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Abstract

In this paper a Hamiltonian analogue of the well-known meandering transition from
rotating waves to modulated rotating and modulated travelling waves in systems with the
Euclidean symmetry of the plane is presented. In non-Hamiltonian systems, for example in
spiral wave dynamics, this transition is a Hopf bifurcation in a corotating frame, as external
parameters are varied, and modulated traveling waves only occur at certain resonances. In
Hamiltonian systems, for example in systems of point vortices in the plane, the conserved
quantities of the system, angular and linear momentum, are natural bifurcation parameters.
Depending on the symmetry properties of the momentum map, either modulated traveling
waves do not occur, or, in contrast to the dissipative case, modulated traveling waves are the
typical scenario near rotating waves, as momentum is varied. Systems with the symmetry
group of a sphere and with the Euclidean symmetry group of three space are also treated.
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1 Introduction

The meandering transition in spiral wave dynamics is a transition from rigidly rotating to me-
andering and drifting spiral waves. In symmetry terms, it is a bifurcation from rotating waves
to modulated rotating and modulated traveling waves in systems with SE(2)-symmetry. Here
SE(2) is the special Euclidean group of motions of the plane. Rotating waves are solutions
which become stationary in a corotating frame and are examples of relative equilibria. Modu-
lated rotating and modulated traveling waves are solutions which become periodic in a corotat-
ing/comoving frame and are examples of relative periodic orbits (RPOs). In non-Hamiltonian
systems, the meandering bifurcation corresponds, in a rotating frame, to a Hopf bifurcation
induced by changing an external parameter. Typically the bifurcating relative periodic orbits
are modulated rotating waves, and modulated traveling waves only occur at certain resonances.
See for example [3, 8, 10, 27, 30, 31] and the references therein.

In this paper the first ever analysis of the Hamiltonian analogue of this meandering transition
is presented. Examples of Hamiltonian systems where such a transition occurs are rotating
point vortices on the plane [1, 2, 21, 25, 29] or rotating rigid bodies in ideal fluids [15]. In a
Hamiltonian system it is natural to study the persistence and bifurcation of the rotating wave
to nearby momentum levels since the momentum map is a conserved quantity and hence an
internal parameter of the system.

The differential equations near Hamiltonian relative equilibria in symmetry-adapted local
coordinates from [26] are used to study the transition from rotating waves to modulated rotating
and modulated traveling waves on nearby momentum levels in Hamiltonian systems with SE(2)-
symmetry. Thereby a Hamiltonian analogue of the meandering transition of spiral waves is
obtained.

It is shown that, depending on the symmetry properties of the momentum map, either
modulated traveling waves are typical near rotating waves, as momentum is varied (cf. Sections
4.2, 4.3), or that modulated traveling waves do not occur, see Section 4.4 and in particular
Proposition 4.10. As far as I am aware, for the first time, rotating waves and transitions to
relative periodic orbits are continued in the cocycle parameter which determines the symmetry
properties of the momentum map. These results hold under conditions which are generically
satisfied.

The transition from rotating waves to modulated traveling waves occuring in the meandering
transition is an example of resonance drift, as analyzed in [31], see also [4] and [6]. Resonance drift
occurs if there is a discontinuity of the average drift velocities of the bifurcating relative periodic
orbits at the relative equilibrium. In the case of the meandering transition it is a discontinuous
jump between a rotational and a translational velocity. This phenomenon is also discussed in
systems with spherical symmetry SO(3) and in systems with the Euclidean symmetry SE(3) of
motions in three-dimensional space, see Sections 5.1, 5.2.

The meandering transition is a transition from relative equilibria to relative periodic orbits.
In non-Hamiltonian systems it is a Hopf bifurcation of the symmetry reduced dynamics. The
Hamiltonian analogue of a Hopf bifurcation is a Lyapounov centre bifurcation. In this paper
Lyapounov centre bifurcations for the reduced Hamiltonian system on the symplectic slice are
proved to obtain families of RPOs nearby elliptic relative equilibria, see Propositions 4.6, The-
orems 4.11 a), 5.1 b), 5.2 c), Propositions 5.3 b) and 5.6.

The technically most complicated parts of the paper are the results on bifurcation from
relative equilibria to RPOs which lie outside the symplectic leaf of the original equilibrium of
the reduced dynamics, see Theorems 4.3, 5.2 b), 5.5. Here Lyapounov centre type theorems
are proved for the symmetry reduced system which is a Poisson system and not a Hamiltonian
system. It is shown that in this case resonance drift occurs.

Related results in the literature are the following: Persistence results for generic Hamiltonian
relative equilibria and relative periodic orbits of noncompact group actions, extending earlier
results for compact symmetry groups, can be found in [32, 33]. See also Ortega and Ratiu [23]
and Montaldi and Tokieda [20] and references therein for results on bifurcations of Hamiltonian
relative equilibria.

Relative Lyapounov centre bifurcations from Hamiltonian relative equilibria with isotropy to
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RPOs, which lie on nearby energy-level sets, have been obtained by Ginzburg and Lerman [9] (see
also references therein). Ortega [22] studies persistence of the bifurcating RPOs to nearby energy
level sets and to those nearby momentum values which correspond to the isotropy subgroup of
the relative equilibrium. Instead, in this article, the group is assumed to act freely, and the main
focus is the bifurcation of relative equilibria to RPOs on all nearby momentum level sets.

The paper is organized as follows: In Section 2 the meandering transition for dissipative
systems is reviewed. In Section 3 symmetric Hamiltonian systems are introduced and the equa-
tions near relative equiibria from [26] are reviewed. In Section 4 a Hamiltonian analogue of
the meandering transition is presented using the equations near Hamiltonian relative equilibria
from Section 3. First Euclidean symmetric Hamiltonian systems with an equivariant momentum
map for the standard coadjoint action are studied. Then systems with Euclidean symmetry for
which the momentum map has a cocycle are considered. Finally, in Section 5, the Hamiltonian
analogue of the meandering transition is discussed for systems with spherical symmetry and for
systems with the Euclidean symmetry group of three-dimensional space.

2 Meandering transition for dissipative systems

In this section the notions of relative equilibria and relative periodic orbits of general symmetric
differential equations are defined. Suitable symmetry-adapted coordinates near relative equilib-
ria are introduced, and the differential equations are given in these coordinates. Then the results
are applied to dissipative systems with the Euclidean symmetry of the plane, and the meander-
ing transition for dissipative systems is reviewed. Note that in this paper the terms “dissipative
system”, “non-Hamiltonian systems” and “general systems” are used interchangably. Most of
the material of this section is basically contained in [8, 10, 31]. Only Remark 2.2 c) is a new
result.

2.1 Relative equilibria and relative periodic orbits of general systems

Let us consider an ordinary differential equation on a finite-dimensional manifold M

ẋ(t) = f(x(t)) (2.1)

with flow Φt(x0) = x(t; x0), x(0) = x0. Let a finite dimensional Lie group Γ act properly and
smoothly on M. For simplicity it is assumed that the Γ-action is free, that is,

Γx = {γ ∈ Γ, γx = x} = { id}

for all x ∈ M. The vectorfield (2.1) is taken to be Γ-equivariant, i.e.,

γf(x) = f(γx) for all γ ∈ Γ.

A solution x(t) with initial condition x(0) = x0 lies on a relative equilibrium Γx0 whenever the
group orbit Γx0 is invariant under the flow of (2.1), i.e., if x(t; x0) ∈ Γx0 for all t. This means
that

f(x0) = ξ0x0 :=

(
d

ds
exp(sξ0).x0

)∣∣∣∣
s=0

for some ξ0 ∈ g. Here g = TidΓ is the Lie algebra of Γ. The element ξ0 is called the drift velocity
of the relative equilibrium at x0. Note that the trajectory through x0 becomes an equilibium in
a frame moving with velocity ξ0. If ξ0 is an infinitesimal rotation then the relative equilibrium
is called a rotating wave (RW). Note that at the point γx0 of the relative equilibrium Γx0 the
drift velocity is determined by the equation

f(γx0) = γf(x0) = γξ0x0 = (Adγξ0)x0

and is therefore given by Adγξ0. Here Adγ : g → g and

Adγη = γηγ−1, adξη =
d

dt
Adexp(tξ)η|t=0 = [ξ, η], γ ∈ Γ, η, ξ ∈ g, (2.2)
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are the adjoint action of Γ and g and the infinitesimal adjoint action of g on g.
An example of such a finite-dimensional manifold M with SE(2)-equivariant vectorfield (2.1)

on it is the centre manifold near a rotating spiral SE(2)x0 in a reaction-diffusion system, see e.g.
[27]. Here SE(2) = SO(2) n R2 is the special Euclidean symmetry of rotations and translations
in the plane with group multiplication defined in (2.5) below.

By the slice theorem of Palais [24] sufficiently small neighbourhoods U of the group orbit
Γx0 have the bundle structure U = Γ×N . Here N ⊆ Tx0

M is a local section, also called slice,
transversal to Γx0 at x0, see Figure 1.

x

γ

v
Nx0

Γx0

Figure 1: Palais coordinates near Γx0

To analyze the dynamics near, and bifurcations from, relative equilibria, it has proved very
useful to model the flow in a Γ-invariant neighbourhood U of the relative equilibrium by differ-
ential equations on the space Γ ×N :

γ̇ = γfΓ(v), v̇ = fN (v), (2.3)

where fΓ : N → g and fN : N → N . Any x ∈ U takes the form x ' (γ, v) ∈ Γ × N , and the
point x0 corresponds to x0 ' (id, 0). Then fN (0) = 0, i.e., the relative equilibrium Γx0 of (2.1)
becomes an equilibrium of the v̇-equation. Moreover fΓ(0) = ξ0. Note that the equations (2.3)
have skew-product form: the v̇-equation, which is called the slice equation, does not depend
on the group variable γ. It describes the symmetry-reduced dynamics, whereas the γ̇-equation
describes the drift dynamics on the group Γ. These results are due to Krupa [14] for compact Lie
groups and due to Fiedler et al. [8] for noncompact Lie groups. For later use, the linearization
L0 = Df(x0)− ξ0 of the relative equilibrium Γx0 at x0 in the frame moving with the velocity ξ0

in symmetry adapted coordinates is

L0 =

(
adξ0

DvfΓ(0)
0 DvfN (0)

)
. (2.4)

The point x0 ∈ M lies on a relative periodic orbit (RPO) P of (2.1) if x(t; x0) = Φt(x0) is
periodic in the space of group orbits M/Γ. This means that there exists T0 > 0 and γ0 ∈ Γ

x0

Γx0

γ0x0

Φt(x0)

Figure 2: A relative periodic orbit
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such that ΦT0
(x0) = γ0x0, see Figure 2. The infimum of the numbers T0 with this property is

the relative period of the relative periodic orbit. The corresponding group element γ0 is called
the drift symmetry of the relative periodic orbit with respect to x0, c.f. [33, 35]. The relative
periodic orbit itself is defined to be the submanifold of M given by

P = {γΦt(x0) | γ ∈ Γ, t ∈ R}.

If γ0 is a translation the relative periodic orbit is called a modulated traveling wave (MTW); if γ0

is a non-vanishing translation it is a proper modulated traveling wave. If γ0 is a (non-vanishing)
rotation the RPO is called a (proper) modulated rotating wave (MRW), see Figure 3. Any ξ0 ∈ g

such that γ0 = exp(T0ξ0) is called an average drift velocity of the RPO at x0. Note that the
trajectory through x0 becomes T0-periodic in a frame moving with velocity ξ0.

γ0 Rx0

MTWγ0

MRW

SO(2)x0

Figure 3: Drift symmetries of modulated rotating and modulated travelling waves

2.2 The meandering transition for dissipative systems

Let Γ be the Euclidean symmetry of the plane consisting of rotations and translations

Γ = SE(2) = SO(2) n R
2,

where the semidirect product is defined as

(φ1, a1)(φ2, a2) = (φ1 + φ2, a1 + Rφ1
a2), φi ∈ SO(2), ai ∈ R

2, i = 1, 2. (2.5)

Here Rφ is a rotation by φ in R2. Let us assume that the relative equilibrium SE(2)x0 is a
rotating wave with rotation frequency ωrot

0 . Then the γ̇-equation in (2.3), which models the
drift dynamics near the rotating wave, takes the following form:

φ̇ = fφ(v), ȧ = Rφfa(v). (2.6)

Moreover fφ(0) = ωrot
0 is the rotation frequency of the rotating wave and fa(0) = 0. As in the

general case, the rotating wave SE(2)x0 becomes an equilibrium of the slice equation: fN (0) = 0.
These equations have first been formulated by Barkley [3] and have then been derived by Fiedler
et al [8] and Golubitsky et al [10].

Let us now assume that both fN (·, µ) and fΓ(·, µ) = (fφ(·, µ), fa(·, µ)) depend on an external
parameter µ ∈ R. In a meandering transition the symmetry reduced system undergoes a Hopf
bifurcation. Suppose that this bifurcation occurs for µ = 0, let ±iωHopf

0 be the Hopf eigenvalues

of DvfN (0, 0). Assume that ±iωHopf
0 are simple eigenvalues and that DfN (0, 0) has no other

eigenvalues in iωHopf
0 Z. Let vRW(µ) ≈ 0 be the equilibrium of fN (·, µ), µ ≈ 0, such that vRW(µ)

is smooth in µ and vRW(0) = 0. Then xRW(µ) ' (id, vRW(µ)) lies on a rotating wave of (2.1).

Let λ(µ) be the eigenvalue of DvfN (vRW(µ), µ) such that λ(µ) is smooth in µ and λ(0) = iωHopf
0 .

Assume that the usual transversality condition

Re
∂

∂µ
λ(µ)

∣∣∣∣
µ=0

6= 0 (2.7)

for Hopf bifurcation is satisfied. Then there is a smooth path v(s), s ≥ 0, of points on periodic

solutions of the v̇-equation with period T (s) ≈ T Hopf
0 = 2π/ωHopf

0 and parameter µ(s) such that

v(0) = 0, T (0) = T Hopf
0 , µ(0) = 0.
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The periodic orbit through v(s) of the slice equation corresponds to a relative periodic orbit
P(s) through x(s) ' (id, v(s)) of the original ODE (2.1) with drift symmetry γ(s) = (φ(s), a(s)).
Here φ(s) and a(s) are obtained by integrating (2.6) from 0 to T (s). There are two cases:

a) If φ(s) 6= 0 mod 2π then x(s) lies on a modulated rotating wave, and this is the typical
case;

b) If φ(s) = 0 mod 2π then x(s) lies on a modulated travelling wave.

