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Abstract

Let π and λ be two set partitions with the same number of blocks. Assume π is a partition
of [n]. For any integer l,m ≥ 0, let T (π, l) be the set of partitions of [n+ l] whose restrictions
to the last n elements are isomorphic to π, and T (π, l,m) the subset of T (π, l) consisting of
those partitions with exactly m blocks. Similarly define T (λ, l) and T (λ, l,m). We prove that
if the statistic cr (ne), the number of crossings (nestings) of two edges, coincides on the sets
T (π, l) and T (λ, l) for l = 0, 1, then it coincides on T (π, l,m) and T (λ, l,m) for all l,m ≥ 0.
These results extend the ones obtained by Klazar on the distribution of crossings and nestings
for matchings.

1 Introduction and Statement of Main Result

In a recent paper [5], Klazar studied distributions of the numbers of crossings and nestings of two
edges in (perfect) matchings. All matchings form an infinite tree T rooted at the empty matching
∅, in which the children of a matching M are the matchings obtained from M by adding to M in
all possible ways a new first edge. Given two matchings M and N on [2n], Klazar decided when
the number of crossings (nestings) have identical distribution on the levels of the two subtrees of
T rooted at M and N . In the last section of [5] Klazar raised the question as to apply the method
to other structures besides matchings. In the present paper we consider set partitions, which have
a natural graphic representation by a set of arcs. We establish the Klazar-type results to the
distribution of crossings and nestings of two edges in set partitions.

Our approach follows that of Klazar for matchings [5], but is not a straightforward generaliza-
tion. The structure of set partitions is more complicated than that of matchings. For example,

3The second author was supported in part by NSF grant DMS-0245526 and DMS-0653846.
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partitions of [n] may have different number of blocks, while every matching of [2n] has exactly n
blocks. To get the results we first defined an infinite tree T (Π) on the set of all set partitions,
which, when restricted to matchings, is different than the one introduced by Klazar. We state our
main result in Theorem 1.1, whose proof and applications are given in Sections 2 and 3. Section
4 is devoted to the enumeration of the crossing/nesting similarity classes. Though the ideas of
the proofs are similar to those in [5], in many places we have to supply our own argument to fit
in the different structure, and use a variety of combinatorial structures, in particular, Motzkin
paths, Charlier diagrams, and binary sequences. We also analyze the joint generating function of
the statistics cr and ne over partitions rooted at π, and derive a continued fraction expansion for
general π.

We begin by introducing necessary notations. A (set) partition of [n] = {1, 2, . . . , n} is a
collection of disjoint nonempty subsets of [n], called blocks, whose union is [n]. A matching of [2n]
is a partition of [2n] in n two-element blocks, which we also call edges. If a partition π has k blocks,
we write |π| = k. A partition π is often represented as a graph on the vertex set [n], drawn on a
horizontal line in the increasing order from left to right, whose edge set consists of arcs connecting
the elements of each block in numerical order. We write an arc e as a pair (i, j) with i < j.

For a partition π of [n], we say that the arcs (i1, j1) and (i2, j2) form a crossing if i1 < i2 < j1 <
j2, and they form a nesting if i1 < i2 < j2 < j1. By cr(π) (resp. ne(π)), we denote the number of
crossings (resp. nestings) of π. The distribution of the statistics cr and ne on matchings has been
studied in a number of articles, including [2, 5, 6, 7, 8], to list a few. The symmetry of cr and ne for
set partitions was established in [4]. In this paper we investigate the distribution of the statistics
cr(π) and ne(π) over the partitions of [n] with a prefixed restriction to the last k elements.

Denote by Πn the set of all partitions of [n], and by Πn,k the set of partitions of [n] with k
blocks. For n = 0, Π0 contains the empty partition. Let Π = ∪∞

n=0Πn = ∪∞
n=0∪k≤nΠn,k. We define

the tree T (Π) of partitions as a rooted tree whose nodes are partitions such that:

1. The root is the empty partition;

2. The partition π of [n + 1] is a child of λ, a partition of [n], if and only if the restriction of π
on {2, . . . , n+ 1} is order-isomorphic to λ.

See Figure 1 for an illustration of T (Π).
Observe that if λ is a partition of [n] with |λ| = k, then λ has k + 1 children in T (Π). Let

B1, . . . , Bk be the blocks of λ ordered in increasing order with respect to their minimal elements.
For a set S, let S + 1 = {a+ 1 : a ∈ S}. We denote the children of λ by λ0, λ1, . . . , λk as follows:
λ0 is a partition of [n+ 1] with k + 1 blocks,

λ(0) = {{1}, B1 + 1, . . . , Bk + 1};

for 1 ≤ i ≤ k, λi is a partition of [n+ 1] with k blocks,

λ(i) = {{1} ∪ (Bi + 1), B1 + 1, . . . , Bi−1 + 1, Bi+1 + 1, . . . , Bk + 1}.

For a partition λ, let T (λ) denote the subtree of T (Π) rooted at λ, and let T (λ, l) be the set
of all partitions at the l-th level of T (λ). T (λ, l,m) is the set of all partitions on the l-th level of
T (λ) with m blocks. Note that T (λ, l,m) 6= ∅ if and only if k ≤ m ≤ k + l.

Let G be an abelian group and α, β two elements in G. Consider the statistics sα,β : Π → G
given by sα,β(λ) = cr(λ)α + ne(λ)β. In [5], Klazar defines a tree of matchings and shows that for
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∅

Figure 1: The tree of partitions T (Π)

two matchings M and N , if the statistic sα,β coincides at the first two levels of T (M) and T (N)
then it coincides at all levels, and similarly for the pair of statistics sα,β, sβ,α. In this article we
prove that in the tree of partitions defined above, the same results hold. Precisely,

Theorem 1.1. Let λ, π ∈ T (Π) be two non-empty partitions, and sα,β(T ) be the multiset containing
{sα,β(t) : t ∈ T}. We have

(a) If sα,β(T (λ, l)) = sα,β(T (π, l)) for l = 0, 1 then
sα,β(T (λ, l,m)) = sα,β(T (π, l,m)) for all l,m ≥ 0.

(b) If sα,β(T (λ, l)) = sβ,α(T (π, l)) for l = 0, 1 then
sα,β(T (λ, l,m)) = sβ,α(T (π, l,m)) for all l,m ≥ 0.

In other words, if the statistic sα,β coincides on the first two levels of the trees T (λ) and T (π)
then it coincides on T (λ, l,m) and T (π, l,m) on all levels, and similarly for the pair of statistics
sα,β, sβ,α.

Note that the conditions of Theorem 1.1 imply that λ and π have the same number of blocks.
But they are not necessarily partitions of the same [n].

