimensional Hamiltonian systems such as PDE models of vortex
dynamics.
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