Note that

φ(s) ≈ ωrot
0 THopf

0 =
ωrot

0

ωHopf
0

2π.

Hence case b) occurs if
ωrot

0

ω
Hopf
0

∈ Z, i.e., if there is a resonance between the rotation frequency

ωrot
0 and the Hopf frequency ωHopf

0 of the rotating wave Γx0, see [3, 8, 10, 31]. In the case of
two real parameters µ ∈ R2 the following proposition holds true, see also Figure 4:            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4: Phase diagram for the spiral wave dynamics for a reaction-diffusion system depending
on the parameters a, b. Reprinted Fig. 1 with permission from [3], copyright 1994 by the
American Physical Society1. Shown are regions containing N: no spiral waves, RW: stable
rigidly rotating waves, MRW: modulated rotating waves, MTW: modulated travelling waves
(dashed curve). Spiral tip paths illustrate states at 6 points. Small portions of spiral waves are
shown for the two rotating wave cases.

Proposition 2.1 [31, Example 3.6] Let µ ∈ R2, let SE(2)x0 be a rotating wave at µ = 0

at which a resonant Hopf bifurcation occurs:
ωrot

0

ω
Hopf
0

∈ Z. Then under some nondegeneracy

conditions (detailed in the proof below) a path PMTW(s), s ≥ 0, of modulated travelling waves
at parameters µMTW(s) bifurcates from the rotating wave SE(2)x0.

Proof. Denote the rotation frequency of the rotating wave SE(2)xRW(µ) at parameter µ by
ωrot(µ). The transversality condition (2.7) for Hopf bifurcation insures that coordinates in

1Readers may view, browse and/or download material for temporary copying purposes only, provided these
uses are for noncommercial personal purposes. Except as provided by law, this material may not be further
reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or
part, without prior written permission from the American Physical Society.
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parameter space µ ∈ R2 can be chosen such that µ1 = 0 is the Hopf line near µ = 0, i.e., such
that λ(0, µ2) = iωHopf(µ2) for some smooth function ωHopf(µ2) with ωHopf(0) = ωHopf

0 . Periodic
orbits bifurcating from this Hopf line are then parametrized by µ2 and s ≥ 0. Let v(s, µ2)
lie on a periodic orbit with parameters s, µ2 such that v(s, µ2) is smooth in its parameters
and v(0, µ2) = vRW(0, µ2). Let T (s, µ2) be the period of the periodic orbit through v(s, µ2).
Modulated travelling waves satisfy F (s, µ2) = φ(T (s, µ2)) = 0. This equation can be solved
near 0 for µ2(s) by the implicit function theorem if ∂F

∂µ2
(0) 6= 0. This condition holds true if the

nondegeneracy condition
∂

∂µ2

(
ωrot(µ2)

ωHopf(µ2)

)∣∣∣∣
µ2=0

6= 0 (2.8)

is satisfied. Then v(s, µ2(s)) lies on modulated travelling wave PMTW(s).

Remarks 2.2

a) In [31] (see also [6] for compact groups) resonances of the form ωΓ/ωN = k ∈ Z \ {0}
between a non-vanishing imaginary eigenvalue ±iωΓ of adξ0

and an eigenvalue ±iωN of
DvfN (0) are shown to be necessary for resonance drift to occur. Resonance drift means
that RPOs P(s) bifurcate with average drift velocities ξ(s) at x(s) ∈ P(s) which cannot
be chosen to converge to the drift velocity ξ0 of the relative equilibrium, i.e., x(s) → x0 as
s → 0, but lims→0 ξ(s) 6= ξ0. From the form of the linearization L0 = Df(x0) − ξ0 about
a relative equilibrium Γx0 in a corotating frame, see (2.4), it follows that resonance drift
is caused by resonances between drift dynamics and the symmetry-reduced dynamics. In
Proposition 2.1 above, resonance drift occurs with ωΓ = ωrot

0 and ωN = ωHopf
0 . Proposition

2.1 is a special case of [31, Proposition 3.4], which treats resonance drift for general Lie
groups Γ.

b) In the case of spherical symmetry Γ = SO(3), modeling for example rotating spiral waves
of reaction-diffusion systems on the sphere, resonance drift caused by resonant Hopf bifur-
cation has been studied in [31, 7, 4]. In this case generically there is a path (x(s), µ(s)) in
two dimensional parameter space µ(s) ∈ R2 such that SO(3)x(s) is a modulated rotating
wave at parameter µ(s) with an average drift velocity ξ(s) at x(s) which is orthogonal to
the drift velocity ξ0 ∈ so(3) ∈ TidSO(3) of the rotating wave SO(3)x0 at x0 = lims→0 x(s).
The proof of this result is very similar to the proof of Proposition 2.1: For any R ∈ SO(3)
write

R = exp(

3∑

i=1

φiξi). (2.9)

Here ξi, i = 1, 2, 3, are infinitesimal rotations such that exp(φiξi), i = 1, 2, 3, is a rotation by
the angle φi around the ei axis (often so(3) is identified with R3 and ξi with ei, i = 1, 2, 3).
Assume, as before, that the Hopf line is at µ1 = 0. Let R(s, µ2) be the drift symmetry of the
modulated rotating wave at x(s, µ2). Assume, without loss of generality, that the rotating
wave through xRW(µ) has a rotation velocity ξRW(µ)||ξ3 so that ξRW(µ) = ωrot(µ)e3. Then
the modulated rotating waves to be found satisfy the equation F (s, µ2) = φ3(s, µ2) = 0.
This equation can be solved if (2.8) holds. The bifurcating modulated rotating waves P(s)
have average drift velocities in the (x1, x2)-plane. For a Hamiltonian analogue see Section
5.1.

c) Resonance drift also occurs for relative equilibria of systems with the Euclidean symmetry
group Γ = SE(3) = SO(3) n R3 of rotations and translations in three-dimensional space,
c.f. [5]. An example would be a Hopf bifurcation from a rigidly rotating and translating
scroll wave SE(3)x0 of a reaction-diffusion system on R3, see e.g. [30]. The group multipli-
cation on Γ = SE(3) = SO(3)nR3 is analogous to (2.5): For (R1, a1), (R2, a2) ∈ SO(3)nR3

it is given by

(R1, a1)(R2, a2) = (R1R2, a1 + R1a2), R1, R2 ∈ SO(3), a1, a2 ∈ R
3.
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Note that (R, a) is a rotation around the rotation axis of R about the point

c = (id − R)+a ∈ R
3

combined with a translation along the axis of R. Here A+ denotes the Moore-Penrose
pseudo-inverse of A, i.e. x = A+b satisfies ‖Ax − b‖2 = min, A ∈ Mat(n), x, b ∈ Rn. Let
ξ0 = (ξr

0 , ξa
0 ) be the drift velocity of the relative equilibrium SE(3)x0 at x0 and assume that

ξr
0 6= 0. Without loss of generality, choose x0 in its group orbit such that ξr

0 ∈ so(3) ' R3

(see part b) for this identification) is parallel to ξa
0 and to e3, and write ξr

0 = ωrot
0 e3,

where ωrot
0 6= 0. Align the family of relative equilibria SE(3)xRE(µ) with xRE(0) = x0 such

that their drift velocity ξRE(µ) at xRE(µ) also satisfies ξr
RE(µ) = ωrot(µ)e3. If the Hopf

frequency ωHopf
0 satisfies ωrot

0 /ωHopf
0 ∈ Z and this resonance is passed transversely as in

(2.8), then, as in part b), there is a curve P(s) of relative periodic orbits through x(s) ≈ x0

with drift symmetry γ(s) = (R(s), a(s)) at x(s) satisfying φ3(s) = 0 mod 2π. Here R(s)
is determined by φi(s), i = 1, 2, 3, as in (2.9). These RPOs rotate and translate along a
vector in the (x1, x2)-plane. The point around which they rotate approaches infinity as
s → 0.

d) Note that for the groups Γ = SE(2), Γ = SO(3) and Γ = SE(3) considered above, reso-
nance drift can only occur near relative equilibria with non-vanishing rotational velocity.
Otherwise the linear map adξ0

has no eigenvalues in iR \ {0}, but this is necessary for
resonance drift, c.f. part a) and [31].

3 Dynamics near Hamiltonian relative equilibria

As in the dissipative case, the meandering transition in Hamiltonian systems is studied by analyz-
ing the equations near relative equilibria (2.3). Therefore in this section symmetric Hamiltonian
systems and the structure of the equations (2.3) for Hamiltonian systems are reviewed. Then
these results are applied to Hamiltonian systems with Euclidean symmetry, for later use in the
analysis of the Hamiltonian meandering transition. Most of the material of this section is taken
from [12, 17, 26, 28].

3.1 Symmetric Hamiltonian systems

In this section a brief introduction to symmetric Hamiltonian differential equations is given
(see e.g. [12, 17] for more details). The starting point is a Hamiltonian ordinary differential
equation on a smooth finite-dimensional symplectic manifold M with a symplectic form (i.e., a
nondegenerate, closed 2-form) Ωx, x ∈ M. A Hamiltonian vector field

ẋ = fH(x) (3.1)

is generated by a smooth function (the Hamiltonian) H : M 7→ R via the relationship

Ωx(fH(x), v) = DH(x)v x ∈ M, v ∈ TxM. (3.2)

Example 3.1 The simplest example is a Hamiltonian system

ẋ = JDxH(x)

on M = R2n, where

J =

(
0 id

−id 0

)

and H : M → R is a smooth Hamiltonian. Then the symplectic form Ω is the standard
symplectic form given by Ω(u, v) = 〈J−1u, v〉, and J is called the symplectic structure matrix.
By the Darboux-theorem, see e.g. [17], locally every Hamiltonian system has this form in suitable
coordinates.

8



Let us assume that a finite dimensional Lie group Γ acts symplectically on M, i.e., that

Ωγx(γu, γv) = Ωx(u, v) for all x ∈ M, γ ∈ Γ, u, v ∈ TxM.

If H is invariant under the action of Γ then the vector field fH is Γ-equivariant.
Let g∗ denote the dual of the Lie algebra g of Γ. By Noether’s Theorem, for each continuous

symmetry ξ ∈ g locally there is a conserved quantity J(ξ)(·) of (3.1). The function J(ξ) is linear
in ξ, so that J maps into g∗ (see e.g. [17]). It is assumed that J exists globally on M.

Example 3.2 The dynamics of N point vortices (z1, . . . , zN) = (x1, y1, . . . , xN , yN ) ∈ R2N on
the plane is given by the following Hamiltonian system [1, 2, 21]:

kiẋi =
∂H

∂yi

, kiẏi = −
∂H

∂xi

, i = 1, . . . , N, (3.3)

where ki 6= 0, k = 1, . . . , N . The Hamiltonian H

H(z1, . . . , zN) = −
1

π

N∑

i,j=0
i<j

kikj ln |zi − zj |

of (3.3) is invariant under the action of the special Euclidean group of the plane Γ = SE(2) =
SO(2) n R2 on R2N , given by

(Rϕ, a) · (z1, . . . , zN ) := (Rϕz1 + a, . . . , RϕzN + a)

for Rϕ ∈ SO(2) and a ∈ R2. The symplectic form

Ω(z1, . . . , zN) =
N∑

i=1

kidxi ∧ dyi

is SE(2)-invariant. The Hamiltonian system (3.3) can be obtained from Euler’s equations for
ideal fluids by modelling the point vortices as δ-distributions, see e.g. [2]. In this example the
space of momenta is g∗ = se(2)∗ = so(2)∗⊕(R2)∗. By Noether’s Theorem, J(x) = (Jφ(x),Ja(x))
is conserved. Here the angular momentum Jφ and linear momentum Ja = (Ja1 ,Ja2) are given
by

Jφ(x) = −
1

2

N∑

i=1

ki|zi|
2, Ja1 =

N∑

i=1

kiyi, Ja2 = −
N∑

i=1

kixi. (3.4)

In the following transitions from relative equilibria to relative periodic orbits are studied when
the conserved quantities angular and linear momentum are varied. In contrast to dissipative
systems external parameters are not needed for the study of bifurcations. These transitions are
studied by analyzing the symmetry reduced equations (2.3) for Hamiltonian systems. As in the
general case, see Section 2.1, the reduction by the symmetry group is achieved by transforming
the dynamics into a comoving frame. As a consequence, in the symmetry-reduced system the
momentum is moving with the velocity of the comoving frame and might not be conserved any
more. Therefore, to compute the reduced system in the Hamiltonian case, first the action of the
symmetry group on the space of momenta is investigated.

3.2 Symmetries of momentum maps

Let us assume that J commutes with γ ∈ Γ,

J(γx) = γJ(x), γ ∈ Γ, (3.5)
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and, unless otherwise stated, that the action on momentum space g∗ is the coadjoint action, so
that the momentum map is Ad∗-equivariant:

γJ(x) = (Ad∗
γ)−1J(x), γ ∈ Γ. (3.6)

The coadjoint action of Γ on g∗ is given by γµ := (Ad∗
γ)−1µ, where Adγ : g → g from (2.2) is

the adjoint action. The infinitesimal coadjoint action of g on g∗ is defined by

ξµ = −ad∗
ξµ, (3.7)

with adξ as in (2.2). The isotropy subgroup of µ ∈ g∗ is denoted by

Γµ = {γ ∈ Γ, Ad∗
γµ = µ}

and its Lie algebra by gµ.

Example 3.3 As example the adjoint and coadjoint action for the Euclidean group are com-
puted. They are needed later on for the computation of the drift dynamics near Hamiltonian
rotating waves.

Let γ = (φ, a), γ̂ = (φ̂, â). Then

γγ̂γ−1 = (φ, a)(φ̂, â)(φ, a)−1 = (φ + φ̂, Rφâ + a)(φ, a)−1

= (φ + φ̂, Rφâ + a)(−φ,−R−φa) = (φ̂,−Rφ̂a + Rφâ + a)

= (φ̂, Rφâ + (id − R
φ̂
)a).

Letting φ̂ = ξφε, â = ξaε and differentiating with respect to ε at ε = 0 one gets, with ξ =
(ξφ, ξa) = (ξφ, ξa

1 , ξa
2 ) ∈ R3,

Adγξ = γξγ−1 = (φ, a)(ξφ, ξa)(φ, a)−1 = (ξφ, (Rφξa)1 + ξφa2, (Rφξa)2 − ξφa1).