At the end of the introduction we would like to point out the major differences between the
structure of crossing and nesting of set partitions and that of matchings.

1. The tree of partitions T (Π) and the tree of matchings are different. In T (Π), children of a
partition π is obtained by adding a new vertex, instead of adding a first edge. Hence Klazar’s
tree of matchings is not a sub-poset of T (Π). The definition of T (Π) allows us to define the
analogous operators Rα,β,i, as in [5, §2]. Since some descendants of π are obtained by adding
isolated points, we need to introduce an extra operator M , (see Definition 2.2), and supply
some new arguments to work with our structure and M .
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2. The type of a matching is encoded by a Dyck path, while for set partitions, the corresponding
structure is restricted bicolored Motzkin paths(RBM), (c.f. Section 3).

3. The enumeration of crossing/nesting similarity classes is different. A crossing-similarity class
is determined by a value cr(M) (cr(π)) and a composition (a1, a2, . . . , am) of n. For matchings
cr(M) can be any integer between 0 and 1 + a2 + 2a3 + · · · + (m− 1)am. But for partitions
the possible value of cr(π) depends only on m, but not ai’s.

In matchings there is a bijection between the set of nesting sequences of matchings of [2n]
and the set of Dyck paths D(n). There is no analogous result between set partitions and
restricted bicolored Motzkin paths.

4. For matchings every nesting-similarity class is a subset of a crossing-similarity class. This is
not true for set partitions.

2 Proof of Theorem 1.1

Throughout this article we will generally adapt Klazar’s notation on multisets. Formally a multiset
is a pair (A,m), where A is a set, called the underlying set, and m : A → N is a mapping that
determines the multiplicities of the elements of A. We often write multisets by repeating the
elements according to their multiplicities.

For a map f : X → Y and Z ⊂ X, let f(Z) denote the multiset whose underlying set is
{f(z) : z ∈ Z} and in which each element y appears with multiplicity equal to the cardinality of
the set {z : z ∈ Z and f(z) = y}. S(X) denotes the set of all finite multisets with elements in the
set X. Any function f : X → S(Y ) naturally extends to f : S(X) → S(Y ) by f(Z) =

⋃

z∈Z{f(z)},
where

⋃

is union of multisets (the multiplicities of elements are added).
For each bi = minBi of λ define ui(λ) to be the number of edges (p, q) such that p < bi < q

and vi(λ) to be the number of edges (p, q) such that p < q < bi. They satisfy the obvious recursive
relations

ui(λ
0) =

{

0 if i = 1

ui−1(λ) if 2 ≤ i ≤ k + 1
(2.1)

vi(λ
0) =

{

0 if i = 1

vi−1(λ) if 2 ≤ i ≤ k + 1
(2.2)

ui(λ
j) =











0 if i = 1

ui−1(λ) + 1 if 2 ≤ i ≤ j

ui(λ) if j + 1 ≤ i ≤ k

(2.3)

vi(λ
j) =











0 if i = 1

vi−1(λ) if 2 ≤ i ≤ j

vi(λ) + 1 if j + 1 ≤ i ≤ k

(2.4)

for j = 1, . . . , k, where k = |λ| ≥ 1. For the statistics sα,β : Π → G defined by sα,β(λ) =
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cr(λ)α+ ne(λ)β, we have that

sα,β(λ
0) = sα,β(λ

1) = sα,β(λ), (2.5)

sα,β(λ
j) = sα,β(λ) + uj(λ)α + vj(λ)β, j ≥ 1. (2.6)

For simplicity, we will write λij for (λi)j .

Lemma 2.1. For |λ| ≥ 1,

sα,β(λ
0j)) =

{

sα,β(λ) if j = 0, 1

sα,β(λ
j−1) if j ≥ 2,

(2.7)

and for i ≥ 1,

sα,β(λ
ij) =











sα,β(λ
i) if j = 0, 1

sα,β(λ
i) + sα,β(λ

j−1)− sα,β(λ
1) + α if 2 ≤ j ≤ i

sα,β(λ
i) + sα,β(λ

j)− sα,β(λ
1) + β if j ≥ i+ 1.

(2.8)

Proof. We first show (2.8). The first line in (2.8) follows directly from (2.5). For the other two,

sα,β(λ
ij) = sα,β(λ

i) + uj(λ
i)α+ vj(λ

i)β

=

{

sα,β(λ
i) + uj−1(λ)α+ α+ vj−1(λ)β if 2 ≤ j ≤ i

sα,β(λ
i) + uj(λ)α+ vj(λ)β + β if j ≥ i+ 1

=

{

sα,β(λ
i) + sα,β(λ

j−1)− sα,β(λ
1) + α if 2 ≤ j ≤ i

sα,β(λ
i) + sα,β(λ

j)− sα,β(λ
1) + β if j ≥ i+ 1.

The first and third equality follow from (2.6) and the second one follows from (2.3) and (2.4).
Similarly, (2.7) follows from (2.1), (2.2), (2.5), and (2.6).

To each partition λ with k blocks, (k ≥ 1), we associate a sequence

seqα,β(λ) := sα,β(λ
1)sα,β(λ

2) . . . sα,β(λ
k)

The sequence seqα,β(λ) encodes the information about the distribution of sα,β on the children of
λ in T (Π), in which sα,β(λ

1) plays a special role when we analyze the change of seqα,β(λ) below .
This is due to the fact that sα,β(λ

1) carries information about λ and two children of λ, namely, λ0

and λ1.
For an abelian group G, let G∗

l denote the set of finite sequences of length l over G, and
G∗ = ∪l≥1G

∗
l . If u = x1x2 . . . xk ∈ G∗ and y ∈ G, then we use the convention that the sequence

(x1 + y)(x2 + y) . . . (xk + y) is denoted by x1x2 . . . xk + y.

Definition 2.2. For α, β ∈ G and i ≥ 1, define Rα,β,i : G
∗
l → G∗

l , (i ≤ l) by setting

Rα,β,i(x1x2 . . . xl) = xi(x1 . . . xi−1 + (xi − x1 + α))(xi+1 . . . xl + (xi − x1 + β))

and Rα,β : G∗ → S(G∗) by setting

Rα,β(x1x2 . . . xl) = {Rα,β,i(x1x2 . . . xl) : 1 ≤ i ≤ l}.
In addition, define M : G∗ → G∗ by setting

M(x1x2 . . . xl) = x1x1x2 . . . xl.
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Lemma 2.1 immediately implies that

seqα,β(λ
0) = M(seqα,β(λ)),

seqα,β(λ
i) = Rα,β,i(seqα,β(λ)), for 1 ≤ i ≤ |λ|.