Using adξ = d
dt

Adexp(tξ)|t=0, the adjoint actions of SE(2) on se(2) and the infinitesimal adjoint
action of se(2) on se(2) are obtained:

Adγ =




1 0 0
a2 cosφ − sinφ
−a1 sin φ cosφ



 , adξ =




0 0 0
ξa
2 0 −ξφ

−ξa
1 ξφ 0



 . (3.8)

The coadjoint action of SE(2) and se(2) and the infinitesimal coadjoint action of se(2) on se(2)∗

are obtained by transposing and inverting Adγ and by transposition and multiplication by −1
of adξ:

(Ad∗
γ)−1 =




1 −(R−φa)2 (R−φa)1
0 cosφ − sinφ
0 sinφ cosφ


 , −ad∗

ξ =




0 −ξa
2 ξa

1

0 0 −ξφ

0 ξφ 0


 . (3.9)

From these equations it can be seen that the isotropy subgroup Γµ = {γ ∈ Γ, (Ad∗
γ)−1µ = µ}

of µ ∈ se(2)∗ is Γµ = Γ = SE(2) if and only if µa = 0 and that Γµ ' R for µa 6= 0.

Remark 3.4 In the case of zero total circulation K :=
∑N

i=1 ki = 0 the momentum map J for
the planar vortex dynamics from (3.4) is Ad∗-equivariant, see [2]; but, if K 6= 0, then, instead
of (3.6), the equivariance condition (3.5) now holds for the action

γ ·κ µ := Ad∗
γ−1µ + κ(γ) (3.10)

of Γ on g∗. Here
κ(φ, a) = K(− 1

2 |a|
2, a2,−a1) ∈ se(2)∗ (3.11)
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is called a cocycle, see [17]. In other words, (3.5) now becomes

J(γx) = γ ·κ J(x), for all γ ∈ Γ. (3.12)

The infinitesimal cocycle K : g × g → R corresponding to the cocycle κ is defined as

K(ξ) =
d

dt
κ(etξ)|t=0 ∈ g∗,

and in this case it is given by

K(ξ, η) = K〈ξa,
(

0 −1
1 0

)
ηa〉 = K(−ξa

1ηa
2 + ξa

2ηa
1 ). (3.13)

The infinitesimal action of the Lie algebra g of Γ on g∗ is defined as

ξ ·K µ =
d

dt
exp(tξ) ·κ µ|t=0 = −ad∗

ξµ + K(ξ). (3.14)

The isotropy subgroup of µ ∈ g∗ with respect to the cocycle action (3.10) is denoted by Γκ
µ. Its

Lie algebra is denoted by gK
µ = TidΓκ

µ. For later use, note that γ = (φ, a) ∈ Γκ
µ for µ ∈ se(2)∗ if

and only if

(Rφ − id)µa = K

(
−a2

a1

)
. (3.15)

Hence for non-vanishing cocycle the isotropy subgroup of every µ ∈ g∗ is conjugate to SO(2).

Let x0 lie on a relative equilibrium Γx0 with drift velocity ξ0 ∈ g at x0, so that Φt(x0) =
exp(tξ0)x0. Since momentum is conserved,

µ0 = J(x0) = J(Φt(x0)) = J(exp(tξ0)x0) = exp(tξ0)µ0,

and therefore µ0 is fixed by ξ0:
ξ0µ0 = 0. (3.16)

Such pairs (ξ, µ) ∈ g ⊕ g∗ are called velocity-momentum pairs. Note that the action of ξ0 on
µ0 in (3.16) is the infinitesimal coadjoint action (3.7), or the infinitesimal action with cocycle
(3.14), depending on the symmetry property of the momentum map.

Similarly, if x0 = γ−1
0 ΦT0

(x0) lies on a relative periodic orbit with drift symmetry γ0 and
momentum µ0 = J(x0) then µ0 is fixed by γ0:

γ0µ0 = µ0. (3.17)

Such pairs (γ, µ) ∈ Γ × g∗ are called drift-momentum pairs.

3.3 Dynamics near Hamiltonian relative equilibria

For a symplectic manifold M with Ad∗-equivariant momentum map the normal space N to the
group orbit Γx0 at x0 ∈ M from Section 2.1 can be decomposed as:

M/Γ ' N = N0 ⊕N1
∼= g∗

µ0
⊕N1.

Here
gµ0

= TidΓµ0
= {ξ ∈ g : ad∗

ξµ0 = 0}

is the isotropy subalgebra of the momentum µ0 = J(x0) of x0. The space N0 is isomorphic
to a section transverse to the momentum group orbit Γµ0 at µ0. To see that N0 ' g∗

µ0
,

let nµ0
be a complement to gµ0

in g and let ann(nµ0
) denote the annihilator of nµ0

in g∗.
Then Tµ0

Γµ0 = gµ0 = ann(gµ0
), and so ann(nµ0

) ∼= g∗
µ0

is a section transverse to Γµ0 at
µ0. The symplectic normal space or symplectic slice N1 at x0 is a slice to the Γµ0

orbit of
x0 in the momentum level set J−1(µ0), c.f. Figure 5. Moreover, there is a choice of slice N
such that the coordinate transformation x → (γ, ν, w) ∈ Γ × N0 ⊕ N1, where x lies in some
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µ0 = J(x0)

·J

in g∗

Γµ0

µ0

N0
∼= g∗

µ0

in J−1(µ0)

x0

N1

Γµ0x0

vx0

in M:

x = (γ, v)

Γx0

N

Figure 5: Symplectic Slice Theorem

Γ-invariant neighbourhood U of Γx0, is symplectic with symplectic form ΩΓ×N on Γ×N given
by ΩΓ×N = ΩΓ×g∗

µ0
+ ΩN1

. Here ΩN1
is the symplectic form on N1 and ΩΓ×g∗

µ0
the symplectic

form on Γ × g∗
µ0

, obtained by restriction of the symplectic form on T ∗Γ ' Γ × g∗. In these
coordinates the momentum map becomes

J(γ, ν, w) = γ(µ0 + ν), (3.18)

see [11, 16] and also [26]. Let JN1
be the structure matrix of the symplectic form on N1.

One more technical assumption is needed: In this paper, unless otherwise stated, it is assumed
that µ0 is split, i.e., there is a Γid

µ0
-invariant complement to gµ0

in g. Here Γid
µ0

is the identity
component of Γµ0

. This condition is always satisfied for compact groups and also for the special
Euclidean group of the plane, see [26]. For the general case see [26].

Theorem 3.5 [26, Theorem 3.1] Let, as above, (γ, v), v = (ν, w) ∈ N , γ ∈ Γ, parametrize a
Γ-invariant neighbourhood U of the relative equilibrium Γx0 with momentum µ0 = J(x0). Let
h(ν, w) be the restriction of the Hamiltonian H to the slice N = g∗

µ0
⊕ N1 and let µ0 be split.

Assume that the momentum map is Ad∗-equivariant. Then γ(t) ∈ Γ, ν(t) ∈ g∗
µ0

, w(t) ∈ N1,
where x(t) ' (γ(t), ν(t), w(t)) ∈ U solves (3.1), satisfy the differential equations

γ̇ = γ Dνh(ν, w), ν̇ = ad∗
Dνh(ν,w)ν, ẇ = JN1

Dwh(ν, w). (3.19)

As in the non-Hamiltonian case, the relative equilibrium Γx0 corresponds to the equilibrium
v = (0, 0) ∈ N of the slice equation on N . The first equation describes the motion of the body
frame. Here Dνh is the velocity of the body frame, and Dνh(0, 0) = ξ0 is the drift velocity of
the relative equilibrium Γx0 at x0. The second equation describes the motion of the momenta
in body coordinates and the last equation models the shape dynamics.

From a comparison of (3.19) with the equations near relative equilibria in the general case
(2.3), it becomes apparent that in the Hamiltonian case v = (ν, w) and

fΓ(v) = Dνh(ν, w), fN (v) =

(
ad∗

Dνh(ν)

JN1
Dwh(ν, w)

)
.

So the slice equation v̇ = fN (v) now consists of the two differential equations for ν̇ and ẇ.
Moreover

DfN (0) =

(
ad∗

ξ0
|g∗

µ0
0

JN1
D2

νwh(0) JN1
D2

wh(0)

)
. (3.20)

The energy h(ν, w) is a conserved quantity of the slice equation which is a Poisson-system, see
[17]. Any function C(ν, w) which is a conserved quantity of the slice equation for all choices
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of Hamiltonians h(ν, w) is called a Casimir of the slice equation. Note that the flow-invariant
symplectic leaves of the slice equation are given by Γid

µ0
ν0 ×N1 where ν0 ∈ N0.

Note for later reference that (3.20) is true for non-split µ as well if the infinitesimal coadjoint
action ad∗

ξ restricted to ann(nµ0
) ' g∗

µ0
in ad∗

ξ0
|g∗

µ0
is replaced by the corresponding action on

gµ0
. For split µ0, both these actions coincide, see [26].

Remark 3.6 With the notation from (3.7), the ν̇-equation can be rewritten as

ν̇ = −Dνh(ν, w)ν.

As shown in [28], Theorem 3.5 remains true in the case of a momentum map which is symmetric
with respect to a cocycle action, if the infinitesimal coadjoint action in the ν̇-equation is replaced
by the corresponding action (3.14) with a cocycle. Then the ν̇-equation becomes

ν̇ = −Dνh(ν, w) ·K ν (3.21)

provided that µ0 is split for the action of Γκ on g, i.e., if there is a (Γκ
µ0

)id-invariant complement

nK
µ0

to gK
µ0

in g, where (Γκ
µ0

)id is the identity component of Γκ
µ0

. Moreover, as before, N0 '

ann(nK
µ0

) ' (gK
µ0

)∗.

Remark 3.7 For later use, let us consider parameter dependent Hamiltonian systems

ẋ = f(x,K), (3.22)

where f is defined by

Ω(x,K)(f(x,K), v) = DxH(x,K)v x ∈ M, v ∈ TxM.

Assume that the symplectic form Ω(K), the Hamiltonian H(·,K) and the momentum map J(·,K)
depend smoothly on a parameter K. Then Theorem 3.5 still applies, and the sections N0(K),
N1(K), as well as the Hamiltonian h(ν, w,K), depend smoothly on K, as long as the dimensions
of N0(K) and N1(K) are constant. See the proofs in [11, 16] and [26].

Example 3.8 For later use, let us derive the differential equations (3.19) near rotating waves of
Hamiltonian systems (3.1) with symmetry group Γ = SE(2), in the case of an Ad∗-equivariant
momentum map. Let x0 lie on a rotating wave so that Φt(x0) = exp(tξ0)x0, ξ0 ∈ so(2),
µ0 = J(x0). From (3.16) it follows that 0 = −ad∗

ξ0
µ0, with ad∗

ξ0
from (3.9). Therefore µa

0 = 0,
so that the rotating wave through x0 has vanishing linear momentum. Then Γµ0

= SE(2),
see Example 3.3. Hence N0 ' g∗

µ0
' se(2)∗, and so the equations (3.19) for SE(2)-equivariant

Hamiltonian systems are

φ̇ = Dνφh, ȧ = RφDνah, ⇔ γ̇ = γDνh(ν, w)
ν̇φ = νa

1 Dνa
2
h(ν, w) − νa

2Dνa
1
h(ν, w)

ν̇a
1 = νa

2 Dνφh(ν, w)
ν̇a
2 = −νa

1Dνφh(ν, w)



 ⇔ ν̇ = ad∗

Dνhν

ẇ = JN1
Dwh(ν, w)

(3.23)

Example 3.9 Also for later use, let us consider the equations (3.21) for Hamiltonian systems
(3.22) which have a momentum map J(·,K) with cocycle (3.11), K 6= 0. From (3.10) and (3.11)
it follows that the momentum µ0 can always be translated such that µa

0 = 0. For µa
0 = 0 one

has ξ = (ξφ, ξa) ∈ gK
µ0

if and only if ξa = 0, and so

Γκ
µ0

= SO(2) × {0} ⊆ SE(2).

For ξa = 0 the infinitesimal cocycle (3.13) vanishes. Hence {(0, ξa) ∈ se(2), ξa ∈ R2} is a Γκ
µ0

-

invariant complement to gK
µ0

= so(2) in se(2), and µ0 is split. Consequently, N0 ' (gK
µ0

)∗ =
so(2)∗, and ν̇ = 0 in (3.21).
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4 The meandering transition in Hamiltonian systems

In this section a Hamiltonian analogue of the meandering transition for dissipative systems,
which was described in Section 2.2 above, is presented, using the equations near Hamiltonian
relative equilibria (3.19) from Section 3. First Euclidean symmetric Hamiltonian systems with an
Ad∗-equivariant momentum map are studied (Sections 4.1 - 4.3). Then systems with Euclidean
symmetry for which the momentum map has a cocycle are considered (Section 4.4).

4.1 Persistence of rotating waves

In this section and in the following sections 4.2 - 4.3 it is assumed that (3.1) has the symmetry
group Γ = SE(2) and an Ad∗-equivariant momentum map.

As a prerequisite for the analysis of the transition from rotating waves to modulated rotat-
ing and modulated traveling waves, the persistence of nondegenerate rotating waves to nearby
momentum values is studied.

Definition 4.1 A relative equilibrium Γx0 of (3.1) is called nondegenerate if D2
wh(0) is in-

vertible. Here h(ν, w) is the Hamiltonian in the symmetry adapted coordinates near x0 from
(3.19).

Note that a relative equilibrium is typically nondegenerate. The next proposition shows that
nondegenerate rotating waves persist to nearby angular momentum.

Proposition 4.2 Let SE(2)x0 be a nondegenerate rotating wave of an SE(2)-equivariant Hamil-
tonian system (3.1) with Ad∗-equivariant momentum map J(·), and let µ0 = J(x0). Then
there is a one-parameter family SE(2)xRW(νφ) of rotating waves nearby parametrized by an-

gular momentum µφ = µφ
0 + νφ with vanishing linear momentum such that xRW(νφ) '

(id, (νφ, 0, 0)T , wRW(νφ)) is smooth in νφ and x(0) = x0, wRW(0) = 0.

Proof. Rotating waves are equilibria of the slice equation, i.e., of the (ν, w)-system of (3.23).
Using the nondegeneracy assumption, the equation 0 = ẇ = JN1

Dwh(ν, w) can be solved by
the implicit function theorem for wRW(ν) such that wRW(0) = 0. For rotating waves the linear
momentum has to vanish, see Example 3.8. Hence νa = 0 in any rotating wave. From the
ν̇-equation of (3.23) then ν̇φ = 0, ν̇a = 0 follows. Hence xRW(νφ) ' (id, (νφ, 0, 0)T , wRW(νφ))

lies on a rotating wave of (3.1) for all νφ ≈ 0. By (3.18), J(xRW(νφ)) = µ0 + ν = (µφ
0 + νφ, 0).

A persistence theory for teneric nondegenerate relative equilibria of Hamiltonian systems with
general noncompact symmetry group has been developed in [32], see also [20] for an example of
non-persistence of rotating waves to non-vanishing linear momentum in point vortex dynamics.
The above proposition could also be proved by applying the results of [32] to the example
Γ = SE(2). However, the direct proof given above is more elementary.

4.2 Bifurcation of modulated travelling waves

The following theorem states that typically rotating waves of Euclidean equivariant Hamiltonian
systems with Ad∗-equivariant momentum map persist to modulated traveling waves at nearby
linear momenta µa 6= 0. Consequently resonance drift occurs generically.

Theorem 4.3 Let SE(2)x0 be a nondegenerate rotating wave of an SE(2)-equivariant Hamil-
tonian system (3.1) with Ad∗-equivariant momentum map. Denote its rotation frequency by

ωrot
0 = ξφ

0 and assume that ωrot
0 6= 0. If all eigenvalues iω0 of JN1

D2
wh(0) satisfy

ω0/ωrot
0 /∈ Z (4.1)
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then the rotating wave SE(2)x0 persists as a modulated traveling wave PMTW(νφ, ra) to all

nearby momentum values µ = (µφ
0 + νφ, νa), ra = ‖νa‖. Moreover there is a smooth func-

tion xMTW(νφ, ra) ∈ PMTW(νφ, ra) such that xMTW(νφ, 0) = xRW(νφ). Here SE(2)xRW(νφ)
is the family of rotating waves from Proposition 4.2. The relative period TMTW(νφ, ra) of the
modulated traveling wave PMTW(νφ, ra) is close to TMTW(0) = 2π

|ωrot
0 |

, and the translation drift

γMTW(νφ, ra) = (0, aMTW(νφ, ra)) of the modulated traveling wave at xMTW(νφ, ra) satisfies
aMTW(νφ, 0) = 0.

Proof. The rotating wave SE(2)x0 is treated as a periodic orbit of period T0 = 2π
ωrot

0

. Introduce

polar coordinates νa = (ra cosφa, ra sinφa). Then (3.23) implies that ra = ‖νa‖2 is a conserved
quantity (Casimir) of the slice equation. Since the slice equation also conserves energy, the set

NE,ra = {(ν, w) ∈ N , h(ν, w) = E, ‖νa‖2 = ra}

is flow-invariant. From φ̇a = Dνφh(ν, w) ≈ ωrot
0 6= 0 for (ν, w) ≈ 0 it can be deduced that for

E ≈ E0 = H(x0), ra > 0, ra ≈ 0, the section

SE,ra = {(ν, w) ∈ NE,ra , φa = 0, (ν, w) ≈ 0}

is tranversal to the flow in NE,ra . Let Π(E, ra, ·) : SE,ra → SE,ra be the Poincaré-map to

the Poincaré-section SE,ra . Since D(ν,w)h(0) = (ξ0, 0) with ξφ
0 = ωrot

0 6= 0, the sections SE,ra ,
E ≈ E0, ra ≈ 0, can be parametrized as

SE,ra = {(νφ, w), νφ = νφ(E, ra, w), w ∈ N1}.

Hence Π(E, ra, ·) can be considered as a map from N1 to itself. By assumption kiωrot
0 , k ∈ Z, is

not an eigenvalue of JN1
D2

wh(0). Therefore

DwΠ(E0, 0, 0) − id = exp

(
2π

|ωrot
0 |

JN1
D2

wh(0)

)
− id

is invertible, and so there is a fixed point w(E, ra) of Π(E.ra, ·) for each E ≈ E0, ra ≈ 0. As
Dνφh(0) = ωrot

0 6= 0, this family of fixed points can be parametrized by νφ and ra instead of E
and ra.

The periodic orbits of the slice equation through v(νφ, ra) = (ν(νφ, ra), w(νφ, ra)), where
ν(νφ, ra) = (νφ, ra, 0), correspond to relative periodic orbits PMTW(νφ, ra) of (3.1) through
xMTW(νφ, ra) ' (id, v(νφ, ra)) with momentum

J(xMTW(νφ, ra)) = µ0 + ν(νφ, ra) = (µφ
0 + νφ, ra, 0),

see (3.18). For vanishing linear momentum ra = 0 they reduce to the rotating waves
SE(2)xRW(νφ) from Proposition 4.2.

By (3.17), any RPO with drift γ = (φ, a) and momentum µ satisfies (Ad∗
γ)−1µ = µ, with

(Ad∗
γ)−1 as in (3.9). Because of (3.9), the condition µa 6= 0 implies φ = 0 so that the relative

periodic orbits PMTW(νφ, ra) are modulated traveling waves for ra 6= 0.

4.3 Bifurcation of modulated rotating waves

In this section the existence of modulated rotating waves near elliptic rotating waves is proved
by the Lyapounov centre theorem.

Definition 4.4 A relative equilibrium Γx0, x0 ' (id, (ν, w) = (0, 0)), of a Γ-equivariant Hamil-
tonian system (3.1) is called elliptic if all eigenvalues of the linearization JN1

D2
wh(0) of the

ẇ-dynamics of (3.19) lie in iR \ {0}, and nonresonant if all its eigenvalues are simple and no
eigenvalue iωj is an integer multiple of another eigenvalue iωk for ωj 6= ωk.
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Note that any stable relative equilibrium is elliptic and that relative equilibria are elliptic for
an open range of parameters (until a Hamiltonian Hopf bifurcation of the ẇ-equation of (3.19)
occurs).

Definition 4.5 Let Γx0, x0 ' (id, (ν, w) = (0, 0)), be an elliptic relative equilibrium of (3.1),
and denote the eigenvalues of JN1

D2
wh(0) by ±iωj, j = 1, . . . , d, d := 1

2 dimN1. The signs of the
normal frequencies ωj are chosen such that

h(0, w) =

d∑

j=1

ωj

2
〈wj , wj〉 + O(‖w‖3). (4.2)

Here w = (w1, . . . , wd), wj ∈ R2, are suitable coordinates on N1. The sign of ωj is called the
Krein-signature of ωj . There is an m : n-resonance between the normal frequencies ωj and ωk

if mωj = nωk, m, n ∈ Z.

Proposition 4.6 Let SE(2)x0 be a non-resonant elliptic rotating wave of an SE(2)-equivariant
Hamiltonian system (3.1) with Ad∗-equivariant momentum map. Let ωrot

0 be its rotation fre-
quency, let H(x0) = E0 be its energy and let µ0 = J(x0) be its momentum at x0. Denote the
eigenvalues of JN1

D2
wh(0) by ±iωj, j = 1, . . . , 1

2 dimM − 3. Then there are ( 1
2 dimM − 3)-

many two-dimensional families Pj(ν
φ, s) of RPOs, j = 1, . . . , 1

2 dimM − 3, of (3.1), where

s ≥ 0, νφ ≈ 0, with angular momentum µφ
0 + νφ, with vanishing linear momentum, with en-

ergy E = H(xRW(νφ)) ± s2 (depending on the Krein signature of ωj), and with relative periods
Tj(ν

φ, s) such that Tj(0, 0) = 2π/|ωj |. Moreover there are smooth functions xj(ν
φ, s) with

xj(ν
φ, s) ∈ Pj(ν

φ, s), xj(ν
φ, 0) = xRW(νφ). If ωrot

0 /ωj /∈ Z for all normal frequencies ωj then
all these RPOs are proper modulated rotating waves for (νφ, s) ≈ 0. Proper modulated rotating
waves do not persist to non-zero linear momenta.

Proof. First note that proper modulated rotating waves have a drift symmetry γ = (φ, a)
with φ 6= 0 mod 2π. This implies, because of (3.17) and (3.9), that the linear momentum νa

of a proper modulated rotating wave vanishes. Equation (3.23) implies that ν̇φ ≡ 0, ν̇a ≡ 0 at
νa = 0. So proper modulated rotating waves near x0 correspond to nonlinear normal modes of
the νφ-dependent ẇ-equation of (3.23) at νa = 0. Note that N1 has dimension

dimN1 = dimM− 2 dim SE(2) = dimM− 6.

By the Lyapounov Centre Theorem (see e.g. [18]) there are d = dimN1

2 families of pe-
riodic orbits wj(ν

φ, s), j = 1, . . . , d, of the ẇ-equation of (3.23) such that wj(ν
φ, 0) =

wRW(νφ), with wRW(νφ) from Proposition 4.2. Let iωj(ν
φ) be the eigenvalue of

JN1
D2

wh((νφ, 0, 0), wRW(νφ)) such that ωj(0) = ωj . Since ∂swj(ν
φ, 0) lies in the real

eigenspace of JN1
D2

wh((νφ, 0, 0), wRW(νφ)) to the eigenvalue iωj(ν
φ) (see e.g. [18]), and since

Dwh((νφ, 0, 0), wRW(νφ)) = 0, the energy of the periodic orbits is

h((νφ, 0, 0), wj(ν
φ, s)) = H(xRW(νφ)) + ωj(ν

φ)s2 + O(s3).

Therefore s can be rescaled to achieve that the periodic orbit wj(ν
φ, s) has energy H(xRW(νφ))±

s2 depending on the sign of ωj , see (4.2). Then xj(ν
φ, s) = (id, (νφ, 0, 0), wj(ν

φ, s)) lies on an

RPO Pj(ν
φ, s) of (3.1). Its momentum is J(xj(ν

φ, s)) = (µφ
0 + νφ, 0, 0), by (3.18). The drift

symmetry γj(ν
φ, s) = (φj(ν

φ, s), aj(ν
φ, s)) of the RPO at xj(ν

φ, s) satisfies φj(0, 0) = 2πωrot
0 /ωj ,

and so φj(0, 0) 6= 0 mod 2π if ωrot
0 /ωj /∈ Z. In this case φj(ν

φ, s) 6= 0 mod 2π for (νφ, s) ≈ 0,
and the RPOs Pj(ν

φ, s) are indeed proper modulated rotating waves for (νφ, s) ≈ 0.

Example 4.7 Let us now study a Hamiltonian analogue of the meandering transition for point
vortices with vanishing total circulation K = 0. In this case the momentum map of the point
vortex system (3.3) is Ad∗-equivariant, cf. Remark 3.4. Let us start with a configuration of
rigidly rotating point vortices. Such a configuration is a rotating wave of (3.3). Synge [29]
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MTW

|µa|
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Figure 6: Bifurcation diagram for the Hamiltonian meandering transition of point vortex dy-
namics in the case of vanishing circulation. RW: rotating waves, MRW: modulated rotating
waves, MTW: modulated travelling waves.

and later Aref [1] showed the existence of rotating waves of 3 vortices with vanishing total
circulation. Patrick [25] constructed rotating wave solutions with vanishing total circulation
for N ≥ 3 vortices. Let us assume that the rotating wave is nondegenerate and that the non-
resonance condition (4.1) is satisfied (this assumption is trivially satisfied for 3 vortices, since
then N1 = {0}). Then it persists as translating and precessing configuration, i.e. as modulated
travelling wave, to non-zero linear momentum. Moreover if the rotating wave is elliptic and
non-resonant then there are ( 1

2 dimM− 3) = (N − 3) different 2-parameter families of rotating
and precessing configurations of vortices nearby, which are modulated rotating waves (Patrick
[25] shows stability of the rotating waves of 4 vortices with vanishing total circulation, which he
constructed. This implies that these rotating waves are elliptic, and, since N1 is 2-dimensional,
they are also nonresonant).

Figure 6 shows the bifurcation diagram of the Hamiltonian meandering transition for point
vortex dynamics in the case of an Ad∗-equivariant momentum map (for momentum maps with
cocycle see Section 4.4). This diagram should be compared with the corresponding bifurcation
diagram of the dissipative meandering transition, Figure 4.

Note that, in contrast to the meandering/drifting transition in dissipative systems, here
modulated travelling waves are the typical scenario as momentum is varied. Modulated rotating
waves only occur for zero-linear momentum and so are a codimension two phenomenon in the
three parameters angular and linear momentum.

Example 4.8 Another example where a Hamiltonian meandering transition occurs is the Kirch-
hoff model of an underwater vehicle, see [13, 15]. In this case the configuration space is the Eu-
clidean group SE(3) = SO(3) n R3 of three-dimensional space modeling the angle and position
of the underwater vehicle, and the phase space M = T ∗SE(3) is 12-dimensional. In the case of
non-coincident centres of gravity and buoyancy the symmetry group is

Γ = SO3(2) n R
3 = SE(2) × R3.

Here SO3(2) denotes the group of rotations around the axis of gravity, which is chosen as the
third coordinate axis (i.e., as the e3-axis), and R3 is the group of translations along the e3-axis.
Near a vertically falling and spinning relative equilibrium the dynamics is given by the slice
equations near a rotating wave of a Euclidean equivariant system (3.23), but now there is an
additional equation

ν̇a
3 ≡ 0

in the slice and a corresponding equation

ȧ3 = Dνa
3
h(ν, w)
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for the group dynamics, where ν = (νφ, νa), νa = (νa
1 , νa

2 , νa
3 ). Assume that this relative

equilibrium is nondegenerate and satisfies the non-resonance condition (4.1). Then it persists as
translating RPO with non-vertical linear drift to horizontal linear momentum. Let the relative
equilibrium be elliptic and non-resonant (from [15, Section 4.4.2] it follows that these conditions
are satisfied at least for an open range of parameters). Then there are two 3-parameter families
of RPOs, parametrized by (νφ, νa

3 , s), which fall, rotate and precess.

4.4 Hamiltonian meandering transition for momentum maps with co-

cycle

In this section the analogue of the meandering transition of dissipative systems is considered for
Hamiltonian systems where the momentum map has a non-vanishing cocycle of the form that
occurs in point vortex dynamics. The limiting behaviour for a vanishing cocycle is studied, and
in this way the meandering transition for momentum maps with cocycle is related to the results
of Sections 4.1-4.3 on the meandering transition for Hamiltonian systems with Ad∗-equivariant
momentum map.