For l ≥ 0, let Eα,β(λ, l,m) = {seqα,β(µ) : µ ∈ T (λ, l,m)}, the multiset of sequences seqα,β(µ)
associated to partitions µ ∈ T (λ, l,m). Then for l ≥ 1,

Eα,β(λ, l,m) = Rα,β(Eα,β(λ, l − 1,m)) ∪M(Eα,β(λ, l − 1,m− 1)). (2.9)

Next, we define an auxiliary function f which reflects the change of the statistic sα,β along T (Π).
Then we prove two general properties of f and use these properties to prove Theorem 1.1. For an
integer r ≥ 0 and γ ∈ G, the function f : G∗ → S(G) is defined by

f r
γ (x1x2 . . . xl) := {xa1 + xa2 + · · ·+ xar − (r − 1)x1 + γ : 1 < a1 < a2 < · · · < ar ≤ l}

In particular,

f0
0 (x1x2 . . . xl) = {x1},
f1
0 (x1x2 . . . xl) = {x2, . . . , xl}.

Lemma 2.3. Let X,Y ∈ S(G∗) be two multisets such that f r
γ (X) = f r

γ (Y ) for every r ≥ 0 and
γ ∈ G. Then

(a) f r
γ (M(X)) = f r

γ (M(Y )),

(b) f r
γ (Rα,β(X)) = f r

γ (Rα,β(Y )),

(c) f r
γ (Rα,β(X)) = f r

γ (Rβ,α(Y )),

for every r ≥ 0 and γ ∈ G.

Proof. (a) The elements in f r
γ (M(X)) have the form ya1 + ya2 + · · ·+ yar − (r − 1)y1 + γ for some

y1y2 . . . yl+1 ∈ M(X), where y1y2 . . . yl+1 = x1x1x2 . . . xl for some x1x2 . . . xl ∈ X. For r = 0,

f0
γ (M(X)) = {y1 + γ : y1y2 . . . yl+1 ∈ M(X)} = {x1 + γ : x1x2 . . . xl ∈ X} = f0

γ (X).

Hence f0
γ (X) = f0

γ (Y ) implies f0
γ (M(X)) = f0

γ (M(Y )).
For r ≥ 1, divide the multiset f r

γ (M(X)) into two disjoint multisets,

A = {ya1 + ya2 + · · · + yar − (r − 1)y1 + γ : y1y2 . . . yl+1 ∈ M(X), a1 = 2}

and
B = {ya1 + ya2 + · · ·+ yar − (r − 1)y1 + γ : y1y2 . . . yl+1 ∈ M(X), a1 > 2}.

The elements of A can be written as

ya1 + ya2 + · · · + yar − (r − 1)y1 + γ = x1 + ya2 + · · ·+ yar − (r − 1)x1 + γ

= ya2 + · · ·+ yar − (r − 2)x1 + γ

= xa2−1 + · · ·+ xar−1 − (r − 2)x1 + γ.
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Since a2−1 > a1−1 = 1, the multiset A is equal to f r−1
γ (X). The elements in B can be written as

ya1 + ya2 + · · ·+ yar − (r − 1)y1 + γ = xa1−1 + xa2−1 + · · ·+ xar−1 − (r − 1)x1 + γ.

Since a1 ≥ 3, the indices on the right-hand side run through all the increasing r-tuples 1 < a1−1 <
a2 − 1 < · · · < ar − 1 ≤ l. Therefore, B is equal to f r

γ (X). So,

f r
γ (M(X)) = f r−1

γ (X) ∪ f r
γ (X). (2.10)

By assumption we have

f r
γ (M(X)) = f r−1

γ (X) ∪ f r
γ (X) = f r−1

γ (Y ) ∪ f r
γ (Y ) = f r

γ (M(Y )).

(c) We will prove only (c) because the proof of (b) is similar and easier. Since f r
γ (X) is a translation

of f r
0 (X) by γ, it is enough to prove the result for γ = 0 only. The elements of f r

0 (Rα,β(X)) have
the form ya1 + ya2 + · · · + yar − (r − 1)y1, where y1y2 . . . yl ∈ Rα,β(X) is equal to xi(x1 . . . xi−1 +
xi − x1 + α)(xi+1 . . . xl + xi − x1 + β) for some x1x2 . . . xl ∈ X and i ∈ [l].

For 0 ≤ t ≤ r, let

Ct,α,β(X) = {ya1 + ya2 + · · ·+ yar − (r − 1)y1 :

y1y2 . . . yl ∈ Rα,β,i(X) and at ≤ i < at+1, for some i ∈ [l]}.
An element ya1 + ya2 + · · ·+ yar − (r − 1)y1 ∈ Ct,α,β(X) is equal to

xa1−1 + · · · xat−1 + t(xi − x1 + α) + xat+1
+ · · ·+ xar + (r − t)(xi − x1 + β)− (r − 1)xi

= xa1−1 + · · · xat−1 + xi + xat+1
+ · · ·+ xar − rx1 + tα+ (r − t)β. (2.11)

Again, we consider two cases, according to the value of a1. By (2.11), the submultiset of Ct,α,β(X)
for a1 > 2 is equal to f r+1

tα+(r−t)β(X), and for a1 = 2 the corresponding submultiset is equal to

f r
tα+(r−t)β(X). Therefore,

Ct,α,β(X) = f r+1
tα+(r−t)β(X) ∪ f r

tα+(r−t)β(X). (2.12)

Similarly,

Ct,β,α(Y ) = f r+1
tβ+(r−t)α(Y ) ∪ f r

tβ+(r−t)α(Y ). (2.13)

So,

f r
0 (Rα,β(X)) =

r
⋃

t=0

Ct,α,β(X)

=
r
⋃

t=0

f r+1
tα+(r−t)β(X) ∪

r
⋃

t=0

f r
tα+(r−t)β(X)

=

r
⋃

t=0

f r+1
tα+(r−t)β(Y ) ∪

r
⋃

t=0

f r
tα+(r−t)β(Y )

=
r
⋃

t=0

f r+1
(r−t)α+tβ(Y ) ∪

r
⋃

t=0

f r
(r−t)α+tβ(Y )

=

r
⋃

t=0

Ct,β,α(Y )

= f r
0 (Rβ,α(Y )).
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The second and fifth equality follow from (2.12) and (2.13) respectively. The third equality follows
from the assumption of the lemma, while the fourth equality is just a reordering of the unions.

Lemma 2.4. If X,Y ∈ S(G∗) are one-element sets such that f0
0 (X) = f0

0 (Y ) and f1
0 (X) = f1

0 (Y ),
then f r

γ (X) = f r
γ (Y ) for every r ≥ 0 and γ ∈ G.