Let us consider a parameter dependent SE(2)-symmetric Hamiltonian system (3.22). Assume
that the symplectic form Ω(K), the Hamiltonian H(·,K) and the momentum map J(·,K) : M →
se(2)∗ depend smoothly on a parameter K. Moreover assume that the momentum map is Ad∗-
equivariant for K = 0 and has the cocycle (3.11) for K 6= 0, see (3.10), (3.12). An example of
such a momentum map is the momentum map (3.4) for the point vortex dynamics (3.3).

As in the analysis of the Hamiltonian meandering transition for Ad∗-equivariant momentum
maps, see Section 4.1, first the persistence of rotating waves to nearby momentum values is
studied. Moreover the behaviour of the rotating waves in the limit of vanishing cocycle is
analyzed in the following theorem:

Theorem 4.9 Consider a Hamiltonian system with SE(2)-symmetry for which the momentum
map J(·,K) has a non-vanishing cocycle satisfying (3.11), (3.12). Then:

a) For K 6= 0 all relative equilibria are rotating waves. Any nondegenerate rotating wave
SE(2)x0 persists to all nearby momentum values as a one-parameter family SE(2)xRW(ν),
ν ∈ (gK

µ0
)∗, xRW(0) = x0.

b) The centre of rotation c(K) of any smooth family of rotating waves SE(2)xRW(K), K 6= 0,
K ≈ 0, with fixed linear momentum µa 6= 0 and rotation frequency ωrot(K), such that
limK→0 ωrot(K) = ωrot

0 6= 0, tends to infinity, as K → 0, according to

‖c(K)‖ =
‖µa‖

K
.

c) Assume that there is a nondegenerate rotating wave SE(2)x0 at K = 0 with momentum

µ0 = (µφ
0 , 0) and rotation frequency ωrot

0 6= 0. Then this rotating wave can be continued to
a rotating wave SE(2)xRW(νφ,K) for small K 6= 0, νφ 6= 0, such that Jφ(xRW(νφ,K),K) =

µφ
0 + νφ and Ja(xRW(νφ,K),K) = 0.

Part b) of this proposition implies that for K = 0 rotating waves only exist for vanishing
linear momentum, see Proposition 4.2.

Proof of Theorem 4.9.

a) If the momentum map for a Hamiltonian system with SE(2)-symmetry has a non-vanishing
cocycle then Γκ

µ ' SO(2) for all µ ∈ se(2)∗, as shown in Remark 3.4. Hence gK
µ ' so(2)

for all µ ∈ se(2)∗, and by (3.16) all relative equilibria are rotating waves. Moreover in
Example 3.9 it was shown that ν̇ ≡ 0 in (3.21), ν ∈ (gK

µ )∗. For a nondegenerate ro-
tating wave SE(2)x0 the matrix D2

wh(0) is invertible. Therefore there is a path wRW(ν)
of equilibria of the ẇ-equation near wRW(0) = 0. These equilibria correspond to ro-
tating waves SE(2)xRW(ν), xRW(ν) ' (id, ν, wRW(ν)), of (3.1) for all nearby momenta
SE(2)J(xRW(ν),K) = SE(2)(µ0 + ν), where µ0 = J(x0,K).
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b) Let SE(2)xRW(K) be a rotating wave with momentum µ and drift velocity ξ = ξ(K) =
(ξφ, ξa)(K). Differentiating (3.15) and identifying R2 with C and so(2) with R one obtains
that

(ξφ, ξa) ∈ gK
µ ⇔ Kξa = ξφµa. (4.3)

Let (φ, a)x = eiφx + a, x ∈ R2 ' C. Then x(t) = exp(t(ξφ, ξa))x0 satisfies the differential
equation ẋ(t) = iξφx(t) + ξa. Solving this and setting t = 1 one gets

exp(ξφ, ξa)x0 = eiξφ

x0 +
1

iξφ
(eiξφ

− 1)ξa.

Therefore exp(ξφ, ξa) is a rotation with centre

c = i
ξa

ξφ
= i

µa

K
=

1

K
(−µa

2 , µ
a
1)

T . (4.4)

This proves b).

c) Let us only reduce by the SO(2) × {0}-symmetry. Then the system

˙̃ν = 0, ˙̃w = J eN1
Dw̃h̃(ν̃, w̃,K)

is obtained on the slice Ñ transverse to the SO(2)-orbit SO(2)x0 at x0, with ν̃ = νφ. By
(3.8), (3.9) the matrix adξ0

= −ad∗
ξ0

has simple eigenvalues 0 and ±iωrot
0 . By (2.4) and

(3.20), at K = 0 the linearization of the slice equation DfÑ (0, 0) has one simple eigenvalue

0 corresponding to the equation ˙̃ν = 0. Therefore D2
w̃h̃(0, 0, 0) is invertible and so the

rotating wave SO(2)x0 is nondegenerate. By Remark 3.7 the ˙̃w-equation is smooth in K.
So there is a smooth two-parameter family w̃RW(ν̃,K) of equilibria of the ˙̃w-equation. This
gives a family SE(2)xRW(νφ,K), xRW(νφ,K) ' (id, νφ, w̃RW(νφ,K)), of rotating waves of

(3.1). By (3.18) their angular momentum is Jφ(xRW(νφ,K),K) = µφ
0 + νφ. Since only

a reduction by the SO(2)-symmetry has been carried out, the rotating waves through

xRW(νφ,K) have drift velocities ξRW(νφ,K) with ξa
RW(νφ,K) = 0. Moreover ξφ

RW(νφ,K) ≈
ωrot

0 6= 0 for K ≈ 0. Therefore (4.3) implies that Ja(xRW(νφ,K),K) = 0.

The next proposition shows that in the case of a momentum map with cocycle (3.11) all
relative periodic orbits are modulated rotating waves:

Proposition 4.10 Consider a Hamiltonian system with SE(2)-symmetry for which the momen-
tum map J(·,K) has a non-vanishing cocycle satisfying (3.11), (3.12). Then:

a) For K 6= 0 all relative periodic orbits are modulated rotating waves.

b) Any smooth family P(K) of proper modulated rotating waves of (3.1), i.e., of RPOs with
drift symmetry γ(K) = (φ(K), a(K)), where φ(K) 6= 0 mod 2π for all K 6= 0, K ≈ 0, with
fixed linear momentum µa 6= 0 has a centre of rotation c(K) diverging to ∞ for K → 0

according to ‖c(K)‖ = ‖µa‖
K .

Proof.

a) Similarly as in the proof of Theorem 4.9 a), this follows from the fact that Γκ
µ ' SO(2) for

all µ ∈ se(2)∗, as shown in Remark 3.4. This, together with (3.17), implies that all relative
periodic orbits are modulated rotating waves.

b) This statement is proved similarly as Theorem 4.9 b). By (3.15), the centre of rotation
c(K) = Rφ(K)c(K) + a(K) of the drift symmetry γ(K) = (φ(K), a(K)), φ(K) 6= 0 mod 2π,
of the RPO is given by (4.4), and so c(K) → ∞ as K → 0 for µa 6= 0.
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In the next theorem the transition from rotating waves to modulated rotating waves and
modulated travelling waves is studied, in the limit K → 0:

Theorem 4.11 Let SE(2)xRW(K) be a nondegenerate rotating wave of a Hamiltonian system
(3.1) which has a momentum map J(·,K) with cocycle satisfying (3.10), (3.11). Fix the momen-
tum µ0 = J(xRW(K),K) of xRW(K) independent of K. Then the following holds true.

a) Fix K 6= 0. Assume that the rotating wave SE(2)xRW(K) is elliptic and nonresonant in the
sense of Definition 4.4, with normal frequencies ωj , j = 1, . . . , 1

2 dimM− 2. Then there
are ( 1

2 dimM− 2) many two-dimensional families Pj(ν, s,K) of modulated rotating waves
such that there are functions xj(ν, s,K) ∈ Pj(ν, s,K) which are smooth in s ≥ 0, K and
ν ∈ (gK

µ0
)∗ ' so(2)∗ with xj(ν, 0,K) = xRW(ν,K). Here xRW(ν,K) lies on a rotating wave

with momentum µ0+ν. The modulated rotating wave through xj(ν, s,K) has relative period
Tj(ν, s,K) with Tj(0, 0,K) = 2π/|ωj |, its momentum is J(xj(ν, s,K),K) = µ0 + ν, and its
energy is H(xj(ν, s,K),K) = H(xRW(ν,K),K) ± s2 (depending on the Krein signature of
ωj), j = 1, . . . , 1

2 dimM− 2.

b) Assume that there is a rotating wave SE(2)x0 at K = 0 with rotation frequency ωrot
0

which is elliptic and nonresonant in the sense of Definition 4.4, and that ωrot
0 /ωj /∈ Z

for all eigenvalues iωj of JN1
D2

wh(0, 0, 0). Then the ( 1
2 dimM − 3) families Pj(ν

φ, s) of
modulated rotating waves near SE(2)x0 from Proposition 4.6 at K = 0 can be continued to
small K 6= 0 and correspond to families Pj(ν, s,K) from part a) with ν = νφ.

c) Assume that the rotating wave SE(2)x0 at K = 0 is elliptic and nonresonant and
that ωj/ωrot

0 /∈ Z for all eigenvalues iωj of JN1
D2

wh(0, 0, 0). Then for K 6= 0,
K ≈ 0, one of the families P(ν, s,K) from a) corresponds to an eigenvalue iω(K) of
JN1(K)D

2
wh(0, wRW(0,K),K) which depends smoothly on K such that ω(0) = ωrot

0 . Here
ωrot

0 is the rotation frequency of the rotating wave SE(2)x0 at K = 0, N1(K) is the
symplectic normal space at the rotating wave through xRW(0,K) ' (id, 0, wRW(0,K)) ∈
Γ × N0(K) ⊕ N1(K), N0(K) ' (gK

µ0
)∗, and h(ν, w,K) is the Hamiltonian in symmetry

adapted coordinates at xRW(0,K) for the cocycle parameter K. As K → 0, this family
converges to the family of modulated travelling waves from Theorem 4.3.

Proof.

a) Fix K 6= 0. Then, as shown in Example 3.9, N0 = N0(K) is one-dimensional, and so
N1 = N1(K) has dimension dimM− 4. By the Lyapounov Centre Theorem (see e.g. [18])
applied to the ν-dependent ẇ-equation on N1 = N1(K), there are 1

2 dimN1 = (dimM−
4)/2 many families of nonlinear normal modes through wj(ν, s,K). These give families of
relative periodic orbits Pj(ν, s,K) of (3.22) through xj(ν, s,K) ' (id, ν, wj(ν, s,K)) with
momentum J(xj(ν, s,K)) = µ0 + ν, see (3.18). The statement about the energy of the
RPOs is proved as in Proposition 4.6. It was shown in Remark 3.4 that Γκ

µ ' SO(2) for all
µ ∈ se(2)∗. Hence (3.17) implies that all these RPOs are modulated rotating waves. This
proves part a).

b) Let us reduce by SO(2)-symmetry only. The dynamics on the slice Ñ (K) is then ˙̃ν ≡ 0,
ν̃ = νφ ∈ so(2)∗, and ˙̃w = J eN1(K)Dw̃h̃(ν̃, w̃,K). Since adξ0

= −ad∗
ξ0

has simple eigenvalues

0, ±iωrot
0 , c.f. (3.8), (3.9), (2.4) and (3.20) imply that the equilibrium w̃ = 0 of the

˙̃w-equation at ν̃ = 0, K = 0, is elliptic and that its linearization has, in addition to the
eigenvalues ±iωj , j = 1, . . . , 1

2 dimN1, double eigenvalues ±iωrot
0 . Applying the Lyapounov

Centre Theorem to the ˙̃w-equation, relative normal modes w̃j(ν̃, s,K) are obtained for all
nonresonant normal frequencies, i.e., for all imaginary eigenvalues±iωj with eigenvectors in
the original symplectic normal space N1 for the full SE(2)-group action. Since by Remark
3.7 the ˙̃w-equation is smooth in K, this gives 1

2 dimN1 = (dimM− 6)/2 smooth families
Pj(ν

φ, s,K) of RPOs through xj(ν
φ, s,K) ' (id, ν̃, w̃j(ν

φ, s,K)), j = 1, . . . 1
2 dimN1, with

momentum J(xj(ν
φ, s,K)) = (µφ

0 +νφ, 0), see (3.18). These RPOs are modulated rotating
waves, since the system was only reduced by SO(2)-symmetry.
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c) Let K = 0. Then (3.20) and (3.9) imply that the linearization of the ν̇-equation has
eigenvalues ±iωrot

0 and 0, where the real eigenspace of ±iωrot
0 is given by {ν = (0, νa), νa ∈

R2} ⊆ se(2)∗. Compared to the slice equation (3.23) near rotating waves of momentum
maps without cocycle, for K 6= 0 the N0(K) component of the slice N (K) is only 1-
dimensional instead of 3-dimensional. Since µa

0 = Ja(x0, 0) = 0 and µ0 = J(xRW(K),K)
is fixed, Remark 3.9 implies that ν = νφ for K 6= 0 and that then ν̇ ≡ 0. For K 6= 0 the
eigenvalue ±iωrot

0 of DfN (0) perturbs into eigenvalues ±iω(K) of DfN (K)(vRW(K)). Here
vRW(K) is the equilibrium of the slice equation at momentum µ0 and cocycle parameter K
corresponding to the relative equilibrium xRW(νφ,K) at νφ = 0 from Theorem 4.9 c). Since
DfN (K)(vRW(K)) vanishes when restricted to N0(K), it follows that ±iω(K) are eigenvalues
of DfN1(K)(vRW(K)). By the Lyapounov Centre Theorem and due to the nonresonance
condition ωj/ωrot

0 /∈ Z, this gives one more family of nonlinear relative normal modes for
K 6= 0, K ≈ 0. It will now be shown that this additional family of RPOs converges to the
family P(νφ, ra) of modulated traveling waves from Theorem 4.3 as K → 0.

The proof of Theorem 4.3 can be extended to the case K ≈ 0, K 6= 0. It is convenient to
work in the slice coordinates (ν, w) ∈ N = N0 ⊕ N1 at K = 0, even when perturbations
to cocycle parameters K 6= 0 are considered. For any K ≈ 0 the dynamics on the slice N
does not depend on γ and the energy h(ν, w,K) is still a conserved quantity. But note that
the Poisson structure on N changes, and in particular |νa|2 is not a conserved quantity
any more. By (3.9), for K = 0 the momentum group orbits SE(2)µ are cylinders around
the µφ-axis. For K 6= 0, due to (3.10) and (3.11), they are paraboloids, centered along the
µφ-axis. A Casimir, i.e., a function satisfying C(γ ·κ µ) = C(µ), where γ ·κ µ is defined in
(3.10), is given by C(µφ, µa) = ‖µa‖2+2Kµφ. Let Ja(ν, w,K) and Jφ(ν, w,K) be the linear
and angular momentum on the slice N . Since the momentum map depends smoothly on
K, these maps are smooth in all variables. Then

C(ν, w,K) = ‖Ja(ν, w,K)‖2 + 2KJφ(ν, w,K) (4.5)

is a conserved quantity for the slice equation. For K = 0 one has Ja(ν, w,K = 0) = νa,
Jφ(ν, w,K = 0) = νφ. Therefore for K ≈ 0 the Casimir C(ν, w,K) is a small perturbation
of C(ν, w,K)|K=0 = ‖νa‖2. The rotating waves through xRW(νφ,K) from Theorem 4.9
c) have energy ERW(νφ,K) = H(xRW(νφ,K)) with ∂ERW

∂νφ (0, 0) = ωrot
0 6= 0. So they

can be parametrized by (E,K) instead of (νφ,K) for E ≈ E0 = H(x0) and K ≈ 0.
Let xRW(E,K) = (id, νRW(E,K), wRW(E,K)) be the family of rotating waves near x0 '
(id, 0, 0) ∈ Γ × N . Then νa

RW,1(E, 0) = 0, νa
RW,2(E, 0) = 0 by Proposition 4.2. Since

the slice equation conserves energy, the energy level sets NE,K of the slice N at cocycle
parameter K are flow-invariant. Moreover, as Dνφh(0) = ωrot

0 , ωrot
0 6= 0, they can be

parametrized by

NE,K = {(ν, w) ∈ N , h(ν, w,K) = E} = {(ν, w) ∈ N , νφ = νφ(E, νa, w,K)},

where E ≈ E0 = H(x0), νa ≈ 0, K ≈ 0, w ≈ 0. As in the proof of Theorem 4.3,

SE,K = {(ν, w) ∈ N , νa
2 = νa

RW,2(E,K), νa
1 > νa

RW,1(E,K), νφ = νφ(E, νa, w,K),

w ∈ N1, w ≈ 0, νa ≈ 0}

is a Poincaré section in NE,K for E ≈ E0, K ≈ 0. Denote s = νa
1 − νa

RW,1(E,K). Let us
now look for fixed points of the Poincaré map Π(E, s, w,K) which maps SE,K to itself.

Decompose Π(E, s, w,K) = (Π0(E, s, w,K), Π1(E, s, w,K)), where Π1(E, s, w,K) is the w-
component (w ∈ N1) and Π0(E, s, w,K) the s-component of Π. Due to the nonresonance
condition, Π1(E, s, w,K) = w can be solved for K ≈ 0, s ≈ 0, E ≈ E0 = H(x0), by the
implicit function theorem to obtain w(E, s,K). Inserting this into Π0, one obtains one
scalar fixed point equation s = Π̂(E, s,K). This equation is satisfied due to the existence
of the Casimir (4.5): Let ŝ = Π̂(E, s,K). Inserting w = w(E, s,K) into (4.5), a function
C(E, s,K) = s2 + O(K) is obtained. Any equilibrium (ν, w) of the slice equation on N
satisfies

D C(ν, w) || D h(ν, w)
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or
D(C|h=E) = 0,

where E = h(ν, w). The equilibria corresponding to rotating waves of (3.1) are at s = 0
and therefore DsC(E, 0,K) ≡ 0. Moreover D2

sC(E0, 0, 0) = 2, where E0 = H(x0). So
s → C(E, s,K) is monotonically increasing for s ≥ 0, E ≈ E0, K ≈ 0, and one can solve
for s(E, C,K). Hence ŝ = s, and a family (ν, w)(E, C,K) of periodic orbits of the slice
equation is obtained. This gives a family P(E, C,K) of RPOs of (3.22). Changing the
parametrization of the RPOs P(E, C,K) from (E, C) back to (νφ, s), the notation of the
theorem is recovered. Let (φ, a)(νφ, s,K) by the drift symmetry of the RPO P(νφ, s,K)
at x(νφ, s,K) ' (id, (ν, w)(νφ, s,K)). Note that for K = 0, (3.18) gives s = ra and

J(x(νφ, ra, 0) = (µφ
0 + νφ, ra, 0). By (3.17) and (3.9) for ra 6= 0 and K = 0 all RPOs are

modulated traveling waves. Therefore φ(νφ, s,K) → 0 as K → 0 and the RPOs P(νφ, s,K)
become modulated traveling waves in the limit of vanishing cocycle.

5 Extensions to systems with other symmetry groups

In this section the Hamiltonian analogue of the meandering transition is discussed for sys-
tems with spherical symmetry and for systems with the Euclidean symmetry group of three-
dimensional space. See Remarks 2.2 b) and c) for the corresponding dissipative case.

5.1 Hamiltonian meandering transition with spherical symmetry

In this section it is assumed that the Hamiltonian system (3.1) has spherical symmetry Γ =
SO(3). Then persistence of rotating waves to modulated rotating waves at nearby momentum
values is studied. Thereby the analogue of Remark 2.2 b) is studied in the Hamiltonian context.
The results can be applied to rotating point vortices on the sphere, see e.g. [19].

For µ0 = 0 the momentum isotropy subalgebra is gµ0
= so(3) and for µ0 6= 0 (the typical

case) it is gµ0
= so(2). Let us first consider the generic case of a rotating wave with momentum

µ0 6= 0.

Theorem 5.1 Let SO(3)x0 be a nondegenerate rotating wave with non-vanishing momentum µ0

and drift velocity ξ0. Align x0 such that µ0 = (0, 0, µ0,3), ξ0 = (0, 0, ωrot
0 )T . Then the following

holds true:

a) The rotating wave SO(3)x0 persists to every nearby momentum. Moreover there is a one-
dimensional family of rotating waves SO(3)xRW(ν), ν ≈ 0, such that xRW(ν) is smooth
and xRW(0) = x0. The rotating wave through xRW(ν) has drift velocity ξRW(ν)||e3, with
ξRW(0) = ξ0, and momentum J(xRW(ν)) = (0, 0, µ0,3 + ν).

b) Let the rotating wave SO(3)x0 be elliptic and nonresonant in the sense of Definition 4.4 and
denote its normal frequencies by ωj . Then there are ( 1

2 dimM−2) two-dimensional families
Pj(ν, s), j = 1, . . . 1

2 dimM − 2, ν ≈ 0, s ≥ 0, of modulated rotating waves nearby such
that there are smooth functions xj(ν, s) ∈ Pj(ν, s) with xj(ν, 0) = xRW(ν) (where xRW(ν)
is from a)). These modulated rotating waves have energy H(xj(ν, s)) = H(xRW(ν)) ± s2

(depending on the Krein signature of ωj), momentum J(xj(ν, s)) = (0, 0, µ0,3 +ν), relative
period Tj(ν, s), such that Tj(0, 0) = 2π

|ωj |
, and average drift velocity ξj(ν, s)||e3 at xj(ν, s),

with ξj(0, 0) = ξ0.

So resonance drift can not occur near rotating waves of SO(3)-symmetric Hamiltonian
systems with non-vanishing angular momentum.

Proof of Theorem 5.1 If µ0 6= 0 then N0 ' g∗
µ0

' so3(2)∗ is one-dimensional. Here so3(2) cor-
responds to infinitesimal rotations around the e3-axis. So the ν̇-equation of (3.19) just becomes
ν̇ = 0.
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a) A nondegenerate rotating wave SO(3)x0 persists as equilibrium wRW(ν) of the ẇ-equation
for ν ≈ 0. This gives a rotating wave of (3.1) through xRW(ν) ' (id, ν, wRW(ν)) with
nonvanishing momentum J(xRW(ν)) = (0, 0, µ0,3 + ν), ν ≈ 0, c.f. (3.18). Due to SO(3)-
equivariance the rotating wave persists to all nearby momenta.

b) By the Lyapounov Centre Theorem there are 1
2 dim(N1) families wj(ν, s) of periodic orbits

of the ẇ-equation, parametrized by ν and s. Here dimN1 = dimM−4. These give points
xj(ν, s) = (id, ν, wj(ν, s)) on modulated rotating waves Pj(ν, s) with xj(ν, 0) = xRW(ν)
and with momentum J(xj(ν, s)) = µ0 + ν = (0, 0, µ0,3 + ν3), see (3.18). Let SO3(2)
be the group of rotations around e3 with Lie algebra so3(2). Since J(xj(ν, s)) 6= 0 and
J(xj(ν, s))||e3, by (3.17) the drift symmetry Rj(ν, s) of the RPO at xj(ν, s) lies in SO2(3),
and so the average drift velocity ξj(ν, s) at xj(ν, s) is in so3(2).

Next let us consider the case that the rotating wave SO(3)x0 has zero angular momentum
µ0 = 0. In this case resonance drift typically occurs as the following theorem shows:

Theorem 5.2 Consider a nondegenerate rotating wave SO(3)x0 with momentum µ0 = J(x0) =
0 and non-vanishing drift velocity ξ0 6= 0. Choose x0 such that ξ0 = (0, 0, ωrot

0 )T where ωrot
0 is

the rotation frequency of the rotating wave at x0. Then the following holds true:

a) There is a one-parameter family SO(3)xRW(ν3) of rotating waves nearby, ν3 ≈ 0, with
momentum J(xRW(ν3)) = (0, 0, ν3) and drift velocity ξRW(ν3)||e3 at xRW(ν3), such that
ξRW(0) = ξ0. Moreover, the rotating wave SO(3)x0 persists to all nearby momentum
values.

b) Assume that JN1
D2

wh(0) has no eigenvalues in iωrot
0 Z. Then there is a two-parameter

family PMRW(ν2, ν3), ν2 ≥ 0, ν3 ≈ 0, of modulated rotating waves of (3.1) such that
xMRW(ν2, ν3) ∈ PMRW(ν2, ν3) is smooth in (ν2, ν3) and xMRW(0, ν3) = xRW(ν3). The
modulated rotating wave at xMRW(ν2, ν3) has drift symmetry γMRW(ν2, ν3), relative pe-
riod T (ν2, ν3) and momentum J(xMRW(ν2, ν3)) = (0, ν2, ν3), and xMRW(0, 0) = x0,
T (0, 0) = 2π/|ωrot

0 |, γMRW(0) = id. This family contains a one-parameter family P(ν2, 0)
of modulated rotating waves which have an average drift velocity ξ(ν2, 0) at xMRW(ν2, 0)
parallel to the e2-axis.

c) Assume that the rotating wave SO(3)x0 is elliptic and nonresonant in the sense of Defi-
nition 4.4 and that JN1

D2
wh(0) has no eigenvalues iωj with ωrot

0 /ωj ∈ Z. Then there are
( 1
2 dimM−3) more two-parameter families Pj(ν3, s), j = 1, . . . 1

2 dimM−3, of modulated
rotating waves near the rotating wave and there are smooth functions xj(ν3, s) ∈ Pj(ν3, s)
with xj(ν3, 0) = xRW(ν3) (where xRW(ν3) is from part a)). The modulated rotating
wave Pj(ν3, s) has momentum J(xj(ν3, s)) = (0, 0, ν3) at xj(ν3, s), energy H(xj(ν3, s)) =
H(xRW(ν3)) ± s2 (depending on the Krein signature of ωj), relative period Tj(ν3, s) such
that Tj(0, 0) = 2π/|ωj |, and average drift velocity ξj(ν3, s)||e3, s ≥ 0, with ξj(0, 0) = ξ0,
j = 1, . . . 1

2 dimM− 3.

Proof. If the rotating wave SO(3)x0 has momentum µ0 = 0 then gµ0
= so(3). In this case

ν ∈ so(3)∗ ' R3 and the ν̇-equation from (3.19) becomes

ν̇ = ν × Dνh(ν, w). (5.1)

a) Since the ν̇ equation has nontrivial dynamics, let us reduce only by the symmetry group

Γ̃ = {γ ∈ SO(3), Adγξ0 = ξ0} = SO3(2)

which is the group of rotations around the e3-axis. The corresponding slice is denoted
by Ñ = Ñ0 ⊕ Ñ1. Then ν̃ ∈ Ñ0 is given by ν̃ = ν3 and ˙̃ν = 0. Note that dim Ñ1 =
dimN1 + 4. Let h̃(ν̃, w̃) be the Hamiltonian in the bundle coordinates (γ̃, ν̃, w̃) ∈ Γ̃ ×

Ñ0 ⊕ Ñ1. The matrix ad∗
ξ0

has eigenvalues ±iωrot
0 with real eigenspace {ν = (ν1, ν2, 0) ∈
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so(3)∗} and a simple eigenvalue 0. Because of (2.4) and (3.20), the eigenvalues of the

linearization J eN1
D2

w̃h̃(0) of the equilibrium 0 ∈ Ñ1 corresponding to the rotating wave

SO(3)x0 are given by the eigenvalues of JN1
D2

wh(0) and by the eigenvalues ±iωrot
0 of

multiplicity two. Hence the rotating wave is nondegenerate when considered as a rotating
wave of a Hamiltonian system with SO3(2)-symmetry. Therefore ˙̃w = 0 for w̃(ν̃) can
be solved using the nondegeneracy condition. This gives rotating waves SO(3)xRW(ν̃),
xRW(ν̃) ' (id, ν̃, w̃(ν̃)), for the original SO(3)-equivariant Hamiltonian system (3.1). Since
only a reduction by SO3(2)-symmetry was carried out, these rotating waves have drift
velocities ξRW(ν3)||e3 where ξ(0) = ξ0 6= 0. Then (3.16) implies that also J(x(ν3))||e3.
This proves part a).

b) The rotating waves through xRW(ν3) ' (γRW(ν3), νRW(ν3), wRW(ν3)) from part a) have,
by (3.18), momentum

J(xRW(ν3)) = (0, 0, ν3) = γRW(ν3)νRW(ν3)

and energy ERW(ν3) = h(νRW(ν3), wRW(ν3)) where E′
RW(0) = Dνh(0)ν′

RW(0) = ωrot
0 6= 0.