Proof. We need to prove that if u, v ∈ G∗ are two sequences beginning with the same term and
having equal numbers of occurrences of each g ∈ G, then f r

γ (u) = f r
γ (v) for every r ≥ 0 and

γ ∈ G. It suffices to prove the statement for γ = 0, because f r
γ (u) is a translation of f r

0 (u) by
γ. Let u = u1 . . . ul and v = v1 . . . vl. Since u1 = v1, it suffices to prove that the multisets
{ua1 + ua2 + · · ·+ uar : 1 < a1 < a2 < · · · < ar ≤ l} and {va1 + va2 + · · ·+ var : 1 < a1 < a2 < · · · <
ar ≤ l} are equal. That is clear because {u2, . . . , ul} and {v2, . . . , vl} are equal as multisets.

Proof of Theorem 1.1 . We prove (b), the proof of (a) is similar. First, we prove by induction
on l that

f r
γ (Eα,β(λ, l,m)) = f r

γ (Eβ,α(π, l,m)) for every r ≥ 0 and γ ∈ G. (2.14)

Before we proceed with the induction, it is useful to observe that the assumption

sα,β(T (λ, l)) = sβ,α(T (π, l)) for l = 0, 1

of Theorem (1.1) (b) is equivalent to

sα,β(T (λ, l,m)) = sβ,α(T (π, l,m)) for l = 0, 1 and k ≤ m ≤ k + l, (2.15)

where k = |λ|. One direction is clear, the other one follows from the following equations.

sα,β(T (λ, 1, k + 1)) = sα,β(T (λ, 0, k)) = sα,β(T (λ, 0)),

sα,β(T (λ, 1, k)) = sα,β(T (λ, 1))\sα,β(T (λ, 0)),

where \ is the difference of multisets. For the same reason the assumption of part (a) is equivalent
to

sα,β(T (λ, l,m)) = sα,β(T (π, l,m)) for l = 0, 1 and k ≤ m ≤ k + l.

Now we show (2.14). For l = 0 we need to show f r
γ (Eα,β(λ, 0, k)) = f r

γ (Eβ,α(π, 0, k)). By
Lemma 2.4 we only need to check that f0

0 (X) = f0
0 (Y ) and f1

0 (X) = f1
0 (Y ) for X = {seqα,β(λ)}

and Y = {seqβ,α(π)}. This follows from (2.15), because f0
0 (X) = sα,β(T (λ, 0, k)) and f1

0 (X) =
sα,β(T (λ, 1, k)).

Suppose f r
γ (Eα,β(λ, s,m)) = f r

γ (Eβ,α(π, s,m)) for all 0 ≤ s < l and all m. Then using (2.9),
the induction hypothesis, and Lemma 2.3 we have

f r
γ (Eα,β(λ, l,m)) = f r

γ (Rα,β(Eα,β(λ, l − 1,m))) ∪ f r
γ (M(Eα,β(λ, l − 1,m− 1)))

= f r
γ (Rβ,α(Eβ,α(π, l − 1,m))) ∪ f r

γ (M(Eβ,α(π, l − 1,m− 1)))

= f r
γ (Eβ,α(π, l,m)),

and the induction is completed. This proves (2.14). Now

sα,β(T (λ, l,m)) = f0
0 (Eα,β(λ, l,m)) = f0

0 (Eβ,α(π, l,m)) = sβ,α(T (π, l,m)).
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3 Applications and Examples

As a direct corollary, we obtain a result of Kasraoui and Zeng [4, Eq.(1.6)].

Corollary 3.1. The joint distribution of crossings and nestings of partitions is symmetric i.e.

∑

π∈Πn

pcr(π)qne(π) =
∑

π∈Πn

pne(π)qcr(π)

Proof. Let G = (Z ⊕ Z,+), α = (1, 0) and β = (0, 1). The result follows from the second part of
Theorem 1.1 for λ = π = {{1}}.

For a partition λ we say that two edges form an alignment if they neither form a crossing nor
a nesting. The total number of alignments in λ is denoted by al(λ). A stronger result of Kasraoui
and Zeng [4, Eq. (1.4)] can also be derived from Theorem 1.1.

Corollary 3.2.
∑

π∈Πn

pcr(π)qne(π)tal(π) =
∑

π∈Πn

pne(π)qcr(π)tal(π)

Proof. Again we use G = (Z ⊕ Z,+), α = (1, 0), β = (0, 1), and λ = π = {{1}}. Any partition
µ ∈ Πn with k blocks has n − k edges. Hence cr(µ) + ne(µ) + al(µ) =

(

n−k
2

)

. The result follows
from the second part of Theorem 1.1.

Corollary 3.3. Let λ and π be two partitions of [n] with same number of blocks k. If the statistic
al is equidistributed on the first two levels of T (λ) and T (π), it is equidistributed on T (λ, l,m) and
T (π, l,m) for all l,m ≥ 0.

Proof. Again we use the identity cr(µ) + ne(µ) + al(µ) =
(

n−k
2

)

, which holds for any partition
µ ∈ Πn with k blocks. Moreover, al(λ) = al(λ0). Therefore the condition that the statistic al
is equidistributed on the first two levels of T (λ) and T (π) implies that the statistic cr + ne is
equidistributed on T (λ, l,m) and T (π, l,m) for all l = 0, 1 and all m. In other words, if we set
G = Z and α = β = 1 then the the assumption of Theorem 1.1 is satisfied, and hence cr + ne
is equidistributed on T (λ, l,m) and T (π, l,m) for all l,m ≥ 0. This, in return, implies that al is
equidistributed on T (λ, l,m) and T (π, l,m) for all l,m ≥ 0.

Example 3.4. Let λ = {{1, 2, 5}, {3, 4}} and π = {{1, 2, 4}, {3, 5}}. There are as many partitions
on [n] with m crossings and l nestings which restricted to the last five points form a partition
isomorphic to λ as there are partitions of [n] with l crossings and m nestings which restricted to
the last five points form a partition isomorphic to π.

Proof. Set G = (Z ⊕ Z,+), α = (1, 0) and β = (0, 1), sα,β = (cr, ne). The claim follows from part
(b) of Theorem 1.1 since sα,β(λ) = (0, 1) = sβ,α(π) and sα,β(T (λ, 1)) = {(0, 1), (0, 1), (1, 2)} =
sβ,α(T (π, 1))

Example 3.5. Let λ = {{1, 7}, {2, 6}, {3, 4}, {5, 8}} and π = {{1, 8}, {2, 4}, {3, 6}, {5, 7}}. There
are as many partitions on [n] with m crossings and l nestings which restricted to the last eight
points form a partition isomorphic to λ as there are ones which restricted to the last eight points
form a partition isomorphic to π.
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Proof. Again set G = (Z⊕Z,+), α = (1, 0) and β = (0, 1). Then sα,β = (cr, ne). The claim follows
from part (a) of Theorem 1.1 since

sα,β(λ) = (2, 3) = sα,β(π)

and
sα,β(T (λ, 1)) = {(2, 3), (2, 3), (3, 3), (4, 3), (4, 4)} = sα,β(T (π, 1)).

4 Number of Crossing and Nesting-similarity Classes

In this section we consider equivalence relations ∼cr and ∼ne on set partitions in the same way
Klazar defines them on matchings [5] . We determine the number of crossing-similarity classes in
Πn,k. For ∼ne, we find a recurrence relation for the number of nesting-similarity classes in Πn,k,
and compute the total number of such classes in Πn.

Define an equivalence relation ∼cr on Πn: λ ∼cr π if and only if cr(T (λ, l,m)) = cr(T (π, l,m))
for all l,m ≥ 0. The relation ∼cr partitions Πn,k into equivalence classes. Theorem 1.1 implies
that λ ∼cr π if and only if cr(λ) = cr(π) and f1

0 (seq1,0(λ)) = f1
0 (seq1,0(π)). Define crseq(λ) =

seq1,0(λ)− cr(λ). For the upcoming computations it is useful to observe that λ ∼cr π if and only if
cr(λ) = cr(π) and f1

0 (crseq(λ)) = f1
0 (crseq(π)), i.e., λ and π are equivalent if and only if they have

the same number of crossings and their sequences crseq(λ) and crseq(π) are equal as multisets.
Denote the multiset consisting of the elements of crseq(λ) by crset(λ).

Similarly, define λ ∼ne π if and only if ne(T (λ, l,m)) = ne(T (π, l,m)) for all l,m ≥ 0. Again,
from Theorem 1.1 we have that λ ∼ne π if and only if ne(λ) = ne(π) and f1

0 (seq0,1(λ)) =
f1
0 (seq0,1(π)). Since the sequence seq0,1(λ) is nondecreasing, λ ∼ne π if and only if ne(λ) = ne(π)
and seq0,1(λ) − ne(λ) = seq0,1(π) − ne(π). With the notation at the beginning of Section 2,
seq0,1(λ)− ne(λ) = v1 . . . vk. Denote this sequence by neseq(λ).

A Motzkin path M = (s1, . . . , sn) is a path from (0, 0) to (n, 0) consisting of steps si ∈
{(1, 1), (1, 0), (1,−1)} which does not go below the x-axis. We say that the step si is of height
l if its left endpoint is at the line y = l. A restricted bicolored Motzkin path is a Motzkin path with
each horizontal step colored red or blue which does not have a blue horizontal step of height 0. We
will denote the steps (1, 1), (1,−1), red (1, 0), and blue (1, 0) by NE (northeast), SE (southeast),
RE (red east), and BE (blue east) respectively. The set of all restricted bicolored Motzkin paths
of length n is denoted by RBMn. A Charlier diagram of length n is a pair h = (M, ξ) where
M = (s1, . . . , sn) ∈ RBMn and ξ = (ξ1, . . . , ξn) is a sequence of integers such that ξi = 1 if si is a
NE or RE step, and 1 ≤ ξi ≤ l if si is a SE or BE step of height l. Γn will denote the set of Charlier
diagrams of length n.

It is well known that partitions are in one-to-one correspondence with Charlier diagrams. Here
we use two maps described in [4], which are based on similar constructions in [3, 10]. For our
purpose, we reformulate the maps Φr,Φl : Γn → Πn as follows. Given (M, ξ) ∈ Γn, construct
λ ∈ Πn step by step. The path M = (s1, . . . , sn) determines the type of λ: i ∈ [n] is

- a minimal but not a maximal element of a block of λ (opener) if and only if si is a NE step;

- a maximal but not a minimal element of a block of λ (closer) if and only if si is a SE step;
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- both a minimal and a maximal element of a bock of λ (singleton) if and only if si is a RE
step;

- neither a minimal nor a maximal element of a block of λ (transient) if and only if si is a BE
step.

To draw the edges in Φr((M, ξ)), we process the closers and transients one by one from left to
right. Each time we connect the vertex i that we are processing to the ξi-th available opener or
transient to the left of i, where the openers and transients are ranked from right to left. If we rank
the openers and transients from left to right, we get Φl((M, ξ)). It can be readily checked that Φr

and Φl are well defined. Moreover:

Proposition 4.1. The maps Φr,Φl : Γn → Πn are bijections.

The proof can be found in [3, 4] and their references.

Example 4.2. If (M, ξ) is the Charlier diagram in Figure 2, then

Φr((M, ξ)) = {{1, 7, 10}, {2, 4, 6, 8}, {3}, {5, 9}, {11, 12}}
Φl((M, ξ)) = {{1, 4, 6, 7, 9}, {2, 10}, {3}, {5, 8}, {11, 12}}

i 1 2 3 6 7 8 9 11 124 5 10

ξi 1 1 1 1 1 2 3 2 2 1 1 1

red blue

blue blue

Figure 2: A Charlier diagram

For M ∈ RBMn let di be the number of NE and RE steps that start at height i, (i ≥ 0).
The profile of M is the sequence pr(M) = (d0, . . . , dl), where l = max{i : di 6= 0}. Note that this
implies that di ≥ 1 for each i = 0, . . . , l, and that the path M is of height l or l+1. The semi-type
of M = (s1, . . . , si) is the sequence st(M) = (ǫ1, . . . , ǫn) where ǫi = 0 if si is a NE or RE step, and
ǫi = 1 if si is a SE or BE step. For example, if M is the path in Figure 2, then pr(M) = (2, 1, 2),
and st(M) = (0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1).

Let λ ∈ Πn and Φ−1
r (λ) = (M, ξr), Φ−1

l (λ) = (M, ξl). Define ϕ(λ) = M ∈ RBMn. Note that
for a given λ, ϕ(λ) can be easily constructed using the four steps above. The next lemma gives the
relation between a partition and its corresponding restricted bicolored Motzkin path and Charlier
diagram.

Lemma 4.3. Let Φr, Φl and ϕ be the maps defined above and Φ−1
r (λ) = (M, ξr), Φ−1

l (λ) = (M, ξl).
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(a) The number of blocks of λ is equal to the total number of NE and RE steps of M .

(b) cr(λ) =
∑n

i=1 (ξ
r
i − 1), ne(λ) =

∑n
i=1 (ξ

l
i − 1).

(c) pr(M) = (d0, . . . , dl) if and only if crset(λ) = {0d0 , . . . , ldl}.

(d) neseq(λ) = v1 . . . vk if and only if the zeros in st(M) = (ǫ1, . . . , ǫn) are in the positions
v1 + 1, v2 + 2, . . . , vk + k.

Proof. (a) The result follows from the fact that the number of blocks of λ is equal to the total
number of openers and singletons.