Therefore they can be parametrized by energy E instead of ν3. Denote the corresponding
path of rotating waves again by xRW(E) ' (γRW(E), νRW(E), wRW(E)). Let ωrot(E)
be the rotation frequency of the rotating wave SO(3)xRW(E). Since the slice equation
conserves the energy h(ν, w) the energy level sets NE of N are flow-invariant. Because of
Dνh(0) = (0, 0, ωrot

0 ), ωrot
0 6= 0, and Dwh(0) = 0, they can be parametrized, similarly as in

the proof of Theorem 4.3, by

NE = {(ν, w) ∈ N , h(ν, w) = E} = {(ν, w) ∈ N , ν3 = ν3(ν1, ν2, w, E)}, E ≈ E0 = h(0).

Then ν3(νRW,1(E), νRW,2(E), wRW(E), E) = νRW,3(E). Let us now consider the equilib-
rium vRW(E) := (νRW(E), wRW(E)) of the slice equation as periodic orbit with period
T rot(E) = 2π

|ωrot(E)| . The matrix ad∗
ξ0

has a pair ±iωrot
0 of non-vanishing imaginary eigen-

values with real eigenspace spanned by the vectors {(ν1, ν2, 0), ν1, ν2 ∈ R} ⊆ so(3)∗. By
(3.20), the linearization of the slice equation DvfN (vRW(E)) at E = E0 also has this pair
of eigenvalues which perturbs to the eigenvalues ±iωrot(E) of DvfN (vRW(E)) for E ≈ E0.
Consequently,

SE = {(ν, w) ∈ NE , ν1 = νRW,1(E), ν2 > νRW,2(E), ν2 ≈ νRW,2(E),

ν3 = ν3(νRW,1(E), ν2, w, E), w ≈ wRW(E)}

is a section transverse to the flow of the slice equation at vRW(E) inside the energy level
set NE to the energy E ≈ E0. Let s := ν2 − νRW,2(E). The corresponding Poincaré
map is denoted by Π(·, E) : SE → SE . Decompose Π(·, E) = (Π0(·, E), Π1(·, E)) where
Π0 maps into the ray s ≥ 0 and Π1 into N1. By assumption there is no k : 1-resonance
between ωrot

0 and any normal frequency on N1. Therefore the equation Π1(s, w, E) = w
can be solved for w(s, E), such that w(0, E) = wRW(E) for E ≈ E0. Plugging this into Π0

a map Π̃(·, E) from the ray s ≥ 0 into itself is obtained. The ν̇-equation (5.1) conserves
the Casimir CR(ν, w) = ‖ν‖2

2. Define ν3(s, E) := ν3(νRW,1(E), s + νRW,2(E), w(s, E), E).

Then ŝ = Π̂(s, E) satisfies C(ŝ, E) = C(s, E) where

C(s, E) = (νRW,1(E))2 + (νRW,2(E) + s)2 + (ν3(s, E))2.

The path of relative equilibria SO(3)xRW(E) corresponds to (s, E) = (0, E). Note that

D h(vRW(E)) ||D CR(vRW(E))

and that D CR|h(v)=E = 0 at v = vRW(E). As a result of this, DsC(0, E) ≡ 0. Moreover,
from Dνh(0) = ωrot

0 e3 and Dwh(0) = 0, it follows that Dsν3(0, E0) = 0, and therefore
D2

sC(0, E0) = 2. Hence s → C(s, E) is injective for s ≥ 0, s ≈ 0, for any fixed E ≈ E0.
Consequently ŝ = s, and so v(s, E) := (ν(s, E), w(s, E)), with ν(s, E) = (νRW,1(E), s +

24



νRW,2(E), ν3(s, E))T , lies on a periodic orbit of the slice equation with period T (s, E) ≈
T (0, E) = 2π

|ωrot(E)| .

Changing the parametrization back from E to ν3, a two-parameter family v(s, ν3) =
(ν(s, ν3), w(s, ν3)) of periodic orbits of the slice equation with periods T (s, ν3) is ob-
tained, satisfying T (0, ν3) = T rot(0, ν3). These give points x̂(s, ν3) ' (γRW(ν3), v(s, ν3))
on modulated rotating waves of the full Hamiltonian system (3.1) with momentum
µ̂(s, ν3) = γRW(ν3)ν(s, ν3), see (3.18). At the rotating waves µ̂(0, ν3) = ν3 and hence
Dν3

µ̂(0, ν3) ≡ e3. Moreover γRW(0) = id implies that Dsµ̂(0, 0) ≡ e2. So smooth functions

φ̂2(s, ν3), φ̂3(s, ν3) can be found such that γ̂(s, ν3) = exp(φ̂2(s, ν3)ξ2 + φ̂3(s, ν3)ξ3) (with

the notation from (2.9)) satisfies (γ̂(s, ν3)µ̂(s, ν3))1 = 0 and φ̂2(0, ν3) = 0, φ̂3(0, ν3) = 0.
Let γ(s, ν3) = γ̂(s, ν3)γRW(ν3). Then x(s, ν3) ' (γ(s, ν3), v(s, ν3)) lies on an RPO with
momentum µ(s, ν3) such that µ1(s, ν3) = 0. Then s can be replaced by ν2 and (ν2, ν3) can
be tranformed such that x(ν2, ν3) has momentum µ(ν2, ν3) = J(x(ν2, ν3)) = (0, ν2, ν3),
ν2 ≥ 0.

The condition (3.17) implies that the drift symmetry γ(ν2, ν3) at the RPO through x(ν2, ν3)
satisfies γ(ν2, ν3)µ(ν2, ν3) = µ(ν2, ν3), where γ(0) = id. Therefore γ(ν2, ν3) is a rotation
around the vector µ(ν2, ν3) in the (x2, x3)-plane. Moreover for ν3 = 0 the modulated
rotating wave P(ν2, 0) rotates around the e2 axis with momentum µ(ν2) = (0, ν2, 0) at
x(ν2, 0).

c) By assumption there is no k : 1-resonance between any of the eigenvalues of JN1
D2

wh(0)
and between the eigenvalues of JN1

D2
wh(0) and iωrot

0 . Hence for all normal frequencies on
N1, part c) follows from the Lyapounov Centre Theorem applied on the space Ñ1, after
symmetry reduction by SO3(2) as in part a).

5.2 Hamiltonian meandering transition with the Euclidean symmetry

of three-dimensional space

In this section the Hamiltonian analogue of the resonance drift of Remark 2.2 c) is studied. The
symmetry group is again Γ = SE(3) = SO(3) n R3. Similarly as in (3.8), (3.9), the adjoint and
coadjoint actions for Γ = SE(3) are

Ad(R,a)ξ = ( Rξr , Rξa − Rξr × a )

Ad∗
(R,a)−1µ = ( Rµr + a × Rµa , Rµa ) ,

(5.2)

where (R, a) ∈ SO(3) n R3, see e.g. [15, 26]. So typically, when µa 6= 0, then Γµ ' SO(2) × R.
In this case resonance drift is not possible:

Proposition 5.3 Let SE(3)x0 be a nondegenerate relative equilibrium with generic momentum
value µ0 satisfying µa

0 6= 0 and with drift velocity ξ0. Align x0 such that ξa
0 ||e3, ξr

0 ||e3. Then the
following holds true:

a) There is a two-parameter family SE(3)xRE(νr
3 , νa

3 ) of relative equilibria of (3.1) with
xRE(0, 0) = x0. The relative equilibrium at xRE(νr

3 , νa
3 ) has angular momentum

Jr(xRE(νr
3 , νa

3 )) = (0, 0, µr
0,3 + νr

3), linear momentum Jr(xRE(νr
3 , νa

3 )) = (0, 0, µa
0,3 + νa

3 )
and drift velocity ξRE(νr

3 , νa
3 ), which satisfies ξr

RE(νr
3 , νa

3 )||e3, ξa
RE(νr

3 , νa
3 )||e3.

b) Let the relative equilibrium SE(3)x0 be elliptic and nonresonant in the sense of Def-
inition 4.4 and denote its normal frequencies by ωj , j = 1, . . . , 1

2 dimM − 4. Then
there are ( 1

2 dimM − 4) families of RPOs Pj(ν
r
3 , νa

3 , s), s ≥ 0, and smooth functions
xj(ν

r
3 , νa

3 , s) ∈ Pj(ν
r
3 , νa

3 , s) such that xj(ν
r
3 , νa

3 , 0) = xRE(νr
3 , νa

3 ). The RPO at xj(ν
r
3 , νa

3 , s)
has momentum

Jr(xj(ν
r
3 , νa

3 , s)) = (0, 0, µr
0,3 + νr

3 ), Ja(xj(ν
r
3 , νa

3 , s)) = (0, 0, µa
0,3 + νa

3 ),

25



energy H(xj(ν
r
3 , νa

3 , s)) = HRE(νr
3 , νa

3 )) ± s2 (depending on the Krein signature of ωj),
relative period Tj(ν

r
3 , νa

3 , s), such that Tj(0, 0, 0) = 2π/|ωj |, and average drift velocity
ξj(ν

r
3 , νa

3 , s) at xj(ν
r
3 , νa

3 , s), which satisfies ξr
j (νr

3 , νa
3 , s)||e3, ξa

j (νr
3 , νa

3 , s)||e3, ξj(0, 0) = ξ0.

Proof.

a) Note that, by (5.2), ξa
0 ||e3, ξr

0 ||e3 implies µa
0 ||e3, µr

0||e3. The Lie-group Γµ0
' SO3(2)×R3

is abelian, therefore ν̇ ≡ 0 holds in the equations (3.19) near a relative equilibrium SE(3)x0

with generic momentum value. By the nondegeneracy condition, ẇ = 0 can be solved for
wRE(ν) to obtain relative equilibria through xRE(ν) ' (id, ν, wRE(ν)). The statement
about the momentum of xRE(ν) follows from (3.18), the statement about the velocity
ξRE(ν) from (3.16) and (5.2).

b) The Lyapounov Centre Theorem can be applied on the ν-dependent ẇ-equation. The
statements about the momentum of the families of RPOs follows from (3.18). The fact
that their drift symmetry lies in SO3(2) × R3, and hence their average drift velocity in
so3(2) × R3, follow from (3.17) and the fact that Γµ0

' SO3(2) × R3, see part a).

The situation is different if the relative equilibrium SE(3)x0 has a nongeneric momentum
value µ0 = J(x0). In what follows, it is shown that in this case resonance drift occurs generically.

If µa
0 = 0 then (5.2) implies that Γµ0

' SO(2)nR3. Let us assume, without loss of generality,
that µr

0||e3. Then the drift velocity ξ0 = (ξr
0 , ξa

0 ) of the relative equilibrium at x0 satisfies ξr
0 ||e3.

Choose x0 in its SE(3) orbit such that also ξa
0 ||e3. The momentum value µ0 is non-split, and

the ν̇-equation of (3.19) for ν = (νr, νa) ∈ so(2)∗ ⊕ (R3)∗ is non-trivial, see [26]. It can be easily
checked that the functions

Ca(µ) = ‖µa‖2 and Cr(µ) = 〈µa, µr〉 (5.3)

are invariant under the coadjoint action (5.2). These restrict to the functions Ca(ν) = ‖νa‖2

and Cr(ν) = νa
3 (µr

3 + νr) on the slice N0 ' so(2)∗ ⊕ (R3)∗ and are Casimirs, i.e., conserved
quantities of the ν̇-equation.

In the following proposition persistence of a relative equilibrium with vanishing linear mo-
mentum is studied, as a prerequisite for the analysis of the Hamiltonian meandering transition.

Proposition 5.4 Let SE(3)x0 be a nondegenerate relative equilibrium with momentum value
µ0 = (µr

0, 0), µr
0||e3, and with drift velocity ξ0 = (ξr

0 , ξa
0 ), where ξr

0 6= 0, ξr
0 ||e3, ξa

0 ||e3. Then
there exists a 2-dimensional family of relative equilibria SE(3)xRE(νr, νa

3 ) of (3.1) such that
xRE(νr, νa

3 ) is smooth in its parameters and xRE(0) = x0, ξRE(0, 0) = ξ0. The relative equilib-
rium through xRE(νr, νa

3 ) has angular momentum Jr(xRE(νr, νa
3 )) = µr

0 + νre3, linear momen-
tum Ja(xRE(νr , νa

3 )) = νa
3 e3 and drift velocity ξRE(νr, νa

3 ), where ξr
RE(νr , νa

3 ) = ωrot(νr, νa
3 )e3,

ξa
RE(νr, νa

3 )||e3.

Proof. This proposition is an application of a persistence result for general noncompact sym-
metry groups, see [32, Example 5.3a)]. But it can also be proved in an elementary way: Because
of (2.4), (3.20), the linearization L0 at x0 has, by our nondegeneracy condition and the form of
adξ0

from (5.2), a 4-dimensional kernel corresponding to two zero eigenvalues of adξ0
. Therefore

let us reduce only by the abelian symmetry group Γ̃ = SO3(2) × R3 of rotations around and
translations along the e3-axis. This gives the reduced system

˙̃ν = 0, ˙̃w = J eN1
Dw̃h̃(ν̃, w̃) (5.4)

on the slice Ñ = Ñ0⊕Ñ1, where ν̃ = (νr, νa
3 ) ∈ Ñ0 ' so3(2)∗⊕R∗

3. Since J eN1
D2

w̃h̃(0) is invertible,
the equation 0 = J eN1

Dw̃h(ν̃, w̃) can be solved for w̃(ν̃) by the implicit function theorem. This
gives relative equilibria SE(3)xRE(νr, νa

3 ) of (3.1), where xRE(νr, νa
3 ) ' (id, ν̃, w̃(ν̃)). The drift

velocity ξRE(νr, νa
3 ) of the relative equilibrium at xRE(νr , νa

3 ) lies in the Lie algebra of Γ̃ and
therefore satisfies ξr

RE(νr, νa
3 ) = ωrot

RE(νr, νa
3 )e3 and ξa

RE(νr, νa
3 )||e3. The statement about the

momentum of xRE(νr , νa
3 ) follows from (3.18).
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In this case resonance drift occurs as the following theorem shows:

Theorem 5.5 Let, as before, SE(3)x0 be a nondegenerate relative equilibrium with momentum
µ0 = (µr

0, 0), µr
0||e3, µr

0 6= 0, and with non-vanishing rotational velocity vector ξr
0 6= 0 such that

ξr
0 = ωrot

0 e3, ξa
0 ||e3. Assume that JN1

D2
wh(0) has no eigenvalue in iωrot

0 Z. Then:

a) there is a 3-dimensional manifold P(νr, νa
2 , νa

3 ) of RPOs closeby such that x(νr , νa
2 , νa

3 ) ∈
P(νr, νa

2 , νa
3 ) is a smooth function of its parameters, νa

2 ≥ 0, νr ≈ 0, νa
3 ≈ 0, and

x(νr , 0, νa
3 ) = xRE(νr , νa

3 ). The RPO through x(νr , νa
2 , νa

3 ) has angular momentum
Jr(x(νr , νa

2 , νa
3 )) = µr

0 + νre3, linear momentum Ja(x(νr , νa
2 , νa

3 )) = (0, νa
2 , νa

3 ), and rel-
ative period T (νr, νa

2 , νa
3 ) with T (νr, 0, νa

3 ) = 2π/|ωrot(νr , νa
3 )|. Here ωrot(νr , νa

3 ) is the
rotation frequency of the relative equilibrium SE(3)xRE(νr, νa

3 ) from Proposition 5.4.

b) This family contains a 2-dimensional submanifold x(νr , νa
2 , 0) at νa

3 = 0 which has an
average rotational drift velocity ξr(νr , νa

2 , 0) with ξr
3(νr, νa

2 , 0) = 0.