(b) Denote by E be the set of arcs of λ. For e = (i, j) ∈ E let ce = |{(p, q) ∈ E : i < p < j < q}|.
Then cr(λ) =

∑

e∈E ce. Similarly, if ne = |{(p, q) ∈ E : p < i < j < q}|, then ne(λ) =
∑

e∈E ne.
From the definitions of Φr and Φl it follows that c(i,j) = ξrj − 1 and n(i,j) = ξlj − 1. Hence the claim.

(c) Using the notation at the beginning of Section 2, we have crseq(λ) = (u1, . . . , uk), where ui
is the number of edges (p, q) such that p < bi < q. Here bi = minBi, that is, bi is the i-th opener
or singleton from left to right. But the step in M which corresponds to bi is of height h if and only
if ui = h.

(d) It follows directly from the definitions of neseq(λ) and st(M).

A composition of k is an ordered tuple (d0, . . . , dl) of positive integers whose sum is k.

Lemma 4.4. Let l ≥ 0, k ≥ 1, and n ≥ k.

(a) If λ ∈ Πn,k and crset(λ) = {0d0 , . . . , ldl}, then (d0, . . . , dl) is a composition of k into l + 1

parts, where l ≤ n− k, and 0 ≤ cr(λ) ≤ (n− k − 1)l − l(l−1)
2 .

(b) Given a composition (d0, . . . , dl) of k into l + 1 ≤ n− k + 1 parts and an integer c such that

0 ≤ c ≤ (n−k−1)l− l(l−1)
2 , there exists λ ∈ Πn,k with crset(λ) = {0d0 , . . . , ldl} and cr(λ) = c.

Proof. (a) It is clear that d0 + · · ·+ dl = k. It follows that all the di’s are positive from part (c) of
Lemma 4.3. Moreover, λ has at least l openers and, therefore, at least l closers. So, k+ l ≤ n, i.e.,
l + 1 ≤ n − k + 1. Let ci (respectively ti) be the number of SE (respectively BE) steps at level i,
1 ≤ i ≤ l + 1. Then

∑l+1
i=1 (ci + ti) = n− k and ci ≥ 1, 1 ≤ i ≤ l. Using part (b) of Lemma 4.3, we

have 0 ≤ cr(λ) ≤ ∑l
i=1 (1 + 0)(i − 1) + (n− k − l)l = (n− k − 1)l − l(l−1)

2 .
(b) Suppose first that l + 1 ≤ n − k. Let M ∈ RBMn consist of d0 − 1 RE steps followed

by a NE step, then d1 − 1 RE steps followed by one NE step, etc., dl − 1 RE steps followed by
a NE step, then n − k − l − 1 BE steps, and l + 1 SE steps. It is not hard to see that indeed
M ∈ RBMn. The path never crosses the x-axis and all the BE steps, if any, are at hight l+1 ≥ 1.
Also pr(M) = (d0, . . . , dl). Consider all the sequences ξ = (ξ1, . . . , ξn) such that (M, ξ) is a Charlier
diagram. Then

ξi = 1, 1 ≤ i ≤ k

1 ≤ ξi ≤ l + 1, k + 1 ≤ i ≤ n− l − 1 (4.1)

1 ≤ ξn−i+1 ≤ i, 1 ≤ i ≤ l + 1.
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Hence

0 ≤
n
∑

i=1

(ξi − 1) ≤ (n− k − l − 1)l + l + (l − 1) + · · · + 1 = (n− k − 1)l − l(l − 1)

2
. (4.2)

In the case l = n−k, construct M ∈ RBMn similarly: d0−1 RE steps followed by a NE step, then
d1 − 1 RE steps followed by one NE step, etc., dl RE steps, followed by l SE steps. (Note that,
unlike in the case l < n− k, the path M is of height l) All the sequences ξ = (ξ1, . . . , ξn) such that
(M, ξ) is a Charlier diagram satisfy the following properties:

ξi = 1, 1 ≤ i ≤ k

1 ≤ ξn−i+1 ≤ i, 1 ≤ i ≤ l. (4.3)

Hence

0 ≤
n
∑

i=1

(ξi − 1) ≤ (l − 1) + · · ·+ 1 = (n− k − 1)l − l(l − 1)

2
. (4.4)

Because of (4.2) (respectively (4.4)), for any integer c between 0 and (n− k− 1)l− l(l−1)
2 , ξ can be

chosen to satisfy the conditions (4.1) (respectively (4.3)) and such that
∑n

i=1 (ξi − 1) = c. Since Φ
is a bijection, there is λ ∈ Πn,k such that Φ(λ) = (M, ξ) and, by part (b) and (c) of Lemma 4.3,
cr(λ) = c and crset(λ) = {0d0 , . . . , ldl}.

Theorem 4.5. Let n ≥ k ≥ 1 and m = min {n − k, k − 1}. Then

|Πn,k/ ∼cr | =
m
∑

l=0

(

k − 1

l

)

[(n − k − 1)l − l(l − 1)

2
+ 1]. (4.5)

In particular, if n ≥ 2k − 1,

|Πn,k/ ∼cr| = (n− k − 1)(k − 1)2k−2 + 2k−1 − (k − 1)(k − 2)2k−4. (4.6)

Proof. Recall that λ ∼cr π if and only if cr(λ) = cr(π) and crset(λ) = crset(π). Therefore,
|Πn,k/ ∼cr | = |{(crset(λ), cr(λ)) : λ ∈ Πn,k}|. Using Lemma 4.4 and the fact that the number of

compositions of k into l + 1 parts, 0 ≤ l ≤ k − 1, is
(k−1

l

)

, we derive (4.5). In particular, when
n ≥ 2k − 1,

|Πn,k/ ∼cr | =
k−1
∑

l=0

(

k − 1

l

)

[(n − k − 1)l − l(l − 1)

2
+ 1].
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But

k−1
∑

l=0

(

k − 1

l

)

= (1 + x)k−1|x=1 = 2k−1,

k−1
∑

l=0

l

(

k − 1

l

)

=

(

d

dx
(1 + x)k−1

)

|x=1 = (k − 1)(1 + x)k−2|x=1

= (k − 1)2k−2,

k−1
∑

l=0

l(l − 1)

(

k − 1

l

)

=

(

d2

dx2
(1 + x)k−1

)

|x=1

= (k − 1)(k − 2)(1 + x)k−3|x=1 = (k − 1)(k − 2)2k−3,

and (4.6) follows.

Theorem 4.5 implies that there are many more examples of different partitions λ and π for
which the statistic cr has same distribution on the the levels of T (λ) and T (π). For example,

|Π2k,k| > (2k − 1)!! ≈
√
2
(

2k
e

)k
while |Π2k,k/ ∼cr| ≈ 3k22k−4.

Next we analyze the number of nesting-similarity classes. First we derive a recurrence for the
numbers fn,k = |Πn,k/ ∼ne |.
Theorem 4.6. Let n ≥ k ≥ 1. Then

fn,1 = 1, (4.7)

fn,k =

n−1
∑

r=k−1

fr,k−1 + (k − 1)

(

n− 2

k

)

, k ≥ 2. (4.8)

Proof. Equation (4.7) is clear since |Πn,1| = 1.
Recall that λ ∼ne π if and only if ne(λ) = ne(π) and neseq(λ) = neseq(π). By Lemma 4.3,

fn,k is equal to the number of pairs (ǫ, c) such that there exists λ ∈ Πn,k with ne(λ) = c and
st(ϕ(λ)) = ǫ. It is not hard to see that for a given a sequence ǫ = (ǫ1, . . . , ǫn) ∈ {0, 1}n, there exists
λ ∈ Πn,k such that st(ϕ(λ)) = ǫ if and only if ǫ has k zeros and ǫ1 = 0. Denote the set of all such
sequences by S0

n,k and denote the set of all ǫ ∈ {0, 1}n with k zeros by Sn,k.
For a sequence ǫ ∈ Sn,k define a bicolored Motzkin path M = M(ǫ) = (s1, . . . , sn) as follows.

For i from n to 1 do:

- If ǫi = 0 and si is not defined yet, then set si to be a RE step;

- If ǫi = 1 and there is j < i such that ǫj = 0 and sj is not defined yet, then set si to be a SE
step and sj0 to be a NE step, where j0 = min{j : ǫj = 0 and sj is not defined yet};

- If ǫi = 1 and there is no j < i such that ǫj = 0 and sj has not been defined yet, set si to be
a BE step.

Note that we build M backwards, from (n, 0) to (0, 0). Let hi be the height of si and ne(ǫ) =
∑

(hi − 1), where the sum is over all the indices i such that ǫi = 1. For example, if ǫ =
(0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1), then

M(ǫ) = (NE,NE,NE,BE,NE,BE,BE,SE, SE, SE,RE, SE).
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The sequence of the heights of all the steps of M is (0, 1, 2, 3, 3, 4, 4, 4, 3, 2, 1, 1) and ne(ǫ) = (3 −
1) + (4− 1) + (4− 1) + (4− 1) + (3− 1) + (2− 1) + (1− 1) = 14.

Although clearly M(ǫ) stays above the x-axis, it is not necessarily a restricted bicolored Motzkin
path. The reason is that any 1 in ǫ before the first zero would produce a BE step on the x-axis.
Hence, M(ǫ) ∈ RBMn if and only if ǫ1 = 0, or equivalently, ǫ ∈ S0

n,k.

We claim that for a fixed ǫ ∈ S0
n,k, there is λ ∈ Πn,k such that st(ϕ(λ)) = ǫ and ne(λ) = c if

and only if 0 ≤ c ≤ ne(ǫ). To show the if part, one can choose a sequence ξ = (ξ1, . . . , ξn) with
1 ≤ ξi ≤ hi if ǫi = 1, ξi = 1 if ǫi = 0, and

∑n
i=1(ξi − 1) = c. Then Lemma 4.3 implies that

Φl((M, ξ)) satisfies the requirements. Conversely, suppose λ ∈ Πn,k is such that st(ϕ(λ)) = ǫ. Let
Φ−1
l (λ) = (M ′, ξ′). Then the height h

′

i of each BE and SE step of M ′ satisfies

h
′

i ≤ min{# zeros in (ǫ1, . . . , ǫi−1), (# ones in (ǫi+1, . . . , ǫn)) + 1} = hi.

Now, by Lemma 4.3,

ne(λ) =
∑

(ξ
′

i − 1) ≤
∑

(h
′

i − 1) ≤
∑

(hi − 1) = ne(ǫ).

The claim is proved. Back to the proof of Theorem 4.6, we have

fn,k =
∑

ǫ∈S0
n,k

(ne(ǫ) + 1) =
∑

ǫ∈S0
n,k

(
∑

(hi − 1) + 1) =
∑

ǫ∈S0
n,k

∑

hi − (n− k − 1)

(

n− 1

k − 1

)

.

Set
gn,k =

∑

ǫ∈S0
n,k

∑

hi and g∗n,k =
∑

ǫ∈Sn,k

∑

hi,

where the inner sums are taken over all the indices i such that ǫi = 1. With this notation,

fn,k = gn,k − (n − k − 1)

(

n− 1

k − 1

)

. (4.9)

The sequences gn,k and g∗n,k satisfy the following recurrence relations:

gn,k = gn−1,k−1 + g∗n−2,k−1 + (n− k)

(

n− 2

k − 1

)

, (4.10)

g∗n,k =

n
∑

r=k

gr,k. (4.11)

To see (4.10), note that if ǫn = 0 then (ǫ1, ..., ǫn−1) ∈ S0
n−1,k−1 and M(ǫ) is M(ǫ1, ..., ǫn−1) with

one RE step appended, and if ǫn = 1 then (ǫ2, ..., ǫn−1) ∈ Sn−2,k−1 and M(ǫ2, ..., ǫn−1) is obtained
from M(ǫ) by deleting the first NE and the last SE step. For (4.11), if ǫ1 = · · · = ǫr−1 = 1 and
ǫr = 0, then M(ǫr, . . . , ǫn) is obtained from M(ǫ) by deleting the first r − 1 BE steps at level 0.
Substituting (4.11) into (4.10) gives

gn,k =
n−1
∑

r=k−1

gr,k−1 + (n− k)

(

n− 2

k − 1

)

. (4.12)

Finally, by substituting gn,k from (4.9) into (4.12) and simplifying, we obtain (4.8).

15



Corollary 4.7.

|Π1/ ∼ne | = 1, |Π2/ ∼ne | = 2

|Πn/ ∼ne | = 2n−5(n2 − 5n+ 22), n ≥ 3

Proof. Denote |Πn/ ∼ne | by Fn. Using Fn =
∑n

k=1 fn,k, (4.7), and (4.8), we get

Fn = 1 + F1 + · · ·+ Fn−1 +

n
∑

k=2

(k − 1)

(

n− 2

k

)

= F1 + · · ·+ Fn−1 + (n− 4)2n−3 + 2, n ≥ 2.

This yields the recurrence relation

Fn = 2Fn−1 + (n − 3)2n−4, n ≥ 3

with initial values F1 = 1 and F2 = 2, which has the solution

Fn = 2n−5(n2 − 5n+ 22), n ≥ 3.