Note that the RPO through x(νr , νa
2 , 0) rotates around and translates along a vector parallel

to e2 whereas the original relative equiilbrium through x0 rotates around and translates along
the e3 direction.

Proof of Theorem 5.5. Let νr ≈ 0, νa
3 ≈ 0. Near the relative equilibria through xRE(νr, νa

3 ) '
(γRE(νr, νa

3 ), νRE(νr, νa
3 ), wRE(νr, νa

3 )) from Proposition 5.4, let us change coordinates on the
slice N = N0 ⊕ N1, N0 ' so(2)∗ ⊕ (R3)∗, from v = (νr, νa

1 , νa
2 , νa

3 , w) to (E, Cr , νa
1 , νa

2 , w) as
follows: first let

νa
3 (νr, Cr) =

Cr

νr + µr
0,3

.

Here Cr(µ + ν) = 〈νa, µr
0 + νre3) is the Casimir from (5.3) restricted to elements of the form

µ0 + ν, where ν ∈ N0 ' so3(2)∗ ⊕ (R3)∗. Then, by the implicit function theorem, using that
Dνr h(0) = ωrot

0 6= 0, Dwh(0) = 0, Dνah(0)||e3 and Dνrνa
3 (0, 0) = 0, one obtains

νr = νr(E, Cr, νa
1 , νa

2 , w)

for E ≈ E0 = H(x0), Cr ≈ 0, where E = h((νr, νa
1 , νa

2 , νa
3 (νr , Cr)), w). Solving E =

h(νRE(νr, νa
3 (νr , Cr)), wRE(νr , νa

3 (νr, Cr))) by the implicit function theorem for νr, the family
of relative equilibria SE(3)xRE(E, Cr), xRE(E, Cr) ' (γRE(E, Cr), vRE(E, Cr)), vRE(E, Cr) =
(νRE(E, Cr), wRE(E, Cr)), is obtained, parametrized by the conserved quantities (E, Cr). Then,
since ωrot

0 6= 0 and ξr
0 = ωrot

0 e3, by (3.20) and (5.2), for Cr ≈ 0, E ≈ E0, the section

SE,Cr = {(ν, w) ∈ N , νa
3 = νa

3 (νr, Cr), νr = νr(E, Cr, νa
1 , νa

2 , w), νa
1 = νa

RE,1(E, Cr),

νa
2 > νa

RE,2(E, Cr), νa
2 ≈ νa

RE,2(E, Cr), w ≈ wRE(E, Cr)}

is transversal to the flow of (3.1) in the flow-invariant manifold

NE,Cr := {(ν, w) ∈ N , h(ν, w) = E, Cr(ν) = Cr}.

Consider the Poincaré map (s, w) → Π(E, Cr, s, w) from SE,Cr to itself where s = νa
2 −

νRE,2(E, Cr). At (E, Cr , s, w) = (E0, 0, 0, 0) the Poincaré return time is T (0) = 2π
|ωrot

0 | . Due

to the nonresonance assumption the equation Π1(E, Cr, s, w) = w can be solved for w(E, Cr , s)
such that w(E, Cr , 0) = wRE(E, Cr). Here Π1 is the N1 component of Π. What follows, is a
proof that x̂(E, Cr, s) = (γRE(E, Cr), ν(E, Cr , s), w(E, Cr , s)) lies on an RPO. Here

ν(E, Cr , s) = (νr(E, Cr, s), νa(E, Cr, s)),

νr(E, Cr , s) = νr(E, Cr, νa
RE,1(E, Cr), s + νa

RE,2(E, Cr), w(E, Cr , s)),

νa
3 (E, Cr, s) = νa

3 (νr(E, Cr, s), Cr),

νa(E, Cr, s) = (νa
RE,1(E, Cr), s + νa

RE,2(E, Cr), νa
3 (E, Cr , s)).

(5.5)
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By construction, x̂(E, Cr, 0) = xRE(E, Cr). Define

Ca(E, Cr, s) = ‖νa(E, Cr, s)‖2.

The equilibria vRE(E, Cr) of the slice equation are at s = 0. The fact that D(ν,w)h is a linear
combination of D(ν,w)C

a and D(ν,w)C
r at any equilibrium of the slice equation then implies that

DsC
a(E, Cr , 0) = 0.

Moreover Dsν
a
3 (0, 0, 0) = 0 since νa

3 (νr , Cr = 0) ≡ 0. This together with (5.5) gives

D2
sC

a(E0, 0, 0) = 2.

So for small positive s and fixed E ≈ E0, Cr ≈ 0, the function s → Ca(E, Cr, s) is injective.
This proves that there is a coordinate transformation from (E, Cr, s) to the conserved quanti-
ties (E, Cr, Ca). Therefore x̂(E, Cr, s) lies on a relative periodic orbit P(E, Cr, s) of (3.1), as
claimed. Let us now change coordinates back from (E, Cr , s) to (νr , s, νa

3 ) and denote the corre-
sponding function again by x̂(νr, s, νa

3 ) ' (γRE(νr, νa
3 ), ν(νr, s, νa

3 ), w(νr , s, νa
3 )) ∈ P(νr, s, νa

3 ).
It is now shown that a smooth function γ̂(νr , s, νa

3 ) can be found such that

x(νr , s, νa
3 ) ' (γ(νr, s, νa

3 ), v(νr , s, νa
3 )),

where γ(νr, s, νa
3 ) = γ̂(νr, s, νa

3 )γRE(νr , νa
3 ) and v(νr , s, νa

3 ) = (ν(νr , s, νa
3 ), w(νr , s, νa

3 )), satisfies

Ja
1(x(νr , s, νa

3 )) = 0, Jr
1(x(νr , s, νa

3 )) = 0, Jr
2(x(νr , s, νa

3 )) = 0, (5.6)

and γ̂(νr , 0, νa
3 ) = id. First note that this holds true at s = 0 by Proposition 5.4. For s 6= 0, let

γ̂(νr, s, νa
3 ) = (R̂(νr, s, νa

3 ), â(νr, s, νa
3 )),

and µ̂(νr , s, νa
3 ) = J(x̂(νr , s, νa

3 )). Then Ja(xRE(νr, νa
3 )) = νa

3 e3 implies Dνa
3
µ̂a(0, 0, 0) = e3.

From γRE(0, 0) = id one further gets Dsµ̂
a(0, 0, 0) = e2. Therefore smooth functions

φ̂2(ν
r , s, νa

3 ), φ̂3(ν
r , s, νa

3 ) can be found such that φ̂j(ν
r, 0, νa

3 ) = 0, j = 2, 3, and

(R̂(νr, s, νa
3 )µ̂a(νr, s, νa

3 ))1 = 0

where, as in (2.9),

R̂(νr, s, νa
3 ) = exp(φ̂2(ν

r , s, νa
3 )ξ2 + φ̂3(ν

r, s, νa
3 )ξ3).

In this way the first equation of (5.6) is satisfied. Then νa
3 and νa

2 = s can be rescaled such that

Ja(x(νr , νa
2 , νa

3 )) = (0, νa
2 , νa

3 ).

Let
µ̃(νr, νa

2 , νa
3 ) = Ad∗

(R̂(νr ,νa
2 ,νa

3 ),0)−1 µ̂(νr, νa
2 , νa

3 ).

Note that µ̃a(νr, νa
2 , νa

3 ) = (0, νa
2 , νa

3 )T has been achieved by choosing R̂(νr , νa
2 , νa

3 ). Moreover
(5.2) gives

Ad(0,â)−1 µ̃r = µ̃r + (νa
3 â2 − νa

2 â3,−νa
3 â1, ν

a
2 â1)

T .

Let â2 ≡ 0. When νa
2 6= 0, then â3 = â3(ν

r, νa
2 , νa

3 ) can be chosen such that

(Ad∗
(0,â(νr ,νa

2 ,νa
3 ))−1 µ̃r(νr, νa

2 , νa
3 ))1 = 0,

thus satisfying the second equation of (5.6). If νa
2 = 0, i.e. at the relative equilibria,

µ̃r(νr , 0, νa
3 ) = νre3 anyway and when νa

2 → 0 then â3 → Dνa
2
µ̃r

1(ν
r, 0, νa

3 ). Moreover the
equation

(Ad∗
(0,â(νr ,νa

2 ,νa
3 ))−1 µ̃r(νr, νa

2 , νa
3 ))2 = 0,
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and hence the last equation of (5.6), can be satisfied by choosing â1(ν
r, νa

2 , νa
3 ) appropriately

whenever νa
3 6= 0. When νa

3 = 0 then Cr = 0 and νRE(νr , 0) = (νr , 0). In particular
νa
RE,1(ν

r , 0) = 0, and so also νa
1 (νr , s, 0) = 0 (see (5.5)). Therefore R̂(νr, s, 0) = id and

µ̃r
2(ν

r, νa
2 , 0) = 0. Consequently, when νa

2 → 0 then â2 → Dνa
2
µ̃r

2(ν
r , νa

2 , 0). Hence a smooth
function â(νr, νa

2 , νa
3 ) has been found such that µr(νr, νa

2 , νa
3 ) := Ad∗

(0,â)−1 µ̃r(νr , νa
2 , νa

3 ) || e3.
For νa

2 = 0 the equality µr(νr, 0, νa
3 ) = µr

0 + νre3 holds. So coordinates can be changed such
that µr(νr, νa

2 , νa
3 ) = µr

0 + νre3 for all νa
2 ≥ 0, νa

2 ≈ 0. This proves part a) of the proposition.
For part b), let γ(νr, νa

2 , νa
3 ) = (R(νr, νa

2 , νa
3 ), a(νr , νa

2 , νa
3 )) be the drift symmetry of the

RPO P(νr, νa
2 , νa

3 ) at x(νr , νa
2 , νa

3 ) and write, as in (2.9), R(νr, νa
2 , νa

3 ) = exp(
∑3

i=1 φiξi) where
φi = φi(ν

r , νa
2 , νa

3 ). Then φ3(ν
r, νa

2 , νa
3 ) = 0 at νa

3 = 0 needs to be satisfied. Equations (3.17)
and (5.2) imply that R(νr, νa

2 , νa
3 )Ja(x(νr , νa

2 , νa
3 )) = Ja(x(νr , νa

2 , νa
3 )) where Ja(x(νr , νa

2 , νa
3 )) =

(0, νa
2 , νa

3 ). Hence
∑3

i=1 φiξi = φ̂(0, νa
2 , νa

3 )T for some φ̂ ∈ R, where ξi is identified with ei ∈ R3

and so(3) and (R3)∗ with R3. Because of this, φ3 = 0 for νa
3 = 0.

In addition to the family of RPOs from the above theorem, there may be additional families
of RPOs which rotate and translate about the same axis (without loss of generality the e3-axis)
as the relative equilibrium:

Proposition 5.6 Let, as before, SE(3)x0 be a relative equilibrium of an SE(3)-equivariant
Hamiltonian system (3.1), with momentum µ0 = (µr

0, 0), µr
0 6= 0, and with non-vanishing rota-

tional velocity vector ξr
0 6= 0. Choose x0 such that µr

0||e3, ξr
0 = ωrot

0 e3, ξa
0 ||e3. Assume that the

relative equilibium is nonresonant and elliptic in the sense of Definition 4.4, and that ωrot
0 /ωj /∈ Z

for all eigenvalues iωj of JN1
D2

wh(0). Then there are 3-dimensional manifolds Pj(ν
r , s, νa

3 )
of RPOs, j = 1, . . . 1

2 dimM − 5, and smooth functions xj(ν
r, s, νa

3 ) ∈ Pj(ν
r , s, νa

3 ) such that
xj(ν

r, 0, νa
3 ) = xRE(νr , νa

3 ) (with xRE(νr, νa
3 ) from Proposition 5.4). Moreover, the RPO through

xj(ν
r, s, νa

3 ) has momentum (µr
0+νre3, ν

a
3 e3), energy H(xj(ν

r, s, νa
3 )) = H(xRE(νr, νa

3 ))±s2 (de-
pending on the Krein signature of ωj), relative period Tj(ν

r, s, νa
3 ), where Tj(0, 0, 0) = 2π/|ωj |,

and average drift velocity ξj(ν
r, s, νa

3 ) = (ξr
j,3(ν

r, s, νa
3 )e3, ξ

a
j,3(ν

r , s, νa
3 )e3), ξj(0, 0, 0) = ξ0.

Proof. Let us, as in the proof of Proposition 5.4, only reduce by the symmetry group Γ̃ =
SO3(2) × R3. The statement then follows by applying the Lyapounov Centre Theorem on the
˙̃w-equation of (5.4).

Conclusion and future directions

In this paper a Hamiltonian analogue of the well-known meandering transition from rotating
waves to modulated rotating and modulated travelling waves in systems with Euclidean sym-
metries has been studied. This transition occurs for example in a finite-dimensional system of
point vortices. Similar effects have been analyzed in systems with spherical symmetry and with
the Euclidean symmetry of three-dimensional space. It remains a challenging open problem to
extend these results to infinite-dimensional Hamiltonian systems such as PDE models of vortex
dynamics.
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