The following tables give the number of crossing/nesting-similarity classes on Πn,k for small n
and k.

crossing-similarity classes

n \ k 1 2 3 4 5 6

1 1
2 1 1
3 1 2 1
4 1 3 3 1
5 1 4 7 4 1
6 1 5 11 4 5 1

nesting-similarity classes

n \ k 1 2 3 4 5 6

1 1
2 1 1
3 1 2 1
4 1 4 3 1
5 1 7 9 4 1
6 1 11 22 16 5 1

The two equivalence relations ∼cr and ∼ne on set partitions are not compatible. From the tables
it is clear that ∼cr is not a refinement of ∼ne. On the other hand, let π = {{1, 3}, {2, 4}, {5, 6}}
and λ = {{1, 3, 6}, {2, 4}, {5}}. It is easy to check that π ∼ne λ, but π 6∼cr λ, as cr(π) = 1 and
cr(λ) = 2.

5 Generating function for crossings and nestings

In this section we analyze the generating function

Sπ(q, p, z) =
∑

l≥0

∑

λ∈T (π,l)

qcr(λ)pne(λ)zl

for a given partition π, and derive a continued fraction expansion for Sπ(q, p, z). For this we work
with the group G = Z ⊕ Z and α = (1, 0), β = (0, 1). Fix a partition π with k blocks. Define
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Eα,β(π, l) = ∪k+l
m=kEα,β(π, l,m), i.e., Eα,β(π, l) is the multiset of sequences seqα,β(µ) associated to

the partitions µ ∈ T (π, l). A recurrence analogous to (2.9) holds. Namely, for l ≥ 1

Eα,β(λ, l) = Rα,β(Eα,β(λ, l − 1)) ∪M(Eα,β(λ, l − 1)). (5.1)

For simplicity we write El instead of Eα,β(π, l) when there is no confusion. Define bl,r to be the
generating function of the multiset f r

0 (El), i.e.,

bl,r(q, p) =
∑

(x,y)∈fr
0
(El)

qxpy,

where (x, y) ∈ f r
0 (El) contributes to the sum above according to its multiplicity in f r

0 (El). By
convention, let bl,r(q, p) = 0 if f r

0 (El) = ∅, or, one of l, r is negative. For simplicity we write bl,r for
bl,r(q, p). Note that bl,0 =

∑

λ∈T (π,l) q
cr(λ)pne(λ) and hence

Sπ(q, p, z) =
∑

l≥0

bl,0z
l. (5.2)

By the formulas (5.1), (2.10), and the proof of part (c) of Lemma 2.3, we get

f r
0 (El) = f r

0 (M(El−1)) ∪ f r
0 (Rα,β(El−1))

= f r−1
0 (El−1) ∪ f r

0 (El−1) ∪
r
⋃

t=0

f r+1
tα+(r−t)β(El−1) ∪

r
⋃

t=0

f r
tα+(r−t)β(El−1),

which leads to a recurrent relation for bl,r:

bl,r = bl−1,r−1 + bl−1,r + (
r

∑

t=0

qtpr−t)bl−1,r+1 + (
r

∑

t=0

qtpr−t)bl−1,r.

Using the standard notation [r]q,p :=
qr−pr

q−p , we can write this as

Proposition 5.1.

bl,r = bl−1,r−1 + (1 + [r + 1]q,p)bl−1,r + [r + 1]q,pbl−1,r+1.

If the sequence associated to the partition π is x1x2 . . . xk, with xi = uiα+ viβ, 1 ≤ i ≤ k, then

b0,0 = qu1pv1

b0,r =
∑

1<i1<···<ir≤k

qui1
+···+uir−(r−1)u1pvi1+···+vir−(r−1)v1 for r ≥ 1. (5.3)

In particular, b0,r = 0 if r ≥ k.
Given l and s, nonnegative integers, consider the paths from (l, 0) to (0, s) using steps (−1, 0),

(−1, 1), and (−1,−1) which do not go below the x-axis. Each step (−1, 0) ((−1, 1), (−1,−1)
respectively) starting at the line y = r has weight [r + 1]q,p (1 + [r + 1]q,p, 1, respectively).
The weight w(M) of such a path M is defined to be the product of the weights of its steps. Let
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cl,s =
∑

w(M), where the sum is over all the paths M described above. Then from Proposition 5.1
one has

bl,0 =
∑

0≤s≤k−1

cl,sb0,s.

Set ar = [r+1]q,p and cr = [r+1]q,p+1. By the well-known theory of continued fractions (see [3]),
cl,s is equal to the coefficient in front of zl in

Ks(z) := J/0/(z)a0zJ
/1/(z)a1z · · · J/s/(z) =

1

zs
(Qs−1(z)J(z) − Ps−1(z)) (5.4)

where

J/h/(z) =
1

1− chz −
ahz

2

1− ch+1z −
ah+1z

2

. . .

and Pk(z)
Qk(z)

is the k-th convergent of J(z) := J/0/(z). Hence

Theorem 5.2. Let π be a partition with k blocks whose associated sequence is x1x2 . . . xk, where
xi = uiα+ viβ for 1 ≤ i ≤ k. Then

Sπ(q, p, z) =
∑

0≤s≤k−1

b0,sKs(z),

where b0,s is given by the formula (5.3), and Ks(z) is given by (5.4).

In particular, when k = 1, i.e., π is a partition with only one block, then b0,0 = 1 and bl,0 =
cl,0b0,0 = cl,0. Therefore

Corollary 5.3. If |π| = 1, then

Sπ(q, p, z) =
1

1− ([1]q,p + 1)z − [1]q,pz
2

1− ([2]q,p + 1)z − [2]q,pz
2

. . .

.

Remark. Corollary 5.3 leads to a continued fraction expansion for the generating function of
crossings and nestings over Π: Just taking π to be the partition of {1}, and bearing in mind that
we are counting the empty partition as well, we get

∑

n≥0

∑

λ∈Πn

qcr(λ)pne(λ)zn = 1 + zS{1}(q, p, z)

= 1 +
z

1− ([1]q,p + 1)z − [1]q,pz
2

1− ([2]q,p + 1)z − [2]q,pz
2

. . .

. (5.5)

18



A different expansion was given in [4], as

∑

n≥0

∑

λ∈Πn

qcr(λ)pne(λ)zn =
1

1− z − z2

1− ([1]q,p + 1)z − [2]q,pz
2

1− ([2]q,p + 1)z − [3]q,pz
2

. . .

. (5.6)

The fractions (5.6) and (5.5) can be transformed into each another by applying twice the
following contraction formula for continued fraction, (for example, see [1]):

c0

1− c1z

1− c2z

. . .

= c0 +
c0c1z

1− (c1 + c2)z −
c2c3z

2

1− (c3 + c4)z −
c4c5z

2

. . .

.
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